垃圾渗滤液的处理方法范文

时间:2023-12-21 17:36:38

导语:如何才能写好一篇垃圾渗滤液的处理方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

垃圾渗滤液的处理方法

篇1

【关键词】垃圾;渗滤液;难点;方法;分析

垃圾渗滤液是一种黑色、恶臭、构成复杂、浓度高的有机废水,有机物污染程度、氨氮含量浓度非常高,难以处理的生化物质含量较多,具有强毒性。渗滤液污染后的水,水质变化很大,无法再进行使用。这些,已经成为环保部门和卫生部门重点关注、待续解决的问题。要解决这个难点,就要先了解渗滤液的特点、目前各地在处理过程中存在的难点,然后才能选取对应、合适的方法进行处理。

一、垃圾渗滤液的特点

垃圾渗滤液是垃圾在堆场存放和填埋时由于自然发酵、雨水作用和地表水、地下水的浸泡作用而渗滤出来的垃圾污水。产生的来源主要有垃圾自身的含水、垃圾自然生化反应所产生的水、堆场地下的潜水层反渗的水和自然的降水,其中自然降水具有集中、时间短和往复的特性,成为构成渗滤液的主要部分。

渗滤液是一种构成成分复杂、浓度高的有机废水,其性质取决于垃圾的构成成分、垃圾的颗粒大小、处理压实的程度、堆场的自然气候、地段的水文条件和垃圾处理填埋的时间等因素,一般来说有以下特点:

(1)水质复杂,危害性大

(2)有机物污染程度、氨氮含量浓度高。

(3)氨氮含量高,并且随填埋时间的延长而升高。

(4)水质变化大。

(5)金属含量较高。

(6)渗滤液中的微生物营养元素比例失调,主要是碳、氮、磷的比例失调。

二、垃圾渗滤液的处理的难点

1.垃圾渗滤液造成的附近水质水量变化大,构成成分中有毒有害物质的含量较高,并且会随着填埋场使用时间的延长,可生化性越来越差,氨氮等浓度越来越大,优化处理的难度也越来越高。进行渗滤液处理时,一般情况下都对这种情况缺乏充分的认识和足够的应对方法,而且处理所采用的工艺方案也不能适应这种变化,这样就导致渗滤液的处理设备在运行初期还尚能够满足需求,但在一段时间之后就出现不达标的情况,原有的处理系统不能随之适应,渗滤液中的污染物去除效果也会越来越差。

2.垃圾渗滤液处理难度最大的是关于高浓度氨氮的去除和可生化处理的可能性低。在实际垃圾渗滤液处理过程中,出水大多数不能达到相关的标准进行排放,主要因为氨氮超标,再就是有机物污染程度高。

(1)由于氨氮在渗滤液中的浓度高,传统的生化处理方法中,有关硝化和反硝化工艺处理的操作,难以达到处理要求。现多采用的方法是,用吹脱法去除氨氮。但这样会吹脱出大量氨、苯酚、硫化氢等恶臭气体,造成空气污染,影响周边的环境。如果进行废气吸收净化设备的配置,又会增加投资和运行费等成本的投入。此外,由于其容易腐蚀等原因,吹脱装置的耐用性很差。采用膜分离(例如反渗透)的方法进行处理时,分离出来的浓缩液大多是回灌造成的。回灌的垃圾渗滤液不断循环,会造成污染物的累积,主要是氨氮的不断累积,随着时间的推移,其浓度升高导致降解难度加大。

(2)由于渗滤液可生化性差,碳、氮、磷的含量比例失调,而且构成的成分中有毒有害物含量较高,所以不适于直接采用生化法处理。尤其具有高氨氮、低碳氮比特性的垃圾渗滤液,一般要先采取化学混凝的方法进行预先处理,目的是去除里面的金属离子和难以降解的有机物质,同时也是为了降低里面的有机物污染程度,提高可生化改善的可能性。不过,进行了有机物污染程度的去除操作后,会出现影响后续进行的生化处理缺乏碳源的情况,会造成除氮效果不好。如果要要提升除氮的效果,那么就需要加强营养物的投加从而导致处理费用的加大;如果不进行部分有机物污染程度的支除,处理后渗滤液中的有机物污染程度又达不到标准。

3.渗滤液的处理需要使用具备抗冲击能力大的工艺处理系统,过去所采用的工艺流程和操作规范都偏于复杂化,成本投入大、管理运行的费用高,并且大多数的效果都达不到保证稳定运行和处理标准的要求。

目前对垃圾渗滤液进行处理的工艺关键,主要是关于高浓度氨氮处理工艺技术和渗滤液深度处理工艺技术两个方面的处理研究与实施。

三、垃圾渗滤液的处理的方法分析

1.循环回喷处理方法分析

垃圾渗滤液回喷处理的优势在于是成本投入少,管理费用低。最有效的是在北方降雨量少的地区,垃圾中的水分较低的垃圾填埋场,采用回喷的方法是最为经济、有效的;但是,如果是在南方地区,由于地区的降雨量大,垃圾中的水分较高,使用此方法会受到限制。

通过喷洒循环后的渗滤液需要采取进一步的处理才能进行排放。由于垃圾渗滤液回喷是不断循环的,这样会造成氨氮成分的不断累积,也有可能最终使氨氮成分的浓度远高于未循环渗滤液中的浓度,这样就会给治理渗滤液的目的达成增大难度。

