减少温室气体排放的途径范文

时间:2023-12-22 17:48:21

导语:如何才能写好一篇减少温室气体排放的途径,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

减少温室气体排放的途径

篇1

作者简介:王晓,博士,助理研究员,主要研究方向为中国低碳发展绩效与政策。

通讯作者:齐晔,博士,教授,博导,主要研究方向为气候变化政策。

基金项目:美国能源基金会项目“中国低碳经济研究”(编号:G-0911011739);清华大学自主科研计划学科交叉专项“我国低碳发展若干问题研究”(编号:20101082050)。

摘要本文从食物全生命周期环节、温室气体类型、温室气体直接排放源三方面系统分析了1996-2010年我国食物全生命周期温室气体排放特征。从食物生产和消费角度,确定我国饮食结构的转变、化肥高投入的传统农业生产模式、食物损失浪费三大趋势是导致食物全生命周期温室气体排放增长的主要因素。并提出转变食物消费方式,实现营养均衡膳食结构,减少不必要的肉类消费;生产方式上逐步实现从传统农业向有机农业的转变;加强宣传引导,最大限度减少食物餐桌浪费,同时加强食物物流环节基础设施建设,将分销配销过程的损耗降至最低。通过食物生产和消费方式的转变与技术进步相结合的方式,构建出适于我国的绿色、低碳、可持续的农业生产和食物消费模式。

关键词食物;全生命周期;温室气体;饮食结构

中图分类号X24文献标识码A文章编号1002-2104(2013)07-0070-07doi:10.3969/j.issn.1002-2104.2013.07.011

全球农业生产过程的能源消费碳排放、甲烷和氮氧化物排放占温室气体排放总量的11%-14%,农业成为全球温室气体主要排放源[1]。农业生产目的是提供人类生存必须的食物,从食物生产到消费的全过程看,服务于农业生产的化肥等投入品生产和运输过程,食物从田间到餐桌的运输、储藏、烹调过程均排放大量温室气体。

在气候变化的大背景下,国际社会尤其是发达国家已开始关注食物全生命周期过程的温室气体排放。美国、英国食物全生命周期温室气体排放分别占各自排放量的15%、19%,人均年排放量分别为3.1 tCO2-eq和2.7 t CO2-eq,欧盟25国和澳大利亚比例高达31%、30%[2-5]。国外研究显示,食物全生命周期温室气体排放与饮食结构、消费习惯关系密切。饮食结构的影响源自不同类型食物的温室气体排放系数差别较大。美国环境工作小组计算了美国各种食物全生命周期温室气体排放,动物性食物温室气体排放系数远高于植物性食物[6]。BernersLee研究显示英国的饮食结构是造成温室气体排放较大的原因,提出若以奶制品替代肉类甚至向素食转变可减少食物全生命周期排放的22%-26%[7]。随着消费水平的提高,餐桌食物浪费与日俱增,全球有1/3的食物被浪费掉,相应带来5%的不必要温室气体排放。国内尚未开展食物全生命周期温室气体排放的系统研究,从减缓气候变化方面多集中在技术层面,探讨减排途径、减排潜力及农业增汇措施[8-9]。对影响食物全生命周期温室气体排放的主要影响因素、各因素之间的内在联系及宏观发展趋势缺乏深刻认识。

本文系统分析了1996-2010年我国食物全生命周期温室气体排放特征,分别从食物生产和消费角度分析食物全生命周期温室气体排放增长的主要因素及潜在影响,旨在为政策制定和决策者提供参考依据。

1研究方法及数据

1.1食物全生命周期温室气体排放途径

食物全生命周期温室气体排放类型包含化石能源相关CO2排放及投入品生产、农业生产过程的非能源相关CO2、CH4、N2O排放(见图1)。

化石能源相关CO2排放来自农业投入品生产、农场/农户生产、农产品及食品加工制造、分销配销过程的运输冷藏、烹饪环节。农业投入品生产排放包括化肥、农药、农业机械折旧、农膜、饲料生产过程排放。

农业生产过程非能源相关CO2排放来自化肥(尿素)施用过程;CH4排放来自水稻种植、畜禽养殖的肠胃发酵及粪便管理过程排放;N2O排放来自化肥施用、畜禽养殖粪便管理过程排放;此外,化肥(硝铵类)生产过程也排放N2O。

图1食物消费全生命周期温室气体排放途径

Fig.1The greenhouse gases emission route of food

consumption during the life circle

注:植物性食物指粮食作物、油料、糖料、蔬菜、水果等经济作物;动物性食物指肉类(猪肉、牛肉、羊肉、禽肉)、蛋、奶、水产品。

1.2温室气体排放核算方法

王晓等:食物全生命周期温室气体排放特征分析中国人口・资源与环境2013年第7期1.2.1能源相关CO2排放

能源相关CO2排放根据化石能源消耗量、能源结构及各类能源的CO2排放系数计算。各环节能源消耗相关温室气体计算方法如下:

CO2i=Ei×∑nj=1pj×fi

式中:i表示食物全生命周期的农业投入品生产、农场/农户生产、加工制造、分销配销、烹饪环节;Ei表示i环节化石能源消费量,tce;j表示各环节所消耗的能源类型;pj表示j能源消费量占比; fj表示j能源的CO2排放系数,tCO2/tce。

(1)农业投入品生产能耗量及能源结构:假设技术锁定,以“十一五”期间平均能耗水平推算1996-2005年各产品生产化石能源消费量。①农药:生产1 t农药能耗约3 tce[10];②农膜:生产1t聚乙烯消耗1.009 t乙烯,521 kWh电力,“十一五”吨乙烯生产平均综合能耗为1 007 kgce,即生产1t农膜能耗1.12 tce;③农业机械折旧:农业机械用材90%为钢铁,以钢铁能耗核算。农业机械钢铁用量由各类农机使用年限、数量及重量计算。“十一五”吨钢综合能耗707 kgce/t;④化肥:按氮、磷、钾肥分别计算。磷、钾肥生产以电力消耗为主,每生产1 t P2O5、1 t K2O分别消耗2 512 kWh、2 225 kWh。氮肥生产根据氮肥种类、大中小型企业比例及产品单耗、能源结构综合估算1 t氮肥(折纯)生产排放6.49 tCO2[11]。根据各年氮、磷、钾肥消费结构推算化肥生产温室气体排放[12];⑤饲料:生产能耗包含在“农副食品加工业”统计中。

农药、农膜生产能源结构对应能源统计的化学原料及化学制品制造业,农业机械折旧能源结构对应黑色金属冶炼及压延加工业。

(2)农场/农户生产能耗量及能源结构:能源统计综合能源平衡表的农、林、牧、渔业终端消费量。

(3)加工制造能耗量及能源结构:能源统计的农副食品加工业、食品制造业、饮料制造业、烟草制品业能源消费量。

(4)烹饪能耗量及能源结构:清华大学建筑节能中心数据,我国每平方米建筑面积每年用于炊事的能耗量为1.5 kgce。城市能源结构以天然气为主,农村仅考虑商品能源消耗部分(不包括秸秆薪柴),能源结构对应能源统计综合能源平衡表的农村生活用能。

(5)分销配销能耗量及能源结构:缺乏直接统计数据,采用“投入产出法”的直接消耗系数和完全消耗系数计算各环节能耗系数[13-14]。计算农林牧渔水利业、农副食品加工业、食品制造业、饮料制造业、烟草制品业5大行业(16个子行业)的交通运输仓储相关的能耗,能源结构以油品为主。

篇2

【关键词】海运温室气体减排;海洋生态保护;法律保护

一、海运温室气体减排和海洋生态法律保护的必要性

根据世界贸易组织于2008年的关于贸易对气候变暖的影响的报告,全球约90%的货物由船舶运送,作为国际贸易运输的重要途径及世界经济稳定上升的重要途径,海运对于温室气体增加、海洋生态环境问题日益频繁出现有着不可避免的责任。根据国际海事组织(简称IMO)2009年的第二次温室气体研究报告:2007年全球海运业船队排放的二氧化碳就达10.46亿吨,占当年全球二氧化碳排放总量的3.3% [1]。

二、应对海运温室气体减排和海洋生态法律保护的问题

海运温室气体减排涉及到复杂的国际环境及各国不同的国内社会因素影响。

(一)修正案的生效条件较为为苛刻

迄今为止都缺少确定形式的法律文件来体现IMO的具体措施。法律文件的影响力通常都取决于被接受的广泛性,而“IMO早期的公约一般规定,公约的修正案应在该公约2/3缔约国接受后才能生效,这在一定程度上意味着修正案的生效条件甚至比公约的生效条件还要严格”[2]。

(二)缺乏具有强制法律约束力的国际法

首先,气候变化框架公约及IMO公约都仅在笼统的范围下做了指导性规范,对所有的缔约方都没有法律强制约束力。其次,由于海运明显的特殊性,《京都议定书》中“共同但有区别的责任”原则无法真正达到船舶温室气体减排的效果。最后,在“后京都时代”被寄予厚望的哥本哈根会议也由于各方分歧而未达成具有法律约束力的协议,一切的希望都还有赖于各个国家及国际组织的进一步谈判。

(三)发达国家未真正履行帮助发展中国家减排的义务

发达国家为实现其经济利益,刺激全球碳排放交易而放弃履行《联合国气候变化框架公约》(简称《公约》)和《京都议定书》中都明确规定的义务。“发达国家为了实现丰富的减排量收益,就以周期短、风险小、产出大的氟化氢等项目的开发作为优先选择。”[3]而这类温室气体的减排未能给发展中国家带来更为先进的技术,同时也忽视了《公约》及《京都议定书》规定的帮助发展中国家减排的义务。

(四)尚未达成统一的排放基准

《京都议定书》中只是简单的规定各缔约国排放量减少。而其他大部分未加入的国家虽然确定了排放基准,但是无法达成统一,例如2011年退出《京都议定书》的加拿大承诺2020年在2005年的基础上降低17%,却等效于2020年在1990年的基础上增加3%。

(五)排放权交易立法缺乏兼容性

排放权交易通常都对国家间及区域间的利益影响巨大,所以各方都会基于自己的现实状况选择最为有利的立法,从而导致彼此间缺乏兼容性且差异巨大。由于各国经济发展水平及技术程度的差异,排放权交易立法体系都不尽相同,加之各国产业结构、配套建设能力的差异,导致建立在一个国家或者区域的环境容量限度上的立法细节也有很大的区别。

(六)形成贸易壁垒

海运作为世界贸易最主要的沟通方式,政策性贸易壁垒相对其他运输方式已经较少,但目前,海运业温室气体减排的船舶技术与能源技术的掌握者主要是发达国家,对于任何未掌握这些技术的国家来说都会在事实上形成贸易壁垒,进而导致许多船舶无法进入或将付出过多的代价才能进入海运服务市场。

三、应对海运温室气体减排和加强海洋生态法律保护的对策

针对上述问题,应对海运温室气体减排和海洋生态法律保护的立法需要从以下方面进行完善。

(一)实行“默认接受”的程序

20世纪80年代以来,为了使重要的公约、修正案等法律文件能够尽快实施,IMO开始实行一种“默认接受”的程序,只要修正案在一定时间内没有达到规定数量的反对,即默认生效,这也是由于现实情况的逼迫而不得不采用的非常之举。如果简单的对《73/78防污公约》附则进行修改会给海运温室气体减排的国际立法带来更多的不确定性影响。

(二)制定具有强制法律约束力的国际法

由于《哥本哈根协议》不具有法律约束力,而坎昆国际气候大会上也没有使发达国家与发展中国家就海运温室气体减排达成一致的协议。由于“共同但有区别的责任”原则及“不优惠待遇”原则的对立,各国应该首先考虑在此基础上、去粗取精,努力探索出各方均能接受的多元化模式,尽快签订具有强制法律约束力的国际性规定。

(三)敦促发达国家帮助发展中国家的减排义务

按《哥本哈根协定》,发达国家要在2012年前每年筹措1000亿美元的资金以帮助发展中国家达成减排目标,但经过坎昆国际气候大会缺乏互信的谈判进程后发达国家长期资金援助的义务仍旧是“一纸空文”。明确发达国家义务,实行强制性的责任承担,寻找技术互助和资金补偿机制,通过签订协议有针对性的帮助发展中国家实现海运温室气体减排。

(四)指定统一基准,增加控制排放的法律力度

由于《京都议定书》的灵活性及未缔约国排放基准的不统一性,各国及各相关组织应本着兼顾公平效率的原则,共同合作达成具有可操作性的统一排放基准,为增加法律力度奠定基础,在此之上,各方才能对排放配额的标准的确定给予一定的灵活性。

(五)建立统一的排放权交易方式

建立统一的海运温室气体排放权交易体系应从存在差异的限额、客体、弹性程度等方面入手,首先,规定全球性海运温室气体排放上限,建立机构进行权威性监督。其次,扩大排放权交易客体范围,增加交易弹性程度扩大排放权交易立法的兼容性。最后,“借助联合国的清洁发展机制登记结算系统,将各国的排放权交易的登记结算系统与之相连,形成全球统一的登记结算平台”[4]。

(六)减少绿色贸易壁垒

从国际法角度分析,只要不在国家之间或者本国与他国之间构成歧视,IMO正在开展的制定海运温室气体减排法律制度的工作,均不应构成贸易壁垒。但也应认识到,在所有国家日益重视且设置越来越明显的今天,及时调整标准,避免国家间贸易壁垒之战才能从源头解决问题。

注释:

[1] International Maritime Organization.Second IMO GHG Study 2009.Emissions from shipping 1990-2007.、

[2] 任为民.海运温室气体减排国际法律制度研究.中国海商法年刊,2011年9月.

