数学建模方法及其应用范文

时间:2023-12-22 17:50:50

导语:如何才能写好一篇数学建模方法及其应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学建模方法及其应用

篇1

2、《数学建模竞赛获奖论文精选与点评》,作者:韩中庚;

3、《数学建模方法及其应用》,作者:韩中庚;

4、《MATLAB在数学建模中的应用》,作者:卓金武;

篇2

关键词:建模思想;反比例函数;人教版;研究方法;函数

中图分类号:G622 文献标识码:B 文章编号:1002-7661(2016)07-205-01

一、在对反比例函数的学习认识中,要首先研究了解其概念

就反比例函数概念而言,通俗来讲,一般而言,如果说两个变量的每一组对应值的乘积都是一个不为0的常数,则可以就说这两个变量成反比例。其形式可以写为y=k/x(k为常数,k≠0,x≠0),当这个函数关系成立时,该函数就叫做反比例函数。相比较一次函数,二次函数,反函数有它自己的特征和概念,二次函数的函数是二次的,而反比例函数的函数是一次的,一次函数是另外的一种函数。

在教学过程中,把建模思想运用到教学过程中,对学生的教育可以对比记忆、绘图记忆,努力融入数学思想,这样可以更好的把握反比例函数的概念,理解的也可以更深刻。

二、利用数学的建模思想,研究反比例函数的图像,然后再根据图像判断其性质,这对数学的学习和研究使很有必要的

研究反比例函数,来研究其性质和图像的特征和函数的单调性,根据反比例函数的概念和函数的表达式来研究其单调性。

根据反比例函数的表达式,描点来画其图像,可以看出反函数的图像是一条双曲线,从图像上来看,可以发现它是关于原点对称,由奇偶函数的概念可知反函数是奇函数。

而一次函数的图像是一条直线,二次函数的图像是一条抛物线,根据每个函数的表达式的不同,每种函数的图像也不相同,当然,其性质也不可能相同。反比例函数是九年义务教育中学的最后一种函数,同学们通过对其他函数的学习,对这一类函数多少已经有些了解,了解如何去研究这一类函数的性质,去研究这一类函数的图像,在教学过程中,融入数学中的建模思想,亲手自己画图像,并且研究图像,通过与一二此函数的对比研究和反复记忆,来更深刻的理解和明白反比例函数,加深对反比例函数的进一步的研究,更深刻地理解和记忆反比例函数。

三、在反比例函数的学习过程中,要充分将建模思想融入进去,并且能够根据实际情况来举例研究,这样对反比例函数本身的学习会有很大的帮助,对理解也会有很大的帮助

建模思想是数学研究中一个很重要的思想,也是在学习中对学习和知识的研究和掌握很有帮助的一种思想,学习反函数的过程中,充分运用建模思想,在学习完其基本知识后,再出一些相关的题目,或者根据生活中的一些情况进行讲解,这对反函数的认知有很大的帮助。

实时的针对反比例函数出一些题目,例如,根据性质如何来判断它是哪一种函数,或者,告诉学生们某一函数的表达式,让他们来判断是什么函数,说明其性质,并且能够准确的画出图像。性质、图像、表达式之间能够灵活的转换是学习函数、弄明白函数的一个重要的方法,一个重要的要求,这也是在数学中建模思想的要求,是数学建模思想中一项很重要的思想,即建模思想中的模型分析和模型检验。

四、数学学习中,还有很重要的一项要求即要列出重点,强调重点,这是一项很重要的工作。当然,对于反比例函数的研究与学习,也是一样的

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象,简化建立能近似刻画并解决实际问题的一种强有力的数学手段。所以在学习中要强调一些很重要的东西,比如说函数性质等,在反比例函数中,要突出强调其表达式,反比例函数的性质,关于原点对称,是奇数函数,并且重点研究一下它的图像,让同学们可以明白哪部分是重点,如何学习,并且要好好的学习记忆。建模思想本身就是数学类的思想,强调重点、重点记忆更是学习的一个重要手段。所以,在研究中,要把建模思想很好的融入进来。

总之,当今时代的发展,建模思想早已是数学中很重要的思想,对于九年义务的教育,对于反比例函数的学习,要掌握其概念、表达式、性质和特点,数学本身就是一门很枯燥的学科,过多的都是理论化的东西,将建模思想融入学习,对掌握反比例函数是很有帮助的,也是很有必要、很重要的。

参考文献:

[1] 朱宸材;3.4 反比例函数[J];中学生数理化(初中版)(中考版);2014年01期

[2] 刘玉红;反比例函数图像的一个结论及其应用[J];中学数学杂志;2014年02期

[3] 王建霞;反比例函数的图像和性质(第二课时)[A];河北省教师教育学会第一届教学设计创新论坛论文集[C];2011年

[4] 刘 军;从反比例函数的易错题谈函数的学习[J];数理化解题研究(初中版);2014年05期

篇3

【关键词】《高等数学》;高职;汽车专业;课程设计

《高等数学》课程是高职高专一门重要的公共基础课程.是汽车专业的学生必修的一门基础课,是学生学习专业、发展技能的基础.本课程一方面培养学生抽象的逻辑思维能力,处理各类数据的运算能力及数与形有机联系的空间想象能力,在一定程度上提升学生的数学修养.另一方面是给学生打下一定的数学基础,为后续专业课的学习提供必备的数学知识与有力的支撑.

高等数学教学设计是高等数学教学的重要环节,是教育理念与教育实践间的桥梁.下面结合自己多年讲授汽车专业高等数学课程的教学经验,谈谈高等数学课程的教学设计.

1.课程设计的理念与思路

以学生为主体,教师为主导,根据课程自身的学科特性和学生的认知规律,课程内容设计遵循“以应用为目的,以后续课程必需够用为度”和服务学生职业生涯可持续发展和专业学习需要的设计原则.首先,借助软件工具Mathematica进行快速准确的计算;其次,突出培养汽车系学生的初步数学建模能力,围绕“三性”的教学理念进行课程设计.

根据高等数学的教学要求,本课程的宗旨是服务专业,服务职业,服务学生的可持续发展,内容体系既要考虑数学知识的前后衔接又要考虑专业要求.课程设计立足于学生的亲身经历和动手实验,超越单一的书本知识的学习,教学案例来源于汽车类专业,引导学生自觉地把直接经验学习和间接经验学习相结合.课程设计面向每一名学生的个性发展,尊重每一名学生发展的特殊需要,紧密结合专业及时调整教学内容、教学方法与手段,课程目标、课程内容、活动方式等方面都具有开放性和生成性.

2.课程目标设计

(1)能力目标

能借助数学软件进行快速准确的计算,服务汽车专业学生;通过提高学生的数学思维能力,不断地经历直观感知、观察发现、归纳类比、空间想像、运算求解、数据处理、反思与建构等思维过程,为进一步学习专业课程,服务和支撑专业理论学习及今后的可持续发展奠定良好的基础.逐步学会用数学的逻辑思维方式去观察、分析现实社会,去解决学习、生活、工作中遇到的实际问题,学会利用数学方法去解决汽车专业问题;能用数学建模思想讨论汽车的性能及评价指标;具备汽车检测与维修技术专业需要的实用计算能力和简单的模型建立能力.

(2)知识目标

了解有关数学知识产生的背景,理解基本的数学概念的本质,体会这些知识所蕴涵的数学思想和数学方法.掌握高等数学课程的基础知识和基本技能;掌握汽车检测与维修技术需求的数学基本概念、理论和运算;掌握函数的性质和极限的计算;熟悉微积分思想并掌握微积分的计算;掌握导数的基本知识和极值的计算.了解高等数学在后续课程中的应用,了解高等数学知识在职业发展和社会实践中的作用,掌握数学建模的思想和方法.

