继电保护的任务范文

时间:2023-12-22 17:51:52

导语:如何才能写好一篇继电保护的任务,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

继电保护的任务

篇1

【关键词】继电保护;任务;现状;发展

1 电力系统继电保护技术的任务和要求

(1)当电力系统发生故障时,有选择性的将故障元件从系统中快速自动切除,使其损坏程度减到最轻,以避免故障元件继续遭到破坏。保证系统其它非故障部分能继续运行。

(2)反应电力系统的不正常工作状态,一般发生报警信号。提醒值班人员进行处理,无人值班情况下,继电保护装置可视设备承受能力作用于减负荷或延时跳闸。

对继电保护的基本要求是:

(1)动作的选择性:当出现故障时。继电保护动作时应该首先将故障的设备切除,让出现拒动的现象时,才允许相邻设备保护、线路保护等动作。电网之间的继电保护要遵循逐级配合的原则,保证当继电保护装置切断系统中的故障部分后,其他非故障的设备仍然可以可靠的进行供电;

(2)动作的速动性:指的是继电保护装置在允许时间内以最快的速度切除故障元件,针对短路故障时尤其重要。从而缩小故障导致的范围,降低设备和线路的损坏情况,提高自动投切设备的效果;

(3)动作的灵敏性:指的是继电保护装置在保护范围内,保护装置应该具备的灵敏系数,即应当故障时的能力,。

(4)动作的可靠性:可靠性是对对电力系统继电保护的基本要求。任何电力设备都不允许在没有继电保护的状态下运行,同时继电保护在保护范围内需要动作时应可靠动作,不应该动作时应可靠的不动作。

2 电力系统继电保护的现状

我国继电保护起步于50年代,此时的技术人员主要是对国外先进的继电保护技术进行引进和吸收,从而来培养自己的专业队伍。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代。从60年代中到80年代中的晶体管式继电保护蓬勃发展的时代,到了80年代末期时集成电路保护已形成完整系列,形成了90年代中期的集成电路式继电保护时代。

随着社会现代化步伐的加快,发电机组的容量不断增大,各种大型的设备和人民的生活对电力系统的需求越来越大。不同原理、不同机型的微机线路和主设备保护为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。现在的继电保护处于微机式继电保护时代。目前,我国建设的变电站等电力设施都已经实现了综合自动化,无人值守的变电站已经得到了广泛的应用。

3 电力系统继电保护的发展趋势

3.1 网络化 现在,继电保护的目的不只是要切除故障设备和降低故障的影响区域,更主要的是确保整个系统的安全可靠的运行。这就需要每个保护单元都能共享整个系统的运行和故障信息, 每个保护单元与重合闸装置在分析系统数据的基础上可以进行有效的协调。这样,继电保护装置对故障性质、故障位置的判断和故障距离的检测会更加的准确。实现这种系统保护的条件就是对信息的有效传输,这就要求用计算机网络将各主要电气设备的保护装置进行连接。因此,计算机网络作为信息和数据通信工具已成为继电保护未来发展的一个重点。

3.2 智能化 近年来,人工智能技术如神经网络、遗传算法、模糊控制等在在继电保护领域应用的研究已经起步。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。

随着各种技术和智能软件的不断完善。可以预见人工智能技术在继电保护领域一定会得到广泛的应用,以解决对电力系统更高的需要。将智能技术和故障诊断技术进行结合在一起,分析和处理不确定因素对电力系统的影响,是今后电力系统继电保护的新的发展空间。 3.3 综合自动化 微机继电保护装置可以在线获取电力系统的运行和故障信息和数据,并将得到的信息传输到监控中心进行显示和分析,从而为工作人员提供实时的现场数据。继电保护系统在完成继电保护功能的同时,还完成了保护、控制、测量、数据通信等方面的综合自动化。 综合自动化系统的发展打破了常规保护装置不能与监控中心进行实时监控的不足,给电力系统自动化赋予了更新的含义和内容,代表了电力系统自动化技术发展的一种潮流。

4 总结 随着我国电力系统的不断完善和发展,计算机技术、网络技术、通信技术和微电子技术等方面的进步,继电保护技术有着新的发展机遇。其发展内容将突破原有的原理和应用范围,由数字时代跨入信息化时代,发展到微机智能综合自动化水平。这同时对我们的工作来说也是巨大的挑战,一定要把握机会,为我国继电保护的发展开阔更广泛的空间。

参考文献:

[1]王维俭著.电力系统继电保护基本原理[M].清华大学出版社, 1991.

[2]刘岳松. 电力系统继电保护的现状与发展趋势[J]. 黑龙江科技信息. 2008(07).

[3]宁磊,陈涛. 电力继电保护现状及展望[J]. 科技信息. 2010(20).

篇2

关键词:水电厂;继电保护;技术;发展;研究

中图分类号: TM6 文献标识码:A

水电厂基本生产过程是从河流高处或水库内引水,利用水的压力或流速冲动水轮机旋转,将势能和动能转变成机械能,然后水轮机带动发电机旋转,将机械能转变成电能,水电厂在电力系统中担负着调峰调频的重要任务,安全运行十分重要。水电厂继电保护的主要任务是在设备发生故障时,与电力系统在最短的时间内隔离开,事故发生的时候就不会有很大的影响,尽最大的努力,将安全、可靠的电力带给用户,并且还要保证能够连续地进行供电。随着电力系统的快速发展,供电可靠性的要求不断提高,研究水电厂继电保护的作用、组成以及保护措施,把握继电保护发展趋势对继电保护工作具有十分重要的意义。

1水电厂继电保护作用组成及要求

1.1水电厂继电保护的作用

水电厂被保护元件发生故障时,继电保护装置能自动、迅速、有选择地将故障元件从电力系统中切除,以保证无故障部分迅速恢复正常运行,使故障元件免于继续遭受损害,减少停电范围;当被保护元件出现异常运行状态时,继电保护应能及时反应,并根据运行维护条件,发出信号、减少负荷或跳闸动作指令。此时一般不要求保护迅速动作,而是根据对水电厂及其元件危害程度规定一定的延时,以免不必要的动作。同时继电保护也是水电厂的监控装置,它可及时测量水电厂电流电压反映系统设备运行状态。

