污泥处理的形式范文
时间:2023-12-25 17:37:27
导语:如何才能写好一篇污泥处理的形式,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
论文摘要:作为一个先决条件,污泥至少应当是稳定的,在实际运行上即是要求没有臭味。当地或将来的法律可能要求会更高:污泥可能被要求消毒/巴氏除菌。消毒要求达到一个强制的目标:病原体如肠道病毒、伤寒菌、线虫、寄生虫卵等在处理后的样品中应当检测不到。
1 污泥处理的思路
由于城市污水和工业污水收集率的提高和污水处理效率的改进(如化学法除磷可使污泥量增加30%),使得在世界范围内污泥总量急剧增加。
土地应用仍是污泥处置中可持续发展的一条出路,主要取决于如下因素:
碳和营养物的回用;
周围有无农业用地及其距离;
低投入和运行花费;
严格的法律规定和控制程序以保证污泥安全和有肥效。
然而,根据实际情况或当地规定,污泥生产者在土地应用前不得不进行高级,更昂贵的处理以满足进一步的要求,如堆肥、高温消化处理或高温消毒。
但是,很大一部分污泥因为显而易见的原因不能用于农业,如微污染物、病菌超标或缺乏肥效、距离太远等等。有时也可能由于公众的不信任而不被接受。这样,污泥或被填埋或通过高温氧化硝毁。
2 污泥处理的可持续性战略
在进行任何技术研究之前,应先对公众是否接受进行评估。即使是从技术、成本和环境影响方面来讲都是最好的处理方法,也可能由于没有很好的向公众进行解释而遭到否定。不管最终处理方法是什么,能确定的是将来的处理应是安全、环保(保护人和动植物)并且应当增值(物质和/或能源的回收)。为了这些目的,污泥处理应减小污泥体积,改进污泥质量,减少有害物的排放。
本文将简介一些重要工艺,以满足运营者的需要,并且其中涉及到其他技术或法规约束问题。
2.1 土地应用的可持续发展战略
为一个先决条件,污泥至少应当是稳定的,在实际运行上即是要求没有臭味。当地或将来的法律可能要求会更高:污泥可能被要求消毒/巴氏除菌。消毒要求达到一个强制的目标:病原体如肠道病毒、伤寒菌、线虫、寄生虫卵等在处理后的样品中应当检测不到。
生物处理。利用生物工艺处理挥发性污泥。如厌氧消化(AD)、自养好氧消化(ATAD)工艺。
化学处理。抑制腐败挥发性有机物的降解。如酸性亚硝酸盐SAPHYRTM工艺。
物理处理。抑制腐败挥发性有机物的降解。如污泥焚烧。
这些工艺大部分都有稳定和消毒,但是消毒的程度取决于一些参数如HRT(水力停留时间)或化学投加量。
显然热氧化工艺远远超出了污泥稳定、消毒和巴氏消毒的要求。因为有机物被完全或几乎完全消解。
污泥的生物稳定
液态(浓缩后):消化
我们最熟悉的是传统的污泥处理方法——消化,它可以减少产泥量。无论好氧或厌氧,它都涉及到很多的能量。目前多数较大的处理厂或地区污泥中心都是采用该种方法,此种工艺在数量上还是领先的。同时,其他一些操作或在消化前或在消化后,也提供了强化的处理能力。
附着态污泥(脱水后):堆肥
堆肥是现有的唯一可以把污泥从废物变成产品的工艺,并被很多严格规定或标准认可。因为污泥变成一种新产品,容易操作(可堆积)而无味,消毒良好并且较干燥。这种工艺越来越流行。另一方面,由于它不减少最终的体积,需要很大的占地面积和较多人员。而且,为了满足新规定中(临时EU标准或EPA A级)关于消毒和气味的要求,与传统的“粗糙”工艺如曝气静态堆相比,需要更先进的工艺如“搅拌式反应廊道”,它影响最终的运行费用。
这个工艺主要是通过一个移动的轮子搅拌并推动混合物,同时鼓风机在曝气,加速的生物降解产生一个均匀的泥堆。总的停留时间可以减小到2周,消毒效果非常好。
污泥的化学稳定。污泥的化学稳定主要是通过一个投加装置对待稳定污泥投加化学药剂,以防止发酵和气味。大计量投加可使病原体衰减。这种工艺一般投资便宜并且容易操作。但是,泥量不会减少,并且运行费用较高。
这两种工艺不相互排斥,填埋土地的性质决定着工艺的选用:如果土壤是酸性的,则可以选择加石灰,但如果土壤是碱性的,则SAPHYRTM工艺可能更适合,因为它操作简单,运行费用省。
污泥的物理稳定——加热干燥。加热干燥主要是通过热驱动力除去剩余的自由水和键连接水。根据加热的媒介的不同,加热干燥可分为两可分为两种:一种是气态在高温和湍流状态下流过干燥器(直接加热),一种是用加热液体(通常是蒸汽或加压的水)传递热量给污泥,通过干燥器的加热壁(间接干燥)。加热干燥的目的是使到达下游的污泥具有焚烧的热持续性(一般30~35%)或者是容易处理和储存的干燥污泥(60%)。如果要达到长时间的稳定(几个月),干固体含量应达到90%或更多(最终干燥),而且颗粒的状态也是容易操作使用的(包括农田应用)。另一个最终干燥的优点是它可以方便的面对各种最终的处理方法,如农田应用、焚烧后用于水泥生产、或城市垃圾焚烧。它的缺点:第一是运行费用高,尤其是能源消耗,一般在热干燥中,每蒸发一吨水需要3400MJ的热量。但在脱水步骤中,除去一吨水只要6MJ(电能);第二需要较多工作人员来清除死角中的粉末以防止火灾。
2.2 可持续性热氧化战略
焚烧。流化床焚烧炉(FBF)就工艺性能来讲,被证明是焚烧污泥最好的方法(湍流方式,燃烧后高达850度的温度)。而且它运行可靠(在炉内没有转动部分)。在40年的时间里,威望迪公司已经在全世界范围内建造了几十座流化床焚烧炉(如欧盟、俄罗斯、土耳其)。
通常,在稳定状态不需要添加额外的燃料,热平衡的持续性是可以达到的。如果污泥的热值LCV太低(如低挥发性固体和/或固体含量),尾气/气热交换器应该足够大以增加风室的温度。如果达不到(如延时曝气的污泥含20%DS),则需要在前面加热干燥。
关于干灰的处置,对于没有工业污染的纯市政污泥,重金属不是问题。因为灰是以氧化物形式存在,他们渗透性不强,所以可以回用作水泥,用于工业和道路建设。
最后的副产物是酸步骤的清除。由于重金属的污染,他们只能填埋在特殊的地方,但数量很小。
与城市固体废物共同焚烧。为了减少投资,城市垃圾和市政污泥通常用一个焚烧炉。通常,一个人口当量每天产生150~250克的脱水后粘性污泥和1~3公斤的垃圾。根据焚烧炉的设计,可以通过10~25%(泥/垃圾)的粘性污泥来控制炉子的温度。为了达到最优化的燃烧,并且不会由于未燃烧的有机污泥污染熟料, 可以用处理能力为1m3/h的 PyromixTM 设备,通过压缩空气把污泥转成滴状污泥。实际上,这种运行方式只有在污水厂离城市垃圾焚烧炉较近时有利,否则处理运输的费用将很高。此时污泥只在系统需要时作为控制流使用。
湿式空气氧化法。威望迪水务系统研发的ATHOSTM设备在“中性”温度(240度)和压力(45巴)条件下被证明是高效的。80%的总COD被氧化,剩下20%是可溶的和高度可生物降解的。不需要后续脱水步骤,废气没有毒性,固体矿物副产品包含重金属是以一种不可渗透形式存在的。它们可以用于道路建设。而且液态部分,含有可生物降解的COD,可以很方便的用作污水厂的反硝化的碳源。
污泥中的有机氮先降解成可溶性的氨。这些氨,部分被吹脱后通过催化反应转换成氮气进入大气。
结论
激烈的竞争、严格的规范和环境保护的需要要求不断开发新的工艺或用更为有效的工艺。对一个具体的项目,通过对工艺的合理选用可以满足用户的要求,需要考虑的是该工艺要能保护环境,造福于人,要能优化物质和能源的回收利用,以达到可持续性的发展的目的。
篇2
关键词:探究性;三维虚拟实验
中图分类号:G434 文献标识码:A 论文编号:1674-2117(2016)02-0055-04
探究性三维虚拟实验设计的理论基础
1.认知主义学习理论
