高分子材料的作用范文

时间:2023-12-22 18:03:33

导语:如何才能写好一篇高分子材料的作用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

高分子材料的作用

篇1

关键词:功能高分子材料;研究现状;发展前景

一、功能高分子材料的概念及开发意义

功能高分子材料,是指具有一定传递或存储物质、信息及能量作用的高分子和高分子复合材料。这使得功能高分子材料不仅具有原来的力学性能,同时还兼具如光敏性、导电性、化学反应活性、生物相容性、选择分离性、能量转换性等一系列其他特定性能。按照其功能划分,功能高分子材料主要可分为4类:①物理功能:具体包括超导、导电、磁化等功能;②化学功能:具体包括光的聚合、降解、分解等;③生物功能:具体来说包括生理组织及血液的适应性等;④介于化学、物理之间的功能:主要是指高吸水、吸附等功能方面。

功能高分子材料由于具备特殊的功能,受到了各个领域的广泛重视,特别是其不可替代的诸多特性都为很多领域的技术进步提供了基础和前提,甚至已经因此而诞生出了一批先进的、符合社会发展潮流的新产品。因此,当前各国都加大了对功能高分子材料的人力物力财力投入,面对时间各国的竞争,我国也需要尽快加大对功能高分子材料的研发力度,从而摆脱我国国防、电子、医药和其他尖端领域严重依赖国外功能高分子材料市场的困境。

二、功能高分子材料的研究现状分析

目前针对功能高分子材料的研究和应用现状,主要集中于功能高分子材料的光功能、电功能、生物功能以及反应型功能应用这几个方面:

1.光功能高分子材料

目前的光功能功能高分子材料的研究和应用主要体现在光固化材料、光合作用材料、光显示用材料以及太阳能光板这几个方面,这些具体的应用能通过对光的吸收、储存、传输、以及转换功能,实现对光能的有效利用。例如,目前已经能够通过光功能高分子材料的运用实现光传导来帮助植物的光合作用。此外,运用光功能高分子材料实现手机的太阳能充电也已经成为现实。

2.电功能高分子材料

电功能高分子材料,除了具备良好的导电性能外,其电导率还能根据应用状况的不同,在半导体、金属态和绝缘体的范围进行变化。此外,由于电功能高分子材料一般密度较小、易于加工,同时具备良好的耐腐蚀性,在当前的工业领域中也被广泛的应用。

3.生物功能高分子材料

生物功能高分子材料在生物领域被广泛的应用。如常见的有,由生物功能高分子材料所制成的人体植入物(视网膜植入物、脑积水引流装置等)以及人体义肢等。

4.反应型功能高分子材料

这种高分子材料是一种具备很强化学活性的高分子材料,能够有效的促进化学反应。它是通过对构建高分子骨架,并将小分子反应活性物质通过离子键、共价键、配位键或物理吸附作用进行骨架填充,以实现高分子功能才能的强化化学合成与化学反应的效果。

三、功能高分子材料的发展前景及趋势分析

功能高分子材料具备很多优势特征,这些都使得其更加符合经济发展和社会发展的需求,这也使得功能高分子材料的研究工作在各国的竞争中日益白热化。而去随着投入的不断深化,和技术的不断完善。新型功能高分子材料必然在我们的尖端科学及日常生产生活中扮演越来越重要的角色。功能高分子材料的几种发展趋势。

1.复合高分子材料

目前,功能高分子材料正逐步由均质材料向着复合高分子材料的方向发展,同时其材料的功能也向着多功能材料的方面发展。复合高分子材料往往是在一种基体材料(如金属、陶瓷、树脂等)上,加入增强或增韧作用的高聚物,再通过将多相物复合成一体,就形成了新的复合高分子材料,这种高分子材料能够充分发挥各相的性能优势,因此具有广泛的发展应用前景。在今后的发展中,航天科技、医疗卫生、生活家居、甚至汽车制造等领域,都需要各种高性能的复合高分子材料。

2.环境友好型高分子材料

经济的粗放发展,给整个地球h境都带来了深重的灾难,而随着人们对环保问题的日益重视,各国对各种材料的生态可降解性要求也日益突出。因此,环境友好型高分子材料的开发和深入研究工作,也引起了各国的重视。当前,生物降解技术和环境友好型高分子材料技术大多掌握在发到国家,我国目前还处于追赶阶段。随着世贸组织对环保观念的更加重视,环境友好型高分子材料在产品中的应用优势也将日益显著,为了把握这一趋势,我国要积极开发研究出有自主知识产权的生物降解技术和环境友好高分子材料。

环境友好型高分子材料,通过易水解的高分子的作用在各种生物酶的作用下,能够加速材料的水解反应,帮助材料进行生物降解。这种高分子材料目前研究的重点方向在理化性能、生物相容性、降解速率的控制以及缓释性等方向。

3.隐身性能高分子材料

隐身性能高分子材料的研究应用主要在军事领域,其也是当前各国的尖端军事技术的研究方向之一。以往的隐身材料多采用超微粒子和细微粉,实践证实,通过吸收衰减层、激发变换层以及反射层等多层材料的微波吸收,能够取得一定的吸波效果,达到隐身的目的。但是,由于材料制备复杂,且雷达技术的日益发展,给隐身技术提出了更高的挑战。此后,隐身性能高分子材料必然是向着厚度更小、质量更轻、功能更多以及频带更宽的方向发展。

篇2

[关键词]生物可降解;高分子材料;研究;进展

中图分类号:TG422文献标识码:A文章编号:1009-914X(2018)20-0195-01

随着社会生活的不断进步和科技水平的提高,我国对高分子材料的研究越来越深入,高分子材料的使用范围也越来越广。高分子材料的大范围推广,一方面给人们的日常生活提供了更加方便快捷的使用材料,另一方面也带来了严重的环境污染。研究生物可降解高分子材料,将生物可降解高分子材料应用到当前的社会生活中,是构建环境友好型、资源节约型社会的基本要求,也是贯彻落实科学发展观与可持续发展观的要求,要不断探索更加科学的方法,增强对生物可降解高分子材料的研究,推动生物可降解高分子材料的发展。