篇3

关键词:温室气体 排放 法律 措施

一、中国温室气体排放的现状

中国作为最大的发展中国家,其温室气体排放总量仅次于美国。2004年11月9日我国第一次通过官方渠道向缔约国提交了《中华人民共和国气候变化出事国家信息通报》。[1]《通报》内容显示仅在1994年中国的二氧化碳净排放量约为27亿吨。气候的迅速变化给发展中的中国带来了巨大的、难以承受的损失。截至目前,发展中国家二氧化碳排放总量的二分之一以上来自中国,全球二氧化碳排放总量的七分之一来自中国。预计到21世纪中叶,中国的能源消耗将占到全球能源总消耗的六成以上。

二、中国温室气体排放存在的若干问题

自1978年12月起中国开始实行对内改革、对外开放的政策以来,我国在技术、资金等方面已取得了一定的基础,获得了一些宝贵的经验,但纵观全局仍面临着较多问题。中国目前扔处在粗放型经济增长方式阶段,主要依靠增加资源、资金的投入来增加产品的数量,存在着排放量进一步增长的趋势。而且,中国还需要解决各种社会问题,例如医疗、教育、基础设施建设等众多困难。[2]如果单纯地限制温室气体排放,必将放缓中国经济的增长速度,所以,如何协调控制温室气体排放量和保证经济有序健康平稳发展的问题上值得我们深思。

现阶段我国温室气体排放所要面临的最严峻挑战有以下两点:第一,中国温室气体工业化累积人均排放量少、人均温室气体排放量低;第二,我国温室气体排放总量存在着快速增长的势头。

中国温室气体减排可通过尝试不同的途径得以实现,例如提高陆地生态系统的碳吸收、能源结构优化,能源利用率提高,新型能源的开发利用,改造生活垃圾填埋场地。加快开发清洁能源,太阳能,风电核电等。这方面已经取得一些成果,是最可行的。加快立法,加大监管,淘汰高耗能高排放的企业。国家可以加大对新能源产业的经济补贴,政策支持。 在社会生活中可以提倡低碳生活,提高人民的认识和获取支持。

三、应对中国温室气体排放存在问题的措施

欧盟作为一个区域性经济一体化组织,在温室气体减排方面很值得我们借鉴。在欧盟组织内出台了各种不同的政策与法规来构建温室气体排放制度,从宏观上解读这些内容,我们可以从以下俩方面来加强、加深认识与了解。第一,欧盟的立法机关出台了一系列提升能源利用效率与控制减少温室气体排放的法律法规。第二,部分是欧盟行政机关制定了一系列关于温室气体减排的政策或政策建议。

从欧盟的实例中我们能够得出几点可学之处,来完善改进我国温室气体排放的政策和立法。首先,我们不能“因噎废食”,单纯限制温室气体排放量而置社会发展于不顾。欧盟非常值得借鉴的一点就是其将温室气体削减任务目标与社会经济发展结合在了一起。追求良好的、适宜人类长远居住与生产的环境,是我们的重要目标,但却不是唯一的目标,所以温室气体减排应该是一个理性产物。欧盟温室气体减排在立法阶段就很好地兼顾了各成员国家社会经济长远发展目标与控制温室气体排放的目标[3]。同时,它既体现了保护大气环境的要求,又根据各国能源、资源、技术的现状制定了合理的减排策略。

其次,我们不能“一条腿走路”,应该“双管齐下”,甚至“多管齐下”。所谓多管齐下,是指我们需要借助不同主体,采取不同路径来达成限制排放量这一重要目标。政府应该发挥其宏观的调节、管制功能,作为市场主体的企业应该发挥其能动性与充分的自主性积极参与,同时加大对技术的投入,开发新科技,并将其应用到实际生产过程中,综合作用,互助互补。欧盟在立法中授予了各个成员国增强对温室气体调控管制能力并设定了具体可量化的排放限度。此外,欧盟充分发挥市场调节的杠杆作用来促进减排的实现。他们积极开发能源利用率高的产品,例如欧洲的汽车业自愿与欧盟签订了限制尾气排放的协议。

第三,我们不能脱离实际,政策与法律的制定应该充分地发扬民主,保证程序的合法。中国的民主化有待进一步提高,我们应该更加关注立法制定的公开性、民主性,充分地听取广大人民群众的声音和意见,调动各个群体的参与热情,设定听证会、辩论会等形式,为言路的畅通提供制度保障。只有这样,最终确定实施的目标才有可行性,才不会与实践相脱节。不积跬步无以至千里,只有一个脚步一个脚步地向着民主化迈进,我们才可能在将来的某一天去收获一个拥有广泛共识基础的政策[4]。

中国作为一个负责的大国,在新时代的竞争洪流中,不仅要保持强劲的发展势头,而且也要肩负起属于大国的重要使命和任务,根据共同但有区别的责任原则,我们必须扛起应付的责任。同时,捍卫国家利益也是我们时刻应该牢记的,在国际社会中合作愈加频繁的今天,我们也应该适时“发声”,向世界传达我们的合理诉求,争取更多的国家利益。

参考文献:

[1]于宏源.联合国气候变化框架公约与中国气候变化政策协调的发展[J]世界经济与政治,2005(10).

[2]张妙仙,林道海.国际碳排放权交易及其对我国的启示[J].行政与法,2010,(11).

[3]韩良.国际温室气体减排立法比较研究[J]比较法研究,2010,(4).

篇4

作者简介:石岳峰,博士生,主要研究方向为农田温室气体排放。

基金项目:Climate, Food and Farming Research Network (CLIFF)资助;中国农业大学研究生科研创新专项(编号:KYCX2011036)。

摘要

农田是CO2,CH4和N2O三种温室气体的重要排放源, 在全球范围内农业生产活动贡献了约14%的人为温室气体排放量,以及58%的人为非CO2排放,不合理的农田管理措施强化了农田温室气体排放源特征,弱化了农田固碳作用。土壤碳库作为地球生态系统中最活跃的碳库之一,同时也是温室气体的重要源/汇。研究表明通过采取合理的农田管理措施,既可起到增加土壤碳库、减少温室气体排放的目的,又能提高土壤质量。农田土壤碳库除受温度、降水和植被类型的影响外,还在很大程度上受施肥量、肥料类型、秸秆还田量、耕作措施和灌溉等农田管理措施的影响。本文通过总结保护性耕作/免耕,秸秆还田,氮肥管理,水分管理,农学及土地利用变化等农田管理措施,探寻增强农田土壤固碳作用,减少农田温室气体排放的合理途径。农田碳库的稳定/增加,对于保证全球粮食安全与缓解气候变化趋势具有双重的积极意义。在我国许多有关土壤固碳与温室气体排放的研究尚不系统或仅限于短期研究,这也为正确评价各种固碳措施对温室气体排放的影响增加了不确定性。

关键词 农田生态系统;温室气体;秸秆还田;保护性耕作;氮素管理;固碳

中图分类号 S181 文献标识码 A

文章编号 1002-2104(2012)01-0043-06 doi:10.3969/j.issn.1002-2104.2012.01.008

人类农业生产活动产生了大量的CO2, CH4和N2O等温室气体,全球范围内农业生产活动贡献了约14%的人为温室气体排放量,以及58%的人为非CO2排放(其中N2O占84%,CH4占47%)[1]。在许多亚洲、拉丁美洲和非洲的发展中国家,农业更成为温室气体的最大排放源,同时由于人口快速增长带来了粮食需求的大量增加,使得未来20年中农田温室气体的排放量也会有所增加[2]。大气中温室气体浓度的升高可能引起的全球气候变化已受到各国的广泛重视。

农业生态系统中温室气体的产生是一个十分复杂的过程,土壤中的有机质在不同的气候、植被及管理措施条件下,可分解为无机C和N。无机C在好氧条件下多以CO2的形式释放进入大气,在厌氧条件下则可生成CH4。铵态氮可在硝化细菌的作用下变成硝态氮,而硝态氮在反硝化细菌的作用下可转化成多种状态的氮氧化合物,N2O可在硝化/反硝化过程中产生。在气候、植被及农田管理措施等各因子的微小变化,都会改变CO2,CH4和N2O的产生及排放。

而通过增加农田生态系统中的碳库储量被视为一种非常有效的温室气体减排措施。农田土壤碳库除受温度、降水和植被类型的影响外,还在很大程度上受施肥量、肥料类型、秸秆还田量、耕作措施和灌溉等农田管理措施的影响。通过增施有机肥、采用免耕/保护性耕作、增加秸秆还田量等措施,可以减少农田土壤CO2净排放量,同时起到稳定/增加土壤有机碳含量作用。农田碳库的稳定/增加,对于保证全球粮食安全与缓解气候变化趋势具有双重的积极意义[3]。中国农田管理措施对土壤固碳的研究主要集中在土壤碳的固定、累积与周转及其对气候变化的反馈机制,正确评估农田土壤碳固定在温室气体减排中的作用,加强农田碳汇研究具有重要意义。

1 农田固碳

土壤是陆地生态系统的重要组成成分,它与大气以及陆地生物群落共同组成系统中碳的主要贮存库和交换库。土壤碳分为土壤有机碳(soil organic carbon, SOC)和土壤无机碳(soil inorganic carbon, SIC)。SIC相对稳定,而SOC则时刻保持与大气的交换和平衡,因此对SOC的研究是土壤碳研究的主要方面。据估计,全球约有1.4×1012-1.5×1012t的碳是以有机质形式储存于土壤中,土壤贡献给大气的CO2量是化石燃料燃烧贡献量的10倍[4],因此SOC的微小变化都将会对全球气候变化产生重要影响。同时,土壤碳库与地上部植物之间有密切关系,SOC的固定、累积与分解过程影响着全球碳循环,外界环境的变化也强烈的影响着地上部植物的生长与土壤微生物对土壤累积碳的分解。

Lal认为SOC的增加可以起到改善土壤质量,增加土壤生产力,减少土壤流失风险,降低富营养化和水体污染危害的作用,且全球耕地总固碳潜力为0.75-1.0 Pg•a-1, IPCC 第四次评估报告剔除全球农业固碳1 600-4 300 Mt a-1(以CO2计),其中90%来自土壤固碳[5]。农田生态系统是受人类干扰最重的陆地生态系统,与自然土壤相比,农田土壤在全球碳库中最为活跃,其土壤碳水平直接受人类活动的影响和调控空间大,农田土壤碳含量管理及对温室气体影响机制正日益受到学术界的广泛关注。农田管理措施是影响SOC固定、转化及释放的主要因素,同时还受土地利用方式、气候变化等多因素的共同影响,因此对农田碳库的评价及调整措施需全面考虑多种因素的交互作用。

2 农田固碳措施对温室气体排放的影响

近年来,农田土壤固碳的研究已经成为全球变化研究的一大热点。大量研究表明,SOC储量受诸多因素的影响,如采用保护性/免耕措施、推广秸秆还田、平衡施用氮肥、采用轮作制度和土地利用方式等,上述管理措施的差异导致农田土壤有机碳库的显著差别,并影响农田温室气体排放水平。

2.1 保护性耕作/免耕措施

保护性耕作作为改善生态环境尤其是防治土壤风蚀的新型耕作方式,在多个国家已经有广泛的研究和应用。中国开展的保护性耕作研究证明了其在北方地区的适用性[6],并且已进行了保护性耕作对温室效应影响的相关研究。统计表明2004年全球范围内免耕耕作的面积约为95 Mha, 占全球耕地面积的7%[7], 并且这一面积有逐年增加的趋势。

常规耕作措施会对土壤物理性状产生干扰,破坏团聚体对有机质的物理保护,影响土壤温度、透气性,增加土壤有效表面积并使土壤不断处于干湿、冻融交替状态,使得土壤团聚体更易被破坏,加速团聚体有机物的分解[8]。免耕/保护性耕作可以避免以上干扰,减少SOC的分解损失[9]。而频繁的耕作特别是采用犁耕会导致SOC的大量损失,CO2释放量增加,而免耕则能有效的控制SOC的损失,增加SOC的储量,降低CO2的释放量[10]。West和 Post研究发现从传统耕作转变为免耕可以固定0.57±0.14 Mg C ha-1yr-1[11]。但对于保护性耕作/免耕是否有利于减少温室气体效应尚不明确,这是由于一方面免耕对减少CO2排放是有利的,表现为免耕可以减少燃油消耗所引起的直接排放;另一方面,秸秆还田以后秸秆碳不会全部固定在土壤中,有一部分碳以气体的形式从农田释放入大气[12]。

免耕会导致表层土壤容重的增加,产生厌氧环境,减少SOC氧化分解的同时增加N2O排放[13];采用免耕后更高的土壤水分含量和土壤孔隙含水量(Water filled pore space, WFPS)能够刺激反硝化作用,增加N2O排放[14];同时免耕导致的N在表层土壤的累积也可能是造成N2O排放增加的原因之一,在欧洲推广免耕措施以后,土壤固碳环境效益将被增排的N2O抵消50%以上[15]。但也有新西兰的研究表明,常规耕作与免耕在N2O排放上无显著性差异[16],还有研究认为凿式犁耕作的农田N2O排放比免耕高,原因可能是免耕时间太短,对土壤物理、生物性状还未产生影响。耕作会破坏土壤原有结构,减少土壤对CH4的氧化程度[17]。也有研究表明,翻耕初期会增加土壤对CH4的排放,但经过一段时间(6-8 h)后,CH4排放通量有所降低[18]。

总之,在增加土壤碳固定方面,保护性耕作和免耕的碳增汇潜力大于常规耕作;在净碳释放量方面,常规耕作更多起到CO2源的作用,而保护性耕作和免耕则起到CO2汇的作用;在碳减排方面,免耕和保护性耕作的减排潜力均大于常规耕作;由于N2O和CH4的排放受多种因素的综合影响,因此耕作措施对这两种温室气体排放的影响还有待进一步研究。

2.2 秸秆管理措施

作物秸秆作为土壤有机质的底物,且作物秸秆返还量与SOC含量呈线性关系,因此作物秸秆是决定SOC含量的关键因子之一。秸秆还田有利于土壤碳汇的增加,同时避免秸秆焚烧过程中产生温室气体。因此,秸秆还田是一项重要而又可行的农田碳汇管理措施。秸秆还田以后,一部分残留于土壤中成为土壤有机质的来源,另一部分将会以CO2气体的形式散逸到大气中,因此,随着秸秆还田量的增加CO2排放也会增加。有研究表明,秸秆经过多年分解后只有3%碳真正残留在土壤中,其他97%都在分解过程中转化为CO2散逸到大气中[19]。秸秆还田会增加土壤有机质含量,而有机质是产生CH4的重要底物,因此秸秆还田会增加CH4的排放。综合考量,秸秆还田措施会引起CH4排放的增加,但直接减少了对CO2的排放,同时秸秆还田相对提高了土壤有机质含量,有利于土壤碳的增加,对作物增产具有积极作用。

秸秆还田措施对农业生态系统C、N循环的影响可表现为:一方面由于供N量的增加,可促进反硝化和N2O排放量的增加;另一方面表现为高C/N的秸秆进入农田后会进行N的生物固定,降低反硝化N损失;同时在秸秆分解过程中还可能产生化感物质,抑制反硝化[20]。我国采用秸秆还田农田土壤固碳现状为2389Tg•a-1,而通过提高秸秆还田量土壤可达的固碳潜力为4223Tg•a-1[3],与国外研究结果相比较,Vleeshouwers等研究认为,如果欧洲所有农田均采用秸秆还田措施,欧洲农田土壤的总固碳能力可达34Tg•a-1[21]。La1预测采用秸秆还田措施后全球农田土壤的总固碳能力可达200Tg•a-1[22]。随着农业的发展及长期以来氮肥的过量投入,氮肥损失也是日益严重,可通过秸秆还田措施与氮肥的配合施用降低氮肥的反硝化作用及N2O的排放。但秸秆还田后秸秆与土壤的相互作用异常复杂,因此需要进一步开展秸秆施入土壤后与土壤的相互作用机理及田间实验研究。

