流体力学基本理论范文

时间:2023-12-22 18:04:33

导语:如何才能写好一篇流体力学基本理论,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

流体力学基本理论

篇1

关键词 应用型大学 流体力学 教学改 革CFD

应用型教育是以培养知识和能力全面发展,面向生产实践一线的应用型人才为目标的高等教育。流体力学作为我校理论与应用力学专业的一门重要的专业基础课,非常广泛地应用在实际工程中,如管道水力计算以及城市管网设计等。流体力学基本概念多、公式复杂、内容抽象,有较强理论性和较强工程实际意义。然而作者在多年的流体力学教学过程中发现学生普遍感觉该课程比较枯燥难学,学习积极性不高,期末考试及格率较低,应用性不。因此,在我校向“应用型特色科技大学”转型的大背景下,如何适应“应用型本科教育”的要求,是流体力学教学及实践中必须面对的问题。

1目前,我校流体力学课程教学存在的问题

(1)教材内容设计偏重理论推导。目前我校使用的流体力学教材主要强调课程的完整性和系统性,偏重于理论推导,选用的例题和练习题的设计过于理想化,与实际应用相脱离,应用性设计不够突出,偏重于介绍流体力学可以解决工程问题这一点,造成学生刚接触工程问题时就手足无措,这与应用型大学的培养要求不相适应。

(2)课堂教学效果不好。作者在流体力学课堂教学中发现,通过绪论课的大量工程实例以及视频教学能调动学生学习的积极性,开学初期,教学效果相对较好,而随着课程的进行、课程难度的加深,学生的学习积极性越来越低。主要原因有:①学生对流体力学涉及的高等数学、理论力学等课程的知识掌握不尽如意;②流体力学理论性较强,公式推导多,与实际应用相脱节。

(3)缺乏计算流体力学仿真软件实践教学。计算流体力学(CFD)技术作为一种数值模拟方法,在实际工程中的应用越来越广泛,借助CFD技术,可以得到流动细节,如速度、压力、能量损失、湍动量、漩涡等,从而在产品结构设计和优化方面发挥重要的作用。这就要求技术人员掌握流体力学分析、数值模拟及优化设计的能力。而现阶段我校的流体力学教学中并未引入CFD技术,仅安排了一次课来介绍计算流体力学的内容,且完全进行理论教学,学生学了一大堆理论公式,但拿到实际工程问题却无从下手。

2教学目标和内容设计

针对上述问题,作者在结合本校“应用型特色科技大学”的发展方向下对流体力学课程课堂教学方式及实践环节进行改革。从课程教学内容,教学方式方法,实践环节等方面进行设计,解决学生学习兴趣低,课堂教学效果较差,理论与应用相脱离的问题。同时,通过借助CFD丰富教学内容,增强实用性,使学生会用仿真软件求解工程问题。具体改革内容:

2.1突出应用性教学

以培养应用型人才为教学目标,结合流体力学的课程特点,将教学内容分为基础理论教学部分和考虑应用的专题教学部分。

基础理论教学内容包括流体力学基本概念、基本原理和基本方程,这是应用的基础,要求学生重点掌握。授课过程中强调对基本概念的理解和基本理论的应用,而弱化对方程的数学推导,但应明确方程的意义、适用条件以及如何应用方程解决实际问题。专题教学以实际工程问题为切入点,例如以均质液体对平壁和曲壁的总压力为例,从为什么对平壁和曲壁总压力进行计算(压力容器,水坝,潜艇等结构安全),引申出相关知识点(平壁和曲壁总压力的大小、作用点、压力体等)和基本理论(流体静力学基本方程、欧拉平衡方程等),以此加强学生解决实际工程问题的能力。

2.2课堂教学方法设计具有针对性

课堂教学方法也是影响教学效果的重要因素。传统教学方法以教师主讲为主,缺乏与学生的有效互动和交流,教学效果较差。本课程采用师生互动的方式进行教学,对理论教学部分采用教师主讲和提问、学生回答的方式;对专题教学的课后练习,集中安排一次课进行分组上讲台汇报,学生自己当评委,自己打分,锻炼学生主动思考和动手能力,增强对课程应用性的理解。同时,采用多媒体授课,图片和视频能形象直观地表现文字和语言不能描述的现象,如雷诺实验、卡门涡街等。在成绩的构成上除课后作业和专题汇报外,还布置一个课外小任务一观察生活中的流体力学,例如空调挂机安装位置问题,让学生发现生活中的流体力学现象,并结合课堂所学理论知识进行分析,增强学生发现问题、解决问题的能力。

2.3将CFD技术引入课堂教学

在理论教学和专题教学完成后将CFD技术应用于教学之中,做到数值仿真计算与理论推导相结合,增强流体力学的应用性。

(1)授课时对流体力学商用数值仿真软件Fluent的操作步骤做简要介绍,结合我校的数值仿真中心,完成代表性例题的数值分析计算,将数值仿真结果与理论解进行对比。

(2)将工程实际问题引入流体力学教学,提高学生面对具体问题的实际操作能力。每学期邀请两位具有丰富工程实际问题经验的校外人员来校给学生做一次报告,向学生介绍其建立工程问题的简化模型和简化过程,以及采用Fluent求解过程和结果,让学生学会面对工程问题时准确建立力学模型的能力,同时开阔学生的视野,提高学习积极性。

3主要特色

(1)突出实用性。在流体力学课程教育中调整教学内容,添加CFD技术的实践,同时邀请经验丰富的校外人员进课堂,为学生讲解企业中的实际问题,教会学生学以致用,学生通过课程教学掌握该工具之后能更好地跟进企业工作并提高就业质量。(2)主次明确。强调实用性的同时,也不完全放弃对公式推导能力的教学,采取理论联与工程实际相结合的方式,在提高学习主动性的同时,增强对基础理论的认知。

篇2

本书旨在描述旋转、分层与磁场是如何影响湍流的。

本书共有19章,1:波动与湍流的相互联系,包括波动的三种类型、波与湍流、地球物理与天体物理中的湍流。从第2章开始分为3部分。第1部分为从流体力学到磁流体力学,讨论了简单旋转液体、分层流体的基本理论和磁流体力学,含第2-7章:2.初等流体动力学,包括纳维叶-斯托克斯方程、粘性流体中的能量损耗、涡度方程等;3.旋转流体运动,包括地球自转偏向力、惯性波、波动与稳定性、罗斯贝波等;4.分层流体运动,包括波西内斯克近似、阻塞高压、背风波、内重力波、位势涡度、谷风;5,电动力学方程,包括麦克斯威方程、安培法拉第定律完整版、洛伦兹力、麦克斯威应力、法拉第张力、磁场与速度场的转换;6.导电流体运动:磁流体力学,包括磁流体力学方程、低磁雷诺数下的磁阻尼、高磁雷诺数下的动力学等;7.湍流的不稳定性与转换,包括成层切变流的稳定性、理想流体磁流体力学平衡稳定性等。

第2部分为没有体积力作用的湍流,讨论了从基本原理中发展出来的湍流理论,含第8-11章:8.湍流的基本性质;9.湍流语言:运动学与统计学,包括速度关联函数与结构函数、傅里叶空间、各向同性的简化;10.流体动力学湍流Ⅰ:经典理论,包括理查森现象与科莫现象、涡旋伸展与实质线伸展、卡霍二氏方程式等;11.流体力学湍流Ⅱ:旋转、分层与磁流体力学湍流,包括各向同性湍流、二维湍流等。