一、生物可降解高分子材料的基本特点

生物可降解高分子材料比较传统的高分子材料而言,其合成和降解的过程对环境造成的污染比较小。首先,生物可降解高分子材料的降解时间要明显短于普通塑料的降解时间,可以有效降低对环境的污染。其次,生物可降解高分子材料在降解过程中不会出现有毒气体,也不会释放重金屬污染物[1]。再次,生物可降解高分子材料在焚烧的过程中不会产生对人体有害的化学物质。最后,生物可降解高分子材料的处理回收方式比较简单,可以与普通生活垃圾一起进行填埋,也可以二次加工成肥料等进行循环利用。

二、生物可降解高分子材料的降解机理

与传统高分子材料相比,生物可降解高分子材料的降解受自然环境和自然条件的影响比较大,降解过程比较简单,并且降解之后产生的物质对自然环境的伤害比较小。

(一)物理作用

高分子材料可以通过一定的物理反应进行降解,在特定的条件下,光、温度、辐射等外界条件都会对生物可降解高分子材料产生影响,使其表面特征或者机械性能发生变化。比如光敏性聚合物的降解,主要就是利用光的作用,通过对紫外线的吸收,使聚合物的分子具有一定的活性,在一定的物理作用下,使聚合物被降解[2]。

(二)化学作用

生物可降解高分子材料在降解过程中会受周围环境变化的影响,环境中水分、湿度的变化会对生物可降解高分子材料产生化学作用,使材料分子之间的分子链断裂,断裂的分子在环境的影响下重新组合,影响高分子材料的降解。

三、生物可降解高分子材料的应用

(一)生物可降解高分子材料在农业上的应用

我国是传统的农业大国,每年用于农业生产的农用地膜、农产品保鲜膜以及化肥包装袋等数量都非常大,这些都会对环境造成一定的污染。就比如传统的地膜,其回收比较困难,并且在自然环境中很难被降解,不仅污染环境,长期恶性循环,还会降低土壤的透气性。将生物可降解高分子材料应用到农业生产中,可以有效的缓解对环境的污染[3]。生物可降解高分子材料中含有甲壳素或者壳聚糖,这些物质在自然环境下很容易被降解,并且降解之后产生的物质不但不会污染环境,还能为农作物的生产提供养分,同时,能改善土壤质地,使土壤更适合农作物的生长。利用生物可降解高分子材料生产的地膜可以在土壤中自行降解,转化成有利于农作物生长的营养物质,减少对环境的污染和破坏。

(二)生物可降解高分子材料在包装材料上的应用

将生物可降解高分子材料应用到包装材料中,可以有效减少包装废品对环境造成的污染。将纤维素和其衍生物进行加工,按照不同产品的包装需求采用不同的加工工艺,可以生产制造出适合食品、洗漱用品或者其他日用品的外包装。首先纤维素的提取工艺比较简单,生产成本比较低。其次纤维素可以在自然环境下被有效降解,可以降低包装废品对环境的污染。传统的包装材料多以不容易被降解的塑料为主,制作工艺比较复杂,制作成本较高,并且废弃的包装对环境造成的污染比较严重。生物可降解高分子材料能够替代传统的包装材料,减少废弃包装对自然环境的危害。

三、结论

研究生物可降解高分子材料,是建设环境友好型和资源节约型社会的要求,也是贯彻落实科学发展观、实现长久可持续发展的重要途径,将生物可降解高分子材料广泛应用在农业和包装材料上,能够有效减少传统塑料对自然环境的污染,有利于生态环境的恢复。因此,研究和发展生物可降解高分子材料,是当前构建社会主义和谐社会、保护自然生态环境的必行之路。

参考文献 

[1] 曾少华,申明霞,段鹏鹏,韩永芹,王珠银.可生物降解高分子材料的研究与进展[J].粘接,2015,36(01):72-76. 

[2] 梁敏,王羽,宋树鑫,刘林林,齐小晶,张玉琴,董同力嘎.生物可降解高分子材料在食品包装中的应用[J]. 塑料工业,2015,43(10):1-5+18. 

篇3

关键词新型高分子材料

1新型高分子材料的分类

1.1高分子分离膜

高分子分离膜是用高分子材料制成的具有选择透过性功能的半透性薄膜。与以温度梯度、压力差、电位差或浓度梯度为动力,使液体混合物、气体混合物或有机物、无机物的溶液等分离技术相比,具有高效、省能和洁净的特点,因而被认为是支撑新技术革命的重大技术。膜的形式有多种,一般用的是空中纤维和平膜。应用高分子分离膜的推广可以获得巨大的经济效益和社会效益。

1.2高分子磁性材料

高分磁性材料是人类在开拓磁与高分子聚合物新应用领域的同时,赋予磁与高分子传统应用以新的涵义和内容的材料之一。早期的磁性材料源于天然磁石,后来才利用磁铁矿烧结或铸造成为磁性体。现在工业常用的磁性材料有稀土类磁铁、铁氧体磁铁和铝镍钻合金磁铁等三种。它们的缺点是硬且脆加工性差。为了克服这些缺陷,将磁粉混炼于橡胶或塑料中制成的高分子磁性材料。这样制成的复合型高分子磁性材料,不仅比重轻,容易加工成复杂形状、尺寸精度高的制品,还能与其它的元件一体成型。因而这样的材料越来越受到人们的关注。高分子磁性材料主要可分为结构型和复合型两大类。目前具有实用价值的主要是复合型。

1.3光功能高分子材料

所谓光功能高分子材料指的是能够对光进行吸收、透射、转换、储存的一类高分子材料。这类材料主要包括光记录材料、光导材料、光加工材料、光转换系统材料、光学用塑料、光导电用材料、光合作用材料、光显示用材料等。光功能高分子材料可以制成品种繁多的线性光学材料,像普通的安全玻璃、各种棱镜、透镜等。利用高分子材料曲线传播的特性,又以开发出非线性的光学元件,如塑料光导纤维等。先进的信息储存元件光盘的基本材料就是高性能的聚碳酸脂和有机玻璃。