2.3 氮肥管理措施

在农田生态系统中,土壤中的无机氮是提高作物生产力的重要因素,氮肥投入能够影响SOC含量,进而对农田碳循环和温室气体排放产生重要影响。长期施用有机肥能显著提高土壤活性有机碳的含量,有机肥配施无机肥可提高作物产量,而使用化学肥料能增加SOC的稳定性[23]。农业中氮肥的投入为微生物生长提供了丰富的氮源,增强了微生物活性,从而影响温室气体的排放。但也有研究在长期增施氮肥条件下能够降低土壤微生物的活性,从而减少CO2的排放[24]。有研究表明,CO2排放与土壤不同层次的SOC及全N含量呈正相关性,说明在环境因子相对稳定的情况下,土壤SOC和全N含量直接或间接地决定CO2排放通量的变化[25]。对农业源温室气体源与汇的研究表明,减少氨肥、增施有机肥能够减少旱田CH4排放,而施用缓/控释氮肥和尿素复合肥能显著减少农田土壤NO2的排放[26]。但也有研究表明,无机氮肥施用可减少土壤CH4的排放量,而有机肥施用对原有机质含量低的土壤而言可大幅增加CH4的排放量[27]。长期定位施肥实验的结果表明,氮肥对土壤CH4氧化主要来源于铵态氮而不是硝态氮,因为氨对CH4氧化有竞争性抑制作用。此外,长期施用氮肥还改变了土壤微生物的区系及其活性,降低CH4的氧化速率,导致CH4净排放增加[28]。全球2005年生产的100 Mt N中仅有17%被作物吸收,而剩余部分则损失到环境中[29]。单位面积条件下,有机农田较常规农田有更少的N2O释放量,单位作物产量条件下,两种农田模式下N2O的释放量无显著性差异[23]。尿素硝化抑制剂的使用可以起到增加小麦产量,与尿素处理相比对全球增温势的影响降低8.9-19.5%,同时还可能起到减少N2O排放的目的[30]。合理的氮素管理措施有助于增加作物产量、作物生物量,同时配合秸秆还田等措施将会起到增加碳汇、减少CO2排放的作用。同时必须注意到施肥对农田碳汇的效应研究应建立在大量长期定位试验的基础上,对不同气候区采用不同的氮肥管理措施才能起到增加农田固碳目的。

2.4 水分管理措施

土壤水分状况是农田土壤温室气体排放或吸收的重要影响因素之一。目前全球18%的耕地属水浇地,通过扩大水浇地面积,采取高效灌溉方法等措施可增加作物产量和秸秆还田量,从而起到增加土壤固碳目的[31]。水分传输过程中机械对燃料的消耗会带来CO2的释放,高的土壤含水量也会增加N2O的释放,从而抵消土壤固碳效益[32]。湿润地区的农田灌溉可以促进土壤碳固定,通过改善土壤通气性可以起到抑制N2O排放的目的[33]。土壤剖面的干湿交替过程已被证实可提高CO2释放的变幅,同时可增加土壤硝化作用和N2O的释放[34]。采用地下滴灌等农田管理措施,可影响土壤水分运移、碳氮循环及土壤CO2和N2O的释放速率,且与沟灌方式相比不能显著增加温室气体的排放[35]。

稻田土壤在耕作条件下是CH4释放的重要源头,但通过采取有效的稻田管理措施可以

减少水稻生长季的CH4释放。如在水稻生长季,通过实施一次或多次的排水烤田措施可有

效减少CH4释放,但这一措施所带来的环境效益可能会由于N2O释放的增加而部分抵消,

同时此措施也容易受到水分供应的限制,且CH4和N2O的全球增温势不同,烤田作为CH4

减排措施是否合理仍然有待于进一步的定量实验来验证。在非水稻生长季,通过水分管理尤

其是保持土壤干燥、避免淹田等措施可减少CH4释放。

许多研究表明,N2O与土壤水分之间有存在正相关关系,N2O的释放随土壤湿度的增加而增加[36],并且在超过土壤充水孔隙度(WFPS)限值后,WFPS值为60%-75%时N2O释放量达到最高[37]。Bateman和Baggs研究表明,在WFPS为70%时N2O的释放主要通过反硝化作用进行,而在WFPS值为35%-60%时的硝化作用是产生N2O的重要途径[38]。由此可见,WFPS对N2O的产生释放影响机理前人研究结果并不一致,因此有必要继续对这一过程深入研究。

2.5 农学措施

通过选择作物品种,实行作物轮作等农学措施可以起到增加粮食产量和SOC的作用。有机农业生产中常用地表覆盖,种植覆盖作物,豆科作物轮作等措施来增加SOC,但同时又会对CO2,N2O及CH4的释放产生影响,原因在于上述措施有助于增强微生物活性,进而影响温室气体产生与SOC形成/分解[39],从而增加了对温室气体排放影响的不确定性。种植豆科固氮植物可以减少外源N的投入,但其固定的N同样会起到增加N2O排放的作用。在两季作物之间通过种植生长期较短的绿被植物既可起到增加SOC,又可吸收上季作物未利用的氮,从而起到减少N2O排放的目的[40]。

在新西兰通过8年的实验结果表明,有机农场较常规农场有更高的SOC[41],在荷兰通过70年的管理得到了相一致的结论[42]。Lal通过对亚洲中部和非洲北部有机农场的研究表明,粪肥投入及豆科作物轮作等管理水平的提高,可以起到增加SOC的目的[31]。种植越冬豆科覆盖作物可使相当数量的有机碳进入土壤,减少农田土壤CO2释放的比例[39],但是这部分环境效益会由于N2O的大量释放而部分抵消。氮含量丰富的豆科覆盖作物,可增加土壤中可利用的碳、氮含量,因此由微生物活动造成的CO2和N2O释放就不会因缺少反应底物而受限[43]。种植具有较高C:N比的非固氮覆盖作物燕麦或深根作物黑麦,会因为深根系统更有利于带走土壤中的残留氮,从而减弱覆盖作物对N2O产生的影响[44]。综上,通过合理选择作物品种,实施作物轮作可以起到增加土壤碳固定,减少温室气体排放的目的。

2.6 土地利用变化措施

土地利用变化与土地管理措施均能影响土壤CO2,CH4和N2O的释放。将农田转变成典型的自然植被,是减少温室气体排放的重要措施之一[31]。这一土地覆盖类型的变化会导致土壤碳固定的增加,如将耕地转变为草地后会由于减少了对土壤的扰动及土壤有机碳的损失,使得土壤碳固定的自然增加。同时由于草地仅需较低的N投入,从而减少了N2O的排放,提高对CH4的氧化。将旱田转变为水田会导致土壤碳的快速累积,由于水田的厌氧条件使得这一转变增加了CH4的释放[45]。由于通过土地利用类型方式的转变来减少农田温室气体的排放是一项重要的措施,但是在实际操作中往往会以牺牲粮食产量为代价。因此,对发展中国家尤其是如中国这样的人口众多的发展中国家而言,只有在充分保障粮食安全等前提条件下这一措施才是可考虑的选择。

3 结语与展望

农田管理中存在显著增加土壤固碳和温室气体减排的机遇,但现实中却存在很多障碍性因素需要克服。研究表明,目前农田温室气体的实际减排水平远低于对应管理方式下的技术潜力,而两者间的差异是由于气候-非气候政策、体制、社会、教育及经济等方面执行上的限制造成。作为技术措施的保护性耕作/免耕,秸秆还田,氮肥投入,水分管理,农学措施和土地利用类型转变是影响农田温室气体排放的重要方面。常规耕作增加了燃料消耗引起温室气体的直接排放及土壤闭蓄的CO2释放,而免耕、保护性耕作稳定/增加了SOC,表现为CO2的汇;传统秸秆处理是将秸秆移出/就地焚烧处理,焚烧产生的CO2占中国温室气体总排放量的3.8%,而秸秆还田直接减少了CO2排放增加了碳汇;氮肥投入会通过对作物产量、微生物活性的作用来影响土壤固碳机制,过量施氮直接增加NO2的排放,针对特定气候区和种植模式采取适当的氮素管理措施可以起到增加土壤碳固定,减少温室气体排放的目的;旱田采用高效灌溉措施,控制合理WFPS不仅能提高作物产量,还可增加土壤碳固定、减少温室气体排放;间套作农学措施、种植豆科固氮作物以及深根作物可以起到增加SOC的目的,减少农田土壤CO2释放的比例;将农田转变为自然植被覆盖,可增加土壤碳的固定,但此措施的实施应充分考虑由于农田面积减少而造成粮食产量下降、粮食涨价等一系列问题。

在我国许多有关土壤固碳与温室气体排放的研究尚不系统或仅限于短期研究,因此为正确评价各种管理措施下的农田固碳作用对温室气体排放的影响增加了不确定性。本文结果认为,保护性耕作/免耕,秸秆还田,合理的水、氮、农学等管理措施均有利于增加土壤碳汇,减少农田CO2排放,但对各因素协同条件下的碳汇及温室气体排放效应尚需进一步研究。在未来农田管理中,应合理利用管理者对农田环境影响的权利,避免由于过度干扰/管理造成的灾难性后果;结合农田碳库特点,集成各种农田减少温室气体排放、减缓气候变化的保护性方案;努力发展替代性能源遏制农田管理对化石燃料的过度依赖,从而充分发掘农田所具有的增加固碳和温室气体减排的潜力。

参考文献(Reference)

[1]Prentice I C,Farquhar G D, Fasham M J R, et al. The Carbon Cycle and Atmospheric Carbon Dioxide[A]. Houghton JT. Climate Change 2001: The Scientific Basis, Intergovernmental Panel on Climate Change[C]. Cambridge: Cambridge University Press, 2001:183-237.

[2]Robert H B, Benjamin J D, et al. Mitigation Potential and Costs for Global Agricultural Greenhouse Gas Emissions [J]. Agricultural Economics, 2008, 38 (2): 109-115.

[3]韩冰, 王效科,逯非, 等. 中国农田土壤生态系统固碳现状和潜力 [J]. 生态学报, 2008,28 (2): 612-619. [Han Bing, Wang Xiaoke, Lu Fei, et al. Soil Carbon Sequestration and Its Potential by Cropland Ecosystems in China [J]. Acta Ecologica Sinica, 2008, 28(2): 612-619.]

[4]李正才, 傅懋毅, 杨校生. 经营干扰对森林土壤有机碳的影响研究概述 [J]. 浙江林学院学报, 2005, 22(4): 469-474. [Li Zhengcai, Fu Maoyi,Yang Xiaosheng. Review on Effects of Management Disturbance on Forest Soil Organic Carbon [J]. Journal of Zhejiang Forestry College, 2005, 22(4): 469-474.]

[5]Lal R. Carbon Management in Agricultural Soils [J]. Mitigation and Adaptation Strategies for Global Change, 2007, 12: 303-322.

[6]高焕文,李洪文,李问盈.保护性耕作的发展 [J].农业机械学报,2008,39(9):43-48.[Gao Huanwen, Li Hongwen, Li Wenying. Development of Conservation Tillage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(9): 43-48.]

[7]Derpsch R. The Extent of Conservation Agriculture Adoption Worldwide: Implications and Impact [M]. Nairobi, Kenya, 2005. 3-7.

[8]Paustian K, Andren O, Janzen H H, et al. Agricultural Soils as a Sink to Mitigate CO2 Emissions [J]. Soil Use and Management, 1997, 13(4): 230-244.

[9]Follett R F. Soil Management Concepts and Carbon Sequestration in Cropland Soils [J]. Soil Tillage Research, 2001, 61(1-2): 77-92.

[10]金峰, 杨浩,赵其国.土壤有机碳储量及影响因素研究进展 [J].土壤, 2000,(1):11-17. [Jin Feng, Yang Hao, Zhao Qiguo. Advance in Evaluation the Effect of Soil Organic Carbon Sequestration and the Effect Factors [J]. Soil, 2000, (1):11-17.]

[11]West T O, Post W M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis [J]. Soil Science Society of America Journal, 2002, 66: 1930-1946.

[12]胡立峰,李洪文,高焕文. 保护性耕作对温室效应的影响 [J]. 农业工程学报, 2009, 25(5): 308-312. [Hu Lifeng, Li Hongwen, Gao Huanwen. Influence of Conservation Tillage on Greenhouse Effect [J]. Transactions of the CSAE, 2009, 25(5): 308-312.]

[13]Steinbach H S, Alvarez R. Changes in Soil Organic Carbon Contents and Nitrous Oxide Emissions after Introduction of NoTill in Pam Pean Agroecosystems [J]. Journal of Environmental Quality, 2006, 35(1): 3-13.

[14]Six J, Ogle S M, Breidt F J, et al. The Potential to Mitigate Global Warming with NoTillage Management is Only Realized When Practiced in the Long Term [J]. Global Change Biology, 2004, 10: 155-160.

[15]Smith P, Goulding K W, Smith K A, et al. Enhancing the Carbon Sink in European Agricultural Soils: Including Trace Gas Fluxes in Estimates of Carbon Mitigation Potential [J]. Nutrient Cycling in Agroecosystems, 2001, 60(1-3): 237-252.

[16]Choudhary M A, Akramkhanov A, Saggar S. Nitrous Oxide Emissions From a New Zealand Cropped Soil: Tillage Effects, Spatial and Seasonal Variability [J]. Agriculture, Ecosystems and Environment, 2002, 93(1): 33-43.

[17]Prieme A, Christensen S. Seasonal and Variation of Methane Oxidation in a Danish Spurce Forest [J]. Soil Biology Biochemistry, 1997, 29(8): 1165-1172.

[18]万运帆, 林而达.翻耕对冬闲农田CH4和CO2排放通量的影响初探 [J].中国农业气象,2004, 25(3): 8-10.[Wan Yunfan, Lin Erda. The Influence of Tillage on CH4 and CO2 Emission Flux in Winter Fallow Cropland [J]. Chinese Journal of Agrometeorology, 2004, 25(3): 8-10.]

[19]王爱玲.黄淮海平原小麦玉米两熟秸秆还田效应及技术研究 [D].北京:中国农业大学,2000.[Wang Ailing. Effects and Techniques of Straw Return to Soil in WheatMaize Rotation of Huanghuaihai Plain [D]. Beijing: China Agricultural University, 2000.]

[20]王改玲,郝明德,陈德立.秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响[J].植物营养与肥料学报,2006.12(6):840-844.[Wang Gailing,Hao Mingde,Chen Deli.Effect of Stubble Incorporation and Nitrogen Fertilization on Denitrification and Nitrous Oxide Emission in an Irrigated Maize Soil[J].Plant Nutrition and Fertilizer Science.2006,12(6):840-844.]

[21]Vleeshouwers L M,Verhagen A.Carbon Emission and Sequestration by Agricultural Land Use:A Model Study for Europe[J].Global Change Biology,2002.(8):519-530.

[22]Lal R,Bruce J P.The Potential of World Grop Land Soils to Sequester C and Mitigate the Greenhouse Effect[J].Enviornmental Science & Policy,1999.(2):177-185.

[23]王绍强, 刘纪远. 土壤碳蓄积量变化的影响因素研究现状 [J]. 地球科学进展, 2002, 17 (4): 528-534. [Wang Shaoqiang, Liu Jiyuan. Research Status Quo of Impact Factors of Soil Carbon Storage [J]. Advance In Earth Sciences, 2002, 17 (4): 528-534.]

[24]Richard D. Chronic Nitrogen Additions Reduce Total Soil Respiration and Microbial Respiration in Temperate Forest Soils at the Harvard Forest Bowden [J]. Forest Ecology and Management, 2004, 196: 43-56.