2.物化处理方法分析

在新建垃圾填埋场产生的渗滤液,大多数重金属离子成分的浓度要远远高于重金属元素本身对微生物的毒害作用,所以对于重金属离子成分的去除多采用物化处理的方法操作。

渗滤液处理在采用生物处理的方法时,渗滤液中含有的营养成分的实际含量要远大于微生物生存所需的浓度,所以为了确保方法的有效性,要进行适当的预处理,不然这样的生长环境将不利于微生物的生长,长期下来会影响微生物处理的效果。由于存在时间长的渗滤液中大分子的有机物含量非常高,这样就会造成化学氧化从而使生物降解难以实现,所以在进行操作前也要先进行处理。物化处理是渗滤液预先处理常采取的方法。

物化处理的方法可以除去渗滤液中的一部分污染物,并且能够提高渗滤液后续的可生化处理性,为后续工艺处理负担的减轻奠定了基础。但是,物化处理单独使用时,也有局限性,这样不能使垃圾渗滤液的处理达到处理标准,所以一般是作为预处理工艺来实施的,这样能降低处理难度,为后续处理的其它方法的操作,创造了良好的前提条件。

在操作时,如果使用普通的絮凝剂进行对垃圾渗滤液的处理,对于其中的有机物污染程度去除是很有限的,一般也就能达到20%左右的效果,这是达不到处理要求的。垃圾渗滤液的物化处理需要使用见效快、耗用低、价格低、对pH环境适应性强的絮凝剂。

为了改善渗滤液中碳与氮的比例,过去多采取先进行吹脱再进行生化处理的方法,使用氨吹脱处理对氨氮含量的却除有一定的效果,但前提是需要加药操作来调整pH值,这样就会造成运行成本高,操作环境恶劣,操作过程中易产生非常严重的二次污染,无论是现场操作人员还是环保部门都不提倡采取这种工艺处理方法。

3.生化工程处理方法分析

现今的渗滤液处理工艺技术,无论采取什么样的处理方法,生化处理法都一种必不可少的工艺处理方法。在进行厌氧处理或好氧处理时,去除有机污染物或进行转化时,都是通过让微生物起作用而达到目的的。生化处理的方法可以有效达成污染物浓度降低的目的,成本投入少,具有很较强的可处理性。

但是,生化处理法,也同其它方法一样,有其自身的局限性,使用此方法会出现以下问题∶

(1)渗滤液的水质会伴随着填埋场使用时间的延长而发生变化,时间长了,进行生化处理的可行性会越来越差。

(2)由于垃圾渗滤液自身存在的问题,如氨氮含量与有机物的污染程度的比例不协调等,会导致培养好的处理污泥难以持续作用。

(3)垃圾渗滤液使用厌氧处理方法时,在达到去处部分有机物污染程度的效果时,也会带来氨氮含量上升的情况,给后续处理带来更大的麻烦。

(4)高氨氮、低碳氮比的特性,会让传统的生物脱氮工艺处理方法效果不良,这同时也是生化处理法对时间长的填埋场产生的渗滤液处理,很难起到效果的一个原因。

4.膜分离处理技术分析

膜分离处理技术一般有超滤、反渗透、膜生物反应器等几种。膜分离处理技术的特点是在处理过程中,不会发生相应的变化,处理的有效性高;通常情况下,也不再需要加注其它物质来协助处理,减少了原材料和药剂的成本投入;在膜分离处理过程中,分离、浓缩过程是同时进行的,这样能使回喷的浓缩液量有所减少;膜分离处理方法运用时,还不会受到自然环境的变化影响,可以在多种气候条件下进行;能够实现自动化控制;处理后的水质稳定,水质能符合标准。

由于膜分离处理方法的投入和成本费用都不低,因此大多数的反映是,成本上难以维持。近些年来,由于其它传统生化处理方法有不完成达标的情况,又没有其它更好的处理方法可以替代,在成本允许的范围内,垃圾渗滤液处理工程中只是将膜分离处理法当作深度处理的一种方法来使用,处理后的水,多用于城市绿化、车辆清洗、道路养护等方面。

四、结语

通过以上的探讨,可以看出,垃圾渗滤的处理有多种方法可以解决,但每种方法又有各自的优势和局限性。一味的追求单一的方法,不计成本的投入,不但会加大成本,事与愿违,还会增加因此带来的其它环境污染。要做好垃圾渗滤液的处理,需要根据各地的自然条件、垃圾渗滤液的特点,采取综合的应对方法进行处理,才能达成渗滤液处理的综合效益。

参考文献:

[1]蒋宝军.生活垃圾渗滤液吸附降解及催化氧化技术的研究[J].哈尔滨工业大学,2011(3)

篇2

关键词:城市垃圾;渗滤液;处理技术

中图分类号:G202文献标识码: A

在我国,垃圾填埋法是目前广泛使用的处理生活垃圾、工业垃圾的方法 。而且随着城市填埋技术二次污染相关问题的深入研究,作为防治二次污染问题的渗滤液处理技术也引起了越来越多的人和相关部门的重视。今后,符合我国基本国情的、经济的、具有针对性的并切实可行的垃圾填埋工艺和渗滤液处理技术的研究,将是我国研究的重点课题。

1垃圾渗滤液的特点

垃圾填埋场中重力流动的产物液体即是垃圾填埋场渗滤液,渗滤液主要包括外来水(如地下水渗入、地表水、大气降水)和垃圾分解产生的源水。能够影响垃圾场渗滤液性质的主要原因包括:填埋场条件、填埋地点的水文地质条件、填埋地点的气候条件、垃圾的主要成分、垃圾填埋的条件等。在以上多种因素的影响下,形成的垃圾填埋场渗滤液的以下特点:

1.1渗滤液水质复杂

影响垃圾填埋场渗滤液水质的主要因素是垃圾的组成成分。渗滤液是高浓度的有机废水,且不同地方垃圾的组成不同,渗滤液的水质也可能相差很大。据我国相关部门测定,国内几大城市垃圾填埋场渗滤液水质的调查显示,渗滤液中含有94种有机化合物,其中5种可诱导致癌,1种可致癌,20余种进入美国和我国EPA环境优先控制的污染物黑名单。其次,填埋的时间也会影响垃圾渗滤液的水质。一般情况下,垃圾填埋时间越长,渗滤液水质的可生化性就越差。同时随着垃圾填埋时间的增长,渗滤液中金属离子的含量降低,氨氮含量、PH值增加。除以上原因影响渗滤液水质外,填埋场的降水量、土质等也是其影响原因。由此可见渗滤液水质的变化规律是极其复杂的。

1.2渗滤液金属含量高

在垃圾的降解过程中产生的二氧化碳溶入垃圾渗滤液中,极易造成渗滤液水质呈微酸性,即加剧了垃圾中金属、金属氧化物和不溶于水的碳酸盐发生溶解,最终造成渗滤液中金属含量升高。垃圾填埋场渗滤液中主要金属离子包括:钙离子、铝离子、锌离子和铁离子等。

1.3渗滤液中氨氮含量高

垃圾填埋场渗滤液中垃圾的组成成分和垃圾的填埋方式的不同,造成渗滤液中氨氮质量浓度从数千毫克每升到几千毫克每升的变化。并且,随着垃圾的填埋时间的增长,垃圾中的有机氮不断转换为无机氮,使得氨氮的含量不断的升高。

2垃圾填埋场渗滤液的处理建议

2.1运用合并处理法

合并处理法是指垃圾渗滤液和一定规模的城市污水厂的污水合并处理,合并处理法是一种最为简便的处理方法。合并处理法的优点是:其一,节省大量单独建立垃圾渗滤液处理系统的费用,降低渗滤液处理成本。其二,能够利用污水处理厂污水对垃圾渗滤液达到稀释、缓冲的作用,实现城市污水和垃圾渗滤液同时处理的目的。合并处理法也有其缺点,包括:第一,因城市污水厂与垃圾填埋场间距离的问题,造成渗滤液的输送成为巨大的经济问题。第二,渗滤液水质复杂、组成多变容易对城市污水处理厂造成冲击负荷,甚至影响到城市污水厂的正常运行。综合合并处理法的优缺点,想在利用合并处理方法时得到效益最大化,那么必须考察其工艺的可行性。

2.2场内循环喷洒处理法

场内循环喷洒处理法是一种比较简单有效的处理方法。场内循环喷洒处理法优点包括:第一,通过回喷将垃圾的含水率由20%-25%提高到60%-70%,明显增加垃圾的湿度,提高垃圾中微生物的活性,使甲烷产生增加,以达到加速有机物的分解和污染物溶出的目的。第二,循环喷洒处理可降低渗滤液的浓度。第三,喷洒过程的挥发作用可减少垃圾渗滤液的产生,对水质及组成起到稳定作用,便于废水处理系统的正常运行及节省费用。第四,加速垃圾中有机物的分解,使垃圾场的稳定化进程由原需的15-20a缩短到2-3a。循环喷洒法存在的问题:(1)不能够完全消除渗滤液。(2)循环喷洒后的渗滤液仍需处理才可排放。

2.3渗滤液的预处理法

渗滤液中的SS污染物、色度、氨氮和金属离子通过设定在垃圾填埋场的预处理设备进行首处理,则可以得到有效的减少。又或者首先通过厌氧处理,使其生化性得到改善,降低处理负荷。渗滤液的预处理可为垃圾渗滤液的再次处理创造良好的运行条件。

渗滤液有着不同的处理方法,就方法的选则来说,应符合我国基本经济国情且达到保护环境的目的。另外,为了更好的研究垃圾渗滤液的处理技术应全面考察垃圾填埋场周边的有关因素及相应的处理技术的支持,使得垃圾渗滤液得到有效可行的处理。

参考文献

[1]常有锋,唐杰.人工湿地在城市垃圾渗滤液处理中的应用.《西安文理学院学报(自然科学版)》.2013年3期

篇3

关键词:垃圾渗滤液;处理;技术

中图分类号:R124.3

随着我国城市的迅速发展, 城市垃圾产量不断增加。目前城市垃圾处理方法主要有焚烧、堆肥和填埋等。其中卫生填埋由于处理量大、成本低廉、技术成熟等优点而被国内外广泛应用。但填埋场产生的渗滤液危害极大, 它主要来源于降水和垃圾内部的内含水。若处理不当,会严重危害周边环境和污染地下水。因而渗滤液的收集和处理已成为急待解决的问题,成为国内外研究的热点之一。

1 滤液的产生

渗滤液是指城市垃圾在填埋和堆放过程中由于垃圾中有机物的分解产生的水和垃圾中的游离水、降水以及入渗的地下水,通过淋溶作用形成的污水。渗滤液主要来源[1]:(1)垃圾自身的水分;(2)垃圾中有机组分在填埋场内经厌氧、好氧分解产生的水分,产生量与垃圾的组成、pH、温度和菌种等因素有关;(3)填埋场内的自然降雨与径流。其中降水是渗滤液的主要来源,这些水分渗过成分复杂的垃圾时,使垃圾发生分解、溶出、发酵等反应,从而使渗滤液中含有大量的有机污染物、氮、磷和种类繁多的重金属类物质。