2开发新型高分子材料的重要意义

从高分子材料的出现到现代,世界工业科学不再只是对基础高分子材料的开发研究。从90代开始,科学家们就将注意力转到了高智能的高分子材料的开发上。现代工业对于新型高分子材料的需求日益增加。新型高分子材料的开发主要集中在制造工艺的改进上,以提高产品的性能,节约资源,减少环境的污染。就目前而言,以茂金属催化剂为代表的新一代聚烯烃催化剂的开发仍是高分子材料技术开发的热点之一。开发应用领域在不断扩大。在开发新聚合方法方面,着重于基团转移聚合、阴离子活性聚合和微乳液聚合的工业化。与此同时,我们要重视在降低和防止高分子材料在生产和使用过程中造成的环境污染。我们应该大力进行有利于保护环境的可降解高分子材料的研究开发。新型高分子材料的开发,不但能够满足现代工业发展对于材料工业的高要求,更重要的是能够促进能源与资源的节约,减少环境的污染,提高生产的能力,体现现代科技的高速发展。

3新型高分子材料的應用

现代高分子材料相对于传统材料(如玻璃)而言是后发展的材料,但其发展速度的应用广泛性却大大超过了传统材料。高分子材料不仅可以用于结构材料,还可以用于功能材料。现阶段新型高分子材料大致包括高分子分离膜,高分子复合材料,高分子磁性材料,光功能高分子材料这几大类。这些新型的高分子材料在人类的社会生活、医药卫生、工业生产和尖端技术等方方面面都有广泛的应用。例如,在生物的医用材料界中研制出的一系列的改性聚碳酸亚丙酯(PM-PPC)的新型高分子材料是腹壁缺损修复的高效材料;开发的苯乙烯、聚丙烯等热塑性树脂及聚酰亚胺等热固性树脂复合材料,这些材料比模量和比强度比金属还高,是国防、尖端技术等方面不可缺少的材料;在工业污水的处理中,在不添加任何药剂的情况下,可以利用新型高分子材料的物理法除去油田中的污水;同样,在药物的传递系统中应用新型的高分子材料,在包转材料中的应用,在药剂学中应用等等。

4结语

新型的高分子材料已经渗透于人类生活的各个方面。材料是是人类生活和生产的物质基础,人类用来制造各种产品的物质,是一个国家工业发展的重要基础和标志。随着时代的发展,技术的进步,高分子材料作为材料的重要组成部分越来越能影响人类的生活和工业的进步。不同于我们已经开发研究成熟的一些传统的材料,高分子材料的研究开发存在着无穷的潜力。正如一些科学家预言的那样,新型高分子材料的开发很有可能会带来现代材料界的一次重大改革。材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,是一个国家工业发展的重要基础和标志。我国国民经济和高技术已进入高速发展时期,需要日益增多的高性能、廉价的高分子材料,环境保护则要求发展环境协调、高效益的高分子材料制备和改性新技术,实施高分子材料绿色工程。作为材料重要组成部分的高分子材料随着时代的发展,技术的进步,越来越能影响人类的生活,工业的进步。

参考文献 

[1] 董维煜.关于高分子材料成型加工技术的探讨[J].科技与企业,2014(13). 

[2] 罗华云,孙玲.高光注射成型技术的发展及应用[J].现代制造技术与装备,2009(04). 

篇4

关键词:高分子材料;加工;形态控制

一、引言

高分子材料的性能与大分子的化学与链结构有着密切的关联,且材料形态也是重要影响因素之一。聚合物氛围结晶、取向等几种形态,多相聚合物择优扩相形态。聚合物制品形态的形成源自于加工中复杂的温度场与外力场作用。由此可见,关于加工过程中高分子材料形态控制具有重要的研究意义。

二、我国高分子材料加工中形态控制研究现状

高分子材料形态与物理力学性能之间的关联十分紧密,这也是高分子材料的重点研究课题。相较于其他材料,高分子材料具有非常复杂的形态,具体表现为高分子链的拓扑结构、共聚构型以及刚柔性非常复杂,在分子设计与结构调整中,可以对一些合成方法加以运用;其次,在高分子长链结构的影响下,其熔体的粘弹性非常突出;此外,高分子具有非常宽的弛豫时间,就是受到很小的应变作用,其产生的非线也会非常强烈。

对于聚合物的成型过程而言,在非等温场、不同强度的剪切与拉伸场的影响之下,就分子尺度而言,其大分子链会发生一系列化学反应;就纳米与亚微米尺度而言,大分子会有结晶与取向现象发生,如此一来就会有超分子结构的形成;而根据亚微米与微米尺度,多相聚合物会有不同相形态的形成,甚至会出现一些缺陷。而这些形态的影响因素非常广泛,例如加工中的外场强弱、作用频率、作用方式以及时间等。然而,现阶段关于这些问题的研究虽然有所深入,但相应的理论体系尚未成熟。此外,随着新聚合物的开发不断深入,在高分子材料加工中涌现出越来越多的成型加工方法,显然这使聚合物加工中的形态控制成为了一个长期的研究课题,对于高分子物理领域的发展无疑有着重要的影响。

在我国,关于新材料的研究起步以跟踪模仿为主,在知识产权与创新理论方面有所欠缺,并且基础研究与技术推广的通畅性也有待提升。其次,相关人员并不重视传统材料的升级与优化,很多高性能材料品种对进口的依赖性依然较强。再者,材料成型与加工设备也没有得到应有的关注,与一些发达国家相比,我国材料研究与整体发展依然存在诸多不足,显然这与国民经济与设备的发展需求不相适应。

聚合物的性能取决于形态,因此,在高分子材料领域中,聚合物形态与性能关系的研究一直以来都受到高度重视,然而在实践中,我们在二者之间的结合方面的研究上依然有所欠缺,具体可以从以下几个方面得到体现:

第一,在剪切速率与剪切应力非常低的情况下,聚合物共混物相形态的演化研究不断深入,然而在实践中,一些主要聚合物成型加工的剪切速率主要在10?~104s-1范围内,显而易见,相关研究成果对实际生产的指导作用依然有所欠缺。