[25]李明峰, 董云社, 耿元波, 等. 草原土壤的碳氮分布与CO2排放通量的相关性分析 [J]. 环境科学, 2004, 25(2): 7-11. [Li Mingfeng, Dong Yunshe, Geng Yuanbo, et al. Analyses of the Correlation Between the Fluxes of CO2 and the Distribution of C & N in Grassland Soils [J]. Environmental Science, 2004, 25(2): 7-11.]

[26]张秀君. 温室气体及其排放的研究 [J]. 沈阳教育学院学报, 1999, 1(2): 103-108. [Zhang Xiujun. Studies on Greenhouse Gas and Its Emission [J]. Journal of Shenyang College of Education, 1999, 1(2):103-108.]

[27]齐玉春, 董云社, 章申. 华北平原典型农业区土壤甲烷通量研究 [J].农村生态环境, 2002, 18(3): 56-58. [Qi Yuchun, Dong Yunshe, Zhang Shen. Methane Fluxes of Typical Agricultural Soil in the North China Plain[J]. Rural EcoEnvironment, 2002, 18(3): 56-58.]

[28]胡荣桂. 氮肥对旱地土壤甲烷氧化能力的影响 [J]. 生态环境, 2004, 13(1): 74-77. [Hu Ronggui. Effects of Fertilization on the Potential of Methane Oxidation in Upland Soil [J]. Ecology and Environment, 2004, 13(1): 74-77.]

[29]Erisman J W, Sutton M A, Galloway J, et al. How a Century of Ammonia Synthesis Changed the World [J]. Nature Geoscience, 2008, 1: 636-639.

[30]Bhatia A, Sasmal S, Jain N, et al. Mitigating Nitrous Oxide Emission From Soil Under Conventional and NoTillage in Wheat Using Nitrification Inhibitors [J]. Agriculture, Ecosystems and Environment, 2010, 136: 247-253.

[31]Lal R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security [J]. Science, 2004a, 304: 1623-1627.

[32]Liebig M A, Morgan J A, Reeder J D, et al. Greenhouse Gas Contributions and Mitigation Potential of Agricultural Practices in Northwestern USA and Western Canada [J]. Soil Tillage Research, 2005, 83: 25-52.

[33]Monteny G J, Bannink A, Chadwick D. Greenhouse Gas Abatement Strategies for Animal husbandry [J]. Agriculture, Ecosystems and Environment, 2006, 112: 163-170.

[34]Fierer N, Schimel J P. Effects of DryingWetting Frequency on Soil Carbon and Nitrogen Transformations [J]. Soil Biology Biochemistry, 2002, 34: 777-787.

[35]Cynthia M K, Dennis E R, William R H. Cover Cropping Affects Soil N2O and CO2 Emissions Differently Depending on Type of Irrigation [J]. Agriculture, Ecosystems and Environment, 2010, 137: 251-260.

[36]Akiyama H, McTaggart I P, Ball B C, et al. N2O, NO, and NH3 Emissions from Soil After the Application of Organic Fertilizers, Urea, and Water [J]. Water Air Soil Pollution, 2004, 156: 113-129.

[37]Linn D M, Doran J W. Effect of Waterfilled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and NonTilled Soils [J]. Soil Science Society of America Journal, 1984, 48: 1267-1272.

[38]Bateman E J, Baggs E M. Contributions of Nitrification and Denitrification to Nitrous Oxide Emissions from Soils at Different Waterfilled Pore Space [J]. Biology Fertility of Soils, 2005, 41: 379-388.

[39]Jarecki M, Lal R. Crop Management for Soil Carbon Sequestration Critical Reviews in Plant Sciences [J]Plant Sciences, 2003, 22: 471-502.

[40]Freibauer A, Rounsevell M, Smith P, et al. Carbon Sequestration in the Agricultural Soils of Europe [J]. Geoderma, 2004, 122: 1-23.

[41]Reganold J P, Palmer A S, Lockhart J C, et al. Soil Quality and financial Performance of Biodynamic and Conventional Farms in New Zealand [J]. Science, 1993, 260: 344-349.

[42]Pulleman M, Jongmans A, Marinissen J, et al. Effects of Organic Versus Conventional Arable Farming on Soil Structure and Organic Matter Dynamics in a Marine Loam in the Netherlands [J]. Soil Use and Management, 2003, 19: 157-165.

[43]Sainju U M, Schomberg H H, Singh B P, et al. Cover Crop Effect on Soil Carbon Fractions under Conservation Tillage Cotton [J]. Soil Tillage Research, 2007, 96: 205-218.

[44]McCracken D V, Smith M S, Grove J H, et al. Nitrate Leaching as Influenced by Cover Cropping and Nitrogen Source [J]. Soil Science Society of America Journal, 1994, 58: 1476-1483.

[45]Paustian, K. et al. Agricultural Mitigation of Greenhouse Gases: Science and Policy Options[R]. Council on Agricultural Science and Technology Report, 2004. 120.

Advance in Evaluation the Effect of Carbon Sequestration Strategies on

Greenhouse Gases Mitigation in Agriculture

SHI Yuefeng1 WU Wenliang1 MENG Fanqiao1 WANG Dapeng1 ZHANG Zhihua2

(1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;

2. College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China)

Abstract

Agricultural field is an important source for three primary greenhouse gases (GHGs), including CO2, CH4 and N2O. Unreasonable agricultural managements increase GHGs and decrease the effect of soil carbon sequestration. Agricultural activities generate the largest share, 58% of the world’s anthropogenic noncarbon dioxide (nonCO2) emission, and make up roughly 14% of all anthropogenic GHG emissions. And soil carbon pool is the most active carbon pools in ecosystems. In addition, soil carbon pool could be a source or sink of GHGs.

篇5

[关键词]低碳社会;经验;启示

1 低碳社会的内涵

目前国内尚无关于低碳社会的严格定义,英国国家环境研究院给出了一个比较宽泛的低碳社会定义,认为一个低碳社会至少应该包括:(1)采取能够与可持续性发展原则兼容的行动,确保达到处于各个发展阶段的国家的需要;(2)做出对全球公平的贡献,控制大气中二氧化碳的浓度以及将其他温室气体的排放量控制在一定范围内,避免危险的气候变化,进一步深入削减全球排放量;(3)呈现高水平的能源利用率以及使用低碳能源资源和生产技术;(4)采用与温室气体低排放量一致的消费和行为模式。

这个定义具有两个特点,一是尽管这个定义想要覆盖全部的国家情况,但是对于处在不同发展阶段的各个国家而言,意义各有不同。对于发达国家而言,要达到低碳型社会,到21世纪中期得达到二氧化碳排放量大幅度削减的状态。它包括低碳型技术和生活方式变化以及机构变化的部署和发展。对于发展中国家而言,达到低碳型社会的目标必须和达到更广泛的发展目标紧密结合。这将产生一个观点――最终达到发展的高级阶段,使二氧化碳的密度与发达国家低碳型社会保持一致。二是这个定义在强调技术作用的同时,也同时强调生活方式的变化和社会变革的重要性。

2 国外建设低碳社会的途径及经验

2.1 不同主体的定位

2.1.1 投资者

据悉,世界将会投资给美国将近200万亿美元,作为2005年至2030年的能源基础设施建设投资,其中,发展中国家的投资占据一半多。单就中国而言,就占据了全部发展中国家的三分之一。现今的机制使金融在推动低碳型投资的过程中起着重要的作用。洁净发展机制(CDM)项目被期望到2012年能集中20亿吨二氧化碳的减排量,而这可能值40亿美元。尽管如此,对于发展中国家而言,这只是估计的200-300亿美元低碳型投资计划中的一个分数。根据世界银行的数据,金融投资给支持减少低碳型技术的成本的战略性全球项目将会得到10倍的增长。

2.1.2 商务圈

商务圈越来越流行一种观点,就是拥有健康、有竞争力的经济和干净的环境之间没有内在冲突。运输在商务中成为减少温室气体排放的重点。在运输方面,有三个层级能够采取措施减少温室气体的排放。第一个是简单的通过人类行为。坚持限速、采用更为灵敏的驾驶技术以提高汽车效率。英国低碳汽车合作组织强烈建议开展信息和教育运动来鼓励低碳型车辆的购买以及灵活驾驶技术。第二层是清洁车辆技术和燃料的发展。油电混合车已经准备好投放市场。这些可以为基于可选择的燃料(比如氢)进行更先进的车辆设计、可选择的改进手段(燃料电池)以及电力汽车开辟道路。低碳型燃料汽车,包括可持续生产氢和生物燃料将会发挥作用。最后一层是运输系统自身的改变。信息和运输技术能够被用来通知司机,这样就可以避免交通拥挤,从而二氧化碳排放量就能够减少。

2.1.3 消费者

消费者获得能源的途径必须改变,前提是温室气体的排放能够得到快速的下降。能源需求可以被定义为双方选择者和一系列可用选择的产物。对车或燃料的税收或是价格的增长不能影响到流动车辆的实际情况,除非是消费者还有选择。空调在全球范围内增长速度很快,不是因为人们提升自己的需求是因为热舒适,而是因为现在的世界使他们内在不能再自然的调节冷热温度。能源政策需要将焦点从技术和市场效率上转到检测能源服务需要怎样通过最少的能源密集方式达到。政策旨在深入减排二氧化碳,必须采取整体的和长期的方法来改变。

2.2 实现途径的比较

关于低碳社会的实现途径,国外存在两种观点,第一种观点强调技术,认为居民看重舒适和便利,他们过着城市的生活方式,有着集中的生产系统,可以通过技术途径,提高资源利用效率,进而实现低碳社会的目标。第二种观点关注慢速、自然型社会,认为人们将要生活在分散的社区,自给自足,在当地生产和消费,这个社会强调社会和文化价值而非个人野心。两种社会发展途径都将导向低碳型社会,但在具体实现过程中却存在一定差异――不同的安居方式的运输需求不同,电力生产的结构不同。技术驱使型社会强调核能力和化石燃料与碳的获取以及存储一起使用。氢是用来生产燃料电池汽车的。自然型社会则是强调生物质能,既用于发电也用于使用氢汽车的生物能源生产。

2.3 具体的行动计划

2.3.1 英国

Deacon(2007)规划了由伦敦市长承担的减少伦敦二氧化碳排放量的全面行动。这项计划设置了到2025年的目标,计划由四个主要部分组成:绿色家庭、绿色组织、绿色能源和绿色运输。绿色家庭项目能够削减近一半的二氧化碳排放量,借助于住房绝缘和高效能源设备。绿色组织项目旨在鼓励公司通过简单的管理方法节约能源,比如关灯和关IT设备,提高建筑的能源效率。绿色能源的目标是从国家电网中节省掉四分之一的伦敦供电,再寻找更为有效的当地能源系统。绿色运输项目鼓励人们去乘坐公共交通工具,采取方法如在拥挤时收费,奖励使用燃料有效的车辆,可以采取免除他们的拥挤费用以及停车费用。

2.3.2 日本

日本的Shiga县提出恢复Biwa湖水质量,将垃圾容量减少至75%,并且到2030年将二氧化碳排放量减至50%。这项计划需要得到市民、商务以及当地政府的配合。目标是合作者们通过“可持续性税收”和“可持续性金融”来分享经济和环境的利益。具体措施包括环境条例、关于使用土地以及建设的条例、对于先进科技的补贴、自愿的环境行动计划和意识/教育项目。

2.4 国际合作的实施

2006年2月,日本环境局(MOE)和英国环境、食品、农村事务部门(DEFRA)开启了一项低碳社会项目,该项目旨在针对气候变化、清洁能源以及可持续发展而进行对话,项目是在2005年于英国G8峰会上提出的。该对话包括G8以及其他对能源有需求的国家。它关注的焦点有以下几点:转变能源系统,创造一个更安全和持续的未来的战略性挑战;控制由联合计划行动制定的任务的执行情况;在各参与政府间分享最好的经验。项目的出发点是使温室气体浓度稳定在一定范围内以避免危险的气候变化,下一步要创造一个低碳型社会的远景,确定达到必需的转变所需的具体的步骤。项目的核心内容是碳价格方案(到2050年每吨二氧化碳上涨至100美元)以及“碳附加”方案。

3 结论及建议

3.1 低碳社会建设经验的总结

3.1.1 主要经验

从现有的各个国家关于建设低碳社会的实施途径、计划和

方案看,可以总结出以下几点重要的结论:(1)如果大气中温室气体浓度仍稳定的处于一个安全的范围,那么达到低碳型社会就指日可待;(2)与延缓气候变化的努力和经历气候变化的极端影响相比,到达低碳型社会成本更低;(3)创立低碳社会解决途径一低碳技术的研发综合法以及市场、产品和服务的投资的市场条件需要长期稳定性;(4)在建的环境、运输和能源区域将需要更多持续性的变化;(5)政策工具之间存在协同作用能够促进可持续发展目标实现以及鼓励转向低碳型社会。执行这些政策能够提供重要的经济、社会和环境双赢,尤其是在发展中国家;(6)政府的角色很关键,高层领导更是不可或缺。政府必须建立起使个人、商业和组织都能从新型低碳市场获益的可实现条件;(7)国家间应建立信任,加强长期目标和政策的可信度;(8)在清晰的政策框架下,消费者选择和个人行为能使低碳型选择和生活方式成为现实,能成为达到低碳型社会需要的行为变化的有力的驱动者。

3.1.2 主要启示

国外建设低碳社会的实践给我们的主要启示包括:(1)应加强碳价格的长期政策信号,比如,通过税收和加强国际排放贸易,应该为商业建立合适的奖励刺激;(2)如果把税收负担从收入中移去而且雇佣趋向于环境污染,将会有助于使二氧化碳排放成本内在化,鼓励商业和个人减排;(3)发展中国家的发展投资焦点应该被转移到低碳型方法上;(4)对发展中国家来说,转向低碳型技术需要一些步骤上的改变。可以通过扩展金融流和发展发展新的金融机制来实现;(5)贸易制度应该得到调整,鼓励技术和产品的快速进步,使可持续性发展在降低二氧化碳排放量的同时得到加固;(6)能源效率改善应该被加速,采取刺激手段鼓励制度上的和行为上的变革;(7)证实和部署接近的商业技术是亟需的,比如获取碳和存储碳,是一项重大的研发投资,为技术在长期中带来更多收益;(8)政策应该被执行,使人类行为和生活方式的变化成为现实,通过去除高碳选择和提供给消费者从低碳方法中获益的机会;(9)国际合作应得到加强,在国家、区域间和国际股东间分享专业以及最好的经验。

3.2 中国建设低碳社会的建议

3.2.1 改变能源供应结构,提高能源使用效率

我国温室气体排放主要集中在能源生产和能源消费行业,必须大力发展可再生能源,严格控制燃煤电长建设,改造高污染电厂;大力推动清洁燃料发电,加快应用固碳发电技术等低碳发电技术。此外,还要在农村大力提倡可再生能源的应用,包括沼气、太阳能、秸杆等,大力推广吊坑、节煤灶等。

3.2.2 倡导绿色建筑和低碳城市,转变城市建设模式

城市是温室气体的主要排放源,能否推行低碳城市发展模式,直接关系到低碳社会能否真正建立。低碳城市的构建途径包括新能源技术应用、清洁技术应用、绿色规划、绿色建筑和低碳消费等。