认知主义学习理论把学习看作对信息进行主动选择和理解的过程,认为人的认知过程实际上是一个信息加工过程,知识不是由外界刺激直接给予的,而是外界刺激和认知主体内部心理过程相互作用的结果。采用三维虚拟实验进行教学,认知对象从传统的与现实世界打交道,变成与虚拟世界进行交互,从而产生了一种新的认知方式。因此设计三维虚拟实验时,必须从学生的认知心理出发,注重学生的具体经验和对情境的了解,使学习者新旧知识之间的同化能顺利完成,最终促进自己的认知发展。
2.情境学习理论
情境学习理论认为,特定的知识应该在特定的情境中去学习,学习是一个社会性过程,知识在这个过程中由学习者与周围环境相互作用共同构建。情境学习理论强调学习者应经历社会真实情境,通过实际活动使其在真实情境中学习知识、技能和策略,对知识做合理的解释并能灵活运用知识。因此,设计三维虚拟实验时,必须创设实验过程所需要的各种情境,为学生主动探究提供环境支撑。
3.建构主义学习理论
建构主义认为,学习是建构内在心理表征的过程,学习者以已有的经验为基础,通过与外界的相互作用来建构新的理解,学习者知识的获得是个体与外部环境交互的结果。因此,设计三维虚拟实验时,必须提供灵活的交互方式,同时为学习者提供丰富的资源和工具,方便学生进行科学的探究活动,有效建构自己的知识。
中学物理探究性三维虚拟实验设计
1.设计原则
直观性:三维虚拟实验设计要为学习者提供逼真的实验环境,增加学生者亲身体验的经历。由于操作步骤复杂、观测过程漫长、实验仪器昂贵等原因而无法完成的实验要逼真模拟,实验现象抽象和微观的就要突破时空限制转变为直观呈现,实验过程不能及时控制的要设计关键现象模拟情境,使学习者在虚拟环境下,便于观察物理现象,更好地理解和掌握实验原理。
交互性:三维虚拟实验设计要为学习者提供更多交互的环节和实时的反馈,方便学习者选择实验设备、操作实验仪器、设置实验条件、改变实验参数。使学习者在虚拟环境下,按照自己的学习特征、学习进度和学习方式进行主动探究。
开放性:三维虚拟实验设计要为学习者提供可以自主设计实验的学习资源和工具,使学习者能够按照自己的兴趣自由地设计实验方案、演示实验效果,并提供及时的反馈。
趣味性:三维虚拟实验设计要为学习者提供能够激发好奇心和求知欲的实验过程和现象,能够吸引学生的注意力,给学习者悦趣的体验,激发其学习物理的兴趣。
2.设计过程
(1)实验类型和主题的设计
按照实验内容分为:声音类、光学类、电路类、电磁类、理学类、能量类。本研究从众多实验中选择了部分实验进行开发仿真,具体包括真实实验中不易观察的实验、真实实验中不易控制的实验两类。
(2)虚拟实验模块设计
探究性三维虚拟实验共包括实验介绍、实验操作、实验提示、实验评价四个模块。其中,实验介绍包括仪器介绍和内容介绍。仪器介绍阐述虚拟实验中用到的关键仪器的功能、使用方法等。内容介绍阐述实验目的、实验原理等;实验操作是虚拟实验的核心部分,通过分析该阶段学生的认知结构,设计交互式的用户界面和探究性实验环节,学生根据实验原理和步骤,在三维虚拟实验场景中对相关实验仪器进行操作,完成实验;实验提示是指对实验中容易出错的地方为学生提供必要的帮助;实验评价是根据具体的实验要求,对学生的实验操作结果进行评价。
中学物理探究性三维虚拟实验的实现
1.主要开发工具的选择
探究性三维虚拟实验的实现主要包括虚拟实验场景、各种实验仪器设备的三维建模,以及提供探究活动的虚拟现实交互体验的开发,用到的开发工具主要包括三维建模工具3ds Max和虚拟现实开发工具Unity 3D。
(1)3ds Max
3ds Max是Autodesk公司开发的基于PC的三维动画制作、编辑、播放与三维建模和渲染软件。它具有易于使用、功能强大、性价比高等优点,是许多个人和公司用户首选的三维建模与动画软件。3ds Max被广泛应用于广告、影视、游戏开发、计算机艺术、角色动画、工业设计和辅助教学等诸多领域。
(2)Unity 3D
Unity 3D是由Unity Technologies公司推出的一款强大的3D跨平台游戏引擎,包括图形、光照、音频、渲染、物理和网络等多方面的引擎支持,目前已不仅仅局限于游戏开发,而成为强大的综合性虚拟现实开发工具,在虚拟漫游与实时设计、虚拟现实交互体验、人体数字化展示等领域都得到有效应用。
2.开发流程
三维虚拟实验的开发步骤为:①三维虚拟实验场景、实验仪器的建模;②分析学生的心理和认知结构,设计探究环节;③设计交互界面,实现实验的交互操作;④测试虚拟实验,进行调试和优化;⑤虚拟实验。
3.探究性三维虚拟实验的开发
(1)实例1:布朗运动
①实验设计思路:布朗运动是由微观分子间做无规则运动而形成的。在现实生活中,难于操作,不易观察,只有借助显微镜才能观察,使得学生缺乏创造力和空间想象力。而在三维虚拟实验中可以克服这些不足,利用Unity 3D提供的物理引擎,可以很好地模拟微观分子的无规则运动。本实验通过设计交互式的界面接口,使学生可以通过控制温度变化或调整微观分子大小,模拟微观分子的运动变化情况,从而使实验者更好地理解布朗运动。
②虚拟实验场景和实验器材的三维建模。实验采用3ds Max对三维仿真实验中用到的模型进行构建,主要包括实验桌、实验仪器,实验主界面如下页图1所示。
③虚拟仿真实验的实现。本实验提供了两个观察角度,即宏观和微观,宏观角度用来展示实验前的状况;微观角度用来展示微观粒子的运动状况,通过使用摄像机效果,使得观察者能够清晰地看到微观世界中分子的无规则运动情况,实验操作界面如下页图2所示。
下面详细介绍微观角度下实验的实现过程。首先,学生点击微观按钮后,摄像机被激活显示,同时向液体分子拉近,这时出现图2所示的界面,屏幕下方出现对应的滑动条用于控制条件,一种是温度变化,一种是分子大小变化。这里用到了NGUI插件里的Tween Position动画。其次,液体分子的无规则运动模拟是用Unity自带的碰撞检测函数来实现的。当分子之间相互碰撞时,会触发自身的碰撞检测,从而受到一个反向作用力被反弹回去。当多个分子发生碰撞时,它们的运动就会变得毫无规律,从而形成了无规则运动。
(2)实例2:光的反射与折射
①实验设计思路:光的反射与折射定律探究的是光从一种介质照射到另一种介质时发生传播方向改变的光学现象。在现实生活中,为了确保实验的准确性和灵活性,特别要保证三线共面,需要实验操作细致,入射角、反射角、折射角的测量也很费时,且不易控制。而在三维虚拟仿真实验中可以克服这些不足,利用Unity 3D可以很好地模拟光线的反射、折射现象,以及入射角、反射角、折射角之间的关系。
②虚拟实验场景和实验器材的三维建模。本实验采用3ds Max对三维仿真实验中用到的模型进行构建,主要实验仪器如图3所示。
③虚拟仿真实验的实现。本实验用来展示入射角变化时,反射角、折射角的变化情况,通过圆盘上的刻度标定,能够随时读出确切的值,实验者能够清晰地看到入射角、反射角、折射角的关系,实验操作界面如图4所示。
结束语
新技术、新媒体的发展对传统教育教学改革具有推动作用,利用虚拟现实技术设计并实现初中物理探究性三维虚拟实验,能够有效改进传统中学物理实验教学的不足,为学生进一步理解基本概念、掌握实验规律和实验原理,提供了主动探究的环境,对学生创新思维的培养具有重要价值,对探索信息技术环境下中学实验教学新方法具有重要意义。
参考文献:
[1]马发挥,李献业,钟永江,陈红珍.初中物理虚拟实验室教学模式研究[J].中国信息技术教育,2010(9):48-50.
[2]姬洪强.《现代教育技术》虚拟实验室的设计与实现[D].金华:浙江师范大学,2009.
[3]张秀敏.仿真实验室在初中物理虚拟实验中的应用[J].中国教育技术装备,2015(11):158-159.
[4]张林誉.初中物理虚拟试验系统的设计与实现[D].武汉:华中师范大学,2013.
[5]徐一帆.基于虚拟现实的中学物理仿真实验的设计与实现[D].长沙:湖南大学,2013.
[6]单美贤.虚拟试验系统的分类研究[J].现代教育技术,2011,21(10):117-120.