第二,基于不同条件的不同特性聚合物,其共混物形态发展与演化研究依然是主要研究内容,而形态与性能关系的研究依然有所欠缺。

第三,在加工过程中,受到部分特殊外场的作用,聚合物凝聚态结构与相形态结构的研究有待深入。

截至今日,在聚合物及其复合物的成型加工中,就算成型设备与工艺条件属于常规,在外场作用下,人们依然没有彻底了解结构形态受到的影响,仅仅对一些粗略的定性关系有所认识,甚至有的推断还是错误的。以双螺杆挤出过程为例,人们仅对不同螺杆原件组合下外力场作用的不同会改变温度场,进而对产品产量、外观与内在性能产生影响这一规律有所了解。然而这一影响的具体方式却没有清楚的认识,业界研究人员也无法制定出定量的指导方案。在管材生产中,不管是落锤冲击不达标,还是纵向收缩产生波动,都没有搞清楚原因,也无法拿出改进方案,大部分情况下都是凭借经验进行处理。因此,现阶段很多成型设备与工艺控制的效果是否取得理想效果,我们依然难以准确判定。

一直以来,关于生产实践中的问题研究一直没有得到基础工作研究人员的关注。在成型设备与工艺技术的研究与开发中,相关规划也缺乏系统性。现阶段,我国塑料制品年产量超过了2200万吨,塑料机械工业取得了迅猛发展。然而在很多企业生产实践中,整个效率与质量依然有待提升,产生的能耗也没有得到有效控制。鉴于此,高分子材料成型加工将会成为未来高分子材料领域的研究重点,必须将侧重点放在高分子材料制品的研究上来,而不是过分的关注材料这一因素,只有如此,才能够提高高分子材料志制品质量。

三、高分子材料加工中形态控制的研究趋势

第一,基于常规的成型设备条件,聚合物及其复合物典型制品成型或型材生产在成型加工时,在设备与工艺条件改变的情况下,其形成的外场会有所差异,进而发生相应变化,例如塑化、结晶、赋型以及流动等,这些变化会改变制品形态、结构以及性能。

第二,极端的加工条件极端会改变聚合物及其复合物的形态结构变化规律,例如结晶结构、晶体大小等,在这类条件下,还需要尽可能对大尺寸高分子晶体的制备进行探究。

第三,在对新外场条件的分析、推断以及设定之下,通过对聚合物及其复合物结构形态与性能受到的影响研究,才能够围绕新的成型方法或具有特殊性能的高分子材料的制备进行探索,进而实现高分子材料性能的改善,并将节能性、经济性等方面的优势充分发挥出来。

四、结束语

总而言之,在未来工业领域的发展中,高分子材料的应用具有重要意义,而高分子材料加工中的形态控制则成为发展高分子技术的关键。作为相关研究人员,必须结合高分子材料加工中的形态控制研究与实践中存在的问题,采取相应的改进与优化对策,提高高分子加工整体水平,如此才能够从真正意义上推动我国高分子材料加工领域的进步。

参考文献:

[1]李忠明,马劲.加工过程中高分子材料形态控制的研究进展[J].中国科学基金,2004,18(3):154-157.

[2]李又兵,申开智.形态控制技术获取自增强制件研究[J].高分子材料科学与工程,2007,23(1):24-27.

篇5

【关键词】高分子材料;功能助剂;现在发展趋势

1 高分子材料功能助剂行业现状

(1)高分子材料的发展对于化学助剂行业有高度的关联性。高分子材料化学助剂已经成为现代化学工业体系和材料科学体系的重要交叉领域之一,在高分子材料生产、储运、加工、使用过程中的作用愈加突出,几乎每一种高分子材料的每一种性能都依赖相对应的化学助剂实现。

(2)化学助剂行业发展的专业性越来越强。随着经济水平对于高分子材料要求的提高,新材料技术和化工产业的不断进步,高分子材料化学助剂产业整体呈现快速发展的态势,表现为化学助剂新品种的不断出现,需求数量的较快增长,以及化学助剂性能的不断改进。国际同行业巨头往往根据自身技术优势和经营特点选择几大类别的化学助剂进行生产经营,呈现出化学助剂行业发展的较强专业性。

(3)中国化学助剂行业发展市场潜力巨大。中国在高分子材料领域的高速发展,使我国已成为全球高分子材料化学助剂需求的增长重心。

(4)中国高分子材料化学助剂行业处于加速发展阶段。由于我国高分子材料化学助剂行业起步晚,行业的整体发展水平与国际水平还存有差距,一方面单一企业经营规模较小、新结构物产品匮乏、化学助剂应用技术服务能力较差、行业集约化程度不够、产品未形成集约化规模经营、高端产品少、许多产品品种形成系列化。另一方面,中国化学助剂行业呈现快速发展的态势,专业化、规模化、技术型企业不断出现和发展,部分企业已经在全球具有很好的知名度。

2 高分子材料功能助剂的发展分析

2.1 分离纯化技术

分离纯化技术是指将特定化学物质与周边干扰物质彼此分离,获得单一高纯度化学物质的技术。分离提纯的方法主要包含两大内容:一是研究获得高纯度物质的分离提纯方法,二是研究如何将这种分离提纯方法,实现大规模的工业生产。分离提纯的方法不拘泥于物理变化还是化学变化,在可能的条件下使样品中的杂质或使样品中各种成分分离开来的变化都可使用。化学助剂生产就是利用前述一种或几种技术的组合对产品原料、中间体、产成品进行纯化,使其满足工艺过程和质量指标的各项要求。

2.2 化学合成技术

化学合成技术是指利用现有化学物质创造出具备特定结构和性能的化学物质技术,主要包括:卤化技术、磺化技术、硝化技术、酯化技术、氧化技术、还原技术、烷基化技术、酰化技术、氨解技术、羟基化技术、缩合技术、聚合技术、官能团的引入和选择性转换技术等单元反应技术。化学助剂生产就是利用前述一种或几种技术的组合对产品原料、半成品进行化学合成,进而得到成品或中间体的过程。

2.3 检测分析技术

检测分析技术是指针对特定目标物质,获得其成分、结构、性能、纯度等具体参数的技术手段,主要包括:高效液相色谱分离检测技术、气相色谱分离检测技术、原子吸收光谱检测技术、气-质联机差热分析技术、热失重检测分析技术、激光粒度检测技术、X 衍射分析检测技术、红外和紫外光谱分析检测技术及其他一系列化学或物理分析技术等。化学助剂的生产需要选用适当的检测技术或几种技术的联合,对原料、中间体、产成品和生产过程控制的各项指标进行分析检验以确保符合客户和生产的需要。