3.2.3 改造交通运输系统,推行生态交通

交通能耗和温室气体排放将是我国未来碳排放的重要来源,必须利用先进技术,从提高能源利用效率,减少碳排放入手,改造现有交通运输系统。首先,应该推行城际轨道交通为主、高速公路为辅的交通模式,减少单位碳排放;其次,保留和扩展自行车道和步行道,大力发展地铁、公交专用道等,优化公交出行方式。

参考文献

篇6

低碳时代使得企业的外部经营环境发生了很大的变化,其中既蕴藏着机遇,也隐含着风险。最大的机遇将是新一代能源技术的创新和应用,将引领全球经济进入能源技术时代;最大的风险是低碳经济对经济转型的要求最终落实到每一个微观企业,如果不能对企业的行为形成有效约束,那么就无法达到减排目标。企业必须开始思考在产品的产业链中,每个企业该承担多少碳排放的责任,在加入碳约束的条件下,企业的成本曲线会发生怎样的变化。企业如何抓住机遇,变革自身的商业模式,改造经营模式,进行价值创新,成为企业重塑核心竞争力的重要因素。

(一)企业外部环境变化

气候变化给企业的外部经营环境带来了变化,使得企业出现了新的经营风险。与气候有关的立法频繁的出台且提出的苛刻减排目标,尽管这些指标将如何落实到每个企业还有待完善,但企业面临的气候立法压力则与日俱增。此外,来自国际贸易政策中以碳关税、碳配额购买、碳准入、碳审计与信息披露为形式的障碍,势必会影响企业的国际竞争力。首先,来自供应链的碳减排压力变得更加广泛和深入。许多大企业由于受本国立法或者舆论的压力,开始采取严格的碳排放管理方案,与此同时对供应商也提出了要求。因此,越来越来的企业不得不面对供应链巨头的变革压力来调整经营战略。其次,来自气候变化问题的投资风险正在逐渐进入金融机构和企业的投资决策模型之中。传统行业中高碳产品在面对严格的气候立法时,其生存空间受到巨大挤压,而这也进一步影响到企业评级、融资等后续行为。再次,低碳环境下,消费者环保意识增强,越发关注碳足迹;产品碳足迹标签使得碳排放信息显性化,碳足迹成为消费者产品价值认知和效用函数的重要因素,对市场需求和市场份额产生较大的影响。需求端消费者效用函数的变化将成为供应链碳减排的引导和驱动因素之一。企业所面临的品牌风险并不只是与其碳排放密度有关,相当程度上取决于公众的消费习惯和认知能力。“低碳忠诚度”或许可以更好的描述消费者在选择产品和服务时的心理倾向。此外,在低碳经济下,企业的竞争力模型里,出现了一条虚拟的碳价值链。尽管它由企业的实际经营活动产生,却又与这些产品或服务的生产成本或利润分布情况明显不同,甚至完全脱节。一些创造最多利润的环节可能带来很少的碳排放,而利润较低的环节可能主导了大部分碳排放。同时,在不同环节降低排放的成本和效率也存在着差异。如果给碳定价,那么企业产品、服务的价值曲线将发生重大变化。在未来,经济转型的成本将被分配给每个行业与每个企业,而这种分配既不是平均主义,也不是完全基于公平的市场机制,很可能存在很多不合理的因素。这将给现有的企业经营环境带来一系列不确定性变化。因此,这就使得企业必须重新评估生存的风险和机遇,将外部影响内部化,迅速变革商业模式和管理方式,进行价值创新,重塑低碳竞争力。

(二)企业内部因素变化

1.低碳经济下企业的成本结构的变动低碳经济要求企业不断提高“碳生产率”(单位二氧化碳的GDP产出水平),也就是说生产相同数量的产品消耗更少的能源,从而大大降低企业的生产成本。在低碳经济发展战略下,政府实行相应的政策来限制企业排放温室气体。无论政府选择征收碳税还是碳排放指标交易,企业采用低碳的经济发展模式都会减少相应的碳排放指标成本和缴纳的碳税总额,从而降低企业的生产成本。但是,新技术的研发会加大企业的研发成本,同时,管理成本在低碳经济发展初始阶段,由于新的管理制度的不完善、低碳技术的不成熟都会导致管理成本上升,随着低碳技术运用的成熟度的日趋提高,企业管理成本也会随之降低。

2.低碳经济下企业的融资途径发生了变化政府为支持低碳经济的发展,在政策上对低碳行业或者低碳企业进行倾斜,使企业获得政府资金补贴、优惠的信贷政策。企业可以通过碳排放机制中的CDM项目来获得发达国际的资金支持,通过自愿减排市场的交易获得收益。

3.低碳经济下企业的资产范围发生了变化碳排放机制下,碳作为一种新型商品引入市场,碳交易把原本一直游离在资产负债表外的气候因素纳入了企业的资产负债表,改变企业的收支结构,使得企业在传统的盈亏模式下,多了一种影响现金流和利润的因素。因此,在对企业经营状况进行评判的时候,需要考虑这一新的资产形式——碳资产。

二、低碳经济下企业盈利模式创新探索

(一)打造低碳产业链的盈利模式

产业链产生于上下游产业之间的联系,上游企业向下游企业输送产品或服务,最终形成一个功能完善、服务健全的产品或服务支撑链。在传统产业链下,产生高价值的环节或者产业很可能是碳排放量最低的,产生低价值的环节或者产业很可能是碳排放最高的,而在低碳环境下,加入碳排放因素的产业链,其价值分布将发生很大的变化。要打造一整条低碳产业链,首先要改变产业价值链的分布。传统产业价值链的分布一直是向资源型企业倾斜,而我国大多资源型企业都是碳排放量极高的,因此,从低碳产业价值链的角度来讲,就必须改变资源型企业的生产状况,大力发展高新技术产业,向掌握低碳核心技术的环节和链条倾斜,走低碳产业链与产业结构的发展模式。低碳经济下的新兴产业革命本身即意味着对现有产业制度进行创新,其核心在于从纵向的高碳产业结构和横向的高碳产业链条两个角度来改善现有高碳排放量下产业制度。

1.改变产业链条中高碳产业高碳产业低碳化首先是缩短能源、化工、建材、钢铁、汽车、交通等高碳产业所引申出来的产业链条,把这些产业的上、下游产业链“低碳化”,通过低碳技术的引入和改造,使之成为探索低碳经济发展的重点领域。例如,在跟物流密切相关的交通运输领域,应加速淘汰高耗能的老旧汽车,加快发展柴油车、大吨位车和专业车,推广厢式货车,发展集装箱等专业运输车辆,控制高耗油汽车的发展;加快发展电气化铁路,开发高效电力机车,推广节电措施,发展机车向客车供电技术,推广使用客车电源,逐步减少和取消柴油发电车;采用节油机型,提高载运率、客座率和运输周转能力,提高燃油效率、降低油耗。

2.发展低碳产业调整高碳产业结构,逐步降低高碳产业,推进产业和产品向利润曲线两端延伸:即向前端延伸,从生态设计入手形成自主知识产权;向后端延伸,形成品牌与销售网络,提高核心竞争力,最终使国民经济的产业结构逐步趋向低碳经济的标准。在限排的情况下,必须调整能源的利用结构,发展清洁能源。例如:太阳能、风能、生物质能等。

(二)引入碳管理的盈利模式

1.在碳盘查的基础上实行碳减排碳盘查是以企业或集团为单位,计算该单位在生产活动中各环节直接或间接排放的温室气体的总量,将其编制成一份温室气体排放清单,并进行温室气体管理体系(ISO14064)的认证。碳减排解决方案是在碳盘查的基础上,根据ISO14064编制企业温室气体排放清单报告,为实现减少企业温室气体排放,实施碳管理并优化企业碳管理体系而制定的包括碳减排目标、碳测量、碳减排措施等内容的方案。低碳经济下,制定碳减排解决方案,首先,有利于企业对其排放的温室气体进行全面掌握与管理,并获得准确而完整的企业碳排放清单和温室气体管理体系(ISO14064)认证;其次,明确的碳减排目标和清晰的节能碳减排机会,不仅为发掘潜在的节能碳减排项目提供可能,而且为企业降低能耗,节约成本,提高运营效率提供支持;再次,有利于提升企业碳的管理和社会形象,以及应对气候变化带来的风险的能力,减少相关方风险,最后,有利于应对国家以及地区相关法规政策的能力,履行社会责任,与国际标准接轨,转换传统经济增长模式,发掘参与国际和国内的碳排放交易的机会,实现低碳经济下的可持续发展。

2.通过碳足迹的测量来获得碳标签的使用权,使企业获得更多的市场份额。产品或者服务的碳足迹是指某个商品生产或服务的生命周期内的总温室气体排放量。对于一件产品来说,从生产该产品的原料收集开始,到产品制作、运输、使用,一直到产品最终废弃或者回收,所有碳足迹评价过程都包括在其生命周期之内。碳足迹的评估分为三个阶段,首先,在启动阶段需要设定目标,选择碳足迹测量的对象产品,并让供应商参与,根据产品的生命周期从供应链上考虑总的温室气体排放量。其次,在产品碳足迹计算阶段,通过绘制碳足迹项目过程图,确定优先顺序,对边界进行界定,然后对范围内的数据进行收集,最后根据PAS2050(ISO14067)计算产品碳足迹,编制碳足迹数据报告,对其中不确定性的环节、数据进行最终确定。最后,在后续阶段要审定和核查结果,根据碳足迹报告实行减排措施,评估减排效果。通报碳足迹,获得碳足迹标签的使用权,公布减排量。开发碳足迹,对企业来说,使产品获得准确的产品生命周期内的碳排放信息,获得潜在的节能减排机会和产品碳排放基准线,为企业确定减排目标和途径提供依据,同时,应对日益严格的国际标准要求,满足消费者对产品碳信息披露与使用低碳产品的要求,提高品牌和企业知名度,获得国内外客户认可,提高产品在同行业内的竞争力。

(三)开发碳资产的盈利模式

碳规制下,包括二氧化碳在内的温室气体的排放行为都要受到限制,这就使得碳排放权和碳排放额(信用)开始稀缺,《联合国气候框架公约》的100个成员国及《京都议定书》签署国在《京都议定书》规定的责任前提下,使其成为一种有价产品,被称为碳资产。从现实来看,发达国家的能源利用效率高,能源结构优化,新的能源技术被大量采用,因此在发达国家进一步减排的成本极高,难度也较大。而在发展中国家,能源利用效率低下,缺乏对新技术的研发和新能源的开发,如果能源运用发达国家先进的技术和新能源技术,那相对于发达国家来说减排空间很大,成本也低。这导致了同一减排单位在不同国家之间存在着不同的成本,形成了高价差。《京都议定书》中的CDM机制,使得这种交易成为可能,发达国家和发展中国家可以通过项目合作的形式,由发达国家帮助发展中国家减排,而减排额可以通过交易的形式进行买卖,那么国际碳交易市场由此产生。碳交易市场虽然尚未扩展到全球范围,但这个市场创造出了一种新型的虚拟商品。这种新型商品的引入,使得企业在传统的盈亏模式下,多了一种影响现金流和利润的因素。评判企业经营状况的标准发生了变化,这两个标准之间本质上并不是完全重叠的,如果这一新的资产形式(碳资产)写入财务报表,那么意味着虚拟经济将不可阻挡地进入到企业微观层面,并直接影响到企业的经营成果。

1.通过清洁发展机制(CDM)项目来开发企业的碳资产《京都议定书》所签订的三种碳减排机中唯有CDM机制是包括发达国家(买方)和发展中国家(卖方)的机制。在该机制下,发达国家的政府和企业可以到发展中国家购买由温室气体减排项目产生的核证减排量(CER)以抵消其在《京都议定书》框架下的减排义务,发展中国家的政府和企业从中获得资金与技术的支持。对中国的制造业而言,通过CDM项目,可以减少项目投融资的障碍与风险,从发达国家获得资金和技术支持,增加项目经济吸引力,项目签发成功后,每年将获得直接经济收益。

2.自愿减排项目(VER)自愿减排(VER)是随着《京都议定书》强制型市场的发展而伴随形成的碳市场。在自愿型市场中,任何组织或个人为了抵偿自己排放的各种形式的温室气体,自愿交易碳信用额。自愿减排市场为那些前期成本过高、或其它原因而无法进入CDM开发的碳减排项目提供了途径。VER由不同的机构和不同的标准在执行,在自愿减排市场,只要能找到买家购买即可交易,省掉很多中间申请的环节,节省时间。而且,项目开发期间无需任何资金投入;可以从项目减排量交易中直接获得收益。公司或者个人通过自愿购买能够减少温室气体排放的自愿减排量以减少碳足迹,由此产生的收益可以帮助减少投资运营成本、引入更加清洁高效的技术、减少对环境的影响,从而提高企业形象、提升品牌竞争力,为企业参与国内碳交易市场作准备。

3.通过中国自愿减排项目(CCER)根据《温室气体自愿减排交易管理暂行办法》,参与自愿减排的减排量需经国家主管部门在国家自愿减排交易登记簿进行登记备案,经备案的减排量称为“核证自愿减排量(CCER)”。自愿减排项目减排量经备案后,在国家登记簿登记并在经备案的交易机构内交易。国内外机构、企业、团体和个人均可参与温室气体自愿减排量交易。可申请备案的自愿减排项目有:

(1)2005年2月16日后开工建设;

(2)采用经国家主管部门备案的方法学开发的自愿减排项目;

(3)获得国家发展改革委批准作为清洁发展机制项目,但未在联合国CDM机制执行理事会注册的项目;

(4)获得国家发改委批准作为CDM机制的项目并在联合国CDM机制执行理事会注册前就已经产生减排量的项目;

(5)在联合国CDM机制执行理事会注册但减排量未获得EB签发的项目。

三、小结

篇7

作者简介:高小升(1980-),男,西北农林科技大学思政部讲师, 法学博士,主要研究领域为全球气候变化与现当代国际关系。

摘要: 农业领域温室气体排放增长快、减排潜力大以及较高的生态脆弱性等决定了其在全球气候谈判中的地位随着国际应对气候变化努力的发展而日渐提升。虽然目前对农业议题的关注度仍然和农业在应对气候变化中的重要性不完全相称,但是农业在全球气候谈判中的地位已经大为提升。农业在气候谈判中地位的变化对气候谈判产生了重大而深远的影响。然而鉴于一系列不确定因素的存在,农业议题在全球气候谈判中地位的上升及其影响尚有待进一步观察。

关键词:全球气候谈判;农业;温室气体排放;京都议定书

中图分类号:F323.22文献标识码:A 文章编号:1009-9107(2013)04-0037-07

自工业化以来,人类社会遭遇了各种各样的环境问题,而其中最为严重且最难应对的当属气候变化问题。鉴于人为排放的温室气体是造成这一问题的主要诱因,控制和减少温室气体排放就成为应对气候变化的关键。农业在应对气候变化占有重要的地位,其不仅排放大量的温室气体,而且具有很大的减排潜力,同时农业也备受气候变化的影响。随着国际应对气候变化努力的发展,农业日渐被纳入全球气候谈判的议程中,农业在全球气候谈判中的出现及其未来的地位变化将对全球气候谈判和农业发展本身产生多方面的影响,适时对其进行分析意义重大。