(3)素质目标

提高学习数学的兴趣,树立学好数学的信心,在实践中形成锲而不舍的钻研精神和科学态度,具备团队协作、沟通交流的能力和创新意识;使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,崇尚数学的理性精神;通过不同形式的自主学习、探究活动,体验数学发现和创造的历程.

3.教学单元设计

根据本课程组成员对汽车系教师和学生问卷调查确定教学内容;遵循“以应用为目的,以后续课程必需够用为度”和服务学生职业生涯可持续发展及专业学习需要的设计原则;并且考虑到数学知识的衔接、学生的数学知识水平及课时要求,本课程划分为九个教学单元:函数与极限;导数、微分及其应用;不定积分;定积分及其应用;无穷级数;常微分方程;多元函数微积分;线性代数;概率论初步.每一教学单元按照案例导入、提出问题课堂研讨、新知学习数学实验、新知应用数学建模、解决问题总结反思、巩固提高过程进行教学组织实施,主要运用行为导向教学法,将数学建模思想与数学实验方法融入课程,使数学知识、建模思想与实验方法三者有机融合,形成“教、学、做”合一,理论与实践一体化的教学模式.

4.考核方案设计

考核坚持4项原则,即完整性原则,连续性原则,互动性原则和科学性原则;按照5个方面内容,即恰当考核学生的知识和技能,注重学生学习过程和学习方法,注重考核学生的知识和技能的运用和应用能力,重视考核学生的创新意识和创造性思维的能力和重视针对学生的科学素质;采取的方式有:笔试、上机考试、演讲、课堂表现、论文、数学作品等多种形式.

5.课程设计的特色与创新

篇4

随着科技的快速发展,社会对应用型人才的需求日趋增加,高校教育必须加强对学生创新能力和解决实践问题能力的培养[1]。数学建模正是衔接创造性思维与实际应用的纽带,通过数学建模课程学习及实践训练,学生不仅能了解数学的应用价值,也能锻炼创新实践能力。由于数学建模课程的内容涉及的领域多,案例式授课,实际应用性强,与所学的高等数学、工程数学课程不同,不能形成连贯的系统性知识点,学生很难接受这门课程的学习方式。为了让学生更好地学习数学建模,教师要改进教学模式,根据教学规律的要求,探索数学建模教学方法,将有助于学生掌握数学建模技能,从而提高解决实际问题的能力[2—4]。

二、数学建模的认知

大学开设基础数学课程能让学生体会到数学的严密逻辑体系及高度抽象的思维方法,但对数学的实际应用介绍的甚少,很难将数学与工程技术、经济管理、生物信息等其他领域联系起来。数学建模是用数学语言来描述实际问题,将它变成一个数学问题,再利用现有的数学工具或发展新的数学工具来加以解决的整个过程。通过数学建模学习与实践,学生在体验建模过程的同时提高了思维能力和创造能力。数学建模课程的学习,可以重新认识数学的作用。课程重点就是介绍数学应用到实际领域中的方法,结合案例,应用初等数学、高等数学等数学知识来解决不同领域问题。在现实中许多现象及问题都可以用到数学来解释,如,我们看到一个四条腿椅子经过简单的移动就可以找到合适的位置放稳现象,用高等数学中的“零点存在定理”很容易解释这个问题;若知道某珍稀动物各年龄段数量信息,来推测未来种群是否会灭绝,可以用线性代数中的“矩阵”预测未来动物数量分布。书报供应商订购多少数量的商品才能得到最大收益呢?用概率中的“数学期望”建立报童卖报优化数学模型可解决这类问题。数学建模竞赛实践能更好地培养和提高学生应用数学知识分析问题、解决问题的能力。几年来,数学建模竞赛赛题背景知识广泛,要想取得好成绩,不仅要掌握扎实的数学基础,较好的计算软件使用方法,还需要较强的自学能力,广泛涉猎诸如物理、生物、信息等知识。例如,2012年美国大学生数学建模竞赛A题“树与树叶”,需要了解植物树叶生长特点,涉及到生物学知识;2014年全国大学生数学建模赛题A题“嫦娥三号软着陆轨道设计与控制策略”涉及到万有引力定律知识。数学建模是以数学为基础,综合自然科学和社会科学的实践活动。学生们可以通过多种途径了解数学建模,如,与数学建模课程教师咨询、与参加数学建模系列教学活动的同学交流,浏览数学建模网上的数学建模课程介绍及阅读数学建模书籍等,以获得更多的数学建模知识与信息。

三、数学建模学习过程

在学习过程中不仅要掌握数学建模的基本方法、数学建模思维模式,同时还要能以团队形式自主完成一整套数学建模训练题目,才能体会数学建模的真正内涵。目前,最行之有效的途径就是参加一次数学建模竞赛。可将数学建模过程分解为三个阶段:数学建模课程学习,数学建模综合培训,数学建模竞赛及课外科技活动。

1.数学建模课程学习

(1)掌握数学建模的基本方法。数学建模基本方法介绍是从案例分析开始,首先了解问题的背景、要解决的问题,分析用什么数学方法描述问题符合的规律,建立数学模型,并对模型求解,解释结果合理性。可以紧跟教师思路,积极展开思考,比较自己的解题思路与教师所讲有哪些不同,从简单的初等数学建模方法入手,了解数学建模的全过程。例如,鱼的重量估计问题,在没有称重的条件下如何根据鱼的长度估计鱼的重量呢?在合理的假设下,利用初等比例方法建立鱼重量与长度数学模型,利用鱼的长度能估计出鱼的重量,经验证结果是有效的。然后,要结合所学的数学知识逐步学习一些基本的建模方法,例如,微分方程建立传染病模型可以预测流感流行趋势问题;概率统计方法建立的报童模型可以预测出订购多少报能获得最佳受益。最后,要学会模仿案例建模过程完成作业,掌握建模的基本方法和技巧。数学建模过程不是解应用题,虽然没有唯一途径,但也有一定规律可循,在学习中要善于思考,慢慢形成建模思维方式,有助于建模能力的提高。

(2)养成良好的自学习惯。数学建模课时有限,许多数学建模方法及案例不能在课堂上介绍,在课余时间同学们可以选读一些教材中的案例和在期刊公开发表的建模论文,细致研读案例的建模思想,学会举一反三,重点是学会分析问题,了解更多领域的数学建模的方法、新颖的建模思想,提高用数学方法解决问题的能力。还可以丰富建模信息量,提高建模能力。同时,还可看到同一问题,可以选用不同的数学方法、从不同角度加以解决,这也是数学建模的魅力所在。例如,锁具装箱问题,可以用排列组合方法,也可用图论方法,都能给出减少锁具互开的装箱方案。

2.数学建模综合培训

(1)数学建模方法再学习和建模能力强化训练。随着数学建模解决问题多元化发展,基本的数学建模方法及计算能力远远满足不了实际问题的需求。因此还应学习一些现代数学方法,如,图论,模糊数学,多元统计分析等。学会熟练运用计算机软件技能,如,数学软件MATLAB,EXCEL数据处理,求解数学规划软件及统计软件。

(2)阅读建模论文。通过仔细阅读刊登在杂志或数学建模网站上的数学建模论文,学习论文的整体层次结构,写作技巧,对问题的分析、假设、模型建立和求解过程。寻找论文的优缺点,并比对论文作者对论文的评价。要善于总结所读的论文中解决问题的适用类型,如,优化类,预测类等,对于不同问题采用什么方法更合适,以备后继数学建模中使用。还可以提出自己的一些想法,改进别人做过的模型,或完成其中运算过程。数学建模是一项没有标准答案的数学应用,模型的研究结果大致符合实际就好。

(3)数学建模模拟训练。选作历年数学建模竞赛题目或实际问题中提炼出来的数学建模题目,学习查阅资料、分析问题、建立数学模型、使用软件求解、论文写作来模拟数学建模全过程。请教师对论文的摘要、结构、模型的准确性、论文语言表述、格式规范等方面提出建议,再经过多轮修改,直至满意为止。