1.2水电厂继电保护的组成及要求

继电保护的组成:一般由输入部分、测量部分、逻辑判断部分和输出执行部分组成。现场信号输入部分一般是要进行必要的前置处理,如隔离、电平转换、低通滤波等,使继电器能有效地检查各现场物理量。测量信号要转换为逻辑信号,根据测量部分各输出量的大小、性质、逻辑状态、输出顺序等信息,按照一定的逻辑关系组合运算最后确定执行动作,由输出执行部分完成最终任务。

继电保护的基本要求:应满足选择性、速动性、灵敏性和可靠性要求。选择性指保护装置动作时,仅将故障器件从电力系统中切除,使停电范围尽量缩小,以保证系统中无故障的部分正常运行;速动性是指保护装置应尽快切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用设备自动投入的效果。灵敏性是指对于保护的范围内,发生故障或不正常运行状态的反应能力。可靠性是指继电保护装置在保护范围内发生动作时的可靠程度。

2水电厂继电保护的发展历程

水电厂继电保护发展速度迅猛,电子技术、计算机技术和通信技术也在随之不断地发展,这些的发展会在一定程度上促进在继电保护装置中的材料、元件、制造工艺等硬件结构也有更大的发展空间。在20世纪50~60年代,所出现的保护装置就是机电式的或者是整流型的,到了20世纪70~80年代,就已经发展成为晶体管式或者集成电路式,现在微机保护装置已成为了主打产品。在这个过程中,继电保护技术的发展会越来越多地注入电子技术、计算机技术和通信技术。同时,在微机继电保护软件、算法等方面也取得了重大的发展成果。

3水电厂继电保护未来发展方向

3.1继电保护计算机化

电力工业的发展已取得了很大的成就,在继电保护装置中继电功能发挥的作用是很重要的,这样一来,故障信息的存储量就有很大,并且这些数据的存放时间也要求很长,在对这些数据进行处理的时候,时间一定要短,还要有很强大的通信功能,所以,计算机在继电保护技术未来的发展中起着尤为重要的作用。

3.2继电保护智能化

在20世纪90年代之后,智能化已开始存在,并且已有一定的发展,网络、模糊逻辑等智能技术已在现在的水电厂继电保护被更广泛地应用。在水电厂的继电保护中,会存在一些专家系统、网络等智能化系统,这种智能化系统的纳入对于继电保护的发展有着很重要的意义。分布式存储信息、并行处理、自组织、自学习等都是网络中一部分特点,对于这样的发展和应用速度是相当快的,人工智能、信息处理、自动控制和非线性优化等都是比较重点的一些问题。与人工智能技术相结合,将其中出现的一些不确定因素进行分析,找出影响智能诊断系统的因素,在诊断的时候要更为准确,这在未来智能诊断发展中起着不可替代的作用。

3.3继电保护网络信息化

随着电力系统的发展要求越来越多,在继电保护领域中通信技术也在其中不断地发展,就使继电保护的作用已不只是将故障找出来和缩小故障发生的范围,还需要在安全的层面上做足考虑。伴随着现在不断发展的计算机网络和数据通信工具,对于保护系统的观念已在继电保护技术人员中兴起,也就是可以通过装置网络化,在分析这些数据和信息的基础上,协调每一个故障数据,各个保护单元和重合闸装置,这将会使系统的运行更为安全和稳定,保护和可靠在整个系统中存在。

3.4保护、控制、测量、数据通信一体化

继电保护的计算机化和网络化所实现的前提下,计算机的性能和功能其实也就是继电保护装置,在水电厂计算机网络上起着很重要的作用。网络也就成为了它获取信息的主要渠道,还可以将在这种情况下获取到的信息传送到网络控制中心或者任一终端。所以,继电保护功能的完成是在每一个微机保护中都可以的,并且在正常运行的情况下,测量工作的完成也会很顺利,控制,数据通信等功能也就肯定会统一,从而实现保护、控制、测量、数据通信一体化。现在科学技术的进步是很鲜明的,这样一来,就会随之出现很多新型的保护装置,保护装置也就会逐步走向成熟化,在这样的情况下,继电保护工作和电力系统运行的安全性,会有更大的发展空间。

结语

随着电力系统的高速发展,计算机、通信技术的提高,水电厂继电保护技术也会有新的挑战和机遇,将沿着计算机化、网络化,保护、控制、测量、数据通信一体化和人工智能化的方向发展。

参考文献

[1]国家电网公司人力资源部.继电保护[M].中国电力出版社.2010.

篇3

关键词:电力系统;变电站;继电保护

中图分类号:TM407

文献标识码:A

文章编号:1009-2374(2012)18

随着我国电力工业的不断发展,电网规模的不断扩大,对电力系统变电站继电保护提出了更高的要求。电力系统变电站继电保护是一门综合性的科学,包括变压器维护、电容器维护、机组保护和母线保护等。继电保护技术和继电保护装置是电力系统继电保护的两个主要内容。简单地说,继电保护技术包括电力系统的故障分析、继电保护的设计与运行及维护等各种应用技术;继电保护装置就是在电力系统变电站继电保护的运行过程中所需要的各种装置,包括母线、输电器、补偿电容器、电动

机等。

1 电力系统变电站继电保护的发展史

继电保护技术最早的装置是熔断器,这种装置是最简单的过电流保护装置。后来,随着电力系统的不断发展,熔断器已经不能满足电力系统的发展需求,过电流继电器装置(断路器)产生,这种装置满足了当时电力系统变电站选择性和快速性的需要。到1890年,出现了电磁型过电流继电器,它能够直接反应一次短路电路。到了20世纪初期,继电器才广泛应用于电力系统的保护中,所以,从这个时期开始,可以说是继电保护技术的开端。1927年前后,出现一种利用高压输电线上高频载波电流传送和比较输电线两端功率方向或电流相位的高频保护装置。20世纪50年代,出现了微波保护,它是因为微波中继通讯技术开始应用于电力系统而出现的一种继电保护装置,而后,又诞生了行波保护装置。到了现代,电力系统变电站继电保护技术已经相当成熟,结构上也有了相当大的进步,经历了晶体管保护到集成式电路到微机式。