第3部分为有体积力作用下的湍流,这是本文的核心部分,讨论了旋转、分层与有磁场作用下的湍流,含第12-19章:12.快速旋转流体,包括波传播中的结构形成、气旋反气旋不对称、能量衰减速度;13.地球物理:浅水体,快速旋转湍流,包括控制方程、统计学不变量、β平面湍流及其纬向环流与光谱;14.均匀分层湍流,包括控制方程与无因次群、尺度分析、分层湍流的光谱分析、能量衰减速率等;15.分层切变流与大气边界层,包括分层剪切流方程与通量理查森数、大气边界层等;16.小磁雷诺数磁流体力学,包括控制方程、角动量守恒、涡流的演化等;17.地心处的湍流:地球发动机,包括地球发动机理论、地球的结构与磁场分布、数值模拟、其他行星发动机;18.高磁雷诺数磁流体力学,包括二维磁流体力学、螺旋气流与选择性衰减、阿尔芬湍流的谱理论等;19.天体物理湍流,包括吸积盘、太阳涡流、太阳风。

篇3

关键词:建构主义;认知灵活性理论;热工理论

作者简介:衣晓青(1956-),女,山东青岛人,长沙理工大学能源与动力工程学院,教授;石尔(1979-),女,湖南长沙人,长沙理工大学能源与动力工程学院,讲师。(湖南 长沙 410004)

基金项目:本文系2011年湖南省普通高等学校教学改革研究立项项目的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)16-0069-02

“工程流体力学”、“工程热力学”、“传热学”既是热工理论的三大主干课程,又是能源动力类专业(方向)的主要技术基础课。传统的教学宗旨倾向于各门基础课程自成科学体系,分别独立教学,为后续专业课程打下牢固基础。但是这种传统的教学模式死板,致使学生缺乏学习兴致,不易明确学习目的。建构主义的认知灵活性理论发现了新的教学要素——“案例教学”。按照认知灵活性理论,对以上热工理论三大基础主干课程进行优化整合,以热能动力类专业为场景,建构诸多新的知识点教学,组织全新的热工理论基础课程体系,可以使热工理论基础课教学克服以上不足。

一、打破僵化教学:认知灵活性理论的应用

建构主义教学理论冲破了传统教学模式,克服了“填鸭式”教学把学生作为小绵羊驯服的弊端。[1]作为建构主义教学理论中的一个分支,斯皮罗提出的“认知灵活性”理论很好地解决了“死记硬背”传统与极端建构主义(忽视抽象养成)之间的矛盾。认知灵活性理论的主要思想就是:通过情景(境)展现基本概念和基础理论工具,学生既可以掌握基础理论知识,又可以按抽象思维方式,放开视野寻找新的分析问题的工具。

为了解决传统与极端的冲突,斯皮罗把知识抽象为两种不同性质的结构:良构的与非良构的两种领域。[2]良构的即是指:按照抽象思维,从概念到原理的演绎解析的知识体系,符合科学意义上的正统规范。非良构的即是指:在具体场景(案例)中,隐透出的各种良性结构的知识叠合;这种叠合的基础知识能够解释或解决具体场景问题;不同的场景有不同的良性结构知识叠合的诠释。由此得出结论,良性结构知识就存在于非良性结构知识之中,“认知灵活性”教学就可以让学生通过非良性知识教学获得更加深刻的良性结构的系统知识,而且是积极主动地、生动有趣地接受之。

热工理论是研究热(能)在释放、转换和传递中的流体流动及传热传质等问题的科学,涉及流体运动规律、热(能)转换与传递规律。按照认知灵活性理论的教学观,热工理论基础课教学也可分类为良构性和非良构性。热工理论的三大主干课程“工程流体力学”、“工程热力学”和“传热学”分别作为单独体系教学的基本概念、基本理论和基本知识的层次组织结构,应属于良构性领域,其传统的教学方式就是从概念到概念、从原理到原理、从公式到公式的演绎解析,逻辑性很强,范式文本较固定,程式较稳定,测验作业较死板。

“认知灵活性”教学理论认为,这种教学方式僵化、被动,既不能启动学生的兴趣,也不能启发学生的创造想象力,学生容易落入死记硬背、教条主义的套路,缺乏广泛的知识联系和举一反三的思维训练,更缺乏给学生以另辟蹊径的想象空间。如果以流体介质为对象将热工理论三大主干课程进行优化整合(杂交),并以热工理论应用为主线,将能源动力类相关专业作为场景,构成非良构性知识结构,其所涉及的具体问题具有复杂背景和综合影响因素,能够从问题入手引出综合知识的有机联系,开阔学生发展思路,引导学生融会贯通,指导学生熟知专业背景。这种按照认知灵活性教学理论建立起来的热工理论基础课程的非良构性知识体系会冲破传统的各自为主的单科系统性的课程教学模式,有利于克服“高分低能”的应试教育倾向,培养面对知识时代和信息社会的创新型人才。

二、创建问题教学:热工理论基础三大主干课程的优化整合

认知灵活性理论认为:学习者在建构知识意义的过程中,只有对知识进行多维表征,才能达到对知识的全面理解和灵活运用。这也是指导热工理论基础三大主干课程进行优化整合的基本思想。热工理论基础三大主干课程“工程热力学”、“传热学”和“工程流体力学”是主要以流体介质为研究对象而紧密联系在一起的动力类技术基础性课程,三门课程相互依存,共同构成了热工理论的主干课程体系。其中,工程流体力学是研究流体介质的位置势能、压力势能和动能之间的相互作用的关系;工程热力学是研究热能与机械能之间的相互转换的规律;传热学是研究热量从高温部分传递到低温部分的机理。由此可见,能(热)量转换与守恒定律是热工理论三大主干课程进行优化整合的内在动力。

基础课理论自身系统的完善性使任何改动需求都带有相当大的难度,只有进行优化整合,才能在不断调整和深化过程中发展新的学习要素。例如,“传热和流体流动的数值方法”课程就是将传热学、流体力学知识进行融合后加入到数值计算科学这一更为广泛的学科领域,为热工理论知识的进一步发展奠定了基础。同时,通过这一知识的优化整合,多维表征得以实现,使学生建构起在热科学和流体科学中可以直接迁移和引用的关于热物理方面的知识,超越了封闭、孤立课程所给的单一信息模式。

如果说热工理论的三大主干课程“工程流体力学”、“工程热力学”和“传热学”分别作为单独体系教学是良性结构知识的传授,那么,把“三课”拆分,再按照具体能量转换的场景问题有机组合,这种教学模式就属于非良性结构教学。乔纳生等人的研究把前者称作低阶学习阶段,把后者称作高级学习阶段。[3]高级学习阶段优于低级学习阶段的实质就是变公式学习为问题学习。问题学习对于热工基础理论教学来说,打破其三大主干课程的各自理论体系是必然的,是要针对具体的场景问题而进行知识交叉组合。值得注意的是:根据认知灵活性教学理论,这种知识体系重组,必须避免极端建构主义干扰,必须遵循“专业问题、溯本求源、知识联系”三原则,才是优化的、高级的教学模式。