篇3
关键词:活性污泥 混凝法 高含盐染料废水
高含盐染料废水由于含盐量高,用单一方法不宜使废水达到国家有关排放标准,而采用电解方法虽然省时省力、去除效果好,但因耗电量巨大,处理中产生大量氯气等有害气体,所以不宜应用于大型工程中[1]。
活性污泥法处理污水是一种好氧生物处理方法。由于这种方法具有高净化能力,因而得到广泛应用[1]。混凝是用来去除水中无机或有机胶体悬浮物的一种方法。可除去固体悬浮物、胶体、可滤性重金属盐、有机物、油类及颜色等。
为了达到一个经济又实用的最佳结合点,本实验首先用活性污泥驯化法处理一段时间后,再用混凝法处理,能有效降低废水的COD值和色度,而且有效节约开支,省时省力。
1 实验部分
1.1 模拟含盐染料废水配制
采用酸性红B染料和氯化钠配制。废水中酸性红B浓度为200mg/L,含盐浓度为4.0×104 mg/L。
1.2 活性污泥制备
取污水处理厂的原活性污泥。约按原活性污泥:水=1:5的比例制备。取400mL 活性污泥于1000mL大烧杯中,不停曝气,待用。
1.3 活性污泥的驯化[2]
1.3.1 驯化步骤
向上述连续曝气24小时的1000mL大烧杯中加入10mL高含盐染料废水。5小时后,再向其中加入20mL废水。(第一天共加入30mL废水)经过18小时后,加入20mL废水。继续过5小时后,再加入20mL废水。(第二天共加入40mL废水)第三天加入30mL废水。至此共加入废水100mL。用滴管取少量水样进行镜检。从第四天开始,每天分上、下午各加入25mL废水,至累计加入200mL、300mL、400mL时,各镜检水样一次。至第九天,共加入高含盐染料废水400mL为止。
1.3.2 测定驯化过程中的CODCr值
测定新配制的高含盐染料废水原液的CODCr值,活性污泥曝气24小时后的CODCr值。以及每累计向活性污泥中加入100mL、200mL、300mL、400mL高含盐染料废水时,水样CODCr值。由于此水样氯离子含量极高,影响CODCr的测定,本实验将废水(含处理前、后)稀释100倍后再进行测试。CODCr测定步骤见参考文献[3]。
1.3.3 水样色度的测定
采用稀释倍数法[3]测定新配制的高含盐染料废水的色度,并测定每累计向活性污泥中加入100mL、200mL、300mL、400mL废水时的水样色度。
1.4 混凝法继续对水样进行处理
取100mL生化后水样,用石灰乳(在研钵中用生石灰加少量水调成浆状)调节污水的pH值为8,用移液管加入0.5mL聚合氯化铝,快速搅拌1分钟,然后再加入0.1%的聚丙烯酰铵1滴,慢速搅拌1分钟,静置20分钟,然后用吸管吸取上清液,测定其CODCr值和色度。
以此方法,分别测出加入1mL、3mL聚合氯化铝时水样的CODCr值和色度。
2 结果与讨论
3.1 活性污泥处理高含盐染料废水中的微生物区系[4]
通过镜检,活性污泥处理高含盐染料废水主要的微生物种群是细菌与原生动物,原生动物以纤毛虫居多,如钟虫,游泳型纤毛虫,固着型纤毛虫,藻类以蓝藻和硅藻居多。
3.2 活性污泥-混凝法处理高含盐染料废水的能力
3.2.1 活性污泥降解能力
篇4
关键词:污泥固化;污泥处理;重金属稳定
中图分类号:S141文献标识码: A
一、引言
污泥处理技术处理后的污泥中有机物含量高,易腐烂,有恶臭,并含有寄生虫卵、病原微生物、重金属和多种化合物质,特别是重金属的处理,无法达到卫生填埋标准,重金属通常具有急性或慢性毒性,会以各种方式毒害人体,已经造成了环境污染等一系列严重的后果。因此解决好污泥处理处置问题已成为一项非常紧迫的任务。
二、污泥中重金属的存在形式
污泥组份分为四类:颗粒物、可溶态、胶体态、生物团(细菌碎屑)。在消化污泥中,在上述各组份之间铜、锌和镍等重金属的分配为:附着于生物团上约80%以上;在矿物颗粒和有机碎屑颗粒物上约5%~13%;存在于可溶态和胶状的有机物质中不到3%。颗粒物约占污泥总质量的2%,但它的重金属浓度极高。氧化物、不可溶盐、硅酸盐、氢氧化物或有机络合物是污泥中的重金属主要的存在形式,其次为硫化物,而很少以自由离子的形式存在。重金属最重要的载体是有机质和硫化物,超过50%以上的Cu、Zn、Cd、Pb、Cr以有机态或硫化物的形式存在。
不同金属元素以及不同类型的污泥中的同一金属元素,其主要存在形式可能有所不同。由于厌氧消化环境处于还原状态,因而较多的金属硫化物形成。研究发现,厌氧消化污泥中以不溶的硫化物形式存在的大约占40%~65%,其它部分则主要与细胞内物质结合了,即与污泥中有机物相结合。
三、固化技术对污泥化学条件的改变及对重金属稳定的影响
与污泥中重金属的稳定性密切相关的是其所处的化学条件,在水处理当中,将污泥中重金属沥滤出往往通过调节污泥的pH值和Eh值的方法,降低污泥的危害。
1、用1:1盐酸和硫酸的淋滤液改变污泥的pH值,以将污泥中的重金属去除。分别测定重金属在不同pH值、酸化时间、污泥固体浓度等条件下的去除效率,除了元素Cr的去除率小于50%以外,其他元素的去除率均在50%以上,有的元素甚至达100%。
2、用0.5mol/L硫酸处理固体质量分数为50~45g/kg的污泥,当pH值达到1.5时,Zn的去除效果为75%~83%,Cu为51%~84%;Pb为46%~80%,当pH值为2.0时,Zn去除效果为56%~90%,Cu为43%----50%,Pb为45%~52%。
3、当固体质量分数和pH值相同时,重金属元素的溶出率大小顺序为:Zn>Cu>Pb。用EDTA对污泥进行处,24h后Cu和Pb的去除率最高,Cd和Mn次之,Cr、Fe和Ni去除率最低。若进行重金属沥滤时采用柠檬酸,随着温度和柠檬酸浓度的升高沥滤效率增大。在pH3~4的酸性条件下,Cu沥滤率为55%~65%,而Zn则达到85%~95%。
金属淋溶效果也受到污泥所处的氧化还原条件的重要影响。还原相物理化学性质的变化主要决定着污泥中重金属的归宿,金属的主要载体可能是还原相。重金属在高Eh值和低pH值时淋溶量最大。因为污泥中金属在高pH值和低Eh值条件下,再沉淀和有机物的再络合得到促进。改变污泥的化学条件能够通过掺入水泥等固化材料,最重要的表现是污泥的pH值因水化产物的产生而提高了。
固化技术改变了固化体的化学条件,从而对重金属起到化学稳定作用,同时当外界化学环境发生变化时,这种化学稳定具有一定的缓冲能力。有研究发现以水泥为固化材料对废物进行固化处理,其滴定曲线存在明显的一个或者多个平台,这是因为固化污泥的pH值降低,首先需要逐级消耗具有不同pH值的水化产物,同时随着pH值降低重金属的浸出增大。
四、固化技术对重金属的生物稳定作用
污泥中会有一群嗜酸性的无机化能自养菌普遍存在,通过其直接作用或其代谢产物的间接作用,产生氧化、还原、吸附、络合或溶解作用,分离浸提出固相中某些不溶性成分,如重金属、硫及其它金属。
这些细菌主要有以下几种:铁氧化钩端螺旋菌、酸菌属(Acidianus)、硫杆菌属(Thiobacillus)、硫化杆菌属(Sulfobacillus)、嗜酸菌属(Acidiphillium)以及其它兼性嗜酸异养菌。其中氧化亚铁硫杆菌对在污泥中的重金属沥滤作用最为明显,其次为铁氧化钩端螺旋菌和氧化硫硫杆菌(Thiobacillus thiooxidans)。氧化硫硫杆菌和氧化亚铁硫杆菌是实际应用于污泥中重金属生物沥滤最多的菌种,尽管作用机理不同,但重金属去除效果都非常好。在pH≥4.0条件下氧化亚铁硫杆菌不能生存,需加入无机酸进行预酸化后才能进行重金属的生物沥滤,并要求投加FeS04作为基质。其生物沥滤机制可分为两类:直接机制和间接机制。以二价重金属为例,直接机制是氧化亚铁硫杆菌直接把硫化物氧化成硫酸盐(有氧的条件下)而达到沥出重金属的目的。
MS+2O2MSO4
间接机制包括四步反应,Fe2+首先被氧化成Fe3+;
2FeSO4 + 0.5O2 + H2SO4 Fe2(SO4)3+ H2O
Fe3+再将重金属硫化物氧化为重金属硫酸盐,并生成硫酸;