2.4 化学助剂应用技术

高分子材料化学助剂应用技术是在化学助剂复合技术基础之上发展而来,其主要内容包括:一是指化学助剂在完成化学合成之后的剂型选择和确定,比如造粒、乳化、微粒化等,以使化学助剂适宜于在高分子材料中更好发挥作用;二是指为确保不同的高分子材料获得特定的功能和用途,需要添加不同品种、不同功能、不同剂量的各种化学助剂来实现高分子材料的性能改善目标,

3 高分材料功能助剂的发展趋势

(1)高效化。高效化是指在确定助剂用量的情况下实现效果最大化。主要途径为助剂的高分子量化,普通的助剂分子量较低,容易挥发迁移、渗出,降低了助剂的效能,而高分子量化可减少挥发性、迁移性,提高热稳定性、耐水解能力、与材料的相容性,而使助剂的效能得以充分发挥。

(2)多样化。高分子材料化学助剂的多样化不仅在于新品种的出现和应用高分子材料范围的扩大,更在于其作用途径的多样化。高分子材料化学助剂的功能是由其相应的官能团结构决定的,一方面,传统的官能团结构不断得到改进和完善,使产品序列不断丰富,另一方面,新的官能团结构不断被发现,使助剂发挥作用的途径呈现多样化。

(3)复合化。复合化的是各种高分子材料化学助剂的共混物,目的是令高分子材料化学助剂具有多功能性和增强协同效应,使应用简单方便。现代的复合技术已非初期的几种助剂简单混合,已发展成为多组份协效性能的研发,各组分之间协同机理的研究和协同组分的开发将是高分子材料化学助剂复合应用技术研发的关键。

(4)系列化。系列化指通过对同一类助剂产品的结构和其应用性能发展规律的分析研究,将系列化的新助剂产品的主要参数、类型、性能、基本结构等作出合理的安排与计划,以协调同类产品、配套产品和目标高分子材料之间更加合理的协同关系,从而充分发挥助剂产品的协同效应和协配性,获得更好的市场通用性。

(5)环保化。随着环保法规日益严格和可持续发展需要,环保化将成为化学助剂发展的重点。一方面是化学助剂制造过程的清洁生产工艺的开发,节能减排;另一方面主要为发展环境友好助剂,限制或禁止使用对人体和自然环境有毒有害的助剂。

4 结束语

随着高分子材料化学助剂高效化、多样化、复合化、环保化、系列化的趋势不断发展,高分子材料化学助剂的各类相关技术也沿着上述趋势不断演变进步。高分子材料化学助剂企业只有在掌握化学助剂主体技术的基础之上,沿着发展趋势不断研发新技术,才能在未来的竞争中获得优势地位。

参考文献:

[1]白凡飞,贺平,贾志杰,黄新堂,何云.原位生成法制备单分散的纳米氧化锌分散液[J].材料科学与工程学报,2005(05).

篇6

关键词:建筑材料;高分子材料;回收利用

随着社会经济发展水平的逐步提高,社会发展的范围也得到扩大,现代建筑材料中,主要应用以塑料、橡胶、纤维为主的高分子材料作为主要的建筑材料,高分子材料在建筑材料中的应用,可以降低建筑的成本,实现现代建筑的使用寿命得到延长,但建筑材料中废旧高分子材料应用的回收不当,对社会环境造成较大的污染,结合高分子材料的特性,对高分子的回收利用进行探究。

1废旧高分子材料的危害分析

高分子材料主要是由塑料、橡胶以及纤维等资源,是一种新型符合建筑材料,废旧的分子如果不能得到及时降解,则会在太阳光的作用下发生化学反应,产生以二氧化硫为主的污染气体[1],对造成大气污染,同时,高分子中的塑料成分中含有大量的聚乙烯,可降解性较差,从而在社会中产生有色污染垃圾,对社会环境造成直接污染,严重影响了社会环境的建设。结合以上对高分子材料的危害的分析,提出高分子在现代建筑材料中回收利用的分析措施,实现高分子在建筑材料中应用的进一步探究。

2建筑材料中废旧高分子的回收利用

2.1建筑材料墙体的应用

高分子在建筑材料中的应用,可以作为建筑材料墙体,高分子转换为玻璃塑料混合墙体,高分子的主要材质中塑料可以到达塑性的作用,从而实现建筑材料的外部形态结构得到稳固,大大提高了现代建筑墙体的稳定性和固定性,此外,高分子制作的新型融合性结构中充分发挥高分子抗压,耐高温的特点,而新型建筑墙体中融合了玻璃材质,使废旧高分子转化后的建筑墙体可以达到比传统墙体建结构更加完善的建筑稳定性受压能力,为废旧高分子的二次利用提供了应用的新范围[2],为我国现代建筑行业的发展提供新的符合材料。

2.2金属橡胶混凝土

金属橡胶混凝土是现代建筑中应用的一种新型建筑材料,主要由不同硬度的金属,塑料、橡胶等部分组成[3]。金属橡胶混凝土的应用能够解决现代墙体建筑中存在的墙体裂缝等问题,可以提高施工建筑的密封性。例如:应用传统的建筑材料进行施工建筑中,施工材料受到墙体的压力或者温度的影响,容易出现墙体裂缝或者密封性降低的情况发生,导致建筑施工的质量出现问题,采用金属橡胶混凝土后,墙体施工后,应用新型混凝土对墙体建筑充的对接缝进行外部填充,新型混凝土中含水量较低,能够解决墙体施工建筑中施工开裂的问题,提高了现代建筑的施工质量。