三、重复多变教学:能源动力类专业问题逆向渗透于热工理论基础课程

非良构的知识体系与良构性知识体系的区别就在于:一是前者比后者建立的概念庞大、复杂,它往往是多个不同学科孤立概念的交集;二是前者比后者建立的概念有很大的多变性,这是由问题教学场景多变性所决定的。热工理论基础知识在航天、航空、热能动力、化工、核热工、低温工程、冶金热工、微电子技术、材料和建筑等各个领域都有具体的应用,从知识体系的角度来看,其展现的知识点都是非良性的。实际上,在能源动力类相关专业的不同场景下,其呈现的非良性知识结构也存在着很大的差异性。例如,工程热力学中的热经济性指标在热机循环中的应用是热效率,而在制冷循环中的应用是制冷系数。这说明热经济性概念在实际应用过程中具有复杂性。又如,流体力学在电厂中的应用以管内流动、物体绕流为主,而在建筑环境与设备工程专业中的应用以室内外环境通风、换气的流动为主。传热学中对于散热器来说需要强化传热效果,对于建筑物屏蔽掩体则要抵制传热。

在针对能源动力类专业的热工理论基础课程进行新的建构中,按照认知灵活性教学理论,必须将原有良性结构体系的知识与专业场景结合起来。这种有专业针对性的知识渗透,有学者称其为专家知识学习阶段,属于更高层次。[2]比如,把能源动力类专业(方向)的“流体力学”、“泵与风机”两门课程整合为热工理论基础课“泵与风机的流体流动”一章,以流体力学知识为基础,反映了流体力学基本原理在流体机械中的具体应用场景,通过多媒体教学课件可以使学生建构泵与风机工作原理和结构的多维图式,达到对流体力学基础理论知识全面理解和灵活运用的目的。

按照斯皮罗的认知灵活性理论规范,对应专家知识学习阶段的教学模式即“随机通达教学法”,它的主要特点就是针对专业的众多场景链,反复从不同问题视角,以不同的基本知识、基本公式、基本理论的多样组合,不断给予学习者良性知识的刺激,这会使学习者通过反复的从各种变式到抽象的过程,不断加深对良性结构知识的各种理解,而且有助于学习者历练分析问题和解决问题的能力,发挥创造性思维,为今后在专业上有所建树打下坚实的学习基础。贯穿于这一思想的新的“热工理论基础”课程体系,组织“锅炉工质流动与热交换”、“汽轮机流体流动与功能转换效率”、“热力发电厂工质循环与热效率”等章节,探讨基于专家知识学习理念的非良构知识领域的显性建构,加入热能动力类专业知识对热工理论基础课的反向渗透,有效增加课程教学的深度和广度这一结果就自然生成了。

除了书本专业知识的反向渗透以外,通过与科研、生产单位合作的科研课题的有机结合,也是专家知识学习阶段的案例来源。例如,教师通过某钢铁公司锅炉尾部烟道声学振动问题的科研活动,向学生们提出卡门涡街产生机理、影响因素以及卡门涡街产生后对设备及系统的危害和消除卡门涡街的措施等诸多学科问题,从而认知基本理论。

参考文献:

[1]朱新卓.中国高等教育管理学:从拔苗助长到建构主义[J].高等工程教育研究,2005,(2).

篇4

工程流体力学教学手段教学效果《工程流体力学》是机械工程专业、石油工程专业、化学工程专业等诸多工科专业的一门十分重要的专业基础课,在各个工程领域都有着广泛的应用。作为力学的一个分支,工程流体力学主要研究流体的平衡和运动的基本规律以及流体与固体的相互作用的力学特点,用于分析解决工程设计和使用中的实际问题。其特点是数学公式多,大部分内容都是围绕数学方程的推导,理论性强。学生在学习过程中普遍感觉吃力并且枯燥。因此,为提高教学质量,教育界同行不断地进行着各种各样的教学改革探索。

一、联系实际,理论与实践相结合

流体力学内容抽象,概念性强,整门课程从头到尾充斥着偏微分方程,公式推导繁杂。而且与其他力学课程不同,流体力学是采用欧拉方法解决问题,这一点学生理解起来非常困难,导致流体力学这门课程被公认为大学课程里最难学的课程之一。为了提高教学效果,在教学实践过程中注重理论与实践相结合,更有利于学生对知识的理解与掌握。本课程主要围绕几大偏微分方程展开,在讲述过程中如果过于强调数学理论的推导过程,学生肯定会感觉枯燥无趣,而且不知道学习的真正目的,从而失去学习的动力。针对这种情况,我在讲述公式推导部分时着重分析研究思路和方法,重点介绍公式的适用条件及意义,尽量避免长篇大论的数学推导过程。比如伯努利方程是本课的重点,在课堂上我只是把推导思路给大家讲清楚,后面花了两节课的时间来讲它的应用,包括皮托管测速计、节流式流量计以及在一般水力计算中的应用等。在课程的最后部分,针对授课专业特点,结合现场实际工程案例,讲述了流体力学基本理论在实际中的应用,同时也对课程内容进行了总结和回顾。通过上述具体应用实例,使学生能够理论联系实际,培养学生以后工作时解决实际问题的能力,同时还能使学生认识到课程的重要性,增加了学习兴趣。

二、启发-联想式教学

引导和注入是启发式教学方法与灌注式教学方法在本质上的差别之一。启发式教学方法强调的是引导,也就是通过引导,调动起学生的主动性、积极性,让学生自己去发展思维而获取知识。而灌注式教学方法则是通过注入,使学生被动地接受传授给他的知识。因此在引导与注入这两种手段上,有着明显的差别。所谓引导,是指当学生要解决某个问题,但又感到难以解决时,恰到火候,教师及时给以启发,让学生自己发现新知识,这样才能很好的发展学生的智能。

流体力学的研究方法和内容同工程力学、工程热力学等其他力学课程有很多相通的地方。所以在教学过程中可以通过启发学生对以前学过的内容进行总结回顾,从而引出所讲内容。比如在讲解研究流体运动的两种方法:拉格朗日方法和欧拉法时,启发学生对两种方法进行比较。由于欧拉法是以空间点为研究对象,这与基于质点为研究对象的工程力学的研究方法不同,学生已经习惯于质点研究方法,所以接受起来有点困难,这时我以气象观测站这样一个大家都熟知的例子来阐述欧拉法的含义,采用直白易懂的语言讲述这样一个抽象的问题,学生理解起来容易多了。

学生在已有的力学基础上学习流体理论,并加以比较,不仅可以促使学生积极思考,而且能利用一门课程中已学会的知识快速掌握另一课程中的内容,增强了教学效果,提高了教学质量。

三、Fluent软件在教学中的应用

流体力学课程的特点是知识涉及面广,对学生来说流体力学课程里面的概念与原理非常抽象难懂,课程涉及的数学知识和力学知识比较多,且与工程实际现象紧密结合,这对本科生来说更加大了他们学习本门课的难度。同时受教学实验条件的限制,任课教师很难形象地将流体流动的现象讲授给学生,这样就造成理论知识的讲解与实际现象脱节。FLUENT软件是目前非常流行的一个商业计算软件,将其引入本科生流体力学课堂教学,对流体力学课程中的流动机理既能实现直观演示,又可以进行定量分析。比如在讲圆管内层流和紊流两种流态运动规律时,如果采用传统的教学方法,由于牵扯的数学理论知识较多,学生学起来很吃力,而且最终推导出的结论比较抽象,学生很难提起兴趣。如果采用FLUENT软件模拟两种流态,做出不同工况条件下的速度分布曲线、速度分布云图、速度等值线、切应力分布曲线,让学生通过对这些曲线进行分析得出不同流态下的运动规律,学生的积极性和主动性就能被充分调动起来,从而可以提高教学效果。

在课程教学中不断改进教学方法和手段,用心钻研,不断探索,有助于学生理解掌握课程知识,增强学生的学习兴趣,为学生将来从事工程实践奠定坚实的基础。

参考文献:

[1]陈小珊,洪文鹏,张玲.工程流体力学课程改革的思考[J].东北电力大学学报,2006,(3):54.