4Fe2(SO4)3+ 2MS+2O2+4H2O 2MSO4+8FeSO4+4H2SO4
硫酸进而与重金属硫化物反应,生成重金属硫化物和单质硫;
MS+ 0.5O2+ H2SO4MSO4+S+ H2O
最后单质硫被氧化成硫酸,pH值进一步降低,重金属沥出,如此循环进行。
S+1.5O2+ H2OH2SO4
以二价金属为例,氧化硫硫杆菌对重金属的生物沥滤也可分直接和间接两种机制。直接机制为:有氧条件下,氧化硫硫杆菌直接将硫化物氧化成硫酸盐而沥出重金属。
MS+2O2 M2+ +SO42―
间接机制为:在有氧的条件下,氧化硫硫杆菌首先将单质硫氧化成硫酸,然后与硫酸反应,使污泥中的重金属溶出。
S+1.5O2+ H2OH2SO4
H2SO4 + sludge―M sludge―2H +M2++ SO42―
五、固化技术对重金属的物理封闭作用
固化剂水化反应形成的体系呈碱性,所以难溶性的金属氧化物、碳酸盐类化合物或氢氧化物,可以由一些重金属离子形成,在水化产物钙矾石表面或孔隙中发生沉降。而水化产物C―S―H凝胶比表面积很大,能够将重金属离子包缚起来或吸附到带电表面,称为物理包裹。Pb通常在水泥熟料颗粒的表面存在,抑制水泥的水化,这主要是因为如碳酸盐、硫酸盐等Pb的化合产物都是不溶性的,表面能不高。通常在水泥颗粒表面Cu会形成不溶性的沉积物,从而水泥的水化被延缓。CuO在C2S水化体系中,CuO被C2S通过物理作用结合了一部分,另一部分则被用于合成一种含Cu―Ca―Si的化合物。水化产物中吸收进了Cr,尤其是C―S―H凝胶中。而Cd离子沉淀并被结合进了Ca(OH)2中。
六、总结
污泥经过固化处理后,其中含有的重金属、有机污染物及病原菌等有毒有害物质能被固化和稳定化于固化污泥中,进而降低其对环境的危害。
参考文献
篇5
关键词:污泥资源化技术
污泥处理技术大致可归结为两大类:一是抛弃型技术,污泥作为废物不利用;二是资源化技术,充分利用污泥中的有用成分,实现变废为宝。后者符合可持续发展的战略方针,有利于建立循环型经济,近年来得到广泛关注。
一、污泥堆肥
污泥中含有大量的有机质、氮、磷、钾等植物需要的养分,其含量高于常用牛羊猪粪等农家肥,可以与菜籽饼、棉籽饼等优质的有机农肥相媲美。但是污泥中往往也含有有害成分,因此在土地利用之前,必须对污泥进行稳定化、无害化处理,如好氧与厌氧消化、堆肥化等,其中堆肥化处理是较多采用的一种方法。
堆肥化是利用微生物的作用,将不稳定的有机质降解和转化成稳定的有机质,并使挥发性有机质含量降低,减少臭气;物理性状明显改善(如水含量降低,呈疏松、分散、粒状),便于贮存、运输和使用;高温堆肥还可以杀灭堆料中的病原菌、虫卵和草籽,使堆肥产品更适合作为土壤改良剂和植物营养源。
我国农村利用杂草、秸秆等和禽兽粪便混合,制成有机肥料的做法已有很长的历史,但这种堆肥过程主要靠自然通风或表面扩散向堆料供氧,由于供氧不充分,不能作为大规模处理处理、生产高质量堆肥产品的手段。现代堆肥化制好氧快速堆肥过程,污泥堆肥过程的主要技术措施比较复杂,主要包括:调整堆料的含水率和适当的C/N比;选择填充料改变污泥的物理性状;建立合适的通风系统;控制适宜的温度和pH值等。
二、污泥消化制沼气
污泥厌氧消化不仅是现在,而且也是未来应用最为广泛的污泥稳定化工艺。厌氧消化较其他稳定化工艺获得广泛应用的原因是它具有如下优点:
1 产生能量(甲烷),有时超过废水处理过程所需的能量;
2 使最终需要处置的污泥体积减少30%~50%;
3 消化完全时,可消除恶臭;
4 杀死病原微生物,特别是高温消化时
5 消化污泥容易脱水,含有有机肥效成分,适用于改良土壤。
但当处理厂规模较小,污泥数量少,综合利用价值不大时,也可采用污泥好氧消化。它的主要优点是:运行操作比较方便和稳定、处理过程需排出的污泥量少。但运行费用大、能耗多。
在具体工程实践中,污泥处理采用哪种工艺,厌氧消化还是好氧消化,应视具体情况而定,如污泥的数量、有无利用价值、运转管理水平的要求、运行管理与能耗、处理场地大小等。
有机污泥经消化后,不仅有机污染物得到进一步的降解、稳定和利用,而且污泥数量减少(在厌氧消化中,按体积计约减少1/2左右),污泥的生物稳定性和脱水性能大为改善。这样,有利于污泥再作进一步的处置。
三、污泥燃料化技术
随着污泥量的不断增加及污泥成分的变化,现有的污泥处理技术逐渐不能满足要求,例如燃烧含水率80%的污泥,每吨污泥(干基)的辅助燃料需消耗304~565L重油,能耗大;污泥填埋必须预先脱水到含水率至少小于70%,而达到这样的含水率目前的污泥脱水技术需要消耗大量的药剂,既增加了成本,也增加了污泥量;土地还原是目前污泥消纳量最大的处理方法,但很多工业废水中含有重金属和有毒有害的有机物,不能作肥料或土壤改良剂。因此寻找一种适合处理所有污泥,又能利用污泥中有效成分,实现减量化、无害化、稳定化和资源化的污泥处理技术,是当前污泥处理技术研究开发的方向。污泥燃料化被认为是有望取代现有的污泥处理技术最有前途的方法之一。
污泥燃料化方法目前有两种,一种是污泥能量回收系统,简称HERS法(Hyperion Energy System),第二种是污泥燃料化法,简称SF法(Sludge Fuel)。
(一)、HERS法
HERS法工艺流程如图1所示。它是将剩余活性污泥和初沉池污泥分别进行厌氧消化,产生的消化气经过脱硫后,用作发电的燃料。混合消化污泥林、离心脱水至含水率80%,加入轻溶剂油,使其变成流动行浆液,送入四效蒸发器蒸发,然后经过脱轻油,变成含水率2.6%、含油率0.15%的污泥燃料。轻油再返回到前端做脱水污泥的流动媒体,污泥燃料燃烧产生的蒸汽一部分用来蒸发干燥污泥,多余用来蒸汽发电。
HERS法所用的物料是经过机械脱水的消化污泥。污泥干燥采用的多效蒸发法一般是用蒸发干燥法,不能获得能量收益,而采用CG法可以有能量收益;污泥能量回收两种方式,即厌氧产生消化气和污泥燃烧产生热能,然后以电力形式回收利用。
(二)、SF法
SF法工艺流程如图2所示。它将未消化的混合污泥经过机械脱水后,加入重油,调制成流动浆液送入四效蒸发器蒸发,然后经过脱油,变成含水率约5%、含油率10%以下,热值为23027kJ的污泥燃料。重油返回作污泥流动介质重复利用,污泥燃料燃烧产生蒸汽,作为污泥干燥的热源和发电,回收能量。
HERS法与SF法不同,一是前者污泥先经过消化,消化气和蒸汽发电相结合回收能量。后者不经过污泥热值降低的消化过程,直接将生成污泥蒸发干燥制成燃料;二是HERS法使用的污泥流动媒体是轻质溶剂油,黏度低,与含水率80%左右的污泥很难均匀混合,蒸发效率低,而SF法采用的是重油,与脱水污泥混合均匀。三是HERS法轻溶剂油回收率接近100%,而SF法重油回收率较低,流动介质要不断补充。
四、污泥的建材利用
污泥中除了有机物外往往还含有20~30%的无机物,主要是硅、铁、铝和钙等。因此即使污泥焚烧去除了有机物,无机物仍以焚烧灰的形式存在,需要做填埋处置。如何充分利用污泥中的有机物和无机物污泥的建材利用是一种经济有效的资源化方法。
污泥的建材利用大致可归结为以下方法:制轻质陶粒、制熔融资材和熔融微晶玻璃,生产水泥等,制砖已经很少应用。过去大部分以污泥焚烧灰作原料生产各种建材,近年来,为了减少投资(建设焚烧炉),充分利用污泥自身的热值,节省能耗,直接利用污泥作原料生产各种建材的技术已开发成功。
污泥制轻质陶粒的方法按原料不同可分为两种,一是用生污泥或厌氧发酵污泥的焚烧灰造粒后烧结。这种方法20世纪80年代已趋向成熟,并投入应用。利用焚烧灰制轻质陶粒需要单独建设焚烧炉,污泥中的有机成分没有得到有效利用。近年来开发了直接从脱水污泥制陶粒的新技术。
污泥熔融制得的熔融材料也可以做路基、路面,混凝土骨料及地下管道的衬垫材料。但是以往的技术均以污泥焚烧灰做原料,投资大,污泥自身的热值得不到充分利用,成本高,阻碍了进一步推广应用。近年来开发了直接用污泥植被熔融材料的技术,大大降低了投资和运行成本,提高了产品附加值。