3.参加数学建模实践活动

(1)数学建模竞赛。参加数学建模竞赛是培养综合应用数学知识解决实际问题的最有效途径之一,参加一次数学建模竞赛才能体会数学的真正魅力。目前开展的数学建模竞赛可以分为四个层面,一是美国大学生数学建模竞赛(MCM/ICM),是由美国数学及其应用联合会(CO-MAP)主办,并得到了SIAM,NSA,INFORMS等多个组织的赞助,是一项具有世界影响的国际级竞赛,为现今各类数学建模竞赛的鼻祖。二是全国大学生数学建模竞赛(CUMCM),是由教育部高等教育司、中国工业与应用数学学会联合主办,并得到了高等教育出版社、美国COMAP公司的支持与赞助,是一项全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。三是地区级、省级、专业类别赛事,如,东三省数学建模联赛是由黑、吉、辽三省高校联合发起的科技赛事;电工杯数学建模竞赛是由中国电机工程学会电工数学专业委员会主办的科技活动;数学中国数学建模国际赛(小美赛)是由数学学会与数学中国(www.madio.net)和第五维信息技术有限公司协办的全国性数学建模活动。四是由校级开展的数学建模竞赛活动。在竞赛中,调整好心态、应用好文献资源、积极思考、发挥每个队员的长处、合理分工是取得成绩的必要条件。

(2)数学建模实践。要善于发现学习和生活中的诸多问题,要学会用数学的眼光看待问题,要用数学建模的方法来解决。例如,在课程设计、毕业设计中,在校园生活中,可能面临着方方面面的问题。要学会观察实际现象,提炼出要解决的问题。要真正做到学会发现问题、解决问题,这需要一定的练习过程,也是学好数学建模的必要环节,可以提升自身的综合素质和创新能力。

四、数学建模提高学生的综合能力

一次参赛,终身受益。数学建模最能激发人的潜能,数学建模思维方式会影响学生今后的学习和工作方法。数学建模教学内容及教学方法对培养学生的综合能力尤为突出。主要体现在:

(1)培养学生的想象力、洞察力和创新能力。不论是数学建模课程学习还是实践,都是针对实际问题,需要学生主动查阅文献资料和学习新知识,主动探索,提出解决方案,这种学习方式促进了创新能力的形成,也培养了学生从事科研工作的初步能力;同时增强了运用数学知识和计算机技术解决实际问题的能力和团队协作能力。

篇5

关键词:数学建模;图论;实践

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)45-0233-03

一、引言

图论是组合数学的一个重要分支。它以图为研究对象,这种图由若干给定的点及连接两点的边所构成,通常用来描述某些事物之间的某种特定关系,以点代表事物,以连接两点的边表示两个事物间具有这种关系。图论的应用非常广泛,在实际的生活生产中,有很多问题可以用图论的知识和方法来解决,其应用性已涉及物理学、化学、信息论、控制论、网络理论、博弈、运输网络、社会科学以及管理科学等诸多领域。目前高校很多课程都涉及到图论知识,例如离散数学、数据结构、算法分析与设计、运筹学、组合数学、拓扑学、网络优化等。甚至有些专业将图论作为一门必修或选修课程来开设。

由于图论课程具有概念多、公式复杂和定理难证明、难理解等特点,在一定程度上造成教学难,证明抽象度高,学生难以理解,学生不能真正理解图论思想,更谈不上灵活运用图论知识来解决各种实际问题。从而会使学生感到图论的学习非常枯燥。大学数学课程教学改革的趋势,越来越注重数学的应用性,而数学建模过程就是利用已经掌握的数学知识来解决实际问题的过程。在当前实现数学作为一种应用能力的过程中,使用数学解决实际问题的能力培养是非常重要和必需的。因此,在大学数学类课程的教学中融入数学建模思想是目前数学课程教学改革的一个大的趋势。由于图论的概念和定理大多是从实际问题中抽象出来的,因此图论中的诸多模型和算法是数学建模强有力的理论依据。所以在图论课程教学中注重介绍这些概念和理论的实际背景,引导学生利用数学建模思想方法学习图论的相关概念和定理,探究图论的发展规律,从而将更好地帮助学生理解和掌握这些概念和理论。

二、数学建模思想方法

数学模型就是用数学语言,通过抽象、简化,建立起来的描述客观事物的特征及其内在联系的数学结构。这个结构可以是公式、方程、表格、图形等。把现实模型抽象、简化为某种数学结构(即数学模型)之后,我们就可以用相关的数学知识来求出这个模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,这个过程便称为数学建模。其目的是将复杂的客观事物或联系简单化并用数学手段对其进行分析和处理。建立数学模型解决现实问题要经过模型准备、模型假设、模型构成、模型求解和模型分析这五个步骤。模型准备就是了解问题的实际背景,明确建模目的,搜集必要的各种信息,尽量弄清对象的特征,形成一个比较明晰的“问题”。模型假设是根据对象的特征和建模目的,抓住问题的本质,做出必要的、合理的简化假设。模型构成是根据所作的假设,用数学的语言、符号描述对象的内在规律,建立包含常量、变量等的数学模型。模型求解是采用解方程、画图形、优化方法、数值计算、统计分析等各种数学方法,特别是数学软件和计算机技术求解。模型分析就是对求解结果进行数学上的分析,并解释为对现实问题的解答。由此可见,思想数学建模就是将数学的理论知识应用于解决实际问题,培养数学建模思想就是锻炼应用数学的能力。

在图论的教学中引入数学建模思想,将生活中的实际问题引入课堂,利用图论知识分析实际问题,让学生感受到图论贴近生活。教学中可以引导学生自己寻找与图论相关的实际问题,利用图论知识建立实际问题的数学模型,并进行报告和讨论,让学生发表自己的见解和看法,在此过程中有助于学生对所学知识的融会贯通和掌握,大大提高学生学习图论的兴趣。

三、数学建模思想方法融入图论教学的实践

目前,各门数学课程教学改革所面临的一个课题是如何增强应用数学知识解决实际问题的意识。在这样的背景下,加之图论知识的应用广泛性,从而,将数学建模的思想方法融入到图论课程教学中的研究和实践已显得刻不容缓。因此,结合图论教学内容有机地增加数学建模教学内容,使广大的学生能学习和体会到数学建模的基本思想方法,在日常的学习中培养学生应用图论知识的意识,激发了学生学习图论的积极性。

(一)在图论定理公式中渗入建模的案例

在图论某些定理证明的教学过程中可以适当地融入数学建模的思想与方法,把定理的结论看作一个特定的模型,需要去建立它。于是,当把定理的条件看作是模型的假设时,可根据预先设置的问题,情景引导学生发现定理的结论,从而定理证明的方法也随之显现。

案例1:设为任意无向图,V={v1,v2,…,vn},|E|=m,证明所有顶点的度数和=2m,并且奇点个数为偶数。

解析:证明该结论之前,首先任意选取若干个学生让其随机互相握手,并记下每个人的握手次数和每两人之间握手的次数,由此可得每个人握手次数总和是每两人之间握手次数的2倍以及握过奇数次手的人数一定是偶数。互动之后介绍该定理称之为握手定理,从互动过程中可以建立定理结论的模型,并且证明的思路也是显而易见的。

(二)在应用性例题中渗入数学建模的方法

案例2:一家公司生产有c1,c2,c3,c4,c5,c6,c7七种化学制剂,其中制剂(c1,c2),(c1,c4),(c2,c3),(c2,c5),(c2,c7),(c3,c4),(c3,c5),(c3,c6),(c4,c5),(c4,c7),(c5,c6),(c6,c7)之间是互不相容的,如果放在一起能发生化学反应,引起危险。因此,作为一种预防措施,该公司必须把仓库分成互相隔离的若干区,以便把不相容的制品储藏在不同的区,问至少要划分多少小区,怎样存放才能保证安全。