关于“农业与气候变化”的问题,国内外学术界已经做了一定的有益探索,其研究主要集中在三个方面:一是气候变化对农业发展的经济影响。国内外学者,尤其是农业经济研究学者,运用各种模型分析气候变化在农业领域的系统性影响,包括气候变化对粮食安全、农产品贸易,农业产业分布等问题,比如2009年农业部启动的“气候变化对农业生产的影响及应对技术研究”公益性行业科研专项,产生了一批优秀成果。二是发展低碳农业的必要性及其路径,这也是研究论文最多的领域之一。研究者从应对气候变化、农业发展等角度论证实现农业低碳转型的必要性,并从技术层面、政策层面以及财政和金融支持等角度提出了发展低碳农业的路径。三是研究农业在应对全球气候变化中应发挥的作用。从事此方面研究的主要是国外学者,他们主要通过分析农业与气候变化的关系,提出农业在未来应对气候变化中应该发挥的作用和要求提高农业在未来国际气候机制中的地位,比较有代表性的成果当属美国农业与贸易政策研究所(Institute of Agriculture and Trade Policy)围绕国际气候谈判进展发表的系列分析评论。然而目前的研究未能回答如下问题:农业在全球气候谈判中地位变化的原因是什么?农业议题目前在全球气候谈判中处于何种地位?农业议题在全球气候谈判中地位的变化将带来什么样的影响?这正是本文力图解决的问题。

一、农业在全球气候谈判中地位变化的原因与动力

全球气候谈判启动于20世纪80年代末,时至今日已有20多年的历史。在这一进程中,农业在全球气候谈判中的地位逐渐发生着缓慢但却重要的变化,从最初对农业议题的漠视到强调农业在应对气候变化中的重要性,再到农业作为当前全球气候谈判中独立的谈判议题出现。究其原因,三大因素的发展是农业在全球气候谈判中地位变化的主要动力。

1. 农业领域中温室气体排放的迅速增加。从排放总量看,农业领域温室气体排放在全球温室气体总排放中的份额日渐增大。根据2007年的IPCC第四份评估报告(IPCC AR4),农业排放的温室气体占全球人为排放总量的10%~12%,全球排放的甲烷(CH4)和氧化亚氮(N2O)中来自农业的分别占47%和58%[1]503 。土壤释放的甲烷(CH4)和发酵产生的氧化亚氮(N2O)是最主要的温室气体来源。2005年农业排放的CH4和N2O就分别占全球非CO2温室气体排放总量的38%和32%[2]。

从排放趋势看,农业温室气体排放正快速增加,并且很可能在未来继续保持这一趋势。相关研究数据表明,1990~2005年间农业排放的甲烷(CH4)和氧化亚氮(N2O)增加了17%,年均增长5 800万吨。联合国粮农组织(FAO)预测,源于氮肥使用量的增加和沼气生产量的提升,2030年农业排放的氧化亚氮(N2O)会增加35%~60%[3]99 。其他学者和研究机构的结果也显示出相似的趋势,认为未来农业领域排放的氧化亚氮(N2O)将在1990年的基础上增加50%。

从排放的地域分布看,发展中国家是全球温室气体排放的主要增加源之一,而农业排放在发展中国家总排放中占有很大的份额。国际粮食与农业贸易政策委员会(International Food& Agricultural Trade Policy Council, 简称IPC)的数据显示,农业排放主要集中在发展中国家,占其温室气体总排放的74%左右[4]4。 农业虽然在发达国家经济中的比例很小,但是近几年来由兽禽粪污管理带来的排放却不断上升,也不容忽视。此外,土地使用变化导致的排放也大概占全球CO2总排放的20%左右[5] ,而粮食生产是土地利用变化的主要驱动力之一,联合国粮农组织(FAO)2008年度报告得出结论,由人类需求驱动的粮食增长正在也将继续推动农业温室气体排放的增加。

可以说,农业领域温室气体在全球排放总量中份额的扩大、对未来农业排放趋势的担忧以及农业排放源的增多开始促使世界各国对农业在国际气候谈判中地位的重新审视。

2. 国际社会对农业减排潜力的新认识。20世纪80年代末全球气候谈判启动之初,气候科学研究上存在一定的不确定性,对于农业与气候变化的关系也没有充分的认识。然而随着气候科学研究的发展,世界各国日渐认识到农业对于应对气候变化的重要性,特别是农业领域存在着巨大减排潜力。具体表现在:(1)农业领域存在着丰富的碳汇碳汇(carbon sink)主要是指陆地生态系统吸收并储存二氧化碳的多少,或者说是植物吸收大气中的二氧化碳并将其固定在植被或土壤中,从而减少该气体在大气中的浓度。在陆地生态系统二氧化碳总储存量中,森林约占39%,草原约占34%,农耕地约占17%。 , 能够大大减低空气中温室气体的浓度,有效应对气候变化。仅以碳的封存为例,农业在确保世界粮食安全的同时,仍为温室气体减排提供了多种可能,预计年减排潜力为55~60亿吨二氧化碳当量,几乎相当于当今世界1年的温室气体排放总量。2030年约有89%的技术减排潜力能够通过土壤碳封存来实现,尽管其可行性尚需进一步研究[6]1-5 。澳大利亚农场主协会(NFF)研究认为,在过去的2个世纪里,全球农业用地中超过一半的土壤碳汇已经丧失,温室气体已经排放到空气中,这一丧失也为碳的封存提供了新机遇,预计能吸收空气中10%左右的碳[7]。(2)通过提升家禽、粪便和水稻的管理以及优化肥料使用和管理等方式,农业排放的温室气体也能大大减少。混合肥料的使用是农业温室气体排放增加的重要原因之一,因为这些混合肥料以天然气和氮肥为原料制成,生产过程会消耗大量的能源,释放大量的温室气体。这些混合肥料的使用也会使土壤释放的温室气体增加,因而加强混合化肥使用管理会减少温室气体的排放。与此同时,农业领域内的家禽业也是潜在的减排源泉。反刍动物,诸如牛、绵羊、山羊和水牛等消化食物的过程(又称肠道发酵)是家禽业温室气体的最大排放源。据统计,由此种消化方式带来的甲烷(CH4)占人为排放的此类气体总量的5%~10%。[8]3-5 尽管改变动物的消化习惯异常困难,但是改变上述动物的食料会对这一过程中的温室气体排放产生影响。新近由部分农场牵头、奶农参与的联合研究发现,通过改变奶牛的饮食,在其中加入富含有欧米茄-3的饲料能大大减少反刍过程中排放的温室气体,最高可减少18%,而且还能增加牛奶的营养价值。

不管是碳的封存、肥料使用的改变以及家禽的饮食管理都将给农业提供可观的减排潜力。联合国粮农组织(FAO)预计,发展中国家通过农业和林业项目采取的减排努力成本可能占所有行业和地区总成本的1/4到1/3, 但减少的排放却能达到减排总量的1/2到2/3[9]2-4 。可以说,世界各国对农业减排潜力的重新认识是农业在全球气候谈判中地位变化的重要原因。

3. 农业在全球气候变化中日渐凸显的生态脆弱性。随着气候科学的发展,越来越多的研究清晰表明,气候变化会对农业产生重大影响,并且以负面影响为主。英国财政部的《斯特恩报告》指出,全球气温升高2℃将使干旱和半干旱地区(例如地中海盆地)水量减少30%,上升4℃这些地区的水量将减少40%~50%[10]。倘若全球升温3~4℃,气候变化对农业的负面影响将更大,在非洲和西亚地区的表现最为明显,使用弱碳肥料情况下减产25%~35%,使用高碳肥料情况下也要减产15%~20%。2007年出版的IPCC评估报告也指出,发展中国家,特别是对气候变化最为脆弱的非洲影响最大,“非洲许多国家的农业生产,包括食物的获取,都将因气候的异常和变化而受冲击,适合农业生产的地域,农业作物的生长期以及那些处于干旱和半干旱地区周边的农业潜在收成大大降低,进而影响粮食安全和减速该地区人群的营养不良”[11]8-15 。此外,由气候变化带来的海平面上升也将减少可耕种的农业用地和农业产值。海平面上升将使世界许多地方数千公顷的良田被淹,海平面上升1米将使湄公河流域可耕种和水产养殖面积减少10万公顷,尼罗河三角洲大部分被淹没,五大主要发展中经济体(中国、印度、巴西、墨西哥和南非)受影响的国土面积分别达到0.34%、0.24%、0.14%、1.02%和0.02%。倘若海平面上升3米,则分别达到0.76%、0.66%、0.41%、1.92%和0.05%[12] 。面对气候变化对农业负面影响的日渐增大,采取适应和缓解措施成为农业领域必然的选择,由此也要求对农业在国际气候谈判中被漠视的现状加以改变,进而对通过国际气候机制对农业应对气候变化做出安排。

二、农业在全球气候谈判中地位的变化

在国际社会应对气候变化的发展进程中,农业议题在全球气候谈判中的地位变化呈现出明显的阶段性特征。

1. 对农业议题的漠视阶段(1988~1995年)。20世纪80年代末开启的全球气候谈判最初并未直接涉及农业领域,各缔约方批准生效的《联合国气候变化框架公约》(以下简称《公约》)只是非常模糊地提及农业应对气候变化问题。表现在:首先,《公约》第2条谈及粮食生产的重要性,强调大气中温室气体的浓度稳定“应当在足以使生态系统能够自然地适应气候变化、确保粮食安全生产免受威胁并使经济发展能够在可持续的时间范围内实现”[13] 。其次,《公约》要求所有缔约方制定、定期更新和公布其所有温室气体源的人为排放和各种汇的清除,涵盖农业领域。同时,《公约》也要求各缔约方制定、执行、公布和经常更新国家的以及在适当情况下区域的减缓气候变化的计划,以及相关适应气候变化的措施,农业也被纳入其中[14]。 此外,《公约》第4条第1款也呼吁缔约方促进、合作发展、应用和传播(包括转让)各种用来控制、减少或者防止温室气体人为排放的技术、做法和过程,而这些行业和部门包括农业和林业。

可以说,在这一阶段,农业议题基本上不为《公约》缔约方所注意,全球气候谈判主要将注意力放在应对气候变化基本原则和框架的确立以及发达国家与发展中国家间应对气候变化责任的划分上,在《公约》中只是一般提及农业应该包含在应对气候变化的领域之中。

2. 农业议题关注初显阶段(1995~2005年)。1995年,《公约》缔约方第一次大会(COP1)决定启动《京都议定书》(以下简称《议定书》)以落实《公约》确立的应对气候变化原则和目标,由此全球气候谈判进入京都气候时代。在这一阶段,农业议题在全球气候谈判中的地位有所提升和改观,农业领域采取的措施也被纳入到缔约国家实现减排目标的手段之中。表现在:

首先,把土地使用、土地使用变化和林业(LULUCF)领域的活动计入减排目标的实现中。根据《议定书》第3条第3款,“自1990年以来直接由人引起的土地利用变化和林业活动――限于造林、重新造林和砍伐森林――产生的温室气体源的排放和汇的清除方面的净变化,作为每个承诺期碳贮存方面可核查的变化来衡量,以实现附件――所列每――缔约方依本条规定的承诺”。[15] 同时,《议定书》也赋予《公约》缔约方大会就涉及农业土壤、土地利用变化和林业类各种温室气体源的排放和各种汇的清除方面的相关变化,应如何加到附件一所列缔约方的分配数量中或从中减去的方式、规则和指南做出决定。在《议定书》后续谈判中达成的《马拉喀什协议》(Marrakech Accords)对LULUCF的原则和规则做了进一步的说明,即LULUCF活动仅包括森林管理、放牧和管理、植被恢复以及农田管理[16]。

其次,《议定书》下发达国家实现减排目标的京都灵活机制之一――清洁发展机制(CDM)首次明确将农业领域减排包括其中。京都灵活机制由排放贸易、联合履约以及清洁发展机制等三大机制构成,其目的在于帮助发达国家实现《议定书》规定的减排目标,其中清洁发展机制允许发达国家在发展中国家实施有利于发展中国家可持续发展的减排项目,从而减少温室气体排放量,以履行发达国家在《京都议定书》中所承诺的限排或减排义务。 根据CDM的规则,发达国家通过CDM获得的排放许可用于冲抵其京都减排目标,而农业领域是开展CDM项目的主要领域之一。由此,农业领域温室气体排放的减少得以进入全球气候的谈判之中。

再次,《议定书》首次就农业应对气候变化提出直接的要求。《议定书》第10条b款呼吁签约国制定、执行、公布和定期更新减缓气候变化的措施和有利于充分适应气候变化的国家方案以及在适当情况下的区域方案,这些方案“除其他外,将涉及能源、运输和工业部门以及农业、林业和废物管理”,[15] 从而农业议题正式出现在国际气候协议中。

3. 农业议题地位的迅速提升阶段(2005年以来)。2005年《议定书》最终生效,全球气候谈判进入后京都气候时代。在这一阶段,农业不仅首次成为独立的谈判议程,而且在各种气候谈判场合被多次讨论,在全球气候谈判中地位迅速提升。表现在:

首先,农业在气候谈判中被提及的次数迅速增加。在《公约》及《议定书》的谈判中,农业议题被提及的次数寥寥无几,然而自2005年后京都气候谈判启动以来,缔约方不仅就农业应对气候变化多次交换意见,而且出现在后京都气候协议谈判文本中的多个地方。根据全球农村发展捐助者平台(Global Donor Platform for Rural Development)对哥本哈根气候会议谈判文本的分析,涉及农业的条款达到72处。2010年,各国依据《哥本哈根协议》提交的应对气候变化计划中,三分之二的发展中国家将农业纳入其中,2010年底的坎昆会议后投入运作的快速启动基金、绿色气候基金以及新建立的“坎昆适应框架”均将农业囊括其中[17]。

其次,在正式的联合国气候谈判之外,对农业应对气候变化的讨论日渐增多,也趋于激烈。一般来讲,在正式气候谈判会议召开的同时,《公约》秘书处也会邀请学术研究机构、非政府组织参加会议,举办气候大会的边会(side event),就尚未纳入正式谈判的气候议题和观点进行交流,从而使边会成为塑造正式气候谈判结果的重要渠道[18] 。近年来的几次气候大会上,举办的边会和参加边会的人数迅速增加,涉及农业的边会和活动也大量涌现。据统计,在哥本哈根气候大会期间,与农业相关的边会共有13个,并且还在2009年12月12日举行了“农业和农村发展日”,后者还了“农业和农村发展联合宣言”,极大地扩大了农业在气候谈判中的影响。