我国是世界水泥第一生产大国,对照国外经验,利用生产水泥消纳废物的潜力很大。目前我国水泥工业利用废物例还不到10%。水泥生产中利用废物主要是高炉水渣、粉煤灰,副产品石膏、炉渣烟尘、旧橡胶轮胎等。近年来,日本利用城市垃圾(污泥)焚烧灰和下水道污泥为原料生产水泥获得成功,用这种原料生产的水泥叫生态水泥,2001年已建成第一座生态水泥厂,年生产能力为11万吨。一般认为污泥作为生产水泥原料时,其含量不得超过5%,按此估算,日本东京都污水处理厂的污泥可年产200万吨生态水泥。由此可知,污泥生产水泥既是污泥资源化利用的重要途径,也是行之有效的方法,已引起国内外的高度重视。
五、活性污泥做黏结剂
据不完全统计,我国现有城市污水处理厂日处理能力约为600万吨,每年产生的污泥量约为100多万吨。再加上大型企业和石化厂的污水处理装置,全国每年产生的污泥量十分可观。而与此同时我国有数千家小型合成氨厂,其中绝大多数采用黏结性较强的白泥或石灰做气化型煤黏结剂。通常将这类黏结剂制成的型煤成为白泥型煤或石灰炭化型煤。石灰炭化型煤气化反应性好,但成型工艺复杂,石灰添加量较多、成本也高,影响工厂经济效益。白泥型煤生产工艺较简单,制成的型煤强度高,但型煤气化反应性差,灰渣残炭高,蒸汽耗量大,是困扰生产厂家的一大难题。为此寻找一种黏结性高、成本低、型煤气化反应好的黏结剂一直是化肥厂的一个重要课题。污泥本身含有有机物,如蛋白质、脂肪和多糖,具有一定的热值,又有一定的黏结性能。活性污泥做黏结剂将无烟粉煤加工成型煤,而污泥在高温气化炉内被处理,防止了污染;污泥作为型煤黏结剂,替代白泥可改善在高温下型煤的内部孔结构,提高了型煤的气化反应性,降低了灰渣中的残炭,提高炭转化率,污泥既可以作为一种黏结剂,同时也是一种疏松剂,污泥的热值也得到了利用,且污泥处理量大。
六、剩余污泥制可降解塑料
聚羟基烷酸(PHA)是许多原核生物在不平衡生长条件合成的胞内能量和碳源贮藏性物质,是一类可完全生物降解、具有良好加工性能和广阔应用前景的新型热塑材料。在化学合成塑料所造成的“白色污染”日益严重的今天,PHA作为合成塑料的理想替代品,已成为微生物工程学研究的热点。目前利用纯钟发酵生产是获得PHA的主要途径,但由于生产成本过高制约了其大规模的商业化应用。因此,降低PHA的生产成本是大规模商业化应用PHA所需解决的首要问题。活性污泥是废水处理系统中自然形成的微生物和有机物的聚集体,1974年有人从活性污泥中提取到PHA,为利用活性污泥生产PHA奠定了基础。
七、污泥低温热解制燃料油
篇6
由于城市污水和工业污水收集率的提高和污水处理效率的改进(如化学法除磷可使污泥量增加30%),使得在世界范围内污泥总量急剧增加。
土地应用仍是污泥处置中可持续发展的一条出路,主要取决于如下因素:
碳和营养物的回用;
周围有无农业用地及其距离;
低投入和运行花费;
严格的法律规定和控制程序以保证污泥安全和有肥效。
然而,根据实际情况或当地规定,污泥生产者在土地应用前不得不进行高级,更昂贵的处理以满足进一步的要求,如堆肥、高温消化处理或高温消毒。
但是,很大一部分污泥因为显而易见的原因不能用于农业,如微污染物、病菌超标或缺乏肥效、距离太远等等。有时也可能由于公众的不信任而不被接受。这样,污泥或被填埋或通过高温氧化硝毁。
2污泥处理的可持续性战略
在进行任何技术研究之前,应先对公众是否接受进行评估。即使是从技术、成本和环境影响方面来讲都是最好的处理方法,也可能由于没有很好的向公众进行解释而遭到否定。不管最终处理方法是什么,能确定的是将来的处理应是安全、环保(保护人和动植物)并且应当增值(物质和/或能源的回收)。为了这些目的,污泥处理应减小污泥体积,改进污泥质量,减少有害物的排放。
本文将简介一些重要工艺,以满足运营者的需要,并且其中涉及到其他技术或法规约束问题。
2.1土地应用的可持续发展战略
为一个先决条件,污泥至少应当是稳定的,在实际运行上即是要求没有臭味。当地或将来的法律可能要求会更高:污泥可能被要求消毒/巴氏除菌。消毒要求达到一个强制的目标:病原体如肠道病毒、伤寒菌、线虫、寄生虫卵等在处理后的样品中应当检测不到。
生物处理。利用生物工艺处理挥发性污泥。如厌氧消化(AD)、自养好氧消化(ATAD)工艺。
化学处理。抑制腐败挥发性有机物的降解。如酸性亚硝酸盐SAPHYRTM工艺。
物理处理。抑制腐败挥发性有机物的降解。如污泥焚烧。
这些工艺大部分都有稳定和消毒,但是消毒的程度取决于一些参数如HRT(水力停留时间)或化学投加量。
显然热氧化工艺远远超出了污泥稳定、消毒和巴氏消毒的要求。因为有机物被完全或几乎完全消解。
污泥的生物稳定
液态(浓缩后):消化
我们最熟悉的是传统的污泥处理方法——消化,它可以减少产泥量。无论好氧或厌氧,它都涉及到很多的能量。目前多数较大的处理厂或地区污泥中心都是采用该种方法,此种工艺在数量上还是领先的。同时,其他一些操作或在消化前或在消化后,也提供了强化的处理能力。
附着态污泥(脱水后):堆肥
堆肥是现有的唯一可以把污泥从废物变成产品的工艺,并被很多严格规定或标准认可。因为污泥变成一种新产品,容易操作(可堆积)而无味,消毒良好并且较干燥。这种工艺越来越流行。另一方面,由于它不减少最终的体积,需要很大的占地面积和较多人员。而且,为了满足新规定中(临时EU标准或EPAA级)关于消毒和气味的要求,与传统的“粗糙”工艺如曝气静态堆相比,需要更先进的工艺如“搅拌式反应廊道”,它影响最终的运行费用。
这个工艺主要是通过一个移动的轮子搅拌并推动混合物,同时鼓风机在曝气,加速的生物降解产生一个均匀的泥堆。总的停留时间可以减小到2周,消毒效果非常好。
污泥的化学稳定。污泥的化学稳定主要是通过一个投加装置对待稳定污泥投加化学药剂,以防止发酵和气味。大计量投加可使病原体衰减。这种工艺一般投资便宜并且容易操作。但是,泥量不会减少,并且运行费用较高。
这两种工艺不相互排斥,填埋土地的性质决定着工艺的选用:如果土壤是酸性的,则可以选择加石灰,但如果土壤是碱性的,则SAPHYRTM工艺可能更适合,因为它操作简单,运行费用省。污泥的物理稳定——加热干燥。加热干燥主要是通过热驱动力除去剩余的自由水和键连接水。根据加热的媒介的不同,加热干燥可分为两可分为两种:一种是气态在高温和湍流状态下流过干燥器(直接加热),一种是用加热液体(通常是蒸汽或加压的水)传递热量给污泥,通过干燥器的加热壁(间接干燥)。加热干燥的目的是使到达下游的污泥具有焚烧的热持续性(一般30~35%)或者是容易处理和储存的干燥污泥(60%)。如果要达到长时间的稳定(几个月),干固体含量应达到90%或更多(最终干燥),而且颗粒的状态也是容易操作使用的(包括农田应用)。另一个最终干燥的优点是它可以方便的面对各种最终的处理方法,如农田应用、焚烧后用于水泥生产、或城市垃圾焚烧。它的缺点:第一是运行费用高,尤其是能源消耗,一般在热干燥中,每蒸发一吨水需要3400MJ的热量。但在脱水步骤中,除去一吨水只要6MJ(电能);第二需要较多工作人员来清除死角中的粉末以防止火灾。
2.2可持续性热氧化战略
焚烧。流化床焚烧炉(FBF)就工艺性能来讲,被证明是焚烧污泥最好的方法(湍流方式,燃烧后高达850度的温度)。而且它运行可靠(在炉内没有转动部分)。在40年的时间里,威望迪公司已经在全世界范围内建造了几十座流化床焚烧炉(如欧盟、俄罗斯、土耳其)。
通常,在稳定状态不需要添加额外的燃料,热平衡的持续性是可以达到的。如果污泥的热值LCV太低(如低挥发性固体和/或固体含量),尾气/气热交换器应该足够大以增加风室的温度。如果达不到(如延时曝气的污泥含20%DS),则需要在前面加热干燥。
关于干灰的处置,对于没有工业污染的纯市政污泥,重金属不是问题。因为灰是以氧化物形式存在,他们渗透性不强,所以可以回用作水泥,用于工业和道路建设。
最后的副产物是酸步骤的清除。由于重金属的污染,他们只能填埋在特殊的地方,但数量很小。