2.3混合建筑保温层的转化

高分子材料在建筑应用材料中的回收利用,转化为混合建筑保温层,是直接的综合利用的体现。现代建筑中墙体保温层建筑是主要的建筑问题之一,传统的墙体保温层采用双层保温板,但保温板经过一段时间的应用后,受到墙体中水泥的侵蚀,使保温板的保温效果下降,用户入住后,一段时间后室内温度明显降低,房屋建筑的保温效果下降,高分子可以转化为泡沫保温层,新型高分子混合泡沫保温层的主要成分是塑料和橡胶,可以抵抗水泥长时间的形侵蚀,到达保证保温层长期持久豹纹的效果。此外,新型混合保温层具有较好的吸声作用,能够达到施工墙体建筑保温效果好的同时增强了墙体的隔音效果,完善我国建筑施工技术水平的进一步优化发展,实现废旧高分子的综合应用。

2.4新型防水符合材料

高分子材料在现代建筑领域的应用,为我国建筑施工的材料创新应用提供了更加全面的应用范围。高分子材料的应用,可以达到新型防水材料的使用。现代建筑施工中,采用硅酸水泥和粉煤灰以及聚乙烯作为主要的构成材料,新型防水材料的应用,可以实现外墙墙体建设与保温层之间的隔水性增强[4],能够打破传统墙体建筑保温层中保温层受到外部墙体渗水的影响情况,新型防水材料中聚乙烯可以使施工材料表面形成保护膜,达到及时阻隔外部墙体渗入到墙体中水分的作用,实现我国整体建筑施工墙体的防水性得到大大提高。例如;新型符合防水层可以将外部墙体渗入的水分进行阻隔,聚乙烯将深入的水分转接给粉煤灰,粉煤灰吸收水分,保持保温层的环境干燥,达到保护墙体保温性,延长墙体使用寿命的作用。

2.5复合地板的应用

高分子在建筑材料中的回收利用,体现为复合地板的应用,新型建筑材料的施工建筑具有加强的耐用性,复合地板的主要材料是由传统的木质材质和聚乙烯作为主要的材质,地板的木质材料保留了传统地板中木质地板材质问题,同时融合聚乙烯可以提高地板的防水性和耐磨性,表面的聚乙烯薄膜能够达到保护地板日常应用中与坚硬物体之间的摩擦痕迹,增强地板的耐磨程度;此外,新型符合地板可以保护地板不受到蛀虫的影响,延长地板在实际的使用寿命。

3结论

高分子是现代社会建设中经常应用的一种建筑材料,结合建筑材料对废旧高分子技术的探究分析,实现我国现代社会发展材料综合应用,促进我国现代社会发展资源的综合利用。

参考文献

[1]曹新鑫,何小芳,胡红卫.废旧高分子材料在建筑材料中的回收应用[J].砖瓦,2006(11):54-56.

[2]吕洋,孔令元.浅析废旧高分子材料在墙体建筑中的回收与利用[J].科技视界,2013(32):198.

[3]任桂兰,杨泽志,李青山.21世纪的新资源———废旧高分子材料的回收与利用[J].化工时刊,2002(10):22-24.

篇7

本书分为2部分,第1部分 着眼于聚合物材料在农业和农业化学品中的使用,第二部分聚焦聚合物材料在食品中的角色,共包含6章:1.高分子材料的制备和性能,介绍合成活性高分子材料和复合材料的背景知识及其物理和力学性能;2.高分子材料在种植和植被保护中的应用,分别描述了高分子材料用于作物生长、植物保护、农业建筑材料、水处理和水管理方面的作用;3.高分子材料用于控制释放农业化学品,主要描述了在农业中使用的高分子材料作为在农业化学中缓释剂,能长时间避免活性剂被雨水和灌溉冲走;4.高分子材料在食品加工工业中的应用,主要介绍活性高分子在解决常规的食品加工生产中问题的基本原则,如制糖工业、果汁饮料和饮用水;5.高分子食品添加剂,主要介绍了以色素、抗氧化剂、甜味剂为代表的一系列高分子食品添加剂在食品中的使用情况;6.高分子材料在食品包装和保护中的应用,主要介绍了高分子材料在传统食品包装、金属食品罐头、可生物降解包装等方面的应用。

作者撰写本书的目的是:(1)介绍最新报道的使用活高分子材料的方法,它在农业中解决了与传统农药相关的经济和公共卫生问题;(2)旨在获得绿色化学的新技术,它可以满足工业和农业食品生产的环境标准。

本书可供高分子材料领域的研究生和研究人员阅读参考,对于食品安全、农业和植被保护感兴趣的读者也是有用的参考书。

篇8

关键词:高分子材料;降解;老化;进展

高分子材料在加工、贮存和使用过程中,由于内外因素的综合影响,逐步发生物理化学性质变化,物理机械性能变坏,以致最后丧失使用价值,这一过程称为“老化”。老化现象有如下几种:外观变化,材料发粘、变硬、变形、变色等;物理性质变化,溶解、溶胀和流变性能改变;机械性能变化和电性能变化等。引起高分子材料老化的内在因素有:材料本身化学结构、聚集态结构及配方条件等;外在因素有:物理因素,包括热、光、高能辐射和机械应力等;化学因素,包括氧、臭氧、水、酸、碱等的作用;生物因素,如微生物、昆虫的作用。老化往往是内外因素综合作用的极为复杂的过程。高分子材料的老化缩短了制品的使用寿命,并影响制品使用的经济性和环保性,限制了制品的应用范围。因此,研究引发高分子材料老化的原因及其微观机理具有非常重要的意义。近年来,高分子老化研究主要集中在探讨高分子材料老化的规律、机理,以及环境因素对材料老化的影响等方面,这些工作对于发展新的实验技术和测试方法,改善材料的生产技术、研制特种材料、逐步达到按指定性能设计新材料等具有重大的指导作用。