2 电力系统变电站继电保护的任务和要求

2.1 电力系统变电站继电保护的任务

电力系统故障可能会导致以下后果:(1)通过故障点的短路电流会使故障元件损坏;(2)短路电流通过非故障元件时,可能会引起这些元件的损坏或者减少它们的使用寿命;(3)由于电压的下降,会影响用户的正常工作和生活,给电力用户带来不便;(4)各发电厂之间并列运行的稳定性被破坏,造成系统震荡,甚至会引起整个系统的崩溃。所以,电力系统变电站继电保护的基本任务要做到以下几点:(1)在系统发生故障时,能够做到快速、自动、有针对性地在系统中把故障元件切除,不让故障元件继续遭到破坏,并且保证大部分非故障元件的正常运行,并快速处理故障;

(2)发现不正常运行状态,要及时进行处理,发出信号、减负荷或者跳闸,并且能与自动重合闸互相配合。

2.2 电力系统变电站继电保护的要求

2.2.1 选择性

电力系统运行中出现故障,有选择性地将故障元件从系统中切除,尽量使故障的影响范围减小,使系统中无故障元件部分不会受到影响,仍能继续正常工作。

如图1所示,当K1点发生短路时,3处先跳闸,CD电路被切断,这样做不会影响A、B、C点的正常供电;而不是1或者2处先跳闸,这样做会造成B、C、D的电路中断,造成大面积停电。

2.2.2 速度性

发生短路时,应快速切断故障元件,这样可以缩小故障范围,减少对正常运行元件的损伤,减轻破坏程度,把对用户的影响减到最低,提高整个电力系统运行的稳定性。现今,快速保护动作时间在0.06s~2.12s之间,最快可达0.01~0.04s。

2.2.3 灵敏性

灵敏性是指保护装置在系统发生短路或者不正常状态下在一定范围之内的反映能力。要求保护装置在预先设定的反映范围内,对短路点、短路类型做出正确的判断并及时有效处理。

2.2.4 可靠性

可靠性值的是保护装置在它应该动作的范围内,能够做出及时有效的反映,保证整个系统正常的运行;而在不属于它动作反映的范围内,不应该误动作,给电力系统造成不利影响。

3 电力系统变电站继电保护运行的若干问题

第一,电力系统变电站继电保护装置是一个多元化元件组成的整体,结构比较复杂,而且,各个元件的使用寿命是由元件质量和工作时间所决定的,除此之外,很多因素也会影响元件的使用寿命,所以,在可靠性指标的构建上,就要尽量考虑用多元化的综合指标对电力系统变电站继电保护装置进行衡量,可以采用针对性很强的概率分析法。

第二,要重视对电力系统变电站继电保护装置的检查与维修,重点要加强对二次回路的巡视工作。同时,在平时工作中,要做好对电力系统运行状况的定期检查,提高预见性与防范性,把风险降低到最低,努力排除设备隐患,保证各种设备的正常运行,提高系统的稳定性。

第三,为了进一步提高电力系统运行的稳定性,还要加强对可靠性保障措施的构建。继电保护装置在电力系统运行中之所以重要,是因为它在整个电力系统中起着维护整个电路的安全性与稳定性的作用,一旦出现问题,将影响整个系统的正常运转,所以,为了增强其稳定性,应该建立系统保护的多重冗余保护装置。

4 结语

随着我国经济的不断发展,我国工业化进程也不断加快,工业用电和家庭用电的需求也不断增加,电力系统的供电规模也随之越来越大。电力系统变电站继电保护作为保证电网安全的重要防线,担负着重要的职责,为保障我国电网安全稳定运行发挥了重要作用。但与此同时,随着大功率、远距离和直流输电网的发展,对继电保护技术提出了更高的要求。在此背景下,就要求电力系统要不断引进并学习先进技术,保障供电的可靠性和稳定性,构建一个更加科学和完善的继电保护体系,保障电力系统的有效运行。

参考文献

[1] 叶建雄,张华.变电站继电保护的特点及应用研究[J].电气应用,2005,24(4).

[2] 李季,屈自强,陶丽莉,等.提高变电站继电保护可靠性的措施[J].南方电网技术,2009,3(3).

篇4

【关键词】电力系统;继电保护;电网;调度

【中图分类号】TM77 【文献标识码】A 【文章编号】1672-5158(2012)09-0047-01

0、引言

电力系统通信网为电网生产运行、管理、基本建设等方面服务。其主要功能应满足调度电话、行政电话、电网自动化、继电保护、安全自动装置、计算机联网、传真、图像传输等各种业务的需要。

在电力系统运行中,外界因素(如雷击、鸟害呢)、内部因素(绝缘老化,损坏等)及操作等,都可能引起各种故障及不正常运行的状态出现,常见的故障有:单相接地;三相接地;两相接地;相间短路;短路等。电力系统非正常运行状态有:过负荷,过电压,非全相运行,振荡,次同步谐振,同步发电机短时失磁异步运行等。电力系统继电保护和安全自动装置是在电力系统发生故障和不正常运行情况时,用于快速切除故障,消除不正常状况的重要自动化技术和设备。电力系统发生故障或危及其安全运行的事件时,他们能及时发出告警信号,或直接发出跳闸命令以终止事件。

1、继电保护工作回路

要完成继电保护任务,除了需要继电保护装置外,必须通过可靠的继电保护工作回路的正确工作,才能完成跳开故障元件的断路器、对系统或电力元件的不正常运行发出警报、正常运行状态不动作的任务。继电保护工作回路一般包括:将通过一次电力设备的电流、电压线性地转变为适合继电保护等二次设备使用的电流、电压,并使一次设备与二次设备隔离的设备,如电流、电压互感器及其与保护装置连接的电缆等;断路器跳闸线圈及与保护装置出口问的连接电缆,指示保护动作情况的信号设备:保护装置及跳闸、信号回路设备的工作电源等。

2、继电保护在电力系统中的任务

1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。

2)反应电气元件的不正常运行状态,并根据运行维护的条件(如有无经常值班人员)而动作于信号,以便值班员及时处理,或由装置自动进行调整,或将那些继续运行就会引起损坏或发展成为事故的电气设备予以切除。此时一般不要求保护迅速动作,而是根据对电力系统及其元件的危害程度规定一定的延时,以免暂短地运行波动造成不必要的动作和干扰而引起的误动。