解析:首先建立模型,用图来表示实例中这些制剂和他们之间关系,用顶点v1,v2,v3,v4,v5,v6,v7,表示c1,c2,c3,c4,c5,c6,c7表示七种化学制品,把不能放在一起的两种制品对应的顶点用一条边连接起来,如图1。

模型求解:由图可得极小覆盖的逻辑表达式为:

(v1+v2v4)(v2+v1v3v5v7)(v3+v2v4v5v6)(v4+v1v3v5v7)(v5+v23v4v6)(v6+v3v5v7)(v7+v2v4v6)

利用逻辑代数法则简化上述逻辑表达式为:

v1v3v5v7+v2v3v4v5v6+v2v4v5v6+v2v3v4v6

从而可得全部极小覆盖为:

(v1,v3,v5,v7),(v2,v3,v4,v5,v7),(v2,v4,v5,v6),(v2,v3,v4,v6)

由于极大独立集与极小覆盖集之间互补的关系,所以上图的所有极大独立集为(v2,v4,v6),(v1,v6),(v1,v3,v7),(v1,v5,v7).取图G的一个极大独立集V1=(v2,v4,v6),将其着第一种颜色。在VG-V1中,所有极大独立集为,(v1,v3,v7),(v1,v5,v7),取V2=(v1,v3,v7)将其着第二种颜色。在VG-V1-V2中仅有点v5,将其着第三种颜色,故χ(G)=3.

于是得到该化学制品的存放方案:至少需要把仓库划分为3个区,可以将c2,c4,c6三种制品,c1,c3,c7三种制品和制品c5分别存放在一个区。

(三)设计相关数学建模问题,提高学生应用图论知识解决实际问题的能力

由于教学课时的限制,将数学建模的思想方法融入图论课程教学时,不能专门地让学生学习建模,只能通过一些简单的模型给学生介绍数学建模的思想及方法。图论是现代数学的一个重要分支,在自然科学、社会科学、机械工程中有重要的意义,其求解思想渗透到自然学科的各个领域。因此,可以通过设计一些与图论课程相关的课外建模活动,选择符合学生实际并贴近生活的一些图论问题,启迪学生的论文查阅意识和能力,指导学生阅读相关论文,最后以解题报告或小论文的形式提交他们的结果。促进学生应用图论知识解决实际问题的能力。

四、结语

将数学建模思想方法融入图论课程的教学中,使图论课程教学与数学建模有机结合起来,激发学生学习图论的兴趣,培养学生勇于探索的精神,提高学生的动手能力,实践表明这些方法能较好地提高图论课程的教学效果。

参考文献:

[1]Bondy J A,Murty U S R.Graph theory with applications[M].North-Holland:Elsevier,1976.

[2]翟明清.浅析图论教学[J].大学数学,2011,27(5):23-26.

[3]定向峰.将数学建模的思想和方法融入图论课程教学中的一点尝试[J].重庆教育学院学报,2006,19(6):28-31.

[4]张清华,陈六新,李永红.图论教育教学改革与实践[J].电脑知识与技术,2012,8(34):8235-8237.

[5]姜启源,谢金星,叶俊.数学模型[M].第4版.北京:高等教育出版社,2011.

篇6

关键词:数学建模;Matlab;插值

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)21-0262-02

一、引言

数学建模运用数学的思想方法、数学的语言去近似刻画一个实际研究对象,构建一座沟通现实世界与数学世界的桥梁,并以计算机为工具,应用现代计算技术,达到解决各种实际问题的目的。Matlab是一种应用于科学计算领域的高级语言,其产生是与数学计算紧密联系在一起的,主要功能包括数值计算、符号计算、绘图、编程以及应用工具箱。近年来,随着实际问题的数据规模越来越大,Matlab在数学建模中占据越来越重要的地位。

本文对Matlab在数学建模课中的应用进行讨论分析,阐述了数学建模这门学科的特点及数学建模教学中存在的问题。在数学建模课中突出基本知识的实际应用,需要针对不同问题的计算要求灵活使用Matlab编程。

二、数学建模的特点及教学中的问题

数学建模是一个实践性很强的学科具有以下特点:

(一)涉及广泛的应用领域

在涉及广泛的应用领域,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等。完全不同的实际问题,在一定的简化假设下,它们的模型是相同或近似的。这就要求学生培养广泛的兴趣,拓宽知识面,从而发展联想力,通过对各种问题的分析、研究和比较,逐步达到触类旁通的境界。

(二)需要灵活运用各种数学知识

在数学建模过程中,数学始终是一种工具。要根据实际问题的需要,灵活运用各种数学知识如微分方程、运筹学、概率统计、数值分析、图论、层次分析、变分法等,去描述和解决实际问题。这就要求学生既要加深数学知识的学习,更要培养应用已学到的数学方法及思想进行综合应用和分析,并进行合理地抽象和简化的能力。

(三)技术手段的配合

需要各种技术手段的配合,如查阅文献资料、使用计算机和各种数学软件如Matlab、lingo等。

(四)建立一个数学模型与求解一道数学题目差别极大

求解数学题目往往有唯一正确的答案,但数学建模没有唯一正确的答案。对同一个实际问题可能建立若干个不同的模型,模型无所谓对与错,评价模型优劣的标准是实践。

(五)建立的数学模型与建模的目的有密切关系

对同一个实际对象,建模目的的不同导致建模的侧重点和出发点不同。因此,对一个世界问题,数学建模没有确定的模式,它与问题的性质、建模的目的、建模者自身的数学素质有关,甚至还与建模者的灵性有关,经验、想象力、洞察力、判断及直觉、灵感在建模过程中起着与数学知识同样重要的作用。

数学建模是一门科学,一门艺术,要成为一名出色的艺术家,需要大量的观摩和前辈的指导,最重要的是要亲身的实践。同样要掌握数学建模这门艺术,既要学习、分析、评价、改进前人做过的模型,更要亲自动手做一些实际题目。

几年的“数学建模”教学实践告诉我们,大学生参加数学建模活动,不但要求学生必须了解现代数学各门学科知识和各种数学方法,把所掌握的数学工具创造性地应用于具体的实际问题,构建其数学结构,还要求学生熟悉Matlab、lingo等数学软件,熟练地把现代计算机技术应用于解决当前实际问题,最后还要具有把自己的实践过程和结果叙述成文字的写作能力。目前,数学建模教学中的主要问题是两个“脱节”,一是实际问题与理论知识脱节,二是理论教学与数学软件的应用脱节。结合Matlab进行数学建模教学能够有效地解决理论教学与应用数学软件的脱节。

三、结合Matlab进行数学建模教学

数学建模竞赛能否取得好成绩不仅取决于模型的精妙与合理,还取决于模型的求解。Matlab在模型的求解方面占有关键的地位[1]。因此,结合Matlab进行数学建模教学将起到事半功倍的效果。下面以讲解插值方法为例,说明Matlab在数学建模教学中的重要性和必要性。

在插值方法教学中,首先需要讲解插值法的定义,然后简单讲解拉格朗日插值、分段线性插值和样条插值,最后重点讲解Matlab插值工具箱及其应用。在Matlab插值工具箱中,插值函数分为一维插值函数和二维插值函数两类。Matlab中一维插值函数是interp1[2],语法为:y=interp1(x0,y0,x,'method')。其中:method指定插值的方法,默认为分段线性插值,其值可为nearest、linear、spline和cubic。所有的插值方法要求x0是单调的。