篇5

关键词:项目化教学法;流体力学泵与风机;可行性分析

1 前言

最近几年,国内很多高职高T盒?设了与热能与动力工程(火力发电方向)相近的专业。我校也于2009年开设了电厂热能动力装置专业,而流体力学泵与风机作为其专业基础课在课程体系建设中占有及其重要的地位并分的大量学时。项目化教学法则是近年来高职院校教学中一直推广的教学方法,主要是为使学生学习时化被动为主动。此方法对于我校学生来说,在其他专业已经得到了很好的验证,的确能够提高学生的学习积极性和主动性。本文将对项目教学法运用于流体力学泵与风机课程教学的可行性进行分析探讨。

2 项目教学法的基本理论

(一)项目化教学法的起源及定义

在18世纪的欧洲产生了劳动教育思想思潮下,产生了项目化教学法的初步思想,最终到了19世纪美国与合作教育融合产生了项目化教学法,经过了一百余年的发展,到1955年后逐渐趋于完美,并最终成为了一种新的教学理论。

(二)项目化教学法的基本要求

要求一是,学生成为项目化课程的主体,教师以一种配角的形式出现在课堂教学上,这样学生就多了更多的独立思考,更多的动手机会,这样有利于培养创新能力;要求二是,执行项目化教学法的主张。其主张强调学生自主学习,自己查阅,分析的能力,先练后讲,边学边教。

3 项目化教学法在流体力学泵与风机教学中的特点

(一)目的性

项目化教学法的目的性很明确,就是通过一个个围绕知识点设置的项目来锻炼学生的领导能力,并培养分析解决实际问题和团队合作的能力,以此掌握课程所要求的知识内容和岗位能力;而对于教师来说,项目化教学的目的就是改变现行的教学模式,使自身从课堂教学的主体,转变成一个在学生实际完成项目时的促进者,并掌握其中的相关知识和技巧。

(二)授课周期短,效果明显

项目化教学的另一个特点就是效率高,经历过项目化课程的学生都可以迅速完成到职工之间的转变。结合流体力学泵与风机教学内容设置的项目,可以迅速的使学生对实际操作上手。

(三)注重理论与实践相合

在项目设计之初要依据理论原理设计项目,那么在要完成一个项目时,必然涉及如何才能完成这样的问题。这就需要理论与实践相结合。

项目化教学法与其他任何教学手段一样,都会随着时间而组建消沉,其如果想用力不败之地就必须不断随着社会而发生变化。而变化的依据是根据不同的课程或内容而有所不同。通过流体力学泵与风机课程各项目的实施,使学生掌握连续性方程,伯努利方程的应用及具备泵与风机的检修和运行的基本知识和专业知识。

4 项目教学法在流体力学泵与风机教学中的应用(以流体力学泵与风机一次课为例)

(一)项目计划阶段

我校电厂热能动力装置专业的流体力学泵与风机课程项目化课程整体方案与单元设计部分结合学校实际条件和课程的教学目的进行设计。在教材方面我校正在编写该课程的项目化教材,这样,首先是能够对所需要学习的内容章节总结和具体化的作用;另一方面,结合实际操作条件的教材,可以起到理论联系实际的作用,培养学生的应用能力。

(二)实施阶段

第一次课是预备课,教师对课文中的新单词和词组进行讲解,将每个单元的课文划分成几个部分,并设计学习环境。同时完成班内的分组活动,可以依照学号,也可以按照寝室,更可以通过课堂出的设计游戏观察的结果分组。本课程每六人一组,每组内不能有超过1名女生,6人一组。每个小组负责一个部分内容的讲解。然后进行分组的实际操作

(三)评估阶段

后几次课是具体的项目实施阶段,让各小组展示其成果,项目的呈现形式可以是图片、ppt、实物,设计图等。检查评估是本课程的主要不仅可以让老师在实践中检验学生掌握语言的情况,也可以让学生通过小组活动来提高语言的交际能力。这不仅锻炼了学生的语言表达能力,也锻炼了学生专业知识的掌握。学生在讲解中充分发挥特长,学习他人的优点,弥补自身不足。

(四)成绩评价阶段

每个小组都设置一份评分表(此处以项目1-1为例),评分的权利不仅仅在老师,同样将打分权利很大一部分交给各个小组的组长,取其平均分,有利于公平公正和公开。但在评分时要注意,学生之间因为关系亲疏而带来的分数评价的偏差,并在发现问题存在时,及时纠正问题,并及时改正。教师的评分表是另外一张,本文不附上了,但宗旨是考察学生的评分而不是项目结果。

(五)注意事项

1、项目不能凭空乱设。要根据学校的实际情况设计项目,例如学校电脑齐备,再购买软件就可以有充分的空间可以安装,这就是充分利用学校资源;而学校没有实物泵,如果设计实物泵相关是项目,能实现的可能性就大大降低了。

2、上课时一定要记住学生才是这个课堂的主人,老师不要过多干涉,喧宾夺主,这样都是不好的。即时是需要理论上的指导,也要适可而止,指明方向让学生自学或是适当点拨都是不错的选择。

3、项目教学法对教师的课堂组织管理和知识储备提出了更高的要求。每次的项目成绩可以汇总成平时成绩,便于老师在期末总评时一目了然。

(六)结束语

流体力学泵与风机作为专业基础课程,在专业课的授课过程中起着承上启下的作用,基础课程的扎实学习会为日后的专业课学习起到事半功倍的作用。能够让学生自主学习,创新培养模式起到了主导的作用,电厂热能动力装置专业教学改革和探索还在边实践边总结,教学改革模式也会日渐完善。

参考文献

[1]黄蔚雯,朱飚.建设流体力学泵与风机精品课程的实践与认识[J].安徽电气工程职业技术学院学报,2006,7(21):200-202.