1 户外因素对高分子材料老化行为的影响为的影响

高分子材料在户外曝露于太阳光和含氧大气中,分子链发生种种物理和化学变化,导致链断裂或交联,且伴随着生成含氧基团如酮、羧酸、过氧化物和醇,导致材料韧性和强度急剧下降。关于光氧化降解过程和防止这种降解过程的发生,已有很多研究报导,这些研究工作的基础是光化学效应,即物质在吸收光后所发生的反应。紫外波长300n m~400nm,能被含有羰基及双键的聚合物吸收,而使大分子链断裂,化学结构改变,导致材料性能劣化,因此历来是研究热点。Ibnelwaleed A.等通过自然环境曝露和人工加速试验,研究了不同支链形式LLDPE、HDPE的耐紫外光老化性能。Ibnelwaleed A.等从流变学角度分析了PE紫外光老化历程,发现LLDPE在紫外光老化过程中同时发生交联和断链,短支链含量高低和老化时间长短直接影响材料性能。另外,(Z-N)催化合成的LLDPE和茂金属催化合成的LLDPE降解机理相似,但是,对于相同重均分子量和支化度的PE,茂金属催化合成的LLDPE比齐格勒-纳塔催化合成的LLDPE耐降解,而且发现单体的类型对紫外光老化降解影响不大。在80℃和300W紫外光辐照条件下对有机硅和聚氨酯两种建筑密封胶进行5000小时人工加速老化试验。发现密封胶老化机理是由于辐照产生的热作用引起的,在老化开始阶段,热作用使密封胶交联;而在老化后阶段,主要发生分子量下降;紫外线辐射往往破坏侧链基团。

2高分子材料的老化性能

表征技术及应用在高分子材料老化研究中,性能表征方法对正确反映老化现象、认识并探索老化机理、进而采取合理措施改性,有着非常重要的作用。目前,在高分子材料老化研究中多种表征手段联用,对高分子材料性能进行多角度考察,深入了解高分子材料老化机理。LEi Song利用TEM、FTIR、X射线光电子能谱、燃烧量热法等方法考察了PC/TPOSS 的混合物结构和热降解行为,发现TPOSS显著影响PC的热降解过程,因为添加TPOSS明显降低混合物的热峰值,并且当TPOSS的添加量在2%时达到最低值。 利用热重分析、红外光谱分析、热解-气相色谱-质谱联用技术,考察了聚碳酸酯与聚硅氧烷的共混材料在氮保护条件下的热降解行为。研究发现,共混物主要的分解温度在430~550℃左右。添加聚硅氧烷可以降低聚碳酸酯在主要降解段的质量下降速率,在800℃时,添加聚硅氧烷的共混物的残渣比纯净的聚碳酸酯高,随着添加量的增加,残渣从最初的21%增加到45%,研究还发现,聚硅氧烷能促进交联反应和炭化。随着老化程度提高,弹性模量增加,应力和伸长率下降;老化较少的样品显示韧性,老化时间长久的样品显示更多的脆性;另外,老化材料的断裂,是由于结晶导致的应力开裂。S.Etienne利用低频拉曼散射(LFRS)、小角X射线散射(SAXS)和DSC,对PMMA、PS、PC、PEN物理老化过程的次级松弛,β松弛及相关α松弛过程进行了研究。利用直接插入探针质谱裂解研究了PC/PMMA共混物的热氧老化行为。还利用热刺激去极化电流法(TSDC)、动态介电谱(DDS)联用方法,研究了聚碳酸酯在玻璃化转变温度前后松弛时间的变化,得到PC样品的τ(Tg)为110s,通过τ(T)和τ(Tg)可以确定玻璃态-熔融态脆化指数m。

篇9

关键字:高分子材料;材料应用;生活应用

引 言:

材料是科学与工业技术发展的基础。一种新材料的出现,能为社会文明带来巨大的变化,给新技术的发展带来划时代的突破。材料已当之无愧的成为当代科学技术的三大支柱之一。高分子材料科学已经和金属材料、无机非金属材料并驾齐驱,在国际上被列为一级学科。高分子材料的功能很多,而且应用十分广泛。

一、高分子材料的定义及特性

1. 高分子材料是以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

2.高分子材料的结构特性

高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。

3.高分子材料按来源分类

高分子材料按来源分,可分为天然高分子材料、半合成高分子材料(改性天然高分子材料)和合成高分子材料。天然高分子材料包括纤维素、蛋白质、蚕丝、橡胶、淀粉等。合成高分子材料以及以高聚物为基础的,如各种塑料,合成橡胶,合成纤维、涂料与粘接剂等。

二、生活中的高分子材料的应用

生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。其中塑料产量最大,主要用于包装材料、结构材料、建筑材料以及交通运输材料;橡胶的主要用途为制造轮胎;纤维的主要用途为衣着用料。此外结构高分子还包括工程塑料、耐高温高分子以及液晶高分子等。

(一)、塑料

塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、剂、色料等添加剂组成的,聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯等品种,因为产量大、用途广、价格低,被称为“通用塑料”,主要用于日常生活用品、包装材料和一般零件。它的主要成分是合成树脂。

1. 塑料的优点:

a)易于加工、易于制造、易于成型。b)可根据需要随意着色,或制成透明制品。c)可制做轻质高强度的产品。d)不生锈、不易腐蚀。e)不易传热、保温性能好。f)既能制做导电部件,又能制作绝缘产品。塑料本身是很好的绝缘物质,目前可以说g)减震、消音性能优良,透光性好。h)产品制造成本低。

2.塑料的缺点

a)回收利用废弃塑料时,分类十分困难,而且经济上也不合算。

b)塑料容易燃烧,燃烧时产生有毒气体。

c)塑料是由石油炼制的产品制成的,石油资源是有限的。

d)耐久性差,易老化。

3.塑料的应用。

塑料制品在生活中的应用十分广泛。塑料应用按使用目的分有通用塑料、工程塑料、加纤塑料、合金塑料、降解塑料、纳米塑料、功能塑料等。例如透明塑料制成整体薄板车顶。薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗”,每扇窗都可单独打开和关闭。导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调节折叠薄板。这样可以形成三维立体结构,组件比平坦的薄板更加牢固。同时也大大降低了单个组件的数量。

(二)、纤维素

纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。纤维素是存在量最大的一类有机化合物。它是植物骨架和细胞的主要成分。在棉花、亚麻和一般的木材中,含量都很高。

纤维素的用途:棉麻纤维大量用于纺织;木材、稻草、麦秸、蔗渣等用于造纸;制造硝酸纤维:火棉(含N量较高,制无烟火药)、胶棉(含N量较低,制赛璐珞和油漆);制造醋酸纤维:不易着火,用于制胶片;制造粘胶纤维(NaOH、CS2处理后所得,长纤维称人造丝,短纤维称人造棉);膳食纤维:第七种营养成分,有利于消化。