再次,要求将农业纳入国际气候机制的呼声高涨。随着气候科学的发展,各缔约方、学者、环境非政府组织对农业在应对气候变化中地位的认识更加清晰,因而越来越呼吁给予农业在气候谈判中应有的位置,改变以往应对气候变化中对农业的忽视。2009年4月,各缔约方在德国波恩首次召开《公约》下农业议题专题研讨会,2009年6月的第二次波恩气候谈判会议的谈判文本将农业议题单列一章。哥本哈根大会期间,迫于各种环境非政府组织的压力,农业被写入《哥本哈根协议》文本草案中,虽因多种原因,农业未能出现在最终的《哥本哈根协议》文本中,但是此后的历次谈判会议上,农业议题越来越受到重视[19] 。2010年坎昆会议前夕在荷兰海牙召开的“农业,粮食安全和气候变化”国际会议制定了农业应对气候变化的路线图。在坎昆会议上,虽然各方因在《议定书》存续、减排责任划分等关键议题上的分歧使农业在此次会议上未受到进一步的关注,但《坎昆协议》中的不少条文仍对农业应对气候变化做出了规定。

三、农业议题在气候谈判中地位上升的影响

当前正处于构建后京都气候机制的关键阶段,各方围绕着气候谈判的各项议题展开了激烈的讨论与博弈,农业议题地位的提升将对当前的全球气候谈判产生重大而且复杂的影响。

首先,农业纳入气候谈判增加了全球气候谈判的复杂性。气候变化属全球性问题,具有涉及面广的特点,为应对气候变化,各缔约方需进行多方面艰难的协调与合作。根据加拿大国际可持续发展研究所(International Institute of Sustainable Development)20余年来对全球气候谈判的观察, 气候谈判涉及的议题越多,协调的难度就越大。与其他行业不同的是,农业作为基础性产业,在人类的生产生活中享有战略性的地位。虽然从经济数据显示,农业在国际经济中的贡献度不断降低,但是这并不真正反映农业在人类社会发展中的实际作用。农业的战略性地位决定了将其纳入到原本已经存在诸多议题的全球气候谈判中,无疑将增加谈判的复杂性。(1)农业的规模决定了在该行业达成减排安排相对复杂。源于农业用地的超大规模,生态系统的差异以及该行业涉及许多农民的利益,任何有关这一行业的应对气候变化安排需进行全面的权衡,在上述多种因素之间实现复杂而微妙的平衡。(2)农业减排的不确定性加剧了谈判的复杂性。在农业减排中,最大的技术难题当属减排的不确定问题以及减排量如何计算的问题。以农业领域的土地使用、土地使用变化和林业(LULUCF)为例,对于如何处理LULUCF与各国减排目标的关系,仍存在很大的争议和技术性难题。同时,如何计算农业生产过程的温室气体排放以及农业碳汇都是国际气候谈判中争议不休的问题,这些都使举步维艰的全球气候谈判进一步复杂化。

其次,农业纳入气候谈判提升了应对气候变化的全面性和有效性。虽然农业领域温室气体排放量不断上升且减排潜力巨大,但在过去很长的一段时间内,农业却被排除在应对全球气候变化的进程之外,使应对气候变化缺乏全面性。不仅如此,鉴于农业温室气体排放的规模,忽视该领域不仅导致农业排放的急剧增加,而且也会抵消其他行业所做出的减排努力,导致“碳泄漏”。而将农业纳入全球气候谈判则能逐步解决这一问题。更为重要的是,农业进入全球气候谈判议程和在其中地位的提升,丰富了人类应对气候变化的方式和提高了应对气候变化的实际效果:(1)农业领域可以实现直接减排。通过调整和改变现有农业的运作模式,不仅能推进农业的发展,而且能够降低农业部门的碳排放强度。以粮食生产为例,借助改变农作物的种植方式和粮食生产链,在确保粮食安全的前提下,与粮食生产相关的排放还能大幅下降。(2)降低与农业相关的其他行业的排放。源于森林砍伐和破坏导致的排放(REDD)是全球温室气体排放的重要增长源,占全球排放总量的20%,超过全球交通运输部门,达到中国和美国2005年的排放水平[20]5。 20世纪90年代,源于森林砍伐释放到空气中的碳约为15亿吨,其也是世界第三、四大温室气体排放国――巴西和印度尼西亚的主要排放源[21]1-2。联合国粮农组织估算,1990~2005年间全球森林砍伐面积约为1 300万公顷/年,由此导致的排放约为58亿吨二氧化碳当量[22] 。而农业对土地的需求是驱动森林砍伐最主要的原因之一,农业纳入全球气候谈判议程无疑将减缓这一趋势。(3)农业也为世界应对气候变化提供了新的能源选择。生物能源是很多国家发展可再生能源极为重要的一部分,被认为是遏制交通运输业温室气体排放增加的有效途径,也是减少柴油等石油产品使用的有益替代能源,而农业种植的能源作物是生物能源生产的主要来源。近年来不少国家出台了大力发展生物能源的计划,譬如欧盟在2005年12月就提出了“生物能源行动计划”的立法建议,计划将欧盟25国供热、电力生产和交通运输中生物能源使用量从2003年的6 900万吨标准油提高到2010年的1.85亿吨标准油[23] 。这些目标的实现在很大意义上依赖于农业,凸显出农业对于应对气候变化的重要性。

再次,将农业纳入全球气候谈判议程加大了达成国际气候安排的难度。在后京都气候时代,围绕着国际气候机制的构建,各国之间召开了激烈的博弈,“双轨制”的气候谈判原本就艰难和复杂,不仅有2012年后《京都议定书》的存续问题,还有发达国家和发展中国家(特别是主要发展中国家)气候变化责任的划分问题,农业在后京都气候谈判中地位的上升会进一步恶化这一趋势。鉴于农业排放的巨大规模,农业减排和农业碳汇计算中的技术难题和不确定性以及由此可能导致的“碳泄漏”都是缔约方极为关注的问题。不仅如此,农业还是粮食生产的主要来源,耕地占全球面积的40%,水资源消费的70%以及为40%左右的世界人口提供就业机会,这使得在农业领域的任何政策调整都将产生重大影响。此外,由于农业在发展中国家经济中占有较大的份额,《公约》及其《议定书》和2007年达成的“巴厘岛路线图”,要求发展中国家采取的适当国家减排行为(NAMAs)以发达国家“可衡量、可核实和可报告”的资金和技术支持为前提,将农业纳入其中将增加发达国家的责任,这使谈判的困难进一步增加。上述这些都加剧了本已经举步维艰的后京都气候谈判的复杂性,使得在2012年底联合国多哈气候大会上达成后京都气候安排的几率和可能性进一步降低。

四、 结论与思考

综上所述,影响农业议题在全球气候谈判中地位变化的主要原因有三:农业领域温室气体排放量的迅速增加,对农业领域减排潜力的新认识以及农业在气候变化中的生态脆弱性;虽然目前对农业议题的关注度仍然和农业在应对气候变化中的重要性不完全相称,但是农业在全球气候谈判中的地位已经大为提升,未来其地位将继续上升;农业已经成为全球气候谈判的正式议题,鉴于它所具有的战略性地位,对目前正在进行且处于关键阶段的后京都气候谈判势将产生重大而深远的影响,并进而影响国际社会应对气候变化的发展方向以及减排机制。

然而需要注意的是,农业尚未成为全球气候谈判的核心议题,其在全球气候谈判中的未来地位及其影响将取决于三大因素:一是气候科学研究的发展,要提升农业在应对气候变化中的地位,首先要解决的是农业应对气候变化中存在的不确定性,而这依赖于气候科学研究的未来发展。二是农业在气候变化面前生态脆弱性的高低。未来气候变化对农业负面影响的大小将是决定农业是否采取适应和减缓气候变化的重要动力之一,也是农业议题在气候谈判中能否进一步受到重视的决定因素。三是全球气候谈判的进展。在当前的气候谈判中,发达国家减排以及工业领域减排是核心议题,只有在解决了关键的谈判议题之后,才有可能关注农业等其他议题。

总之,农业议题在全球气候谈判中的地位正在不断上升,其也对全球气候谈判产生了重大而复杂的影响,然而鉴于一系列不确定因素的存在,农业议题在全球气候谈判中地位的上升及其影响尚有待进一步观察。

参考文献:

[1] B.Metz et al.(eds.)Climate Change 2007:Mitigation:Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M].Cambridge:Cambridge University Press,2007.

[2]US-EPA. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions:1990-2020[R].United States Environmental Protection Agency.EPA 430-R-06-003.June 2006.

[3]FAO.World Agriculture:Towards 2015/2030:An FAO Pe-rspective[R].Food and Agriculture Organization,2003.

[4]Charlotte Hebebrand et al.International Climate Chan-ge Negotiations and Agriculture[R].ICTSD-IPC Platform on Climate Change,Agriculture and Trade,May 2009.

[5]Hemal Ali.Multilateral Climate Negotiations:why Agriculture is Excluded[EB/OL].November 2011.http:///media/HEMAL % 20Ali.pdf.

[6]Bruce Campbell et al.Agriculture and Climate Change:A Scoping Report[R].Meridian Institute,June 2011.

篇8

随着近些年来世界气候变暖趋势的增强,导致了诸多环境问题。如今,全球每年有18万至5.5万个物种成为濒危物种,每天都有150多个物种彻底地消失。低碳农业正是在积极应对气候恶化的情况下,针对目前农业领域的生产投资较大、能耗较高、污染较重等不足,这是从保护资源环境的视角所提出的。由于全球范围内的畜牧业以及种植业的大发展,加上农用机械、化肥、农药以及除草剂等大量运用,农业生产不仅得到了发展,而且农业源所排放的温室气体也在持续增加。据统计,全世界每年农业生产所释放的温室气体量达到了人为排放总量的30%左右,农业生产中所排放的CH4达到了人为排放量的一半左右,而N2O达到了大约60%。依据推测,一旦无法及时地控制温室气体的大规模排放,估计到了2030年,农业源CH4与N2O的排放量会比2010年分别提升60%与35%。因为我国能源生产大国与消费大国,而且同时还是农业大国,所以,积极发展低碳农业肯定具备了十分重要的意义。自从改革开放以来,我国农业建设已经取得了非常大的成绩,但还是未能从根本上改变粗放型经济发展方式。据统计,我国农业源排放中的CH4在我国CH4排放总量中达到了80%,而农业源排放中的N2O则达到了N2O排放总量90%左右。由于农业耕作力度的加大,对于耕地所造成的干扰变得愈来愈频繁,从而直接破坏了农田或者耕地的固有结构,导致土壤碳库的平衡受到了显著的影响,其对于大气CO2的贡献率有继续大幅提高之趋势。与此同时,农业还是最容易受到气候变化影响的一个产业,气候的变化导致水资源缺乏与燃料价格的波动均会直接造成粮食生产具有有效性以及稳定性。因此,世界粮农组织于2009年大力呼吁提升低碳农业的投资额度,认为低碳农业不仅能够遏制气候出现变化,而且还能提升发展中国家粮食的总产量。依据我国农科院的相关研究,证实温度一旦升高,农业用水就会减少,耕地面积也会下降,导致我国粮食生产水平不断下降。为此,国家号召各各业节能减排,而对于农业产业来说,必须发展低碳农业,这对于降低农业温室气体排放量,有效保护环境来说十分重要。

二、低碳经济时代下农村节能减排的主要途径

(一)更富效率地使用化肥

如果不再生产工业化肥,每一年都能为全球节省至少1%以上的石油能源。农业施肥则立足于影响植被生物量以影响到土壤中碳供应量以及微生物的活性,引发土壤碳库出现新的变化。运用对土壤增施相应的有机肥,能够切实减缓土壤中有机质的腐烂,有效缩短有机粪肥暴露的时间,从而减少土地耕作类活动,改进土壤水分的管理,可减少二氧化碳排放到大气中的量。同时,运用测土配方进行施肥,依据作物的需求进行施肥,能够较好地降低化肥使用量,切实避免农田的土壤当中出现氮肥的过剩;切实提升有机肥的使用量,改进农田土壤的通气性以及酸碱度;尽可能地降低农田土壤的耕作,积极栽培地面覆盖着的植物,从而降低碳的排放量。

(二)实施节水灌溉

运用滴灌与微喷灌技术以改进地面的灌溉技术,这是节水的最佳方式。具体来说,可运用以下两种方式:其一是实施土地平整与条田建设。那些平整度比较好的土地要比差的土地更加节水达10%至20%,这就是积极改善地面灌溉技术的一个最基本的条件;其二是要高度重视农业节水技术,要依据农作物的生长周期、需求饱和度等实施适时与适量的供水,从而实现节水、增产以及增效。与此同时,还应当积极推广喷灌与滴灌等新型节水技术,在最大限度上提升农村地区水资源利用率,进而极大地降低农业生产的成本。

(三)引入新型农作物的育种技术

要积极引入新的农作物品种,比如,可以培育抗高温与耐干旱,而作物生长发育期又比较长的那些品种,从而更好地应对全球气候的变化。要致力于推广那些高产农作物品种,加大多年生牧草的种植力度,全力栽培新的木本植物,持续牲畜放牧管理技术等,从而提升耕作土地当中的碳素数量。要通过积极培育新型氮素,更加高效地利用农作物来开发农业的新品种,这是一项适应于农业生产应对气候变化的重要方法。要积极开发与培育对氮素对于高效利用的重要类型,全面减少碳排放对农村环境所导的真正破坏,这就非常需要对了解全球温室气体排放良,并进行控制。

(四)运用畜禽健康养殖技术

畜禽的养殖是的农村地区温室气体十分重要的来源。通过从传统养殖方式往清洁养殖加以转变,建立起畜禽养殖场,这对于集约化的养场被,对污水实施无害化处理,更加合理地实施肥料化利用等举措,从而为适应气候的变化,降低气候变化所带来的影响。要建设固体粪便的有机肥厂。对于规模化畜禽养殖场,应当运用好氧、发酵等技术来处理固体进行粪便,并实施无害化处理,制成成有机肥,应当积极建设液体粪污较多的中小型沼气工程。要依据生态学中的整体、协调、循环及再生等原则,对没有采取清粪方式以提升畜禽养殖场的厌氧生物技术以及物理处理与这一技术相结合的新型治理方法,建立起用于液体粪的大中型沼气工程。

(五)推动沼气工程项目节能减排

沼气工程项目的温室气体减排量主要来源于两个不同的方面。一是运用沼气能够切实减少对于薪柴和化石燃料、电能之消耗,切实减少温室气体所具有的排放。同时,用在通过发酵而形成的沼渣则完全可以期待施用的常规化肥方法。在农村地区运用沼气,不仅除了省柴、省煤、省电以及省时以外,还能能降低烟雾与粪便处理费用,从未有利于对大理石实施环境保护。

(六)对秸秆资源进行综合利用

我国农作物秸秆的年产量大约达到了7亿多吨,而且农村中绝大部分秸秆是被焚烧,不仅严重污染环境,而且还浪费宝贵的资源。焚烧秸秆不但会直接排放出碳,而且还会加快土壤当中有机碳的分解和损失。通过秸秆还田则能够促使土壤当中的有机碳的降低。通过减少农田当中的碳排放,最为直接的措施是能够提升地面秸秆还田之比例。美国的秸秆还田率达到将近90%,而我国的秸秆还田率只能达到大约15%。在作物秸秆的综合利用当中,采取秸秆发电和秸秆碳化等是在秸秆还田处理之后更加适合于我国国情的高效化资源化处理方式。以秸秆为原料,可以制成多种不同类型的纤维板与木塑型材等,比如,以麦秸为主要原料,通过挤压成型作为定向结构的麦秸板,可以十分广泛地作在墙体、屋面以及地板底衬板上,是框架结构建筑当中用量最大的一种材料,不仅能够隔热,而且还能保温、隔音,并且还能防潮,加大房屋空间之体积,这样一来就能极大地降低高耗能钢材、水泥以及砖瓦之应用,还能降低森林砍伐率。