篇6

[论文摘要]结合学习主体所处的时代环境变化和流体力学知识体系的学科跨度大以及对数学基础知识要求很高的特点,分析了流体力学教学中存在的问题和难点,提出大量采用实验模型和实例教学以加强流体流动现象的观察理解对提高流体力学教学效果的必要性和重要性。 

 

前言 

流体无固定形状,即使受到的剪切力再小,只要持续存在,其变形便会随时间持续增大,不像固体那样,一定的受力只能产生一定的变形。流体力学的基本理论非常严密,描述流体流动现象的数学方程非常复杂,高度非线性[1],因此学生对流体力学敬而远之的现象比较严重。此外由于因特网及电子计算机的普及,各种虚拟现象泛滥,在这样的环境下成长的学生接触和感受实际发生的各种流体流动现象的机会大大减少,对自然现象的观察和理解能力很弱。很多学生在接受流体力学教育之前所受的应试教育的影响下[2],学习只是为了在短时间内对给出的试题做出接近正解的答案获得高分,这种教育具有多大的意义,近年来许多学者从教育学的角度提出了疑问[2]。只有直面实际的流体流动现象,抓住问题的本质,才能诞生真正的学问和研究。笔者基于对本科和研究生的流体学教学中存在的难点和问题,指出了重视流体流动现象的观察和理解对提高流体力学的教学效果的必要性和重要性。 

 

一、流体力学教学面临的问题 

 

(一)新形势下学生所处的社会环境变化 

学生从小利用电脑打电子游戏的玩耍时间和机会大大超过了自己亲自动手制作道具及模型的体感玩耍时间,通过体感玩耍接触和观察自然现象的机会大大减少。 

因特网的普及使得在短时间内获得大量的信息或实时获得信息成为可能,近年来出现学生过度依赖因特网的倾向,疏远了纸质图书及相关文献这些知识比较系统逻辑性也有保证的传统信息载体。但因特网上除了正确的信息外,还有很多不准确甚至错误的信息,即使是正确的信息,各信息段之间也缺乏系统性,因此学生仅通过因特网难以建立系统的知识体系的。 

手机在学生中的普及也使得学生们在实际问题时,不是自己独立分析问题,找出问题发生的原因,而是直接利用手机询问他人求得答案,这样很难培养独立制定计划,对可能事态进行预测,独立进行解决问题的能力。这恰恰是对一个未来走向社会成为一个优秀的技术人员的必经的磨砺之道。 

(二)流体力学教学面临的问题 

流体流动的力学模型及其运动的物理意义难以理解[3]。流体粘性产生的模型与牛顿粘性定律之间的对应关系就是最好的一个例证。大多数学生虽然能够使用牛顿粘性定律进行计算,但对运动的流体为何会产生粘性却不能正确的理解。的确,对于涉及到流体力学的某些技术或产品设计,只要懂得一定的计算即可,但是对于开发和设计全新的产品,如不能准确把握所涉及到的相关流体流动的物理本质,有时会产生完全错误的设计结果。 

流体的运动状态繁多,流体力学融合领域广,要求学生掌握更多的学科预备知识,尤其对数学知识的要求更高,使部分学生觉得流体力学是难以接近的一门课。同一流动现象常常可以从多个角度进行解释,容易使学生产生混乱。比如对翼型的流体力学工作原理,可以从流体流动的动量变化、伯努利方程、压力积分、流线的曲率变化等几个方面进行解释,解释方法之多反而会使学生产生混乱,但每一种解释方法都是正确的,解释的都是一个本质,只有完全理解各种解释方法所依据的理论,才可以解除认识上的混乱,将学到的知识条理化、系统化。 

描述流体流动的数学方程高度非线性化,数学上求解比较困难。描述流体流动的纳维斯方程和能量方程是否可以求解以及数学解的唯一性的证明需要微分方程、偏微分方程、多元积分等很深的数学功底,但近年来学生的数学和力学基础存在下降的趋势。 

学生在进入大学前所接受的应试教育的影响很大,以考试成绩自评学习效果的认识根深蒂固[4]。实际的流体流动现象往往没有单纯的标准答案,有时甚至存在多个解,重要的是抓住流动现象的物理本质,系统的理解流体力学的基本原理。 

二、教学方法对应 

 

解决上述问题的根本方法,笔者认为只有从流体力学教学上,直面涉及流体的各种现象,使学生准确的把握物理本质。为此在流体力学课堂上,广泛采用流体模型教学和实例教学,增加学生观察理解各种流动现象的机会,唤起他们对本门课的兴趣的同时,让他们形成为探究流动现象背后的物理本质进行思考的习惯,这对解决流体力学教学所面临的问题至关重要。 

使用电吹风斜向上吹一个让学生事先准备好的气球模型,没经验的学生会意外的发现气球会向斜上方飘起。这一流体流动现象可从风从气球上部通过时,由于气球表面的影响风的流向会产生变化,也就是流线产生弯曲,根据风的动量变化必然产生使得气球浮起的升力得到解释,还可以从物体绕流边界层效应得到解释。从这一简单的模型教学,还可以解释飞机的机翼通过改变空气的流向进而获得升力的流体力学上的工作原理。 

在一个装满水的塑料瓶内分别放入密度大于水和小于水的钢球和泡沫小球,然后放在一个可移动桌面上,使桌面等直线加速运动,可发现钢球运动较慢留在瓶底,而泡沫球运动较快停在瓶嘴附近。观察这一个现象引导学生:泡沫球运动得较快是因为等加速运动瓶内流体的静压在运动方向上递减形成压力梯度,小球的前进方向的压力大于等加速运动产生的惯性力,因此小球相对于塑料瓶向前运动;而作用于钢球的前进方向的静压力虽然与泡沫小球相同,但惯性力大于前进方向的静压力,因此钢球相对于塑料瓶向后移动。这一模型教学比一般教科书上关于流体等加速直线运动流体的静压分布的例题更容易使学生抓住问题本质,且能培养学生独立思考之习惯,使学生体会到透过流体流动现象来正确观察和理解把握流体力学基本规律的乐趣。 

经常使用立式洗衣机的人都知道,洗完衣服后,衣兜总要被翻过来,假如原来兜里装有硬币等硬物,也会被掏出来[5]。把这个实例在课堂上讲出后,学生们甚有兴趣,追问其中的奥秘,当教师根据伯努利定律做出解释并介绍伯努利这位集物理学家、数学家、力学家及医学家于一身的瑞士的大科学家的基本情况后,学生们顿时对这位科学家充满了崇敬之情,通过大量这种实验模型及实例教学,学生们对学习流体力学这门课更有了兴趣和信心,教学效果的提高自不待言。 

 

三、结语 

本文详尽的分析了计算机、因特网、手机等现代化通讯工具普及后对学生产生的影响,由于流体力学课程知识体系的特点,这种影响产生的负面问题很多,尤其是教授成长在应试教育体制下走入大学的学生,更需要转换认识,改变教学观念,在课堂教学中广泛植入实验模型教学和实例教学,让学生直面实际存在的各种流体流动现象,通过实际的流体流动现象的观察和理解,达到生动及形象的把握这些流动现象背后的流体力学的基本定理,有效提升教学效果的同时,通过简单实验模型的制作还可提高学生的动手能力,这对学生走向社会成为一个具有创造性思维能力、独立思考的优秀技术人员也是一个必不可少的雏形磨砺。 

 

[参考文献] 

[1]黄卫星.工程流体力学[m].北京:化学工业出版社,2008. 

[2]李丹,杨斯瑞.应试教育与创造性人才的培养[j].继续教育研究, 2009, 25(2): 180-185 

[3]向文英,程光均.流体力学教学与实验创新[j].重庆大学学报(社会科学版),2003,18(4): 21-26. 