例1:(机床加工)待加工零件的外形根据工艺要求由一组数据(x,y)给出(在平面情况下),用程控铣床加工时每一刀只能沿x方向和y方向走非常小的一步,这就需要从已知数据得到加工所要求的步长很小的(x,y)坐标。给出的(x,y)数据(程序中的x0,y0)位于机翼断面的下轮廓线上,假设需要得到x坐标每改变0.1时的y坐标。试完成加工所需数据,画出曲线。

解:编写程序如下:

x0=[0 3 5 7 9 11 12 13 14 15];y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6];x=0:0.1:15;y1=interp1(x0,y0,x,'nearest');y2=interp1(x0,y0,x,'linear');y3=interp1(x0,y0,x,'spline');plot(x0,y0,'*',x,y1,'r',x,y2,'b',x,y3);

通过运行结果可以看出,三次样条插值的结果最好,建议选用三次样条插值的结果。

Matlab中二维插值函数之一是interp2,语法为:z=interp2(x0,y0,z0,x,y,'method')。其中:x0,y0分别为m维和n维向量,表示节点;z0为n×m矩阵,表示节点值;x,y为一维数组,表示插值点。

例2:(地貌图形的绘制)下表所列为某次地貌测量所得的结果,对一方形区域(x,y方向均为从1-10),选测某些地点测量其相对于某水平面高度的数据,要求用这些数据(程序中的h)尽量准确地绘制出该地区的地形。

解:此题的关键是将未测量地点的高度用插值方法求出来。程序如下:

[x,y]=meshgrid(1:10);

h=[0 0.02 -0.12 0 -2.09 0 -0.58 -0.08 0 0;0.02 0 0 -2.38 0 -4.96 0 0 0 -0.1;0 0.1 1 0 -3.04 0 -0.53 0 0.1 0;0 0 0 3.52 0 0 0 0 0 0;-0.43 -1.98 0 0 0 0.77 0 2.17 0 0;0 0 -2.29 0 0.69 0 2.59 0 0.3 0;-0.09 -0.31 0 0 0 4.27 0 0 0 -0.01;0 0 0 5.13 7.4 0 1.89 0 0.4 0;0.1 0 0.58 0 0 1.75 0 -0.11 0 0;0 -0.01 0 0 0.3 0 0 0 0 0.01];[xi,yi]=meshgrid(1:0.15:10);

hi=interp2(x,y,h,xi,yi,'spline');surf(xi,yi,hi);

通过运行结果可以看出,利用样条插值得到的数据绘制出了效果较好的地貌形态图。

在数学建模的插值法教学中,重点不是讲解插值法的理论,而是讲解插值法的应用,即如何应用插值法解决实际问题。在这个教学过程中MATLAB占有重要的地位。因为MATLAB能够利用其内部插值函数及有限的数据产生所需的足够的数据,并能够绘制出相应的图形。关键是这一过程的实现MATLAB比其他软件容易得多。[3]有了MATLAB的帮助,数学建模的教学不会像以前那样将重点放在理论讲解上,从而使得大学生有更大的兴趣学习数学建模,并利用学到的知识探索解决实际问题。

四、结论

结合MATLAB进行数学建模教学,能够大大提高学生学习数学建模的积极性,能够有效地解决理论教学与应用数学软件的脱节,能够大大提高教学质量和教学效果。因此,结合MATLAB进行数学建模教学是重要的,也是必要的。

参考文献:

[1]温一新,王涛.数学实验和数学建模教学中数学软件应用的实例分析[J].大学数学,2014,30(5):26-30.

篇7

2对数学建模在培养学生能力方面的认识

数学建模是一种微小的科研活动,它对学生今后的学习和工作无疑会有深远的影响,同时它对学生的能力也提出了更高的要求[2]。数学建模思想的普及,既能提高学生应用数学的能力,培养学生的创造性思维和合作意识,也能促进高校课程建设和教学改革,激发学生的创造欲和创新精神。数学建模教学着眼于培养大学生具有如下能力:

2.1培养“表达”的能力,即用数学语言表达出通过一定抽象和简化后的实际问题,以形成数学模型(即数学建模的过程)。然后应用数学的方法进行推演或计算得到结果,并用较通俗的语言表达出结果。

2.2培养对已知的数学方法和思想进行综合应用的能力,形成各种知识的灵活运用与创造性的“链接”。

2.3培养对实际问题的联想与归类能力。因为对于不少完全不同的实际问题,在一定的简化与抽象后,具有相同或相似的数学模型,这正是数学应用广泛性的表现。

2.4逐渐发展形成洞察力,也就是说一眼抓住(或部分抓住)要点的能力。

3有关数学建模思想融入医学生高等数学教学的几个事例3.1在关于导数定义的教学中融入数学建模思想

在讲导数的概念时,给出引例:求变速直线运动的瞬时速度[3,4],在求解过程中融入建模思想,与学生一起体会模型的建立过程及解决问题的思想方法。通过师生共同分析讨论,有如下模型建立过程:

3.1.1建立时刻t与位移s之间的函数关系:s=s(t)。

3.1.2平均速度近似代替瞬时速度。根据已有知识,仅能解决匀速运动瞬时速度的问题,但可以考虑用某段时间中的平均速度来近似代替这段时间中某时刻的瞬时速度。对于匀速运动,平均速度υ是一常数,且为任意时刻的速度,于是问题转化为:考虑变速直线运动中瞬时速度和平均速度之间的关系。我们先得到平均速度。当时间由t0变到t0+Δt时,路程由s0=s(t0)变化到s0+Δs=s(t0+Δt),路程的增量为:Δs=s(t0+Δt)-s(t0)。质点M在时间段Δt内,平均速度为:

υ=Δs/Δt=s(t0+Δt)-s(t0)/Δt(1)

当Δt变化时,平均速度也随之变化。

3.1.3引入极限思想,建立模型。质点M作变速运动,由式(1)可知,当|Δt|较小时,平均速度υ可近似看作质点在时刻t0的“瞬时速度”。显然,当|Δt|愈小,其近似程度愈好,引入极限的思想来表示|Δt|愈小,即:Δt0。当Δt0时,若趋于确定值(即极限存在),该值就是质点M在时刻t0的瞬时速度υ,于是得出如下数学模型:

υ=limΔt0υ=limΔt0Δs/Δt=limΔt0s(t0+Δt)-s(t0)/Δt

要求解这个模型,对于简单的函数还比较容易计算,而对于复杂的函数,极限值很难求出。但观察到,当抛开其实际意义仅从数学结构上看,这个数学模型实际上表示函数的增量与自变量增量比值、在自变量增量趋近于零时的极限值,我们把这种形式的极限定义为函数的导数。有了导数的定义,再结合导数的运算法则和相关的求导法则,前面的这个模型就从求复杂函数的极限转化为单纯求导数的问题,从而很容易求解。

3.2在定积分定义及其应用教学中融入数学建模思想对于理解与掌握定积分定义及其在几何、物理、医学和经济学等方面的应用,关键在于对“微元法”的讲解。而要掌握这个数学模型,就一定要理解“以不变代变”的思想。以单位时间内流过血管截面的血流量为例,我们来具体看看这个模型的建立与解决实际问题的整个思想与过程。

假设有一段长为l、半径为R的血管,一端血压为P1,另一端血压为P2(P1>P2)。已知血管截面上距离血管中心为γ处的血液流速为

V(r)=P1-P2/4ηl(R2-r2)

式中η为血液粘滞系数,求在单位时间内流过该截面的血流量[3,4](如图1(a))。

图1

Fig.1

要解决这个问题,我们采用数学模型:微元法。

因为血液是有粘性的,当血液在血管内流动时,在血管壁处受到摩擦阻力,故血管中心流速比管壁附近流速大。为此,将血管截面分成许多圆环来讨论。

建立如图1(b)坐标系,取血管半径γ为积分变量,γ∈[0,R]于是有如下建模过程:

①分割:在其上取一个小区间[r,r+dr],则对应一个小圆环。

②以“不变代变”(近似):由于dr很小,环面上各点的流速变化不大,可近似看作不变,所以可用半径为r处圆周上流速V(r)来近似代替。此圆环的面积也可以近似看作以圆环周长2πr为长,dr为宽的矩形面积2πrdr,则该圆环内的血流量可近似为:ΔQ≈V(r)2πrdr,则血流量微元为:dQ=V(r)2πrdr

③求定积分:单位时间内流过该截面的血流量为定积分:Q=R0V(r)2πrdr。

以上实例,体现了微元法先分割,再近似,然后求和,最后取极限的建模过程,并成功把所求量表示成了定积分的形式,最终可以应用高等数学的知识求出所求量的建模思想。

4结语

高等数学课的中心内容并不是建立数学模型,我们只是通过数学建模强化学生的数学理论知识的应用意识,激发学生学习高等数学的积极性和主动性。所以在授课时应从简洁、直观、结合实际入手,达到既有助于理解教学内容,又可以通过对实际问题的抽象、归纳、思考,用所学的数学知识给予解决。所选的模型,最好尽可能结合医学实际问题,且具一定的趣味性,从而使学生体会到数学来源于生活实际,又应用于生活实际之中,以激发学生学好数学的决心,提高他们应用数学解决实际问题的能力[5]。

总之,高等数学教学的目的是提高学生的数学素质,为进一步学习其专业课打下良好的数学基础。教学中融入数学建模思想,可使学生的想象力、洞察力和创造力得到培养和提高的同时,也提高学生应用数学思想、知识、方法解决实际问题的能力。

【参考文献】

[1]洪永成,李晓彬.搞好数学建模教学提高学生素质[J].上海金融学院学报,2004,3:(总63)6.

[2]姜启源.数学模型[M].北京:高等教育出版社,1993,6.

[3]梅挺,邓丽洪.高等数学[M].北京:中国水利水电出版社,2007,8.

[4]梅挺,贾其锋,张明,等.高等数学学习指导[M].北京:中国水利水电出版社,2007,8.

[5]蔡文荣.数学建模与应用型人才培养[J].闽江学院学报(自然科学版),27(2),2006,4.

篇8

关键词: 数学建模 教学实效 对策

随着“全国大学生数学建模竞赛”活动的蓬勃发展,国内越来越多的高校将数学建模课程作为必修或选修课引入课堂。数学建模是运用数学知识和方法,创造性地分析、解决实际问题的一种强有力的数学手段,并且其解决的问题涵盖自然科学、工程技术、生物、医学、农业、经济管理等多个领域,是培养学生创新能力和实践能力的有效途径。数学建模课程和数学建模竞赛的重要性日益突出,越来越多的非数学专业学生加入到数学建模课程的学习中来。但作为一门新兴的、发展时间较短的课程,数学建模的教学体系并不完善,教学方法和手段也不成熟。尤其是一些起步较晚,缺乏数学建模师资团队的院校普遍感到数学建模课程教学中存在一定困难,教学质量不高,很难达到预期的教学效果。作为数学建模选修课的教师,我结合自身教学实践,对其中存在的问题和原因进行了分析,并提出了一些提高数学建模课程教学实效的对策。

一、现状分析

(一)学生普遍反映课程内容繁、难,导致兴趣减退。

我在教学实践中发现,除少数学生是为了取得一定学分而选修本课程外,多数学生选课的初衷是希望通过本课程学到应用数学解决实际问题的方法,提高自身的综合能力,并将数学建模的思想方法用于自己专业的学习研究中。但随着课程的深入,多数学生会感到学起来颇为吃力。我认为主要原因在于学生已经习惯了传统数学课程的教学模式,而数学建模涉及知识广泛,没有固定的解决思路,问题和解答都是开放性的,使学生感到无从下手,从而导致信心和兴趣的减退。

(二)教师自身缺乏教学经验,教学方法单一。

数学建模课程是在近二十年内迅速发展起来的,在大学数学课程体系中是一门新兴课程。许多高校,尤其是类似我校区这样的近年才起步的学校,普遍存在的问题是教师自身教学经验的缺乏。数学建模课程对教师的要求比一般数学类课程高,该课程需要教师对数学各分支的知识都有一定了解,并且自身具备较强的分析问题、解决问题的能力,有指导数学建模的经验和能力,这需要一个长期积累的过程。而目前一些院校的数学建模教师是缺乏经验的青年教师,自身也处于一个学习积累的阶段,对所讲授内容的理解并不透彻,就勉为其难地站在了讲台上。这样教师在课堂教学中难免出现照本宣科的现象,教学方法和手段也是照搬一般数学课程的模式,偏重数学模型中数学知识的介绍,而忽略了问题背景、数学思想、模型形成的思想方法的介绍,这实际上是本末倒置的。

(三)课程设置预期目标过高,未从实际情况出发。

许多学校希望通过开设数学建模选修课来提高本校学生参加建模竞赛的水平,但是选修该课程的学生并不全是为竞赛而来的,有的学生只是想通过本课程了解运用数学解决问题的途径和方法,学生的能力参差不齐。希望通过该课程尽快提高学生的数学建模能力和水平,并在竞赛中取得好成绩,这样的目标定位太高,从而导致教学内容偏难,使多数学生望而生畏,物极必反。

二、提高课程教学实效的对策

“兴趣是最好的老师”。教师必须在教学内容、教学方法、教学水平等多方面下工夫,不断提高学生的学习热情和兴趣。只有让学生对数学建模课程有了浓厚的兴趣,才能使其学好数学建模,才能强化教学效果。

(一)优选教学内容,紧密联系生活实际。

目前有关数学建模的教材和教学参考书很多,其中较为常用的有[1-3]。这些教材中含有涉及各专业领域的丰富模型。在实际教学中,受到课时的限制,我们没有必要也不可能讲解所有模型。教师可以根据本校学生专业特点,挑选一些与学生所学专业相关联的,或与实际生活联系较为密切的模型作为教学内容;还可以自己改编一些案例。比如在讲“传染病模型”[1]时,就可以修改成2003年的竞赛题“SARS的传播”,在介绍“层次分析模型”[1]时,可以为学生量身定制一个就业选择模型。在教学内容的选择上,应注意不要涉及太深奥的专业知识,尽量选择与生活密切联系的模型案例。这样的案例能够引起学生的兴趣,提高学生学习的积极性。

(二)优化教学方法,授课形式灵活多样。

本课程适合采用灵活多样的授课形式,其中案例教学法[4]被认为是比较适合数学建模课程的教学方法。我认为在讲解案例时,应充分结合课堂讨论与互动,让学生参与其中。例如在介绍“市场经济中的蛛网模型”[1]时,教师先介绍基本模型,并提出模型推广的设想,然后让学生就建模过程进行课堂讨论。只有让学生亲自参与进来,自己主动思考,在建模实践中获得真知,学生的创新能力和实践能力才能得到真正的提高。

(三)明确课程定位,合理制定教学目标。

目前,一些学校开设数学建模课程的目的比较功利,希望通过该课程来培养参加竞赛的选手,以期在大赛上有所斩获。这样的课程定位,违背了开设数学建模课程主要是为了培养学生应用数学知识解决实际问题能力的初衷。我们应该把“提高学生的数学素质,让更多学生了解运用数学知识解决问题的思想方法,并在一定程度上培养学生抽象思维、逻辑推理、创新实践等能力”作为数学建模课程教学的根本目标。明确了课程定位,对课程内容的设置就不会出现偏难而让学生难以理解的状况,这样才能真正达到本课程希望实现的目标。

(四)积累教学经验,不断提高教学水平。

提高教学实效的关键在于提高教师的教学水平。数学建模对教师的知识结构和分析解决问题的能力要求很高。要上好这门课,授课老师必须在课外花大量时间和精力来钻研业务,并且应该自己动手多做题、多思考,尝试着做一些经典案例用于课堂教学,这样才能不断积累数学建模的教学经验。对于类似我校区这样经验不足、缺乏教学团队的学校,还应该主动走出去,参加专业培训,与数学建模做得比较成功的院校交流经验,开阔视野,通过多种渠道提高自身水平。

(五)组织校内竞赛,鼓励学生参与体验。

在教学中适当给学生一些激励,能够调动学生学习的积极性。以我校区的现状,如果要求学生近期在全国竞赛中获奖。这样的要求未免过高,会让学生产生挫败感。我们不妨在学校范围内组织小型数学建模竞赛,鼓励学生参与其中,让学生体会到解决问题的成就感,进而加深对数学建模的兴趣,形成良性循环,逐步增强教学效果。

总之,数学建模是提高学生综合素质的重要途径之一。作为教师,我们要在准确的课程定位下,立足于激发学生学习数学建模的兴趣,不断探索行之有效的教学方法和授课模式,努力提升自身水平,切实提高数学建模课程的教学实效。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型(第四版)[M].北京:高等教育出版社,2011.