2 渗滤液的特点

渗滤液的水质随垃圾的组分、当地气候、水文地质、填埋时间和填埋方式等因素的影响而有显著的不同。其显著特征[2]:

2.1 有机物浓度高

渗滤液中的BOD5 和COD 浓度最高可达几万mg/L,主要是在酸性发酵阶段产生,pH 值一般在6.0 左右( 显弱酸性),BOD5 与COD 比值在0.5- 0.6。

2.2 水质变化大

渗滤液的水质取决于填埋场的构造方式和垃圾种类、质量、数量以及填埋年数的长短,其中构造方式是最主要的。

2.3 氨氮含量高

城市垃圾渗滤液中氨氮浓度很高,且氨氮浓度在一定时期随时间的延长会有所升高,主要是因为有机氮转化为氨氮造成的。在中晚期填埋场中,氨氮浓度高是垃圾渗滤液的重要特征之一,也是导致处理难度增大的一个重要原因。由于目前多采用厌氧填埋技术,导致渗滤液中的氨氮浓度在填埋场进入产甲烷阶段后不断上升,达到高峰值后延续很长的时间直至最后封场,甚至当填埋场稳定后仍可达到相当高的浓度。

2.4 微生物营养儿素比例失调

对于生物处理,垃圾渗滤液中的磷元素总是缺乏的, 一般垃圾渗滤液中的BOD/TP 都大于300。此值与微生物生长所需要的碳磷比(100:1)相差甚远。在不同场龄的垃圾渗滤液中,碳氮比有很大的差异,也会出现比例失调现象。

3 圾渗滤液的处理方式

3.1 合并处理

合并处理就是将城市垃圾渗滤液就近引入城市污水处理厂与城市污水合并进行处理的方式。城市污水量较大,可对渗滤液起到稀释作用,但需控制好比例,以避免对城市污水处理厂造成冲击负荷。

3.2 土地处理

土地处理是利用土壤的自净作用进行处理的方法。目前应用于垃圾渗滤液土地处理的方法主要有人工湿地和回灌处理两种。用人工湿地处理垃圾渗滤液具有费用低、管理方便等优点,但处理效果随季节变化较大,处理有机物的浓度也较低。它适应植物生长期长、生长旺盛的南方地区,不适应北方寒冷地区。回灌处理渗滤液易造成土壤堵塞,氨氮累积,回灌处理后的渗滤液仍有较高的浓度,还需要做进一步处理,因此回灌处理很少单独作为渗滤液的处理工艺。

3.3 就地处理合并处理与土地处理比较经济、简单,但受各种客观因素的限制,大部分城市只能在填埋场建立独立的渗滤液处理系统进行就地处理。

4 垃圾渗滤液的处理技术

4.1 生物处理法

生物处理包括好氧处理、厌氧处理及两者的结合。当垃圾渗滤液的BOD5/COD>0.3 时,渗滤液的可生化性较好,可以采用生物处理法,包括好氧处理、厌氧处理及好氧一厌氧结合的方法。

4.2 物化处理法

对于老龄渗滤液,必须采用以物化为主的深度处理技术。常见的物理化学方法包括光催化氧化、Fenton 法、吸附法、化学沉淀法、膜过滤等。由于物化法处理费用较高,一般用于渗滤液预处理或深度处理。

4.3 化学法

和生化法相比,化学法不受水质水量变化的影响,出水水质稳定,尤其是对BOD5/COD 值比较低(0.02~0.20),难以生物处理的渗滤液的处理效果较好。但成木较高,所以通常只作为预处理或后续处理。

4.4 回灌法

回灌处理法是20 世纪70 年代由美国的Pohland 最先提出的,我国同济大学在20 世纪90 年代也开始对垃圾渗滤液进行了研究。渗滤液回灌实质是把填埋场作为一个以垃圾为填料的巨大生物滤床,将渗滤液收集后,再返回到填埋场中,通过自然蒸发减少滤液量,并经过垃圾层和埋土层生物、物理、化学等作用达到处理渗滤液的目的。回灌处理方式主要有填埋期问渗滤液直接回灌至垃圾层、表面喷灌或浇灌至填埋场表面、地表下回灌和内层回灌。

5 结语

(1)在选择垃圾渗滤液的处理工艺时,由于渗滤液水质复杂性,就需要测定渗滤液的成分,因地制宜,选择最为适合的处理方式。在有条件的情况下,通过一些模拟试验来取得可靠优化的工艺参数,并进行处理工艺的技术经济评价,对实践起指导作用。

(2)城市垃圾渗滤液中氨氮浓度较高,不利于生物处理,因此要开发高效的脱氮技术,其中生物脱氮技术可作深入研究。

(3)根据我国国情,宜发展投资省、效果好的渗滤液处理技术,处理工艺的研究和应用以多种方法的结合为方向,在开发组合工艺时要研究易于管理运行又同时达到处理要求的新型组合工艺。

(4)目前,城市垃圾渗滤液处理研究仍处于起步阶段,对处理工艺,建设标准化的城市垃圾填埋场,渗滤液处理的设计及运行参数等都还有待于进一步探索。

参考文献

[1] 赵由才。生活垃圾卫生填理技术[M]北京:化学工业出版社,2004.

[2] 杨秀环,牛冬杰,陶红。垃圾渗滤液处理技术进展[J]。环境卫生工程,2006,14(1):46- 49.

[3] 赵宗升,刘鸿亮,李炳伟,等。垃圾填埋场渗滤液污染的控制技术

[J]。中国给水排水,2000, 16(6): 20- 23.