篇7

在科学家眼中,大黄蜂不可能飞得起来。但事实上,只要是正常的大黄蜂,没有一只是不能飞的;它们飞行的速度也不比其他昆虫来得差,这仿佛是大自然在和科学家开玩笑。社会学家经过观察研究后,终于找到了答案。从科学的角度来看,大黄蜂的身体构造确实缺乏飞行的条件,但是,每一只大黄蜂都清楚地知道,它们一定要飞起来,才能出去觅食,否则必定会被饿死。因此,即使身躯笨重、翅膀短小,大黄蜂仍奋力飞行。

科学家不解的问题,答案其实很简单,那就是大黄蜂完全不懂得生物学与流体力学,它们只是发挥生命的本能而已。换个角度想想,如果大黄蜂了解生物学和流体力学的基本理论,知道自己身躯与翅膀的比例完全不适合飞行,那么,告诉自己不可能会飞的大黄蜂,还能够飞得起来吗?

生命本来就有无限的潜力,有人因为车祸失去双手,但不放弃挖掘自身的潜能,努力利用自己的嘴与双脚作画,后来成为出色的口足画家。

篇8

20世纪60年代,环境问题开始日益严重并引起人们的重视,多学科学者开始参与研究和解决环境问题,因此出现了一些新的学科分支,从不同角度研究和解决环境问题;进入70年代后,学科相互作用、相互渗透的过程中,产生了相对独立和统一的环境学,《环境水文学》就是环境学中环境地学的一个分支,研究环境学中的水环境部分[1]。相比普通水文学,更加重视水量和水质的统一,使读者能够从水文学和环境学多视角更加系统完整地认识水环境问题中水量和水质的变化规律。由于人类活动的影响,使水文情势发生变化,这种变化会反作用于环境,导致水旱灾害等社会问题,因此,在水资源开发过程中,如何预测和防治水旱灾害及水环境问题就显得特别重要[2]。而《环境水文学》解决这些问题具有指导意义,是未来极具潜力的研究方向[3]。

一、课程内容

目前课程内容主要包括三部分:

基础篇。环境和流域管理中的基本水文过程[4],包括降雨、截留和降雪过程,土壤水和渗流过程,蒸发-蒸腾过程,径流过程,地下水变化过程等。

方法篇。常用的水文分析方法及近年来兴起的新技术在《环境水文学》中的应用。

应用篇。涉及不同土地利用对流域水文循环和水环境的影响,包括城镇化[5]、工农业生产、水利工程和森林植被变化等影响水文情势的人类活动与水文环境变异之间的关系。

二、课程的特点

1.教学内容丰富。该课程包含基础篇、方法篇、应用篇和实践篇,涉及内容非常丰富,教学过程中要突出重点,抓住主线,着重培养学生运用水文学基础理论解决实际环境问题的能力。

2.基础要求高。该课程是一门综合性很强的课程,涉及到数学计算、模型编程、流体力学分析、水文地质学、测量学、地理信息系统、环境规划与管理等内容,要想学好该课程,需要有多学科扎实的基础理论功底。

3.应用性强。《环境水文学》是一门应用学科,应该以“基础篇-方法篇-应用篇-实践篇”的逻辑顺序进行教学,最终目的是将水文学的基本理论和方法落到解决环境问题上来。因此,学生实践认知能力和动手能力的培养就显得特别重要,需要加强实践环节训练,扩宽学生的思路和知识面,真正做到学以致用。

三、目前教学中存在的问题

1.学生兴趣不高。课程的基础篇和方法篇涉及内容多且复杂。有些概念还很抽象,如果理论功底不扎实,理解起来就比较困难,较枯燥乏味,导致学生上课时兴趣不高。

2.没有实践学时。目前我校环境科学专业的《环境水文学》课程只安排了理论学时,没有实践学时。然而课程本身的特点决定了必须通过一定的实验或实习学时来培养学生的动手能力和认知能力。让学生边实践边学习,加深对基本理论理解的同时,又提高了学生解决实际问题的能力。实践证明,课程教学实验或实习环节的缺乏,会导致学生综合能力较弱,实践应用能力不强且解决实际问题的应变能力较差,工作后竞争力不强。

3.上课时间安排不合理。如前所述,《环境水文学》课程对学生的基础要求高,需要学生修完一定量的基础课程后学习起来才更容易掌握。目前我校该课程开设时间和流体力学课程安排同一个学期,没有一定的流体力学分析基础,学习《环境水文学》课程时就会困难重重,学生理解困难,教师授课时需要补充流体力学的内容,会造成课程进度过慢,无法按时按质完成教学任务。

四、今后教学改革思考

1.课堂教学要形式多样。避免在授课过程中采用单一的讲授式、灌输式授课方式,否则会限制学生主动思考能力的发展。课堂教学方法应灵活多样,以激发学生的兴趣[6]。因此,在教学过程中应多角度启发式学生,同时鼓励学生将自己对教学内容的理解及时反馈给教师,增加互动后课堂气氛也会活跃起来,同时也可提出问题让学生在课堂上进行分组讨论,讨论过程中教师做好引导,防止讨论内容偏离主题。

教学内容可通过图片、动画或视频等多种形式进行讲解,便于学生理解。但是,也要和传统的板书教学相结合,比如演算和推导过程如果用多媒体展示,会导致学生难以跟上推导过程,需要通过慢速板书的形式逐条展示,这样便于学生理解。

2.文献资料查阅和课堂讨论相结合。由于课程的内容较多,受课时限制,不能将课程内容一一讲解,需要学生在课后多阅读相关的参考书,以弥补课堂教学的不足。同时,教师可设置一些开放性专题,对学生进行分组,要求各组学生课后开展文献资料调研,并将调研成果以PPT形式在课堂上展示,然后展开讨论。讨论过程中活跃了气氛,提升了学生学习兴趣,同时有利于培养学生分析问题的能力,为今后的深造打下良好的基础,考虑将该环节作为课程考核中的一部分。

3.实践教学环节必不可少。针对上文提到的无实验学时问题,可结合实际情况增加8~16个实践学时,包括教学参观实习、实地调研及室内实验等环节,形成“基础篇-方法篇-应用篇-实践篇”的教学内容体系。

可联系学校附近的花溪水库,组织学生参观实习,了解水库的功能和对河流水文情势的改变及机理,现场可通过水文监测和水质分析锻炼学生的动手能力,全面理解水利工程对水文环境的影响。也可以组织学生参观学校附近的花溪国家城市湿地公园,了解湿地的类型、功能以及如何保护等问题,调研区域水文地质条件和水质特征,通过数据分析,掌握河水的水化学组成及湿地对水体的净化功能和能力,让学生更全面地理解湿地中水文过程及其环境效应。

4.开课时间须调整。如前所述,目前我校《环境水文学》课程的开设时间不利于学生更有效地学习,因此需考虑将《流体力学》课程开设时间提前或《环境水文学》课程开设时间推后,让学生有一定的流体力学分析基础后,再进行《环境水文学》课程的学习,这样更加高效。

五、课程考核方式

学生往往根据考试方式来确定学习和复习方式,所以课程的考核方式的选取就显得非常重要。传统单一、死板的闭卷考试模式容易造成学生“上课记笔记,下课对笔记,考试背笔记”的情形,且会导致学生在课堂上提不起学习兴趣,不能真正地用心去学习,学习主动性大打折扣,很难达到课程的预期教学效果。因此,必须改变原有的单一的考核方式,可增加其他环节的考核,激励学生课堂上积极讨论,鼓励学生主动思考,同时实践能力也必须作为课程考核的环节,基于以上考虑,课程应采取综合方法评定学生的课程成绩,可按照理论笔试70%、课堂讨论10%、课后开放性作业10%和课程实践10%的比例进行考核,这种导向真正反映了学生的综合素质,符合人才培养目标。