与城市固体废物共同焚烧。为了减少投资,城市垃圾和市政污泥通常用一个焚烧炉。通常,一个人口当量每天产生150~250克的脱水后粘性污泥和1~3公斤的垃圾。根据焚烧炉的设计,可以通过10~25%(泥/垃圾)的粘性污泥来控制炉子的温度。为了达到最优化的燃烧,并且不会由于未燃烧的有机污泥污染熟料,可以用处理能力为1m3/h的PyromixTM设备,通过压缩空气把污泥转成滴状污泥。实际上,这种运行方式只有在污水厂离城市垃圾焚烧炉较近时有利,否则处理运输的费用将很高。此时污泥只在系统需要时作为控制流使用。
湿式空气氧化法。威望迪水务系统研发的ATHOSTM设备在“中性”温度(240度)和压力(45巴)条件下被证明是高效的。80%的总COD被氧化,剩下20%是可溶的和高度可生物降解的。不需要后续脱水步骤,废气没有毒性,固体矿物副产品包含重金属是以一种不可渗透形式存在的。它们可以用于道路建设。而且液态部分,含有可生物降解的COD,可以很方便的用作污水厂的反硝化的碳源。
污泥中的有机氮先降解成可溶性的氨。这些氨,部分被吹脱后通过催化反应转换成氮气进入大气。
结论
激烈的竞争、严格的规范和环境保护的需要要求不断开发新的工艺或用更为有效的工艺。对一个具体的项目,通过对工艺的合理选用可以满足用户的要求,需要考虑的是该工艺要能保护环境,造福于人,要能优化物质和能源的回收利用,以达到可持续性的发展的目的。
论文关键词:污泥;处理;工艺;分析
论文摘要:作为一个先决条件,污泥至少应当是稳定的,在实际运行上即是要求没有臭味。当地或将来的法律可能要求会更高:污泥可能被要求消毒/巴氏除菌。消毒要求达到一个强制的目标:病原体如肠道病毒、伤寒菌、线虫、寄生虫卵等在处理后的样品中应当检测不到。
篇7
关键词:城市污水处理厂;污泥处理;焚烧;卫生填埋;资源化
随着我国对环境保护的日益重视,生活污水处理率的不断提高,城市污水处理厂大规模的建设运行,污泥的产量也大幅增加,污泥处理处置问题愈加突出,如不妥善处置,会产生臭味,滋生蚊蝇等问题,周围环境带来恶劣影响。目前,许多城市都在寻求将污泥进行妥善处理处置的方法。
1 城市污水厂污泥种类与特性
在城市污水处理中,产生的污泥主要为初沉污泥、剩余活性污泥及化学污泥。
1.1初沉污泥
初沉污泥是指初次沉淀池沉淀后排出的污泥。在正常情况下,初沉污泥为棕褐色,略带灰色。当发生腐败是,则呈灰色或黑色,有臭味。初沉污泥的PH值一般在5.5~7.5之间,平均为6.5左右,略酸性,含固率一般在2%~4%之间,取决于初次沉淀池的排泥操作。初沉污泥的有机成分一般在55%~70%之间。
1.2剩余活性污泥
剩余活性污泥是指活性污泥系统排出的污泥。剩余活性污泥外观为黄褐色的絮状物,有土腥味,含固率一般在0.5%~0.8%之间,取决于所采用的不同生化处理工艺。有机成分常在70%~85之间,与污水处理中是否设初沉池及泥龄的长短。剩余活性污泥的PH值在6.5~7.5之间,取决于污水处理系统的工艺及控制状态。当采用硝化工艺时,活性污泥的PH值有时会低于6.5。
1.3化学污泥
化学污泥是指物理处理工艺中形成的污泥,其性质与采用的药剂有关。一般来说,化学污泥池气味较小,且较易浓缩或脱水。由于其中有机成分含量较低,一般不需要污泥稳定处理。
2 污泥处理方法
根据“城镇污水处理厂污泥处理处置技术政策(试行)”的相关内容,污泥的最终处置方法有:污泥农用、卫生填埋、焚烧。
2.1污泥农用
污泥中含有大量植物生长所需的肥分(N、P、K)、微量元素及土壤改良剂(有机腐殖质),但污泥农用前须经过稳定化和无害化处理,不能直接利用。目前常用的污泥稳定化方法有厌氧消化、好氧消化、发酵、碱法稳定等。发酵(俗称“堆肥”)是生物稳定方式之一,可使污泥中的有机组分转化成最终产物。采用固态好氧发酵后的污泥达到了污泥稳定的要求。
发酵一般分好氧和厌氧发酵。几乎所有的发酵工程系统都采用好氧发酵,好氧发酵是在有氧条件下,好氧微生物对废弃物进行分解、转化并生产出发酵产品的过程。微生物通过自身的生命活动,把一部分被吸收的有机物分解成简单的无机物,同时释放出可供微生物生长活动所需的能量,而另一部分有机物则被合成新的细胞质,使微生物不断生长繁殖,产生出更多的生物体的过程。在有机物生化降解的同时,伴有热量产生,因发酵工艺中该热能不会全部散发到环境中,就必然造成发酵物料的温度升高,这样就会使一些不耐高温的病原菌及虫卵死亡,而达到无害化的目的。污泥农用常规工艺流程如下图1所示:
该工艺的主要优势是充分利用污泥中的有机制,实现资源化,能产生一定的经济效益。但该方案占地较大,需将污水处理厂的湿泥长距离输运,运输量较大,且在运输过程中也存在遗洒导致的环境问题。
2.2 污泥卫生填埋
卫生填埋一般是指将一般废物填埋于不透水材质或低渗水性土壤内,并设有渗滤液、填埋气体收集或处理设施及地下水监测装置的填埋场的处理方法。污泥卫生填埋工艺流程如下图2所示:
卫生填埋处理措施简单,但占地大、环境风险较大,随着时间的推移,适宜填埋的场所因城市污水处理厂的增加,产生大量的污泥,其填埋场地容量有限,对于用地紧张的城市不适宜采用。
2.3 污泥焚烧
污泥有较高的热值,干污泥(含水率10%)的燃烧值可达2800ka/kg,相当于0.47kg标准煤(热值6000kal/kg),干化后的污泥可供给工业锅炉作为替代燃料,污泥焚烧工艺流程如下图3所示:
污泥焚烧的优势在于可以迅速和较大程度地使污泥达到减量化,近年来焚烧法由于采用了合适的预处理工艺和焚烧手段,达到了污泥热能的自持,并能满足越来越严格的环境要求和充分地处理不适宜于资源化利用的部分污泥。由于其在恶劣的天气条件下不需要存储设备,对于大城市因远离填埋场造成运输费用高的场合,使用焚烧处理是经济有效的。在所有的污泥处置方法中,焚烧方法产生的剩余物最少,焚烧的另一个优越性在于无异味;其缺点是成本高,是其他工艺的2~4倍,而且可能产生废气、噪声、震动、热和辐射。
3 结论
篇8
关键词:脱水污泥管道输送系统设计
Abstract: the sewage treatment plant sludge dewatering moisture content is usually between 82% ~ 65%, natural state the no liquidity. Sludge conveying system without pressure and conveying points pressure transmission. The traditional transportation is often used to transport without pressure, pressure pump and pipeline transport is conveying system. With the subsequent disposal sludge dewatering increased demand, sludge pipe technology application to be more and more widely. Through to the engineering example, the relevant specification and literature study, suggest sludge pipeline design velocity use 0.16 m/s ~ 0.06 m/s; Pipe materials can choose high pressure seamless steel tube or low friction wear-resisting complex pipe; When the system's sludge flow, conveying pressure and distance not more than the critical priority when the choose eccentric screw pump, more than the critical hydraulic plunger pump is adopted.