篇4

关键词:垃圾渗滤液 物理 化学法 生物法

0 概述

城市垃圾填埋场渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。渗滤液是液体在填埋场重力流动的产物,主要来源于降水和垃圾本身的内含水。由于液体在流动过程中有许多因素可能影响到渗滤液的性质,包括物理因素、化学因素以及生物因素等,所以渗滤液的性质在一个相当大的范围内变动。一般来说,其pH值在4~9之间,COD在2000~62000mg/L的范围内,BOD5从60~45000mg/L,重金属浓度和市政污水中重金属的浓度基本一致。城市垃圾填埋场渗滤液是一种成分复杂的高浓度有机废水,若不加处理而直接排入环境,会造成严重的环境污染。以保护环境为目的,对渗滤液进行处理是必不可少的。

1 渗滤液处理工艺的现状

垃圾渗滤液的处理方法包括物理化学法和生物法。物理化学法主要有活性炭吸附、化学沉淀、密度分离、化学氧化、化学还原、离子交换、膜渗析、气提及湿式氧化法等多种方法,在COD为2000~4000mg/L时,物化方法的COD去除率可达50%~87%。和生物处理相比,物化处理不受水质水量变动的影响,出水水质比较稳定,尤其是对BOD5/COD比值较低(0.07~0.20)难以生物处理的垃圾渗滤液,有较好的处理效果。但物化方法处理成本较高,不适于大水量垃圾渗滤液的处理,因此目前垃圾渗滤液主要是采用生物法。

生物法分为好氧生物处理、厌氧生物处理以及二者的结合。好氧处理包括活性污泥法、曝气氧化池、好氧稳定塘、生物转盘和滴滤池等。厌氧处理包括上向流污泥床、厌氧固定化生物反应器、混合反应器及厌氧稳定塘。

2 渗滤液处理介绍

垃圾渗滤液具有不同于一般城市污水的特点:BOD5和COD浓度高、金属含量较高、水质水量变化大、氨氮的含量较高,微生物营养元素比例失调等。在渗滤液的处理方法中,将渗滤液与城市污水合并处理是最简便的方法。但是填埋场通常远离城镇,因此其渗滤液与城市污水合并处理有一定的具体困难,往往不得不自己单独处理。常用的处理方法如下。

2.1 好氧处理

用活性污泥法、氧化沟、好氧稳定塘、生物转盘等好氧法处理渗滤液都有成功的经验,好氧处理可有效地降低BOD5、COD和氨氮,还可以去除另一些污染物质如铁、锰等金属。在好氧法中又以延时曝气法用得最多,还有曝气稳定塘和生物转盘(主要用以去除氮)。下面将分别予以介绍。

2.1.1 活性污泥法

2.1.1.1 传统活性污泥法

渗滤液可用生物法、化学絮凝、炭吸附、膜过滤、脂吸附、气提等方法单独或联合处理,其中活性污泥法因其费用低、效率高而得到最广泛的应用。美国和德国的几个活性污泥法污水处理厂的运行结果表明,通过提高污泥浓度来降低污泥有机负荷,活性污泥法可以获得令人满意的垃圾渗滤液处理效果。例如美国宾州Fall Township污水处理厂,其垃圾渗滤液进水的CODCr为6000~21000mg/L,BOD5为3000~13000mg/L,氨氮为200~2000mg/L。曝气池的污泥浓度(MLVSS)为6000~12000mg/L,是一般污泥浓度的3~6倍。在体积有机负荷为1.87kgBOD5/(m3·d)时,F/M为0.15~0.31kgBOD5/(kgMLSS·d),BOD5 的去除率为97%;在体积有机负荷为0.3kgBOD5/(m3·d)时,F/M为0.03~0.05kg BOD5/(kgMLSS·d),BOD5的去除率为92%。该厂的数据说明,只要适当提高活性污泥法浓度,使F/M在0.03~0.31kgBOD5/(kgMLSS·d)之间(不宜再高),采用活性污泥法能够有效地处理垃圾渗滤液。

许多学者也发现活性污泥能去除渗滤液中99%的BOD5,80%以上的有机碳能被活性污泥去除,即使进水中有机碳高达1000mg/L,污泥生物相也能很快适应并起降解作用。在低负荷下运行的活性污泥系统,能去除渗滤液中80%~90%的COD,出水BOD5<20mg/L。对于COD 4000~13000mg/L、BOD51600~11000mg/L、NH3-N 87~590mg/L的渗滤液,混合式好氧活性污泥法对COD的去除率可稳定在90%以上。众多实际运行的垃圾渗滤液处理系统表明,活性污泥法比化学氧化法等其它方法的处理效果更佳。

2.1.1.2 低氧好氧活性污泥法

低氧好氧活性污泥法及SBR法等改进型活性污泥流程,因其具有能维持较高运转负荷,耗时短等特点,比常规活性污泥法更有效。同济大学徐迪民等用低氧好氧活性污泥法处理垃圾填埋场渗滤液,试验证明:在控制运行条件下,垃圾填埋场渗滤液通过低氧好氧活性污泥法处理,效果卓越。最终出水的平均CODCr、BOD5、SS分别从原来的6466 mg/L、3502mg/L以及239.6mg/L相应降低到CODCr<300mg/L、BOD5<50mg/L(平均为13.3mg/L)以及SS<100mg/L(平均为27.8mg/L)。总去除率分别为CODCr 96.4%、BOD5 99.6%、SS 83.4%。

处理后的出水若进一步用碱式氯化铝进行化学混凝处理,可使出水的CODCr下降到1 00mg/L以下。

两段法处理渗滤液的氮、磷也均较一般生物法为佳。磷的平均去除率为90.5%;氮的平均去除率为67.5%。此外该法运行弥补厌氧好氧两段生物处理法第一段形成NH3-N较多,导致第二段难以进行和两次好氧处理历时太长的不足。