篇9

关键词:阻尼器;粘滞流体阻尼器;输出阻尼力

中图分类号:TU74 文献标识码:A 文章编号:

引言

粘滞性流体阻尼器是一种使用比较广泛的减震、隔震设备,它一般是利用活塞推动油缸中的油通过节流孔时产生阻尼力,将结构振动的部分能量通过阻尼器中粘滞流体阻尼材料的粘滞耗能耗散掉,达到减小结构振动(地震和风振)反应的目的。本文在普通粘滞阻尼器的研究基础上,对自行设计研制的新型粘滞流体阻尼器进行力学性能试验,研究粘滞阻尼器输出阻尼力随激振频率、位移幅值和阻尼介质粘度变化的关系。建立力学模型,标定其性能参数。

粘滞流体阻尼器的基本理论

2.1 粘滞流体材料的耗能机理

材料有弹性材料和粘性材料之分,理想弹性材料只能储存能量,而不能耗散能量;相反理想粘性材料则只能耗散能量,而不能储存能量,即无刚度;粘弹性材料则既能储存能量,又能耗散能量;然而在实际的工程应用中理想的粘性或弹性材料是不可获得的[1][2]。

流体分子之间存在相互吸引的内聚力,流体和固体之间又作用着附着力,流体能承受较大的压应力,却几乎不能承受拉应力,对剪切应力的抵抗极弱,不管作用的剪切力是怎样的微小,流体总会发生连续变形,这就是流体的易流性。流体在流动时呈现出内摩擦力,这个力的大小一方面取决于流体的种类,另一方面也与运动状态有关。粘性有机流体材料分子与分子之间的内聚力或物理缠结较弱,分子与分子之间很容易产生相对运动,分子内部的化学单元也能自由旋转,因此,在很小的外力作用下,分子之间会产生相对变形、滑移、扭转,当外力除去后,分子间的变形、滑移、扭转基本上不能复原,这是粘性材料的粘性表现。

2.2粘滞流体的类型与特征

依据在简单剪切流中剪切应力与剪切应变速度之间关系的不同,粘滞流体可以分为牛顿流体和非牛顿流体[3] [4] 。

牛顿内摩擦定律:不可压缩的流体流动时,流体的剪切应力与剪应变速度成正比,即 (1)

式中 ――剪应力;――剪应变速度;

――牛顿流体的动力粘度(在一定温度和压力下为常数)。

当流体满足公式(1)时,剪应力与剪应变速度呈线性关系,即为牛顿流体,如水、空气等;不满足时,流体剪应力与剪应变速度呈非线性关系,称为非牛顿流体,如沥青、水泥浆以及大多数的油类、高聚物等。

依据在简单剪切流中非牛顿流体的粘度函数与剪切持续时间是否有关,非牛顿流体可以分为非时变性非牛顿流体和时变性非牛顿流体。

粘滞流体阻尼器的恢复力模型

为正确分析附加粘滞阻尼器结构的抗震性能,首先必须确立粘滞阻尼器的恢复力模型。目前国内外普遍采用的模型主要有:线性模型、Kelvin模型和Maxwell模型[5] [6]。

3.1线性模型

线性模型中,阻尼器出力取决于速度,阻尼力可由下式表达:

(2)

式中 ――线性粘滞阻尼器的阻尼系数;――运动速度。

假设有正弦简谐波作用于线性粘滞阻尼:(3)

式中 、、为波幅、频率和时间。可得阻尼力为:(4)

联立上述式子可得力和位移的关系为:

(5)

可见阻尼器的力和位移关系式符合椭圆关系。则阻尼器循环一周所消耗的能量:

(6)

3.2 Kelvin模型

如果线性粘滞阻尼器的性质取决于刚度,我们称这种模型为Kelvin模型。2-10所示。此外同样假设有正弦简谐波作用于该阻尼器,则阻尼装置抗力的表达式为:

(7)

式中:阻尼器的储存刚度;C:阻尼器的阻尼常数;:阻尼力的幅值;:阻尼力与位移的相位差。

联立可得:

(8)

阻尼系数和储能刚度分别为:

(9)

(10)

相位差:

(11)

由于大部分粘滞阻尼器装置都具有频率依赖性,所以利用傅立叶变换和欧拉公式可得复Kelvin模型的抗力表达式: (12)

其中复合刚度可由储存刚度和损耗刚度表示,即: (13)

可由下式计算:(14)

3.3 Maxwell模型

假设阻尼单元与“弹簧单元”的位移分别为和,则有下述关系式:

(15)

(16)

得:(17)

式中:阻尼器的抗力;:零频率时的线性阻尼常数;:“无限大”频域内的刚度系数;:放松时间系数,。

利用傅立叶变换和欧拉公式可得复Maxwell模型表达式:(18)(19)

联立上述两式解得:

(20)

(21)

将代入上式,便可得储能刚度和耗能刚度:

(22)

(23)

阻尼系数为:(24)

粘滞阻尼器的力学性能试验

试验采用正弦激励法,在计算机控制程序中输入位移和频率来控制试验机的加载系统加载。通过对阻尼器施加不同频率的正弦力,分别测得各种位移幅值下阻尼器的位移和相应的阻尼力以及对应的时间,从而得到阻尼器阻尼力随激振频率、阻尼材料粘度、和位移幅值变化的动力特性。

4.1试验步骤

(1)阻尼器安装就位、校准;

(2)加载系统和作动器的调节、校准;

(3)对阻尼器施加某一频率的正弦力,从小到大逐级控制输入位移幅值,记录对应的力、位移和时间;

(4) 按不同频率对每一级频率,分别输入(3)中的位移值,并按(3)的方法进行试验;

(5)更换阻尼器(更换阻尼介质),重复①至④的步骤。

4.2试验观察到的现象

对计算机自动采集到的试验数据进行整理分析后可以看到主要的试验现象:

(1)试验中得到的阻尼力与位移滞回关系曲线比较饱满。(2)在频率和位移都很小时,阻尼器的阻尼力―位移之间的滞回曲线近似于矩形,表现为摩擦阻尼器的特征。(3)阻尼力―位移滞回曲线沿位移轴有一平移错动,表明阻尼器产生一定的位移,但不产生阻尼力。(4)同一温度,在相同的输入位移下,随着激励频率的增大,滞回曲线逐渐趋于饱满。(5)在相同的温度和激励频率下,随着输入位移幅值的增大,滞回环所包围的面积逐渐增大,耗能能力也随输入位移幅值的增大而增强。(6)在相同温度、相同的位移幅值和激振频率下,随着阻尼介质粘度的增加,阻尼力随之增大。

4.3试验结果分析

根据试验结果,可以得到2种阻尼器每一种工况下的最大阻尼力与最大速度(见表1和2)。

采用的恢复力模型进行回归(得到阻尼器D1和D2的计算公式(如图1、2),R2为相关系数。

D1:,

D2:,

表1D1幅值5mm时的最大速度与最大阻尼力

(Hz) (mm/s) (kN)

0.2 6.66 0.34

0.5 16.25 0.65

1.0 30.24 1.20

1.6 47.38 1.92

2.0 57.21 2.28

2.5 53.46 2.12

3.0 49.74 1.93

表2D2幅值5mm时的最大速度与最大阻尼力

(Hz) (mm/s) (kN)