Keywords: sludge dewatering pipe system design
中图分类号: TE832 文献标识码: A 文章编号:
截至2011年底,全国已建成投入运行的城镇污水处理厂共3135座,污水处理能力达到1.36亿m3/d,按处理率70%计,约合产生干泥量12500~15200T/d,折合为含水率78%的湿污泥有56818~69090m3/d。“十二五”环境保护规划中明确指出处理能力10万m3/d以上污水处理厂需实现污泥安全处理;《生活垃圾填埋污染物控制标准》要求:生活污水处理厂污泥经处理后含水率小于60%,可以进入生活垃圾填埋场填埋处置。可见,现行规划和标准给污水处理厂脱水污泥处理提出了更高的要求,目前,大多数污泥有待深度脱水或后续干化处理,采用管道输送系统将污泥安全、快捷、高效地输送至处理(或处置)地点,是必不可少的环节。
1 污泥的流动性
流动性是污泥在管道内的流动阻力和可泵性。工程中常用污泥的含水率(或含固率、污泥浓度)判断污泥在管道中流动的水力特征。各种含水率污泥呈现不同的物理状态和流动性见表1。
表1 各种含水率污泥的物理状态和流动性
城市污水处理厂脱水污泥含水率一般在82%~65%之间,它既不是理想粘滞性流体,也不是牛顿流体,在常温常压下无流动性,在高压管道输送时呈“不沉降似均质浓密膏体”。
2 污泥输送方式
经过浓缩脱水减量化后的污泥采用的运输方式主要有以下三种。
(1). 脱水污泥经螺旋输送机输送至污泥堆棚后汽车外运。该法用于小型污水厂,二次污染严重,运输量有限,现已很少采用。
(2). 脱水污泥经螺旋输送机输送至脱水机下的缓冲料斗进入污泥泵提升至料仓,再由汽车外运。这种污泥经一级提升后外运是当前污泥输送的主要方式。
(3). 脱水污泥经螺旋输送机输送脱水机下的缓冲料斗进入一级污泥泵提升至料仓储存,料仓内污泥再进入二级污泥泵,经管道或由汽车输送至下一步处理处置地点。随着污泥后续处理工艺的实施,这种输送方式应用将逐步增多。
3 污泥输送系统
3.1 输送系统分类
污泥输送系统按照压力形式分为无压、有压输送系统。
无压输送主要有无轴螺旋输送机、皮带输送机或汽车槽车输送。输送机适合于短距离直线输送,临界距离为20m;由于输送量、距离和高度有限,所以能耗较小。无压输送缺点有:①水平方向转角处必须增设传送设施,分两级或多级传送;②输送机倾斜角度一般不宜大于25度,将污泥输送至高处时需要较长的水平距离;③系统密闭性不好,会对周边环境造成二次污染;④输送量固定,不可随意调整。这种输送方式常用于脱水机房内将脱水机排出的污泥输送到料斗进口处。汽车槽车适用于远距离输送,其运输成本较高。
有压输送是泵加管道输送系统,通常采用螺杆泵或柱塞泵进行管道输送。有压输送系统适应性强,主要优点有:①输送距离长,可达1200米;②采用弯头实现多转角多曲度输送功能;③系统密闭性好,不会对周边环境造成二次污染;④输送量可调。但是由于脱水污泥流动性差,沿程水头损失较大,所以输送系统能耗高;同时污泥泵造价高。
3.2 污泥管道输送系统
对于脱水机房外污泥输送,通常为一级提升至料仓储存和二级提升至后续处理单元。在一定距离内,传统的输送机和汽车运输方式已不能提供安全、环保、快捷的污泥输送。设计应优先选用安全、高效、封闭式的污泥管道输送系统,减少敞开式运输方式,防止因暴露、洒落、漏滴、臭气外逸而造成的二次污染。
污泥管道输送系统是有压输送,包括污泥输送泵和输送管道。
4 污泥输送管道设计
4.1 管道设计流速
污泥含固率大于18%时,是一种高浓度粘稠物料,流动需要依靠外界压力。有关脱水污泥管道设计流速的资料很少,以下是相关设计手册和工程实例分析。
(1) 给水排水设计手册《城镇排水》:“表9-6 泥饼通过DN150管道的水头损失”中,采用的流速为0.06m/s[1]。
篇9
关键词:给水厂,污泥处理,技术,分析
引言:城市生活用水来自于给水厂,给水厂通过净化地下水和污水来获取符合饮用标准的生活用水,在这个流程中需要添加混凝剂以及其它药剂,因此生活用水的获得还会产生废水以及污泥,这部分的废水必须经过处理后再排出水厂,否则会严重的损害周边环境,也会造成巨大的资源浪费。当前国内的给水厂污水及污泥处理技术大多套用污水处理厂技术,因此在污泥的处理上并不存在单独的针对性技术,这就导致污泥的处理效果并不理想,有必要针对给水厂污泥处理技术进行研究和探索。
给水厂污泥主要源自沉淀池的排泥水和过滤池的冲洗排水两个环节,因此主要是包含石灰软化污泥和化学絮状污泥两类。给水厂的污泥中掺杂了大量从污水中净化出的有机物、金属杂质、净化药剂等物质,因此要想降低污泥数量,就必须降低混凝剂的使用量。
1 给水厂污泥处理技术发展概述
国外的给水厂已经普遍推广了污泥处理配套设施,最早在19世纪30年代末期美国就开始了针对给水厂污泥处理技术的研究,而在19世纪的70年代中期已经形成了完善的法律法规体系,用以规范给水厂的污泥处理工艺,各项给水厂污泥处理技术蓬勃发展。而在国内的给水厂污泥处理技术研究开始于20世纪80年代,上海的一家自来水公司首次针对污泥处理建立了项目研究组,并在90年代开始尝试建设给水厂污泥处理设施,当前国内的给水厂污泥处理设施主要在大型城市推广,中小城市尚未普及。
2 给水厂污泥处理技术分析
给水厂的污泥处理技术主要包括6个环节,各个环节的技术要点以及对污泥处理效果的影响程度都不一样,分述如下:
2.1 污泥定量
给水厂的污泥来源是多方面的,因此污泥的最终含量很难准确界定,所以在进行给水厂污泥处理设备的容量设计时,必须考虑到给水厂净化的各个流程,包括净化水的总量、混凝剂的用量、水质情况等等,此外净化工艺也会影响到污泥的产生量,这些因素综合起来,才能保证污泥处理设施的设计容量满足实际需要。
2.2 污泥调质
自来水厂排泥水处理一般在污泥脱水前需进行预处理,即污泥调质。尤其是采用铝盐(或铁盐)处理低浊度原水产生的污泥,由于污泥成份中金属氢氧化物的比例很高,污泥的脱水性能很差,更需要进行污泥调质。污泥调质有两方面的目的:其一是改善污泥性质和污泥的脱水性能,使污泥可以更快、更容易地脱水,大部份污泥调质是为实现这一目的:其二是防止脱水过程中过滤介质的堵塞,使污泥脱水可以保持稳定运行。
2.3 污泥减容
污泥中含有大量的金属、药剂和有机物,如果能够从污泥中剥离和溶解这些物质,就能够进一步降低污泥处理的总量,从而实现污泥处理费用的节约,污泥碱容就是这样一种污泥处理工艺优化手段,利用碱容技术可以剔除污泥中的绝大多数化学污泥成分,从而降低污泥处理负担。
2.4 污泥浓缩
浓缩的目的是提高污泥的含固率,减少污泥体积和后续处理设备的负荷。特别是对于机械脱水,浓缩通常是污泥脱水工艺必不可少的环节。
最常用的浓缩方法是重力式浓缩池。根据处理水量的大小,可设计为间歇式和连续式两种运行方式。对小型水厂,可使用带浮动式撇水装置的间歇式浓缩池。一般是采用带搅拌装置的连续流重力浓缩池。对污泥进行慢速搅拌造成的扰动有利于污泥颗粒之间的空隙水和气泡上升逸出,加速污泥的浓缩。速度太快容易打碎已凝结的污泥颗粒,反而造成污泥浓缩性能恶化。工程上常用的搅拌方法是在刮泥机的水平桁架上设置垂直搅拌栅。为保持不同半径圆周上的搅拌强度均匀,栅条的间距沿径向逐渐增大。
2.5 污泥脱水
污泥脱水的主要目的在于将污泥从流状固化成污泥饼,进而实现其搬运和远距离处理,所以脱水工艺是保证污泥最终处理效果的最后环节,同时这一环节的净化费用也是最高的。
污泥脱水一般分为非机械式污泥脱水和机械式污泥脱水两大类。非机械式污泥脱水又可以分为污泥塘和污泥干化床等,其中污泥干化床的应用和研究较多。机械式污泥脱水包括真空过滤机、离心机、带式压滤机、滚压式脱水机和板框压滤机等几种主要形式。
2.6 泥饼处置
脱水以后泥饼的处置是污泥处理的关键问题,污泥的最终处置费用高,环境影响大,处置方法多。脱水污泥也是一种资源,至少可以作为填土或垃圾填埋场的覆盖土,有些还可以制砖、烧水泥,不投加PAM富含有机物的脱水污泥还可以作为肥料。目前主要有泥饼的农用、泥饼的焚烧处理、泥饼的卫生填埋、泥饼的海洋投弃、泥饼资源化等。
首先泥饼可以直接向海洋投放,脱水之后的污泥变成泥饼,将泥饼运输至海洋深处后直接投放,但是要注意不得在禁止投放的区域进行污泥投放,而且污泥的投放也是有诸多的危害的,长时间在同一地点进行污泥投放会影响区域生态平衡,因此这种方法会逐步淘汰。
其次泥饼可以直接进行焚烧,因其内部化学成分较多,直接进行焚烧也可,但是这种方式会造成二次大气污染。
泥饼的填埋方法主要是在地质条件允许的区域进行有条件的填埋,填埋前还要对泥饼进行一定的物理、化学处理。
最后泥饼还可以应用在农业生产上,泥饼中的有机物可以作为农业种植的底肥用,将泥饼填埋至土壤表层,能够适当的提高土壤的有机物含量,但是在使用泥饼时,要确保泥饼中不含有大量有毒物质或是病毒物质,且重金属含量也要监测并保证不会危害植物生长。
结语:给水厂的污泥处理技术主要包括污泥量的确定、污泥调质、污泥减容、污泥浓缩、污泥脱水以及泥饼处置等关键技术环节,这些环节都是针对污泥的成分以及存在状态制定的针对性技术,也是保证污泥有效利用和净化的保障。虽然国内给水厂已经开始引入上述技术,并意识到针对性的污泥处理技术有利于环境保护和资源利用,但是限于发展时间以及工程技术人员水平的制约,尚不能完全的满足当前的环境保护需求,因此必须更加深入的探究适合国内给水厂的污泥处理技术和工艺,为我国水资源利用和环境保护做出应有的贡献。
参考文献
[1]程爱华,尹向辉.利用给水厂污泥制备透水砖的试验研究[J].绿色科技,2013(2):129-131.