(三)、建筑涂料

建筑涂料是一种专供建筑工程装饰用的涂料,它在涂料产品结构中是产量最大的一类品种。建筑涂料是以各种合成树脂为主要成膜物, 添加颜料、填料、各种助剂调配而成。具有保护作用、装饰作用或特殊作用。

下面简要介绍几种涂料。

1. 丙烯酸树脂

丙烯酸树脂是指丙烯酸酯或甲基丙烯酸酯单体在引发剂的作用下,通过加聚反应生成的聚丙烯酸树脂及与其他烯类单体如苯乙烯、乙酸乙烯等共聚生成的共聚物树脂。

日前,在整个涂料工业中,乙烯类单体(尤其是丙烯酸酯单体)合成的树脂涂料比例不断增大。究其原因,首先是这类产品的原料是石油化工产品,资源丰富,价格低廉。其次是聚丙烯酸酪树脂及其共聚物树脂具有极好的耐光、耐候性,在户外紫外光照射下不易分解或变黄,能长久保持原有的光泽和色泽;耐热性好,在170℃下不分解,不变色,甚至在230℃左右或更高温度下仍不变色;树脂色泽浅,透明;有很好的耐酸、碱、盐、油脂、洗涤剂等化学品的拈污及腐蚀性能;极好的柔韧性和最低的颜料反应性。聚丙烯酸酿树脂及其共聚物树脂与混凝土具有很好的附着性能,涂装后,具有预防混凝土性能降低,在一定程度上能增强建筑物的防水性能,因此而成为目前建筑外用涂料及高级内用涂料的最重要的基料之一。

2.聚氨基甲酸酯树脂

在分子结构中含有氨基甲酸酯重复链节的高分子化合物称为聚氨基甲酸酯树脂,简称聚氨酪。它由异氰酸酯单体和含活泼氢的化合物“逐步聚合”而成。

由于聚氨酯分子结构中存在大量的极性键合,以及分子间稳定的氢键,因此使聚氨酯涂料具有许多优异的性能,尤其是物理机械性能好,涂膜坚硬、柔韧、光亮、丰满、耐磨、附着力强,优良的耐高、低温性能,耐腐蚀性优异,良好的电性能,施工不受季节限制,与多种合成树脂混湾性优良,可制备各种性能不同的涂料产品等。因此聚氨酯涂料用途非常广泛,目前各产业部门都有其应用领域。聚氨酯涂料的不足之处主要体现在价格高和毒性大。异氰酸酷单体毒性较大,在涂料制备、施工应用时必须注意加强劳动保护,以防止中毒。

综上所述,高分子材料业已和我们的生活息息相关。从人类进入天然高分子化学改性阶段出现半合成高分子材料起,到1907年出现合成高分子酚醛树脂,标志着人类开始应用合成高分子材料,再到现代其与金属材料、无机非金属材料同成为科学技术、经济建设中的重要材料,高分子材料必将在各个领域大放光彩,并越来越拥有更重要的作用。

参考文献:

[1].李良,生活中的高分子材料. 科学与技术 2011、10

篇10

关键词:高分子材料 抗静电 技术

通常情况下,两种不同的物质表面接触的时候就会形成电荷的迁移。在理论上来说,静电是普遍存在的,我们通过高分子材料一般都具有电绝缘性,所以会在摩擦后易产生带电现象。这种静电轻则吸附灰,重则引起火灾等重大事故。所以,怎样消除积聚在高聚物表面的静电,以及防止高聚物表面产生静电作用,已成为当今高分子材料研究领域的一个热门课题。

一、防静电技术的现状

目前静电技术是有很多种的,像我们平时用的塑料以及刷墙时用的涂料都是加入了导电的粉末,还有像石墨以及炭黑和和其他每一种金属粉末以及易于离子化的很多种无机盐类等这些是都可以防静电。有机静电剂主要是包括季铁盐类等。一般常用的有机抗静电剂是表面活性剂,我们可以把它加到塑料内部之后在扩散到它的表面里,还可以用到塑料的表面上。表面活性分子中有亲水的部分还有亲油的部分。亲水的那部分就留在塑料的表面上,就在表面形成导电层,因此形成了防静电的表面层。

二、高分子抗静电的方法概述

高聚物本身对电荷泄放的性质决定了高聚物表面聚集的电荷量,它主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,在这三者中以表面传导为主要途径。这是因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。

三、添加导电填料

这样的方法一般的是每种不同的无机导电填料掺入高分子材料基体中去,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。

四、与结构型导电高分子材料共混

导电高分子材料中的高分子是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。

五、添加抗静电剂法

永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。

六、我国高分子材料抗静电技术的发展状况

我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、烷基苯氧基丙烷磺酸钠、烷基二苯醚磺酸钾,上海助剂厂开发目前多家企业生产的抗静电剂十八烷基羟乙基二甲胺硝酸盐,另外该厂生产的抗静电剂硫酸二甲酯与乙醇胺的络合物、抗静电剂磷酸酯与乙醇胺的缩合物,北京化工研究院开发的三组份或二组份硬脂酸单甘酯复合物、阳离子与非离子表面活性剂复合物。从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。

七、结语

我国的合成材料抗静电剂的行业发展的前景较好的,我们针对国内的研究以及生产都应该根据现在的需求来调整自己的产业。应该加大新品种开发的力度。近几年来国外在不断的开发高性能的抗静电材料。在我国科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下几种:抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成海一岛型水性的导电膜。离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。介电常数大的抗静电剂可增加摩擦体间隙的介电性。增加制品的表面平滑性,降低其表面的摩擦系数。总的来看降低制品的表面电阻,增加导电性和加快静电电荷的漏泄,减少摩擦电荷的产生。

参考文献

[1]吴驰飞.有机极性低分子分散型高分子高阻尼新材料的研制[A].材料科学与工程技术——中国科协第三届青年学术年会论文集[C].2009.09.

[2]袁晓燕.天津大学材料学院高分子材料科学与工程系简介[A].复合材料.生命、环境与高技术——第十二届全国复合材料学术会议论文集[C].2010.07.

[3]陈湘宁 王天文.用于最佳静电防护的本征导电聚合物的最新进展[J].化工新型材料.2008.03.