2.1.1.3 物化活性污泥复合处理系统

由于渗滤水中难以降解的高分子化合物所占的比例高,存在的重金属产生的抑制作用,所以常用生物法和物理化学法相结合的复合系统来处理垃圾渗滤液。对于BOD51500m g/L、Cl-800mg/L、硬度(以CaCO3计)800mg/L、总铁600mg/L、有机氮100mg/L、TSS 300mg/L、 SO2-4300mg/L的渗滤液,有学者采用该方法进行处理,发现效果很好,其BOD5 、COD、NH3-N、Fe的去除率分别达99%、95%、90%、99.2%。该系统中的进水通过调节池后,可以避免毒性物质出现瞬时的高浓度而对活性污泥生物产生抑制作用;在澄清池中加入石灰,可去除重金属和部分有机质;气提池(进行曝气,温度低时加入NaOH)能去除进水NH3-N的50%,从而使NH3的浓度处于抑制水平之下;由于废水中磷被加入的石灰所沉淀,且 pH值过高,因而需添加磷和酸性物质;活性污泥系统可以串联或并联使用,运行时可通过调节回流污泥比来选用常规法或延时曝气法处理,具有较大的操作灵活性。

2.1.2 曝气稳定塘

与活性污泥法相比,曝气稳定塘体积大,有机负荷低,尽管降解进度较慢,但由于其工程简单,在土地不贵的地区,是最省钱的垃圾渗滤液好氧生物处理方法。美国、加拿大、英国、澳大利亚和德国的小试、中试及生产规模的研究都表明,采用曝气稳定塘能获得较好的垃圾渗滤液处理效果。

例如英国在Bryn Posteg Landfill投资60000英镑建立一座1000m3的曝气氧化塘,设2台表面曝气装置,最小水力停留时间为10d,氧化塘出水经沉淀后流经3km长的管道入城市下水道。此系统1983年开始运行,渗滤液最大CODCr为24000mg/L,最大BOD5为10000mg/L,F/M=0.05~0.3kgCOD/(kgMLSS·d),水量变化范围0~150m3/d,出水BOD5平均为 24mg/L,但偶然有超过50mg/L的时候,COD去除率达97%,但在运行过程中需投加P,考虑到日常运行费用,投资偿还及其利息,与渗滤液直接排至市政管网相比,每年可节约750英镑。

英国水研究中心(Water Research Center)对东南部New Park Landfill的CODCr> 15000mg/L的渗滤液也做了曝气稳定塘的中试,当负荷为0.28~0.32kgCOD/(kgMLSS·d)或者说为0.04~0.64kgCOD/(kgMLSS·d),泥龄为10d时,COD和BOD5去除率分别为98%和91%以上。在运行过程中也需要投加磷酸。

2.1.3 生物膜法

与活性污泥法相比,生物膜法具有抗水量、水质冲击负荷的优点,而且生物膜上能生长世代时间较长的微生物,如硝化菌之类。加拿大British Columbia大学的C.Peddie和J.Atwater用直径0.9m的生物转盘处理CODCr<1 000mg/L,NH3-N<50m g/L的弱性渗滤液,其出水BOD5<25mg/L,当温度回升,微生物的硝化能力随即恢复。但是应当指出,这种渗滤液的性质与城市污水相近,对于较强的渗滤液此方法是否适用还待研究。

2.2 厌氧生物处理

厌氧生物处理的有目的运用已有近百年的历史。但直到近20年来,随着微生物学、生物化学等学科发展和工程实践的积累,不断开发出新的厌氧处理工艺,克服了传统工艺的水力停留时间长,有机负荷低等特点,使它在理论和实践上有了很大进步,在处理高浓度(BOD5 ≥2000mg/L)有机废水方面取得了良好效果。

厌氧生物处理有许多优点,最主要的是能耗少,操作简单,因此投资及运行费用低廉,而且由于产生的剩余污泥量少,所需的营养物质也少,如其BOD5/P只需为4000∶1,虽然渗滤液中P的含量通常少于1mg/L,但仍能满足微生物对P的要求。用普通的厌氧硝化,35℃ 、负荷为1kgCOD/(m3·d),停留时间10d,渗滤液中COD去除率可达90%。

近年来,开发的厌氧生物处理方法有:厌氧生物滤池、厌氧接触池、上流式厌氧污泥床反应器及分段厌氧硝化等。

2.2.1 厌氧生物滤池

厌氧滤池适于处理溶解性有机物,加拿大Halifax Highway101填埋场渗滤液平均COD为12850mg/L、BOD5/COD为0.7,pH为5.6。将此渗滤液先经石灰水调节至pH=7.8,沉淀1h后进厌氧滤池(此工序还起到去除Zn等重金属的作用),当负荷为4kgCOD/(m3·d)时,COD去除率可达92%以上;当负荷再增加时,其去除率急剧下降。

加拿大Toronto大学的J.G.Henry等也在室温条件下成功地用厌氧滤池分别处理年龄为1.5 年和8年的填埋场渗滤液,它们的COD各为14000mg/L和4000mg/L,BOD5/COD各为0.7和0.5,当负荷为1.26~1.45kgCOD/(m3·d),水力停留时间为24~96h时,COD去除率均可达90%以上。当负荷再增加,其去除率也急剧下降。由此可见,虽然厌氧滤池处理高浓度有机污水时负荷可达5~20kgCOD/(m3·d),但对于渗滤液其负荷必须保持较低水平才能得到理想的处理效果。