[2]朱亚琴,徐乐中.给水厂污泥处置与资源化利用[J].广东化工,2011(12):92-93.
篇10
关键词:城市污水厂;污水处理;工艺
建设城市污水处理厂是水资源利用和水污染控制的必然趋势,是可持续发展要求的必然结果。而污水处理厂工艺的选择,直接关系到建设费用和运行费用的多少、处理效果的好坏、占地面积的大小、管理上的方便与否等关键问题。因此,在进行污水处理厂设计时,必须做好工艺方案的比较,以确定最佳方案。
处理厂工艺是指在达到所要求的处理程度的前提下,污水处理各单元的有机组合。确定污水处理厂工艺的主要依据是所要达到的处理程度,而处理程度则主要取决于接受处理后污水的水体的自净能力或处理后污水的出路。因此,各个地区、各个城市的具体情况不同,需求不同,选择的工艺亦有所不同。每种处理工艺方法均有其各自的特点及适应范围,应根据当地的各种不同条件和要求选择处理形式。
1 活性污泥法
活性污泥法是水体自净的人工强化,是使微生物群体在曝气池内呈悬浮状,并和污水接触而使之净化的方法。包括标准活性污泥法、STEP 曝气法、长时间曝气法、分段式曝气法、限制曝气法以及AB 法等传统活性污泥法的改型和AO 法、AOO 等近年来开发高效脱氮除磷工艺。目前,活性污泥法占主导地位,适用于处理生活污水所占比重较大的城市污水,但随着如AO 法、AOO 法、AB 法等新工艺的开发,对于工业污水成份比较高的污水的处理效果也有了提高。
1.1 传统活性污泥法
优点: ①不宜采用物理化学方法处理的废水,BOD 去除率可达95 %以上。②建设投资额高,但处理的动力费较低。缺点:所需停留时间长,设备庞大,基建投资大,因而要加各种构筑物,使各种构筑物容积增大,从而使处理厂面积增大,增加管理人员及管理难度。发展方向: ①为了废水体系的组分、浓度均匀化,重新估价预处理,重新研究调整槽。②探讨选择活性污泥微生物系的菌种。③活性污泥法的设备中引入仪表化和拟定管理指标。
1.2 间歇式活性污泥法
近几年来随着城市规模的不断扩展以及城镇自身的发展,下水道设施已呈现出大城市转向中小城市、农村小镇的趋势,小规模污水处理设施逐步增加,农村小城镇对于改善生活环境条件的要求越来越迫切了。
小规模污水处理设施与大规模处理设施比较,它的自然条件和社会条件大不相同,因此,必须研究采用适于小规模污水处理设施,用以取代过去的大规模处理方式。小规模污水处理应具备如下特点: ①容易运行管理; ②维修方便; ③建设费用低; ④出水水质良好。经过国内外一些污水处理厂(如日本千叶县的大原町污水净化厂等) 的多年实践证明,间歇式活性污泥法正是一种能满足这些条件的处理方法。间歇式活性污泥法是采用一个处理池进行曝气、沉淀、排出处理水,使设备简单化、小型化,池内流态分明,运行管理方便,可做到无人运转,对于流入污水的负荷变动,有缓冲能力,处理性能稳定,不仅能去除有机物质和悬浮固体而且脱氮效果好。间歇式活性污泥法具有代表性的方式,一般设2 个曝气沉淀池,连续进入混合污水,各自错开半个周期进行运转,运行一个周期为6h,周而复始,反复进行。
1.3 AB 工艺法
AB 工艺法也称为吸附生物降解法,是20世纪70年代中期首先在德国兴起的,是传统活性污泥法的一种改型。从许多污水厂资料中表明该工艺在处理难降解的工业废水或较高浓度的城市污水处理方面,它与普通活性污泥法相比,有特殊的净化机制和多方面的优越性。它把传统活性污泥法的曝气池分为两段——A 段和B 段,A 段在对有机物质吸附、吸收、氧化三种方式中,前两者起主要作用,而B 段主要由后两者起作用,特别是氧化作用占主要地位。
从工艺流程来看,AB 工艺的主要特征是: ①AB 工艺不设初沉池,污水经细格栅、沉砂池后直接进入A 段曝气池; ②设置中间沉淀池,使A 段和B 段污泥严格分开,单独回流,保持各自的菌群特征; ③AB 工艺的A 段曝气吸附池以高负荷运行,污泥泥龄较短,B 段曝气池以低负荷运行; ④AB 工艺的A 段曝气池可以根据污水组分进行兼氧或好氧运行,改善污水的可生化性,这样大大降低B 段曝气池的负荷。因此,AB 工艺两段曝气池的总容积比传统活性污泥法的曝气池显著减小。
1.4 AO 法及AOO 法
AO 法及AOO 法是近年来开发出的生物脱氮除磷新工艺,与传统的化学和生物脱氮除磷相比,它还有效提高了BOD、COD、SS 的出水指标。AO 法是缺氧、好氧的简称,AOO 法是厌氧、缺氧和好氧的简称,脱氮是在缺氧段完成的,除磷则要求有厌氧段。AO 法主要是脱氮,AOO 法可以同时去除氮、磷。这两种工艺都要求污水充分曝气,使含氮有机物充分硝化,所以必须降低污泥负荷,延长曝气时间和增大鼓风量。根据天津东郊污水处理厂和沈阳市北部污水处理厂的实践,采用AO 工艺比传统活生污泥流程的曝气池容积、二沉池容积、回流污泥量、鼓风量和曝气装置数量都增大一倍左右,而且由于该工艺要求比较低的污泥负荷,否则不足以达到污泥好氧稳定,所以AO 法将带来基建投资和电耗的大幅度增加。AOO 法在缺氧段前面还加有一个厌氧池,以达到对磷的有效去除效果,基建费用与电耗比AO 工艺更高点。
2 生物膜法
污水的生物膜处理法是与活性污泥法并列的一种好氧生物处理技术。它是土壤自净的人工强化,是使微生物群体附着在其他物体表面上呈膜状,并让它和污水接触而使之净化的方法。包括生物滤池、生物转盘、生物接触氧化法等形式。
3 下水道内部处理
污水中含有微生物和容易同化的有机物,因此,如果污水处于一种需氧状态(存在溶解氧),则大部分有机物逐渐氧化为二氧化碳或转化成新的细菌细胞。当污水在压力管道中长时间输送时,就中断了大气中氧的供给,所剩余的溶解氧迅速被用光,短时间后特殊的微生物就开始将硫酸盐还原成硫化氢,因而此时的污水就称为腐化污水。当这种污水同空气再次接触时,会释放出硫化氢,并在下水道的管壁上氧化成硫酸盐,从而造成严重的危害与腐蚀。