[2]杨启帆,谈之奕,何勇.数学建模[M].杭州:浙江大学出版社,2006.

篇9

Abstract: This paper discussed the thought of introducing mathematical modeling to higher vocational differential equation teaching, through the analysis of the present situation of higher vocational students' mathematics study, proposed the significance and method of introducing mathematical modeling to ordinary differential equation teaching and its application of ordinary differential equations in mathematical modeling, to enable students to experience the fun of applying mathematical knowledge solving practical problems, improve student's mathematics quality, and achieve the goal of teaching reform.

关键词: 高职;常微分方程;数学建模;应用

Key words: higher vocational;ordinary differential equation;mathematical modeling;application

中图分类号:O175 文献标识码:A 文章编号:1006-4311(2013)24-0222-02

1 微分方程产生的背景

微分方程作为数学领域的中心学科至今已有近300年的发展历史。1676年詹姆士·贝努利致牛顿的信中第一次提出微分方程,直到十八世纪中期,微分方程才成为一门独立的学科。微分方程建立后,立即成为研究、了解和知晓现实世界的重要工具。1846年,数学家与天文学家合作,通过求解微分方程,发现了一颗有名的新星——海王星。1991年,科学家在阿尔卑斯山发现一个肌肉丰满的冰人,据躯体所含碳原子消失的程度,通过求解微分方程,推断这个冰人大约遇难于5000年以前,类似的实例还有很多。微分方程在物理学、工程学、力学、天文学、生物学、医学、经济学等诸多领域都有重要作用。

2 数学建模及思想

科技的突飞猛进和社会的快速发展要求相关工作人员灵活运用数学思维方式来解决各行业各学科涌现出的大量的实际问题,从而取得更大的社会和经济效益。数学模型(Mathematical Model)是将实际问题转化成相关的数学问题,即研究分析复杂的问题并发现其中的关系和内在规律,进而用数学语言来表达。数学建模(Mathematical Modeling)是建立数学模型的一个过程,它将数学和实际问题结合起来,成为数学在相关领域被广泛应用的媒介。微分方程模型是数学建模中众多方法中的一种重要方法,其成为有效解决很多实际问题的一种数学手段。

常微分方程具有背景广、实际应用性强的特点,当前已经受到广泛关注。数学应该应用到大量的实际问题中这一观点已经在国内外新版教材中明确强调,并且编入了实际应用的例子。从而引导学生利用常微分方程来解决各种实际问题。将数学建模思想融入到教材和教学中,既可以让学生更深层次的领悟数学建模的方法和思想,又可以着重培养学生的应用数学的能力和数学思维方法,从而改变单纯地强调知识技能的教学方法。这意味着教学工作者正在逐步转变教学思想观念,是时代进步的标志。

3 高职学生数学学习现状分析

目前部分学生普遍认为大学数学属于枯燥的理论研究,通过套公式,记公式来应付考试,而没有实际的用处,造成学生对于大学数学的学习积极性不高,以及养成不良的学习习惯。同时我院的数学教学课时少(微分方程此章在教学计划中为12课时),任务又较重,造成学生学习数学的压力。因此,我们高职教师面临的重要任务是注重数学教学的方法和思想,帮助学生培养良好的数学学习习惯和学习方式,增强学生的对数学学习的自信心。

4 在常微分方程教学中渗透数学建模思想的意义及方法

常微分方程是高等数学教学内容中很重要的一部分,因为它的应用广泛,和专业课紧密联系,同时也是数学建模中处理问题的重要方法之一。在传统的教学模式下,学生在学习常微分方程这部分内容时只知道怎么解题,却不知道有什么用处,缺乏学习的动力和兴趣。很显然这样的教学模式已不适应现代社会发展的需求了。因此,全国高等院校数学课程指导委员会提出,“要加强对学生建立数学模型并利用计算机分析处理实际问题能力的培养与训练”,这说明学生需要将常微分方程,计算机等知识应用于实践,并且通过常微分方程与数学建模的有效结合来解决实际问题,在常微分方程中渗透了建模思想。

用微分方程解决问题有如下几个步骤:①提出实际问题;②根据实际问题列出微分方程,建立数学模型;③对方程进行更深层次的分析或者直接解微分方程;④分析微分方程的解来预测实际问题的发展趋势,即依据数学语言来解释实际现象或者预测实际问题。用数学语言如何阐述实际问题,如何合理假设,依据何种原理来建立微分方程,这些问题在教学讲解分析常微分方程模型时需要着重强调,适当可以利用一些数学软件。目前,我们可以通过建立微分方程模型来研究方程的解以及曲线随自变量的变化情况,逐步改变原有的只注重解题方法的关于微分方程的教学模式。用初等方法难以求出方程的解析解,这是因为模型是由复杂的方程和方程组构成。在此利用一些数学软件(Matlab,Mathematica)来求数值解并作数值模拟,从而可以提高学生灵活运用数学软件去研究和探索实际问题的能力,激发了学生的学习兴趣。

5 常微分方程在数学建模中的应用

本着“面向社会,服务专业”的精神。为了提高高职数学教学实效,提高学生学习数学的积极性,感受数学工具的价值,在建立常微分方程过程中,教师应注意数学建模思想的渗透。依据不同专业,选择和专业相关的案例。

为了调动学生学习的积极性,教师应该让学生用微分方程探索解决日常生活中遇到的问题。如利用微分方程探求凶杀案件中谋杀发生的时间,放射性废物处理问题,降落伞降落速度与时间函数关系,工、矿、化工等企业都涉及的通风问题,减肥问题,交通管理问题等等。这里举一个在讲分离变量法时介绍的案例,当一次谋杀发生后,尸体的温度从原来的37℃按照牛顿冷却定律开始下降,如果两个小时后尸体温度变为35℃,并且假定周围空气的温度保持20℃不变,试求出尸体温度随时间的变化规律。又如果尸体发现时的温度是30℃,时间是下午4点整,那么谋杀是何时发生的?下面我们来分析这个问题,首先要给学生介绍相关的牛顿冷却定律(物体在空气中冷却的速度与物体温度和空气温度之差成正比),首先设尸体的温度为H(t),其冷却速度为■,根据已知条件结合牛顿冷却定律列出方程为■=-k(H-20),初始条件为H(0)=37,这个方程对于初学者来说并不难,就是典型的可分离变量的微分方程,可以通过分离变量法解出其通解为H-20=Ce-kt,再将初始条件代入得C=17,为求出k值,根据两小时后尸体温度为35℃这一条件,有37=20+17e■,求得k≈0.063,于是温度函数为H=20+17e-0.063t,将H=30代入上式解出t≈8.4,于是,可以判定谋杀发生在下午4点尸体被发现前的8.4小时,即8小时24分钟,所以谋杀是在上午7点36分发生的。通过分析这个案例让学生体会到学习的乐趣,原来这个问题可以通过数学方法来解决,从而调动学生的积极性。数学建模思想的培养是一个长期的任务,任重而道远,教育工作者需要踏实的钻研和工作才能在教学中熟练的将常微分方程和数学建模有机结合起来,从而在教学中渗入数学建模思想。让学生自觉应用数学知识去观察和解决生活生产和科技中的问题,体会到应用数学知识解决实际问题带来的乐趣。同时提高学生的思考力,创造力和洞察力,能够增强学生应用数学思想和方法解决实际问题的能力。使其由知识型向能力型转化,全面提高学生的数学素质,达到实现教学改革的目标。

参考文献:

[1]高素志,马遵路,曾昭著等.常微分方程[M].北京:北京师范大学出版社,1985.