3)继电保护装置还可以与电力系统中的其他自动化装置配合,在条件允许时,采取预定措施,缩短事故停电时间,尽快恢复供电,从而提高电力系统运行的可靠性。

3、简述继电保护的基本原理和构成方式

继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置将包括测量部分(和定值调整部分)、逻辑部分、执行部分。

4、继电保护的可靠性

可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。220kV及以上电网的所有运行设备都必须由两套交、直流输入、输出回路相互独立,并分别控制不同开关的继电保护装置进行保护。当任一套继电保护装置或任一组开关拒绝动作时,能由另一套继电保护装置操作另一组开关切除故障。在所有情况下,要求这两套继电保护装置和开关所取的直流电源均经由不同的熔断器供电。

5、继电保护的选择性

上、下级电网(包括同级和上一级及下一级电网)继电保护之间的整定,应遵循逐级配合的原则,满足选择性的要求,即当下一级线路或元件故障时,故障线路或元件的继电保护整定值必须在灵敏度和动作时间上均与上一级线路或元件的继电保护整定值相互配合,以保证电网发生故障时有选择性地切除故障。

何种情况可牺牲继电保护部分选择性:

1)接入供电变压器的终端线路,无论是一台或多台变压器并列运行(包括多处T接供电变压器或供电线路),都允许线路侧的速动段保护按躲开变压器其他侧母线故障整定。需要时,线路速动段保护可经一短时限动作。

2)对串联供电线路,如果按逐级配合的原则将过分延长电源侧保护的动作时间,则可将容量较小的某些中间变电所按T接变电所或不配合点处理,以减少配合的级数,缩短动作时间。

3)双回线内部保护的配合,可按双回线主保护(例如横联差动保护)动作,或双回线中一回线故障时两侧零序电流(或相电流速断)保护纵续动作的条件考虑;确有困难时,允许双回线中一回线故障时,两回线的延时保护段间有不配合的情况。

4)在构成环网运行的线路中,允许设置预定的一个解列点或一回解列线路。

6、继电保护中“远后备”与“近后备”的运用

“远后备”,当元件故障而其保护装置或开关拒绝动作时,由各电源侧的相邻元件保护装置动作将故障切开。

“近后备”,用双重化配置方式加强元件本身的保护,使之在区内故障时,保护拒绝动作的可能性减小,同时装设开关失灵保护,当开关拒绝跳闸时启动它来切除与故障开关同一母线的其它开关,或遥切对侧开关。

7、电力系统振荡对继电保护装置的影响

电力系统振荡时,对继电保护装置的电流继电器、阻抗继电器会有影响。

1)对电流继电器的影响。当振荡电流达到继电器的动作电流时,继电器动作;当振荡电流降低到继电器的返回电流时,继电器返回。因此电流速断保护肯定会误动作。一般情况下振荡周期较短,当保护装置的时限大于1.5秒时,就可能躲过振荡而不误动作。

2)对阻抗继电器的影响。周期性振荡时,电网中任一点的电压和流经线路的电流将随两侧电源电动势间相位角的变化而变化。振荡电流增大,电压下降,阻抗继电器可能动作;振荡电流减小,电压升高,阻抗继电器返回。如果阻抗继电器触点闭合的持续时间长,将造成保护装置误动作。

篇5

【关键词】继电保护;电力;维护

目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。

1、电力系统中继电保护的配置与应用

1.1 继电保护装置的任务

继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。

1.2 继电保护装置的基本要求

选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。

灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。

可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。

1.3 保护装置的应用

继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。②母联保护:需同时装设限时电流速断保护和过电流保护。③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。随着继电保护技术的飞速发展,微机保护的装置逐渐投入使用,由于生产厂家的不同、开发时间的先后,微机保护呈现丰富多彩、各显神通的局面,但基本原理及要达到的目的基本一致。

2、继电保护装置的维护

值班人员定时对继电保护装置巡视和检查,并做好各仪表的运行记录。 在继电保护运行过程中,发现异常现象时,应加强监视并向主管部门报告。

建立岗位责任制,做到每个盘柜有值班人员负责。做到人人有岗、每岗有人。 值班人员对保护装置的操作,一般只允许接通或断开压板,切换开关及卸装熔丝等工作,工作过程中应严格遵守电业安全工作规定。

做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。

定期对继电保护装置检修及设备查评:①检查二次设备各元件标志、名称是否齐全;②检查转换开关、各种按钮、动作是否灵活无卡涉,动作灵活。接点接触有无足够压力和烧伤;③检查控制室光字牌、红绿指示灯泡是否完好;④检查各盘柜上表计、继电器及接线端子螺钉有无松动;⑤检查电压互感器、电流互感器二次引线端子是否完好;⑥配线是否整齐,固定卡子有无脱落;⑦检查断路器的操作机构动作是否正常。

根据每年对继电保护装置的定期查评,按情节将设备分为三类:经过运行检验,技术状况良好无缺陷,能保证安全、经济运行的设备为一类设备;设备基本完好、个别零件虽有一般缺陷,但尚能安全运行,不危及人身、设备安全为二类设备。有重大缺陷的设备,危及安全运行,出力降低,“三漏”情况严重的设备为三类。如发现继电保护有缺陷必须及时处理,严禁其存在隐患运行。对有缺陷经处理好的继电保护装置建立设备缺陷台帐,有利于今后对其检修工作。

3、电力系统继电保护发展趋势

继电保护技术向计算机化、网络化、智能化、保护、控制、测量和数据通信一体化方向发展。随着计算机硬件的飞速发展,电力系统对微机保护的要求也在不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其他保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等,使微机保护装置具备一台PC的功能。为保证系统的安全运行,各个保护单元与重合装置必须协调工作,因此,必须实现微机保护装置的网络化,这在当前的技术条件下是完全可行的。在实现继电保护的计算机化和网络化的条件下,保护装置实际上是一台高性能,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆投资大,且使得二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。

4 结论

随着电力系统的告诉发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、一体化、智能化方向发展,这对继电保护工作者提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,提高供电可靠性。

参考文献:

篇6

关键词: 电力系统;继电保护;可靠性

我国的经济建设正在高速的发展中,电网系统的规模逐渐增大,覆盖的区域非常辽阔。不同类型的电气设备紧密的与电气线路相联结,各种人为因素和运行环境的复杂因素的影响,从而不可避免的会出现电气故障,给人们的生活和生产会带来不必要的影响。因此,为了保障使电网供电系统运行的正常,必须对继电保护在工作中可靠的运行,对继电保护装置进行正确的设置,对各项相关定值实施准确的整定,预防继电保护的不正确动作现象出现,对电力企业的健康发展有非常重要的意义。

1 继电保护系统可靠性指标

1.1 继电保护的内涵

继电保护能够保障电气设备的安全,确保了供电的安全可靠性,是电力系统最有效、最基本的一项核心技术手段。继电保护系统能够满足电力系统的灵敏性、速动性、可靠性和选择性,其基本原理是以电力系统中元件出现短路或异常情况时的电气量的变化实现继电保护动作。从系统设计来看,继电保护系统是有相互独立的继电保护装置通过某种连接方式共同组成系统。在所有的电力设备中,如线路、母线、变压器等,均不可以在无继电保护的状态下运行。

1.2 继电保护的基本任务

当电力系统的故障发生在被保护的元件时,应该由故障元件的继电保护装置作出准确、及时处理措施,对距离故障元件最近的断路器准确、迅速地发出跳闸命令,使故障元件可以迅速、及时的和电力系统断开,在满足电力系统的某些特定要求的同时,如保持电力系统的暂时稳定状态,尽量降低电力系统元件本身的损坏,也就减少了故障元件对电力系统供电安全的影响。

继电保护可以及时的对电气设备工作的异常状况做出相关的反应,能够设备的异常的供桌状况及不同运行维护条件发出示警信号,有利于设备装置的自动调节,或者自动切除可能形成事故额电气设备,或者是工作人员做出处理。在此过程中,继电保护系统的装置可以具有相对的延时动作。

1.3 继电保护的可靠性指标

继电保护的可靠性指的是质量、技术以及配置合理的系统,元件或设备在规定的条件下,能够在预定的时间完成规定功能的能力,也就是动该动的,不动不该动的,保证所切除的是故障线路或设备,这是继电保护的基本要求。继电保护的可靠性有两个指标:一是设备的可靠性,另一个是功能的可靠性。功能的可靠性是以一次系统的观点进行的描述,是指继电保护系统在工作状态下正确工作的概率,其可靠度和继电保护的拒动、误动概率有关;设备的可靠性是以二次的观点进行的描述,继电保护系统在投入运行过程中的每一时刻都处于工作状态的概率。通常在分析继电保护的可靠性时,使用的方法有马尔科夫模型法、故障树分析法、概率分析法等。继电保护系统不同于其他系统,是一种可修复的系统,因此在使用概率法不利于分析过程中的求解。

2 提高继电保护可靠运行的有关措施

2.1 冗余设计和优化

继电保护系统的设计可以采用容错技术,在不影响其正确的状况下,允许继电保护系统的个别装置的不正确工作。实现着中容错技术的一个方法是硬件的冗余。目前,在设计继电保护系统硬件的冗余时,通常采用并联、备用切换、多数表决等,这种冗余设计模式能够明显的改善继电保护的拒动率、可用度等可靠性指标,也能使误动率这一可靠性指标恶化。多数表决方式能够实现可靠性指标达到任一规定值,促进可靠性指标的改善;备用切换方式能够显著的改善可用度指标,但是对误动率、拒动率以及可靠度并没有影响。所以,硬件冗余设计需要以继电保护系统的实际情况进行选择。

继电保护系统的优化冗余设计能够在满足可靠性指标的基础上,使用最少数量的保护装置,实现投资金额的最小化。虽然继电保护系统可靠性能的提高和投资金额的减少两者之间是相互矛盾的,然而两者求极值均可利用优化冗余设计方案之间的对比作出选择、解决。因此,在进行实际的继电保护系统的设计时,在任何状况下都能满足系统可靠性指标是,需将其放置在第一位。

2.2 提高继电保护装置的可靠性

电力系统继电保护装置运行的可靠性指标的计算与继电保护装置的发展、使用、评价、完善和改进,电力系统可靠性指标的确评估、计算等的关系密切,对于继电保护装置运行状况内涵的确定时这一过程中的重要环节。继电保护装置的可靠性是指系统装置在范围规定内出现了应该动作的故障时,不可以拒动作,在该保护不应动作时,不可以误动作。

该怎样更进一步正确地、合理地评价、计算继电保护装置运行可靠性指标是非常值得探讨和研究的问题。一方面,可以在继电保护装置运行过程中计算正确工作率指标时纳入区外故障正确动作;另一方面,细分正确工作率,也就是说正确工作率由不正确动作率和正确动作率组成。这两种定义和划分,继电保护装置的运行性能和故障的深入研究和分析是非常有利的。

作为继电保护装置还需要有一个配套的辅助装置,确保继电保护的动作正确、安全运行,促进电力系统的稳定。继电保护的辅助装置通常存在于电力系统的自动控制回路和二次继电保护中,其主要功能是为了最大程度的满足断路器的控制操作,也被用作电力系统二次回路的切换。继电保护的辅助装置包括交流电压切换箱、三相操作继电器和分相操作继电器等。在使用继电保护辅助装置时,可能发生触点接触不良会烧损、中间继电器线圈断线等问题,这些都会对继电保护辅助装置的的可靠性造成一定的影响。因此,电力设计、科研、制造和运行等部门,需要采取有效的途径和措施对辅助装置的可靠性进行提高,重视新工艺。新器件的引进、开发和使用。选用可靠性高的中间继电器,保障回路中工作继电器的技术数据。对于特殊设计装置中的发热电阻,降低机箱内部各工作温度,充分的保障和考虑辅助装置中各回路的耐压水平和绝缘电阻。

3 继电保护操作运行的规范

3.1 做好继电保护的验收工作

验收是对各项施工是否完善进行确定,检查电力系统的运行条件是否稳定、安全。工作人员在完成继电保护的调试后,需要进行严格的自检、专业的验收程序填写验收单,然后由厂部组织运行、生产、检修以及做开关合跳试验,且对该过程作出详细的记录,保护装置变动的内容、时间,相关负责人签字后作为以后查询的资料。在试运行试验或进行试运行之后,确保准确无误后才可以启动系统的运行程序。