2.2.2 上向流式厌氧污泥床

英国的水研究中心报道用上向流式厌氧污泥床(UASB)处理COD>10000mg/L的渗滤液,当负荷为3.6~19.7kgCOD/(m3·d),平均泥龄为1.0~4.3d,温度为30℃时COD和BOD5的去除率各为82%和85%,它们的负荷比厌氧滤池要大得多。

在厌氧分解时,有机氮转为氨氮,且存在NH4+NH3+H+反应。若pH>7时,平衡中的NH3占优势,可用吹脱法去除。但厌氧分解时pH近似等于7,因此出水中可能含有较多的NH4+,将会消耗接纳水体的溶解氧。

2.3 厌氧与好氧的结合方式

虽然实践已经证明厌氧生物法对高浓度有机废水处理的有效性,但单独采用厌氧法处理渗滤液也很少见。对高浓度的垃圾渗滤液采用厌氧好氧处理工艺既经济合理,处理效率又高。COD和BOD的去除率分别达86.8%和97.2%。

2.3.1 厌氧好氧生物氧化工艺(厌氧硝化和生物氧化塘)

西南师大生物系对pH为8.0~8.6,COD为16124mg/L,BOD5为214~406mg/L、NH3- N为475mg/L的渗滤液采用厌氧好氧生物化学法处理,取得出水pH为7.1~7.9,COD为170.33~314.8mg/L,BOD5为91.4mg/L、NH3-N为29.1mg/L的良好效果。

2.3.2 厌氧氧化沟兼性塘工艺

下面结合广州市李坑垃圾填埋场作以下说明及分析。李坑垃圾填埋场污水处理厂按流量300m3/d设计,进水BOD5为2500mg/L、CODCr为4000mg/L、NH3-N 为1000mg/L、SS为600mg/L、色度为1000倍;出水BOD5为30mg/L、CODCr为80mg/L 、NH3-N为10mg/L、SS为70mg/L、色度为40倍。选用工艺流程为:厌氧氧化沟兼性塘絮凝沉淀。当进水水质较好,兼性塘出水达标时,即可直接将兼性塘水向外排放;而当进水水质较差,兼性塘出水达不到排放标准时,则启用混凝沉淀系统,再排放沉淀池上清液。

从目前该套工艺的运行情况来看,当进水的COD较高时,出水水质良好;一旦COD 降低,特别是冬季低温少雨,COD降低到不利于生化处理时,出水各水质成分均偏高难以达标,出水呈棕褐色,尽管启用絮凝沉淀系统,效果仍不理想。由此可见,对于渗滤液的色度和NH3-N的有效去除,对生化处理将产生有利影响。

2.3.3 厌氧气浮好氧工艺

大田山垃圾卫生填埋场渗滤液处理采用的是此工艺。根据广州市环境卫生研究所对类似垃圾填埋场渗滤液检测资料及模拟试验,结合本场实际情况定出渗滤液污水处理设计参数。进水水质CODCr为8000mg/L、BOD5为5000mg/L、SS为700mg/L、pH值为7.5 ;出水水质CODCr为100mg/L、BOD5为60mg/L、SS为500mg/L、pH值为6.5~7.5。针对该场远离市区的特点,为便于管理和节省能耗,经比较后选用厌氧和好氧联合处理工艺。厌氧段为上向流式厌氧污泥床反应器,好氧段为生物接触氧化法,加化学混凝沉淀和生物氧化塘,净化处理达标后排放。剩余污泥经浓缩后送回填埋场处理。

考虑到渗滤液水质变幅较大的特点,在厌氧段后加入气浮工艺,提高处理能力以应付进水水质偏高的情况。目前深圳下坪垃圾填埋场设计采用厌氧气浮好氧工艺处理渗滤液。

2.3.4 UASB氧化沟稳定塘

福州市于1995年建成全国最大的现代化的城市垃圾综合处理场--福州市红庙岭垃圾卫生填埋场。处理垃圾渗滤液水量为1000m3/d;垃圾渗滤液水质(入口)为CODCr为 8000mg/L、BOD5为5500mg/L;处理水质要求(出口)为CODCr去除率95%、 BOD5去除率97%。

设计采用上向流式厌氧污泥床奥贝尔氧化沟稳定塘工艺流程。垃圾填埋场的垃圾渗滤液集中到贮存库,依靠库址的较高地形,自流到集水池、格栅,经巴式计量槽计量后,靠势能流至配水池,再依靠静水头压至上向流式厌氧污泥床。经厌氧处理后的污水流至一沉池进行固液分离,上清液自流到奥贝尔氧化沟,沉淀污泥靠重力排至污泥池,污泥定期用罐车送到垃圾填埋场或堆肥利用。

污水在奥贝尔氧化沟进行好氧生化处理,奥贝尔氧化沟采用三沟式A/O工艺,具有先进的污水脱氮处理效果。该工艺突出的优点是在第一沟中既能对氨氮进行硝化,又能以BOD为碳源对硝酸盐进行反硝化,总氮去除率可达80%,由于利用了污水中BOD作碳源,导致污水中的 BOD5被去除,减少了污水中的需氧量。为了提高氧化沟脱氮效果,把第三沟的出水用潜水泵再抽至第一沟进行内回流,在第一沟中进行反硝化。

经氧化沟处理的污水流入二沉池进行固液分离,澄清水自流至稳定塘进行生物处理。二沉池的剩余污泥靠重力排至浓缩池。浓缩池中的上清液回流至氧化沟处理,其浓缩后的污泥用潜水泵抽至罐车输送到垃圾填埋场填埋,或进行堆肥处理。