篇10

事实上,数学课程中强化数学的应用意识早已成为发达国家的共识。而我国目前数学课程中数学应用意识却十分淡薄,与世界数学课程发展的潮流极不合拍。事实上,数学及其应用曾是我国古代最发达的传统科学之一,以实用性、计算性、算法化以及注重模型化方法为特征的中国古代数学处于世界领先地位达千余年之久。但遗憾的是,具有应用功能的传统数学没有被及时纳入教育内容,或引发出必要的数学课程,因此它的发展和成就失去了传播的根基和土壤,随着社会的演变逐渐被人们所丢弃。近代中国经济发展相对落后,数学课程的建设主要是折衷地采用外国的研究成果。在应用方面,由于没有做适合于我们文化背景的贴切转换和补偿,造成应用意识的继续失落。当前,我国数学教材中的习题和考题多半是脱离了实际背景的纯数学题,或者是看不见背景的应用数学题。这样的训练,久而久之,使学生解现成数学题的能力很强,而把实际问题抽象化为数学问题的能力却很弱。面对新世纪的挑战,我们重建的数学课程应该注意将民族的数学应用成果及时纳入教育内容。在课程中及时增加反映在社会发展中的应用知识,并研究培养学生应用能力的对策,从而达到数学课程改革与社会进一步相一致。数学课程中强化“应用”既是一个复杂问题,又是一个长期未能解决好的问题。“应用”在数学教育中有许多解释,有些人为的非现实生活的例子,也可能有重要的教育价值,也可以培养学生应用数学的技能,不能一概否定。还有一类传统的例子是过分“现实”的,如直接从职业中拿出来的簿记、税收;如联系特殊地方工业的“三机一泵”。这就有一个“谁的现实”问题,这些例子只是社会的一些特殊需要,不足取。数学的重要性主要不在于这样的“应用”,它不可能总是结合学生的“现实”。正如卡尔松(Carson)所言:“现实是主体和时间的函数,对我是现实的,对别人未必是现实的;在我儿时是现实的,现在不一定再是现实的了”。

前面说的都是“现实”例子用来为数学教学服务,当数学用来为现实服务时,即当我们用数学解决问题时,情况就完全不同了,它是用数学去描述、理解和解决学生熟悉的现实问题。这种问题不仅有社会意义,而且不局限于单一的教学,还要用到学生多方面的知识,在这方面英国数学课程设计中的课程交叉值得我们学习借鉴。所谓课程交叉就是在某学科教学过程中,突出该学科与现实生活以及其它学科的联系。英国的数学课程交叉主要表现为:从现实生活题材中引入数学;加强数学与其它科目的联系;打破传统格局和学制限制,允许在数学课程中研究与数学有关的其它问题等。

数学课程中强化“应用”意识,落实到具体,必须在教材、教学、考试等方面都要增加用数学的意识。用数学的什么呢?可分为如下三个层次:

用结论用数学的现成公式,这是最低层次,人们最容易看到的地方。

用方法如方程的方法、图表的方法、分析与综合逻辑推理的方法等。

用思想研讨问题的一般过程,观察、分析、试验;从需要与可能两个方面考虑问题;逐步逼进;分类与归一;找特点、抓关键;从定性到定量等。通过用数学,学生才能理解知识、掌握知识;通过用数学,才能训练学生的思维。

值得指出的是,与课程中强化数学的应用意识相关的一个问题就是允许非形式化。首先,应恰当掌握数学理论形式化的水平,加强对理论实质的阐述。我们非常赞同“允许非形式化”的观点,“不要把生动活泼的观念淹没在形式演绎的海洋里”,“非形式化的数学也是数学”。数学课程要从实际出发,从问题出发,开展知识的讲述,最后落实到应用。例如,极限概念可以在小学圆面积公式、初中平面几何中圆周率的近似值的求法、高中代数等比数列求和等处逐步引进相关意识,在学微积分时才正式引入。只要不在形式化上过分要求,学生是不难接受并能加以运用的。其次,应恰当掌握对公式推导、恒等变形及计算的要求。随着计算机的普及,二十一世纪对手工计算的要求大大降低。从增强用数学的意识讲,也应降低对公式推导与恒等变形的要求,否则没有时间来讲应用。要充分利用几何直观,形象地加以说明。否则应用的重点难以突出,生动活泼的思维会淹没在繁难的计算和公式推导中,“增强用数学的意识”就会落空,学生思维水平也不会提高,新内容的引入将障碍重重。 转贴于

在此笔者要强调的是,要使数学课程中应用意识的增强落到实处,一个重要的举措就是数学课程应对数学建模必须给予极大的关注。数学模型是为了一定的目的对现实原型作抽象、简化后所得的数学结构,它是使用数学符号、数学式子以及数量关系对现实原型简化的本质的描述。而对现实事物具体进行构造数学模型的过程称为数学建模。也就是说,数学建模一般应理解为问题解决的一个侧面、一个类型。它解决的是一些非常实际的问题,要求学生能把实际问题归纳(或抽象)成数学模型(诸如方程、不等式等)加以解决。从数学的角度出发,数学建模是对所需研究的问题作一个模拟,舍去无关因素,保留其数学关系以形成某种数学结构。从更广泛的意义上讲,建模则是一种技术、一种方法、一种观念。

数学课程内容应是数学科学内容的“教育投影”,数学应用范围的不断扩大,迫切要求数学课程作出反应。人们发现,这些应用都有一个共同点,就是把非数学问题抽象成数学问题,借助于数学方法获得解决。因此,数学模型作为一门课程首先在一些大学数学系里被提倡。后来,人们又发现,传统的中小学数学课本中的应用仅仅是:把日常生活中的经济、商业、贸易和手工业中的问题用一定程序表达,内容只涉及计数、四则运算和测量等。这种应用无论是方式还是内容,与数学在现实生活中的应用相比,相差甚远。于是数学建模作为一种教学方式在中小学受到重视,通过“做数学”达到“学数学”的目的。

目前从整个范围来看,世界各国课程标准都要求在各年级水平或多或少地含有数学建模内容,但各国的具体做法又存在着很大差异,主要有以下几种。

①两分法。数学课程方案由两部分构成。前一部分主要处理纯数学内容;后一部分处理的是与前一部分纯数学内容相关的应用和数学建模,它有时是现成模型结果的应用,有时是整个建模过程。这种做法可简单地表示为:数学内容的学习数学应用和建模。

②多分法。整个教学可由很多小单元组成,每个单元做法类似于“两分法”。

③混合法。在这种做法里,新的数学概念和理论的形成与数学建模活动被设计在一起相互作用。这种做法可表示为:问题情景的呈现数学内容的学习问题情景的解决新的问题情景呈现新的数学内容的学习这个新的问题被解决……

④课程内并入法。在这种做法里,一个问题首先被呈现,随后与这问题有关的数学内容被探索和发展,直至问题被解决。这种做法要注意的是,所呈现问题必须要与数学内容有关并容易处理。