0.2 6.31 0.8

0.4 12.75 1.2

0.8 26.05 1.7

1.0 31.09 2.04

1.6 46.82 2.67

1.8 51.94 2.71

2.0 53.95 2.9

从回归出的计算公式可以看出,阻尼器D2阻尼系数最大,而且速度指数最小,非线性更强;阻尼器D1约小于1,接近线性。通过对比D2与D1的回归曲线,可知D2在很小的位移下就能产生很大的阻尼力,说明改性材料的粘滞阻尼器具有更好的性能。

图1D1阻尼力-速度回归曲线

`

图2D2阻尼力-速度回归曲线

结论

从回归出的计算公式可以看出,阻尼器D2阻尼系数最大,而且速度指数最小,非线性更强;阻尼器D1约小于1,接近线性。D2与D1的回归曲线对比显示,D2在很小的位移下就能产生很大的阻尼力,表明所研制的改性材料的粘滞阻尼器具有更好的性能。

参考文献

日本免震构造协会编. 叶列平译. 图解隔震结构入门[M]. 北京: 科学出版社, 1998

郭荣良, 郭清南, 祝世兴. 流体力学极其应用[M]. 北京: 机械工业出版社, 1996

杨廷青. 粘弹性力学[M]. 武汉: 华中理工大学出版社, 1990

沈崇棠. 非牛顿流体力学及其应用[M]. 北京: 高等教育出版社, 1989

篇10

【关键词】矿山安全工程;实践教学;数理力学

一、矿山安全学科分类及属性

矿山安全工程是以矿山生产过程中发生的人身伤害事故为主要研究对象,在总结、分析已经发生的矿山事故经验的基础上,综合运用自然科学、技术科学和管理科学等方面的有关知识,识别和预测矿山生产过程中存在的不安全因素,并采取有效的控制措施防止矿山伤害事故的科学技术知识体系。

矿山安全工程在学科门类上是矿业工程的一个分支,跟采矿工程同属于一级学科矿业工程下面的二级学科。因此,从学科属性和性质上来讲,矿山安全工程专业知识体系的构建也应当遵从矿业工程知识体系构建的学科规律。

现如今,煤矿开采工艺已较为成熟,但是安全性制约了高效性的发挥,主要体现为,随着开采深度的增大,地应力、瓦斯、构造等地质条件恶化,带来了冲击地压、瓦斯突出、热害、水害、火灾等灾害进一步加剧,这对煤矿安全技术提出了新的挑战。如前所述,煤矿生产的新特征对矿山安全工程技术提出了新的要求和挑战。

二、矿山安全教学中存在的问题

当前淡化专业,宽口径、通识教育的导向下,很多属于采矿学科的专业课被一再削减,课程的难度也大大降低。课程太多,学时数不够,艰深课程概论化导致的。在通识教育的倡导下,很多本该扎扎实实细致 讲授的数学物理类、力学类课程只能概论化,甚至完全不讲。而这些较为难懂的课程正是后续课程的基础,更是学生今后向上攀登的基石,缺少了这些硬功夫,学生很难再上一个台阶。

现行矿山安全专业大中专教育中还存在的问题是,学生的数理功底普遍薄弱。在讲授专业课程中发现,学生对课程中的理论公式普遍有一种畏难情绪,也没耐心去认真计算推导,若放在课堂上推导又受到学时的限制,若放在课下学生自学,由于数理功底弱,学生又无法完成自学,这就产生了一个尴尬的局面。大量的文科性质、管理性质的安全管理类课程冲淡了行业专业课程,造成矿山安全工程专业学生底子薄、数理基础弱。

此外,理论教育与实践脱节也是许多学校矿山安全工程教学的疏漏,众多学校着眼于基础理论方面的学习,学生只能从书本中想象具体的操作情况,这显然与该专业的专业需求不匹配。

三、矿山安全教学新思路建议

1.加强数理力学基础,构建合理知识体系

只有采用严密定量化的力学理论才能精确计算,为工程实际提供理论和技术指导,这就需要在知识体系中重点加强数理力学知识。因而矿山安全教育应该构建合理的数理和专业知识结构,如理论力学、材料力学、连续介质力学、传热学、固体力学、流体力学、弹性力学、岩石力学、渗流力学、损伤力学、断裂力学、散体力学、渗流力学等力学知识应该给予充足的学时予以讲授。在强大的数理力学基础上,学生应掌握采矿学、矿山地质学、通风学、工程流体力学、矿山压力岩层控制等专业基础课程。在此基础上可适当学习安全学的一些基本课理论教学与实践结合矿山安全工程包括矿山灾害所有的防治技术,是保障矿山安全的最主要的技术手段。

2.理论教学与实践教学相结合

理论教学以课堂讲课为主,课堂专题讲座和讨论、影音教学和案例教学为辅。在课程讲授过程中,必须使学生全面掌握矿山安全基础知识,构建学生终身受益的知识体系。将“矿山安全工程”知识内容分为九部分内容: 矿山安全现状与管理、伤亡事故发生与预防原理、矿山机电伤害事故预防技术、矿井瓦斯灾害防治、矿山防火防爆、矿尘防治、矿井水害防治、矿山爆破安全、矿山救护等。在课程教学中,不局限于基本知识和基本技能的掌握,更应立足于全面提高学生素质,坚持“以提高矿山安全的综合素质与能力”的课程教学理念,在讲解基本理论、基本技术的基础上,引用大量的案例对不同防治技术进行分析,增强学生的感性认识,促进学生积极思考,提高学生分析问题的能力。

实践教学主要结合理论教学,开展实验室实验、课程设计、现场实习等教学环节。为学生开设相关实验,并鼓励学生开展设计性的综合实验,如矿井瓦斯抽放系统实验设计、矿井火灾灾变时期风流变化实验等。为提高学生应用知识解决实际问题的能力,该课程采用课程设计与现场实习来提高学生的实践能力。针对课程的教学内容,开设了不同内容、不同规模的课程设计。有的设计内容需要设计图纸,如矿井瓦斯抽放系统设计;有的是对某矿山事故进行分析,如利用事故树分析矿山外因火灾的原因。通过课程设计,有力提高了学生应用知识的能力。综合性实验注重对学生实践能力的培养,结合矿山现场的研究项目,选择一些与实践紧密联系、并具有一定难度的实验项目,将实验目的、实验要求以及主要任务交给学生,学生通过自己预习理论知识,查阅资料,进行讨论,掌握实验原理、方法和步骤,组织实验方案的实施,最后完成实验任务。

3.改革传统的考核方式

一是主要对实验课程基本概念和常识等基础知识的考核,采用包括内容、平时的表现、课堂表现、出勤率、回答问题等,占总分的30%。二是采用实验报告占总成绩50%考核;另一项是设计创新性实验形式,它是根据课程的特点而设置的,学生可以根据自身的优势和特长选择其中的实验方法或内容,实验、实践教学过程中提出问题、分析问题和解决问题的能力等等,占总成绩的20%。通过这样的实验教学改革,达到实验教学改革的目的。

四、结语

矿山安全专业大专教育的数理力学基础和知识结构对学生个人职业发展和对矿山企业的服务质量至关重要,此外应该重点加强学生的实践能力教育,引导学生构建匹配合理的知识结构。才能使人才具备更强的竞争力,未来才能在矿业涌现出领军人物。

【参考文献】