三、结束语

篇9

关键词:碳交易;工业;排放权;分配;市场

中图分类号:X24 文献标识码:A DOI:10.3969/j.issn1003-8256.2013.05.003

背景

工业部门是最主要的能耗部门之一。工业占中国总能耗的约60-70%。美国的工业部门占全美总能耗的三分之一。温室气体碳排放权交易市场的有序运作离不开对工业部门的管理。如何在遏制国内工业部门温室气体排放和保护国内工业部门的竞争力之间取得一个平衡点是各国政策制定者努力解决的重要问题。

在碳排放权交易市场中,工业部门通常通过两种途径获得排放权,即通过拍卖竞标购买排放权,或者通过获得免费发放的排放权。拍卖的排放权会以竞标的最高价出售,而免费发放(或称为“继承的排放权”)的排放权通常根据企业的情况,按照事先定好的份额大批量的分给工业企业。

从经济理论上来说,如果满足所有的前提假设(如,完全竞争的市场,没有交易成本,完全的信息等),这两种途径都能获得排放权市场的经济均衡效率 (Fowlie, 2010)。但在项目的实际操作中, 经济学家更支持通过拍卖对企业进行排放权的分配,如果拍卖获得的收入可以用于抵消其他税收或其他非市场因素而带来的损失。但是,政策制定者往往偏向对工业企业发放排放权。这主要是为了在建立碳排放权交易项目时获得工业企业的支持。

当碳排放权交易项目的规模较大,涉及范围较广时,对工业企业大批量发放排放权的方式会对企业给予过度的补偿(Bovenberg and Goulder, 2001)。考虑到工业行业的政治经济利益,只有拍卖方式的排放权配额分配方式的实际操作性也很有限。

美国加州经历了六年的规划和筹备,已于2012年正式启动加州的碳排放权交易市场。加州吸取了欧洲碳排放权交易市场的经验,总结了美国区域性的排放权项目经验(如西部气候项目),并实施了创新性的措施。加州排放权项目包括约139家工业企业,涉及到的工业领域有石油天然气开采、炼油、水泥、工业气体生产、采矿和石灰生产、水果蔬菜包装、玻璃、造纸、乳业、其他食品加工、钢铁、炼铝、化工和制药、酿酒和果汁生产等。在对工业各行业进行排放权分配方面,加州采取了拍卖和发放排放权相结合的方式。到目前为止,每年制定工业企业的排放权份额,并且已经开展了三次排放权的拍卖。

实现行业分配的先决条件

法律支持

加州的《全球变暖解决方案法(AB 32)》 于2006年成为法律,正式生效。它为加州2020年的温室气体排放制定了总量限制,要求加州到2020年,将温室气体排放下降到1990年的水平。加州政府的目标是,在实现减排目标的基础上,仍然要保持其经济增长,并同时改善公共健康。按照法律要求,加州空气资源委员会负责制定并监督实现加州法律要求的减排目标。温室气体排放权总量管制和交易项目(Cap-and-Trade)是加州应对气候变化方案的关键部分。通过进行温室气体排放的总量管制和排放权的交易,为温室气体排放制定每年逐步下降的总量目标。通过为温室气体定价,鼓励减排并促进创新,最小化实现降低温室气体排放的成本。

严格的数据上报

加州的《全球变暖解决方案法(AB 32)》要求到2008年1月1日,所有的重点温室气体排放单位必须强制上报,从而建立排放的基准线。按照法律要求,这些单位包括工业企业,交通燃料、天然气、液化天然气、液化石油气和二氧化碳供应商,石油和天然气系统运行商,及电力生产和零售商。数据上报必须按照法规规定,通过加州的电子上报系统递交。加州空气资源委员会编制了用于数据上报的培训资料,并开展在线培训,帮助企业能够合规的进行数据上报。

所有上报的排放量必须通过公认的独立第三方验证,并得到加州的认证。没有完整或及时上报将面临经济处罚,上报的节能量将被公示。加州碳排放权交易项目启动后,受到总量管制的行业必须仍然每年上报排放量。

总排放配额的设定

排放限额的总量设定是碳排放权交易市场得以正常运转的关键要素。加州为排放权的总量设定了硬性限额。2013年的限额目标比预计2012年排放量低百分之二,2014年继续下降两个百分点,2015年到2020年排放权总量逐渐缩小,每年下降三个百分点。目前,加州的排放权总量管制涵盖着加州温室气体排放的85%,包括600家商业企业(每年排放超过25,000吨二氧化碳的企业),于2013年开始包括发电企业和大型工业企业,并计划于2015年纳入天然气、交通燃料和其他燃料的供应商。

总结欧洲经验

加州的碳排放权交易市场吸取了欧洲碳排放权交易市场(EU-ETS)的经验教训,包括需要严格执行强制的排放数据上报和验证,制定碳排放权交易的最低价格,在分配排放权份额时优待能效最高的企业,并建立有效的市场实施和监管手段。

防止排放“泄漏”和保护竞争力

加州碳排放权交易对工业企业进行配额分配主要基于两个因素:一是帮助企业逐渐实现减排目标;二是防止出现排放的“泄漏”。在项目启动之初对工业企业提供免费的排放权份额,能够帮助企业转型,避免短期的负面经济影响,逐步实现低碳经济。如图1所示,项目对工业企业所提供的帮助其实现转型的免费排放权份额将逐年降低。

加州碳排放权交易项目决策者也认识到,如果其他州和地区没有排放权的限制和要求,加州州内的工业企业的生产成本可能会在短期内上升,即可能会降低加州州内企业的经济竞争力。如果工业企业为了摆脱加州的限制而将生产移到没有对温室气体排放进行限制和要求的州或地区,总体排放不仅不会降低反而可能会上升。这就会产生排放的“泄漏”。加州法律(AB32)要求加州空气资源委员会制定政策措施将温室气体排放的“泄漏”降到最低。在电力部门,购买的外州电力也要受到加州碳排放权交易项目的管理。在工业部门,加州制定特别的方法来降低工业部门的排放“泄漏”。

加州碳排放权交易项目通过以下两方面来分析各工业部门的“泄漏”潜力:排放强度(emission intensity)和贸易强度(trade exposure)。排放强度即工业企业每单位产品的温室气体排放。贸易强度则用来衡量工业企业转嫁减排成本的能力。加州认为,如果没有项目的支持,与没有温室气体排放限制的地方相比,加州的高排放强度和高贸易强度的企业的竞争力会受到更大的负面影响,他们则有较高的可能转移他们的生产,带来排放的“泄漏”。因此,加州采取在项目开始初期对这些企业免费给予较多的排放权份额。这样做的原因主要是为了维持加州企业的经济竞争力。

在确定每个工业行业能够分配到多少免费份额来避免排放权“泄漏”时,加州建立了基于排放效率对标的方法。也就是说,能效高的企业能够获得更多的排放份额。加州为每个工业行业都制定了排放效率标杆,并会定期更新。同时,加州也考虑了工业生产会随着经济形势的好坏而波动。因此,当经济出现下行时,工业企业则获得较少的排放权份额。

根据行业排放“泄漏”的风险,加州制定了分产品的政府支持系数,最高为100%。政府支持系数也分为三个阶段,即2013-2014,2015-2017, 2018-2020。如平板玻璃制造和日用品玻璃制造的政府支持系数在三个阶段内均为100%。钢厂和二级铝制品和金属制品的加工冶炼在这三个阶段内的政府支持系数分别是:100%、75%和50%。 制药业的政府支持系数分别是:100%、50%和30%。

排放权的分配和计算

加州碳排放权交易项目对所涵盖的工业行业每年进行排放权分配。大型工业企业在项目开始之初可获得免费的排放权配额,但是在项目后期必须购买拍卖的配额。份额如何分配和每个耗能企业具体分配多少的问题会影响到碳排放权交易市场的效率(即实现总体目标的成本)以及公平(即如何对项目成本进行分配)。

基于产量的排放权份额

在加州的碳排放权交易市场中,排放权的分配不是基于企业的排放量而制定的,而是基于企业的产量以及每个行业的先进值,从而对高能效的企业给予奖励。这避免了欧洲碳排放权交易市场出现的问题。欧洲碳排放权交易市场在项目初期,根据企业过去的温室气体排放制定排放权份额,这样的结果就是奖励了排放量最高的企业。

具体的排放权份额的数量根据以下方式计算:

排放权份额= Q × A × B × C

其中:

Q: 企业产品的产量

A: 根据企业产品的排放“泄漏”风险而定的政府支持系数

B: 排放权标杆(类似单位产品标杆性排放因子,下同)

C: 随排放权总限额的降低而逐渐下降的系数

加州采用了“一个产品,一个标杆”的原则建立排放权标杆,也就是在尽可能的情况下,尽量避免排放权标杆因为技术、燃料种类和使用情况、企业规模和年份、当地气候和原料质量而不同。

工业部门的配额量按照该行业平均排放水平的百分之九十进行分配,并逐步下降。这个排放平均水平是基于企业的能效水平对标而计算得出,从而奖励高能效的企业。按照企业的产量和效率水平,每年对企业的配额数量进行调整和更新。

例如,对于氮肥生产行业,加州采用的排放权标杆是0.385个排放权份额1/吨硝酸,0.009个排放权份额/吨硝酸铵钙溶液。对于平板玻璃行业,加州采用的排放权标杆是0.519个排放权份额/吨平板玻璃。加州对水泥和钢铁行业采用的排放权标杆分别是0.786个排放权份额/吨水泥和0.199个排放权份额/吨电炉钢。

基于能耗的排放权份额

加州排放权交易项目对主要的工业产品建立了排放权标杆。但是,如果工业企业的生产活动没有排放权标杆,他们的排放权份额则采用基于能耗的排放权份额计算方法。基于能耗的排放权份额的计算方法主要需要以下三方面的企业数据:包括企业年平均蒸汽消耗量(不包括用于发电的蒸汽用量),企业年平均燃料消耗量(不包括用于生产蒸汽且已经包含在蒸汽用量中的燃料消耗量),以及企业年平均出售的电量(即上网的电量)。

具体的排放权份额的数量根据以下方式计算:

排放权份额= (S × BS + F × BF - E × BE) × A × C

其中:

S: 企业年平均蒸汽消耗量(不包括用于发电的蒸汽用量)

BS: 单位蒸汽用量的排放权标杆

F: 企业年平均燃料消耗量(不包括用于生产蒸汽且已经包含在蒸汽用量中的燃料消耗量)

BF: 单位燃料消耗的排放权标杆

E: 企业年平均出售的电量(上网的电量)

BE: 单位电量用能的排放权标杆

A: 根据企业产品的排放“泄漏”风险而定的政府支持系数

C: 随排放权总限额的降低而逐渐下降的系数

由于加州实施了严格的强制数据上报系统并针对该方法制定了数据收集表,因此可以获得企业的能耗数据进行排放权份额的计算。由于该方法基于企业详细的能耗量,加州排放权交易项目也保证对需要保密的数据进行保密处理。

总结

加州碳排放权交易项目在建立了一系列先决条件后(包括法律保障、强制数据上报和排放权总限额的制定),主要采取了拍卖和免费分配两种方式对排放权份额进行分配。这里主要介绍了加州如何对工业行业进行免费的排放权份额的分配。在制定分配方法的过程中,加州主要考虑了如何尽可能减少温室气体排放的泄漏,维持加州工业企业的竞争力。但也同时对企业进行激励,鼓励能效最高的企业,分配排放权份额逐年下降,促使工业企业更多的在拍卖市场上购买排放权份额。

加州对工业企业的排放权分配的方式吸取了欧洲碳排放权交易市场的经验教训。制定排放权份额时,不是基于企业过去的温室气体排放量,而是基于企业的产量,并将企业和行业内最好的企业进行对比,建立排放权标杆。加州碳排放权交易项目虽然涵盖的工业企业仅百家,但是加州制定分配排放权的方法值得中国碳排放权交易市场学习和借鉴。

参考文献:

[1]California Air and Resources Board (CARB). 2010a. “Appendix B: Development of Product Benchmarks for Allowance Allocation.”http://arb.ca.gov/regact/2010/capandtrade10/candtappb.pdf

[2]California Air and Resources Board (CARB). 2010b. “Appendix K: Leakage Analysis.” http://arb.ca.gov/regact/2010/capandtrade10/capv4appk.pdf

[3]California Air and Resources Board (CARB). 2012. “Staff Report: Initial Statement of Reasons for Rulemaking.”http://arb.ca.gov/regact/2012/leviiidtc12/dtcisor.pdf

[4]California Air and Resources Board (CARB). 2013. “Vintage 2013 Industrial Allowance Allocation by Sector.”http://arb.ca.gov/cc/capandtrade/allowanceallocation/sector_based_industrial_allocation.pdf

篇10

大气中的水蒸气、二氧化碳和其它微量气体,如甲烷、氟里昂等,能够吸收地球的长波辐射,阻碍地球向外空散发热量,就像在地球周围形成一个温室一样,于是科学家们把这类气体称做“温室气体”。温室气体吸收地球的长波辐射再反射回地球,从而减少地球向外层空间的能量净排放,大气层和地球表面将变热,这就是温室效应。

大气中能产生温室效应的气体已经发现的约30种,其中二氧化碳起主要作用,甲烷、氟里昂和氧化亚氮也起着相当重要的作用。本世纪以来所进行的一些科学观测表明,大气中的各种温室气体都在增加。按一些专家的测算,地球表面温度已经上升了0.3℃~0.6℃,导致全球海平面上升了10~25厘米。许多学者的预测表明,到下世纪中叶前,世界能源的格局如果不发生根本性的转变,地球表面温度将进一步上升。

温室效应的主要危害

海平面上升全世界大约有1/3的人口生活在沿海岸线60公里的范围内,经济发达,城市密集。全球气候变暖导致的海洋水体膨胀和两极冰雪融化,可能在2100年前使二氧化碳增加和气候变暖,可能会增加植物的光合作用,延长生长季节,使世界海面上升50厘米,危及全球沿海地区,这些地区遭受淹没或海水侵入。

加剧洪涝、干旱及其它气象灾害气候变暖导致的气候灾害增多可能是一个更为突出的问题。厄尔尼诺现象就是一例。厄尔尼诺出现时,东南太平洋高压明显减弱,印度尼西亚和澳大利亚的气压升高,同时,赤道太平洋上空的信风减弱,因此有时候人们也把厄尔尼诺称为暖信风。目前对厄尔尼诺的认识还很不够,要彻底解开这个谜尚待时日。但很明显,厄尔尼诺给人类带来的灾难是严重的,最主要的就是使全球气候失调。