3.2 做好继电保护装置的巡检工作

只有做好电力系统安全事故的预防工作,才能够及时的发现继电保护系统运行中的安全隐患,最大程度的避免事故、故障的发生。其中一个重要途径是对继电保护设备机型定期的巡视检查。细致。全面的检查工作包括:警铃、监视灯、指示灯等设备状况是否完好、正常;继电器的附加电阻及线圈是否过热、接点是否完好;各回路接线是否正常,有没有出现发热或者焦臭味、松落的现象;保护压板、自动装置是否按照要求投入;开关、压板的位置是否正确等。

3.3 做好继电保护系统的技术改造工作

随着计算机技术、通信技术、电子技术、数字信号处理技术等的快速发展,继电保护技术中注入了更多活力的新技术,突破了传统的格局,促进了继电保护系统自动化水平的提高。为了使其能够跟上时代的步伐以及先进的技术,电力工作者需要与时俱进。需充分考虑继电保护系统配置和运行的可靠性、选择性、灵敏性和速动性要求及运行维护等基础上,努力做好技术改造工作。当前,在电力系统中以微处理器为基础的数字保护装置、计量测试仪表、电机励磁控制装置以及运行监控系统,均需要采用低功率的电流和电压互感器替代常规的电流和电压互感器,对电力系统保护的可靠性有着不同寻常的意义。

4 结束语

在社会发展的今天,电力企业和广大用户对电力系统继电保护系同的要求逐渐增大,国内外的继电保护技术正朝着计算机化、网络化、保护、控制、测量、数据通信一体化以及人工智能化的方向发展。因此,继电保护工作人员的任务更加艰巨,尤其是对大型企业复杂厂区的继电保护工作的智能化和可靠性的研究更为重要。

参考文献:

[1]杨洋,关于电力系统继电保护可靠性问题的研究[J].城市建设理论研究,2012(4).

[2]许彩娟,关于电力系统继电保护可靠性问题的研究[J].中国新技术新产品,2012(15).

[3]张卜元,电力系统继电保护的可靠性研究[J].煤炭技术,2011(7).

[4]何志勤、张哲、尹项根、陈卫,电力系统广域继电保护研究综述[J].电力自动化设备,2010(5).

篇7

关键词:变电站;继电保护;基本原理;瑕疵;完善

中图分类号:TM77 文献标识码:A 文章编号:1009-2374(2012)30-0103-02

在变电站的电力供应过程中,电力系统的检修和维护尤为重要,同时也是为电力系统提供持之以恒供电能力的一个重要渠道,在检修和维护中,继电保护则为重中之重,所谓的继电保护就是指在研究电力系统发生故障或者电力运行出现问题的情况下,在发展的过程中主要用有触电接触点的继电器来检修和保护电力系统以及发电机、变压器、输电线路等基本元件,使这些电路设备免受损害的一种具有针对性强的电力保护措施,在这种保护的基本原理中,用电力设备中最小的代价维护、检修其中的最大量的元件,达到检修成本最小的目的,同时也是对高科技元素的一种有效利用。这与我们通常所说的电力保护有所不同,它的基本任务是在电力系统发生故障时,利用最短的时间实现最大区域内的电力保护,其自动将故障设备从整个电力系统中切断或者由智能设备发出通报,使得维修人员迅速发现故障根源,减轻电路故障引起的危险。

1 变电站继电保护作用与基本组成

2 变电站继电保护的现状及问题

首先,人工智能手段的引入。人工智能体系引入继电保护过程中是对变电站系统管理的一大进步。如专家系统、人工神经网络ANN等被广泛地应用于非线性问题障碍的排除上,我们知道,电力系统的继电保护是一种较为典型的离散控制方式,它分布于电路系统的各个环节中,对于电路的正常或者故障状态都能进行常态评估,这也是进行保护的关键步骤。由于AI的逻辑能力以及逻辑思维的存在,AI已经成为在线评估的重要工具,在现实的电力系统的应用中也表现得越发频繁。与此同时,变压器保护、发电机保护以及自动重合闸保护等领域也对此进行了广泛的应用。但是在继电保护的电力应用中,人工智能手段的引入无疑也存在可靠与否等方面的考验或者说存在该方面的弊端,不得不引起电力研究领域的重视。

其次,继电保护系统与高科技领域紧密结合。在电力系统中,网络化的电力保护技术也已经成为主导,也就是说在进行电力保护的过程中实现网络化管理,把现有的高科技手段应用于电力测量、控制、保护以及通信一体化的数据传输方面,这都对电力保护起到了翻天覆地的变化。如数字变电站内光互感器、智能终端、GOOSE、SV等新技术的应用,在变电站内的继电保护方面应用高科技手段,大大减少了电路运行的危险性,使得各个需要保护的单元与重合闸装置在分析和处理数据上相互协调,达到匹配,即实现网格化管理,这虽然实现了变电站内继电保护的基本目的,但是这种技术在继电保护领域还处于初始阶段,很多关键技术还不成熟,不能成为主流,对国外先进技术的引入成为继电保护的一大问题。

最后,微机系统在继电保护中被大量使用。微机已经在20世纪开始大规模应用于各个领域,在变电站内的继电保护方面也应用频繁。微机进行保护主要的优点在于先进的计算能力和逻辑处理能力,能够提高继电保护的性能,近些年来,为了强化这种稳定性和敏锐性,必然就出现了对微机保护的改进措施,但是随着科技的发展,电力系统内引入微机保护的效率应该引起重视,如果滞后于微机技术的发展,继电保护就无实效性可言。

3 完善变电站内继电保护的基本思路

变电站内的小功率机器的继电保护在现阶段已经引起了足够的重视,如何实现继电保护的长效性、科学性,是一个亟需解决的课题,随着多年来的电力维修和保护的实践,总结出如下几点继电保护的基本思路:

首先,完善继电保护的可靠性与速度性。这种可靠主要体现在保护装置的可靠性方面,也就是说在电力系统出现故障时,保护装置能够及时有效地反映出电力所出现的具体问题,速度既体现在发现故障方面,还体现在维修速度方面,不能够出现误差,同时不能对整个电力系统的运作有较大的影响。电力系统是一个多元素构成的有机整体,机构相对复杂,并且在适用上各个元件所体现的价值寿命是不同的,因此可靠性显得尤为重要,要对各种设备的基本功能进行完善修整,实现操作无误差。

其次,继电保护实现选择性与灵敏性。在变电站的继电保护中,选择性是指在发生故障时,系统有选择地将元件与故障系统隔离分开,使之不受到更大的损害,不受损害的部分仍然能够继续工作,这个过程既要求选择性,同时也要求灵敏性,需要对受到损害的元件与未受损害的元件进行区分,并使之与系统有效隔离,实现系统的完整性运转,避免不必要的损失,快速保护动作时间在0.06~2.12s之间,最快可达0.01~0.04s。

最后,实现科技贯穿于整个继电保护过程。以上文中我们了解到,继电保护需要在高科技支撑下进行运作,也只有这样的运作能够对变电站电力系统的维护有一定的作用,对于吸收继电保护的先进科技是实现继电保护的有效途径,也是实现电力系统稳定发展的巨大支撑。

4 结语

变电站的继电保护是电力传输系统的一个重要环节,其工作的稳定性,需要我们对变电站安全运行以及电力系统的稳定进行全面掌握,对继电保护的上述研究只是其中的一个弱小方面,加强变电站的继电保护需要对整个电力产业以及电力科技的发展有较为熟悉的掌握,使得继电保护能够成为变电站电力系统维护的一个重要举措,同时也是我们电力行业发展的一个重要使命。

参考文献

[1] 郝治国,张保会,褚云龙.变压器励磁涌流鉴别技术的现状和发展[J].变压器,2005,(7).

[2] 桂林,孙宇光,等.发电机内部故障仿真分析软件的应用实例[J].水电自动化与大坝监测,2003,(6).

[3] 艾恒.继电保护装置初析[J],中小企业管理与科技(下旬刊),2011,(7).

篇8

关键词:电力系统 继电保护发展趋势

中图分类号:F470.6 文献标识码:A 文章编号:

正文:

一、电力系统继电保护概述

1.电力系统继电保护的基本原理 

电力系统的继电保护装置就是指电力系统运行过程中电气元件在发生故障时能及时发出信号,并使断路器跳闸产生动作的一种自动装置。为了完成对电力系统相关装置的安全保护任务,电力系统的继电保护装置通过借助正确区分的保护元件来检测被保护的装置是否处于正常的工作状态。也就是说,继电保护装置一般是根据电力系统发生故障前后电气物理量变化的特征为基础来对被保护的装置进行保护的。其中,用于继电保护状态判别的故障量随所处电力系统的周围条件而异,也随被保护对象的不同而不同。当前应用最为广泛的故障量是工频电气量。工频电气量指的是通过电力元件的电流和所在母线的电压以及由这些量演绎出来的其他量,如功率、相序量、阻抗等,从而构成电流保护、电压保护、阻抗保护、频率保护等。

2.电力系统继电保护装置的作用

电力系统的日常运行中较常见的故障主要有断线、短路、接地、负荷过载以及振荡等。上述故障如果处理不及时或处理不当往往会引发大范围的电力系统事故,从而导致电力系统的全部或部分的正常运行状态遭到破坏,导致电能质量破坏和设备损坏,损失非常巨大。一般对上述故障的有效处理措施就是采取相关有效措施迅速地将正常运行的系统与故障部分隔离,从而将故障造成的影响和损失尽量减少。为保证电力系统的安全稳定运行,有效避免事故的扩大。通常,依靠人的判断和处理是来不及的,在系统发生故障时务须由相关的继电保护装置完成电力系统故障的安全保护。3.电力系统继电保护装置的任务一般而言,电力系统继电保护装置的任务有:一是值班管理人员可以通过继电保护装置及时掌握处于不正常运行状态的电气元件的反应,以便能够及时处理,从而有效避免相关电气设备的损坏以及安全事故的发生;二是继电保护装置自身能够迅速地将电力系统中的故障元件有选择地进行切除,从而确保其他无故障原件的正常运行。

二、继电保护的基本要求

继电保护是电力系统的一个重要组成部分,担负着监督系统运行状况和及时处理系统故障的重要职责,是保证电力系统安全运行的重要设备。选择性、可靠性、速动性、灵敏性是对它的四项基本要求。

选择性是指当电力系统中线路或设备发生短路故障时,负责本段线路的继电保护装置会动作,此时其他线路的继电保护装置不动作,而当其拒动时,相邻设备或线路的保护装置会作为后背保护将故障切除。

速动性是指电力系统发生故障时,继电保护装置应能够快速地将故障切除,将故障可能对人和设备造成的损害降低到最小程度,提高系统并列运行的稳定性。

灵敏性是指当电力系统中线路或设备发生短路故障时,继电保护装置的及时反应动作能力。在规定范围内发生故障时,不论故障点的故障的类型和位置如何,以及故障点是否存有过渡电阻,能够满足灵敏性的要求的继电保护都能够正确反应并动作,即要求不仅在系统的最大运行方式下三相线路短路时能够可靠动作。可靠性是指继电保护设备能够安全稳定的工作动作,不发生在故障时拒动或无故障时误动的情况。

三、继电保护的发展趋势

在未来智能电网中,电网的自愈特征将会对继电保护的选择性、可靠性、速动性、灵敏性提出更高的要求,对常规继电保护的配置方法提出新的要求,常规保护在这几个方面根据实际情况的不同会有所侧重。如在特高压电网的建设、电网规模的扩大等因素,将导致短路电流增大很多,因此,短路电流增大造成的定值可靠性降低。然而,挑战往往是与机遇并存的,智能电网的发展从另一个角度也将给继电保护的发展带来新的契机。根据智能电网发展的特点与趋势,可以预计它将会在以下几方面推动继电保护技术的发展:

3.1 信息数字化信息的数字化

包括两个方面,一是测量手段的数字化,新型的继电保护装置将广泛采用电子式互感器和数字接口;二是信息传输方式的数字化,传统继电保护设备采用的模拟量电缆传输和状态量电缆传输方式将被淘汰,取而代之的是以光纤为媒介的网络数字传输方式。随着智能电网的建设及智能化设备的广泛使用,传统的互感器将逐步退出运行。而且电子式互感器采用网络接口,通过网络保护装置和智能断路器连接,大大简化了二次回路接线,使之易于维护。

3.2 通信网络化

电力系统继电保护与计算机网络相结合是现代电力系统实现稳定安全可靠运行的重要的保证。通信网络化使每个保护单元都能够实现共享全部故障信息与系统运行的数据,并且使各个保护单元之间与自动重合闸装置能够在分析这些数据信息的基础之上做出协调的动作。这样就在各个保护单元之间形成了一个互联网,增加了保护单元之间的联系,最终实现微机继电保护装置的网络化。

3.3 动作智能化

智能电网要求继电保护装置能够利用全网信息准确、实时地判断运行方式并且调整定值,实现真正意义上的在线整定。近年来人工智能技术在电力系统的各个领域都得到了广泛的应用,使得电力系统继电保护技术的研究迈进了更高层次,逐渐向着微机化的趋势不断发展。例如利用神经网络的方法,经过大量的故障样本训练,只要充分考虑了现场各种情况,则发生任何的故障时都能够作出确判别,最终做出正确动作。

3.4 综合自动化

计算机技术、通信技术和网络技术高速发展,使得微机继电保护装置具有了可以从网上获得电力系统运行状态与各种故障的数据信息的能力,并且微机继电保护装置也可以将它从网上获得的电力系统被保护元件的数据与信息传送给网络控制中心和其他的保护单元,及时在继电保护系统中完成继电保护的各项功能,如监视、测量、控制、保护、数据通信等。从而实现了测量、控制、保护、数据通信等各方面的综合自动化。

3.4.数字化技术的应用

随着社会经济的不断发展和科学技术的革新,数字化技术在电力系统继电保护领域的应用越来越广,数字化变电站的建设已经成为电网建设的主流。数字化变电站是指变电站的信息采集、传输、处理、输出过程全部数字化。数字化继电保护装置原理是利用电子互感器采集数据,数据在互感器内通过光纤利用光数字信号将数据传到低压端,在MU(合并单元)处理后得出符合标准的数字量输出。其涵盖了变电站的全部范围,比如一次设备的互感器、断路器、变压器,二次设备中的保护、控制、通信,以及软件开发、系统建模、数据应用等。数字化技术的应用:一是智能化继电保护测试仪。随着智能化变电站的投入和普及,数字化测试设备在电力用户和制造厂中的需求呈上升趋势。二是全数字化变电站的动态仿真系统。智能电网推广的重要举措就是建设具有数字化、信息化、自动化、互动化特点的数字化变电站,然而目前大多数变电站无法有效检测继电保护二次设备的性能,只有全数字化变电站才能实现设备检查和监测功能。

3.5继电保护输电技术的突破

随着电力电子技术的发展、直流输电技术日益成熟,多种新的发电方式所产生的电能都要以直流方式输送,比如磁流体发电、电气体发电、燃料电池和太阳能电池等,直流输电在电力系统中必然得到更多的应用。另外,超高压输电可以增加输送容量和传输距离,降低单位功率电力传输的工程造价,减少线路损耗,节省线路走廊占地面积,具有显著的综合经济效益和社会效益。

4 结束语

继电保护的技术微机化化绝不仅仅只有这几个方面,很多都要随着智能电网的发展才会慢慢体现出来。智能电网的建设是电力系统的一次重要变革,是电网未来的发展方向。目前,智能电网的建设已经初显成效,建设过程中新技术和新设备的应用已经给继电保护专业领域带来了革命性的变化,例如我国 220kV 以上的输电线路已经全部实现了继电保护技术的微机化。随着智能电网建设的推进,相关研究的深入,继电保护专业一定会适应电网需求向智能化方向发展,跟进电网建设步伐,为智能电网建设提供技术支持。

参考文献

[1]王梅义.高压电网继电保护技术[M].北京:电力工业出版社,1981.

[2]葛耀中.数字计算机在继电保护中的应用[J].继电器,1978.

[3]杨奇逊.微型机继电保护基础[M].北京:水利电力出版社,1988.

篇9

【关键词】继电保护现状发展

一、继电保护发展现状

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。

在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。

我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。

二、继电保护的未来发展

继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

1计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。

南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

2网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。

对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。

对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。

由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

3保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。

4智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果[8]。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

三、结束语

建国以来,我国电力系统继电保护技术经历了4个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

参考文献

1王梅义.高压电网继电保护运行技术.北京:电力工业出版社,1981

2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)

3沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983(1)

4葛耀中.数字计算机在继电保护中的应用.继电器,1978(3)

5杨奇逊.微型机继电保护基础.北京:水利电力出版社,1988

6HeJiali,Luoshanshan,WangGang,etal.ImplementationofaDigitalDistributedBusProtection.IEEETransactionsonPowerDelivery,1997,12(4)

篇10

[关键词]继电保护、计算机化、网络化、智能化

中图分类号:TM7 文献标识码:A 文章编号:1009-914X(2014)15-0259-01

1 计算机化

随着我国计算机硬件迅速发展,微机的保护硬件也在不断地发展。电力系统对于微机保护的要求在不断地提高,除了继电保护的基本功能之外,还应该具有大容量的故障信息存放空间,快速的处理数据的功能喝通信能力,并且与其它保护、控制装置以及调度联网共享全系统的数据、信息以及网络资源的能力,高级的语言编程等。继电保护的微机化和计算机化是一个不可逆转的现展趋势。但是对于如何能够更好地去满足电力系统新的要求,如何进一步地提高继电保护装置的可靠性,还需要进行具体和深入的探索研究。

2 网络化

继电保护装置如果能够得到更多的系统故障信息,则对于故障的性质、故障位置以及故障距离的检测也会愈加准确。用计算机网络实现分布式的保护原理,比集中式的保护有更高的可靠性。因为如果有一个保护受到了干扰或者计算错误而进行误动时,只能错误地跳开本回路,不会造成扩大事故,微机保护装置的网络化能够大大提高保护性能及可靠性,这也是微机保护未来发展的一个重要趋势。

3 智能化