2.4 土地处理

土地处理法亦即土壤灌溉法,是人类最早采用的污水处理法,但是土地处理系统的应用多见于城市污水处理。对于渗滤液的处理方法,将渗滤液收集起来,通过喷灌使之回流到填埋场。循环填埋场的渗滤液由于增加垃圾湿度,从而提高了生物活性,加速甲烷生产和废物分解。其次由于喷灌中的蒸发作用,使渗滤液体积减小,有利于废水处理系统的运转,且可节约能源费用。北英格兰的Seamer Carr垃圾填埋场,有一部分采用渗滤液再循环,20个月后再循环区渗滤液的COD值降低较多,金属浓度有较大幅度下降,而NH3 -N、Cl-浓度变化较小。说明金属浓度的下降不仅是由于稀释作用引起的,也可能是垃圾中无机成分对其吸附造成的。

由于再循环渗滤液具有诸多优点,所以设计填埋场时顶部不要全部封闭,而应设立规则性排列的沟道以免对周围水源的污染。低浓度渗滤液不能直接排放,因NH3-N、Cl-浓度仍较高,温度较低季节,蒸发少,生物活性弱,再循环渗滤液的效果有待进一步研究。

2.5 硝化和反硝化

"老"的填埋场往往处于甲烷发酵阶段,其渗滤液中氨氮含量较高,通常为100~1000mg /L。去除氨氮主要有两种方法:一是硝化和反硝化;另一种是提高pH值至9以上,再用空气吹脱。Robinson和Maris将年龄为20年的填埋场渗滤液在温度为10℃,泥龄为60d的条件下曝气(实际上此与氧化塘运行条件相仿),可完全硝化。其它用生物转盘等好氧方法也都取得了成功,因此普遍认为渗滤液的硝化是不成问题的。

2.6 英Rochem's反渗透处理厂

在英国垃圾渗滤液处理厂使用Rochem's专利圆盘管反渗透系统对初级渗滤液进行处理。这种处理技术是由南亨伯赛德郡温特顿填埋场所设计和生产的Rochem's离析膜系统。

这个系统的心脏是Rochem's专利圆盘管。这个圆柱体的组成包括板片、八角型钢和一个圆管内的耐磨膜垫层,它能处理那些快速堵塞普通的反渗透膜系统的渗滤液。在膜的压力下渗滤液进入Rochem's处理系统进行曝气和pH校正。当含有污染物的渗滤液流经圆柱体内膜表面时,渗滤液中的污染物质由于反渗透作用而分离出来并经膜排出。整个系统清理的操作是自动化的,当需要对该系统进行化学清洗时,控制指示器就会显示出信息来,同时自动清洗系统就会用已经程式化的化学制剂对该系统进行内部清洗,使其恢复到最初的功能。因为渗滤液在封闭情况下,在膜的表面形成湍流,减少氧化,产生恶臭,所以到一定时间要进行内部清洗,但这种清洗的间隔时间较长,Rochem's 离析膜系统能够去除重金属、固体悬浮物、氨氮和有害的难降解的有机物,处理后的水满足严格的排放标准。

现在德国的Ihlenbery填埋场安装投入使用的Rochem's处理系统,其处理能力的污水量为50m3/h,水的回收率为90%。

3 处理工艺的分析比较

与好氧方法相比,厌氧生物处理具有以下优点。

(1)好氧方法需消耗能量(空气压缩机、转刷等),而厌氧处理却可产生能量(产生甲烷气) 。COD浓度越高,好氧方法耗能越多;厌氧方法产能越多,两者的差异就越明显。

(2)厌氧处理时有机物转化成污泥的比例(0.1kgMLSS/kgCODCr)远小于好氧处理的比例(0.5kgMLSS/kgCODCr),因此污泥处理和处置的费用大为降低。

(3)厌氧处理时污泥的生长量小,对无机营养元素的要求远低于好氧处理,因此适于处理磷含量比较低的垃圾渗滤液。

(4)根据报道,许多在好氧条件下难于处理的卤素有机物在厌氧时可以被生物降解。

(5)厌氧处理的有机负荷高,占地面积比较小。

但是,厌氧处理出水中的COD浓度和氨氮浓度仍比较高,溶解氧很低,不宜直接排放到河流或湖泊中,一般需要进行后续的好氧处理。另外,世界上大多数垃圾渗滤液多是偏酸性的 (pH值一般在5.5~7.0)。pH在7以下,产甲烷菌将会受到抑制甚至死亡,不利于厌氧处理,而好氧处理对pH的要求就没有这么严格。再者,厌氧处理的最适温度是35℃,低于这个温度时,处理效率迅速降低。比较而言,好氧处理对温度要求不高,在冬季时即使不控制水温,仍能达到较好的出水水质。

鉴于以上原因,目前对COD浓度在50 000mg/L以上的高浓度垃圾渗滤液建议采用厌氧方法 (后接好氧处理)进行处理,对COD浓度在5 000mg/L以下的垃圾渗滤液建议采用好氧生物处理法。对于COD在5 000~50 000mg/L之间的垃圾渗滤液,好氧或厌氧方法均可,选择工艺时主要考虑其它因素。

4 结论和建议

通过对上述几种处理方法及处理工艺的分析比较可得以下结论,并提出水质、水量等方面的建议和意见:

(1)垃圾渗滤液具有成分复杂,水质水量变化巨大,有机物和氨氮浓度高,微生物营养元素比例失调等特点,因此在选择垃圾渗滤液生物处理工艺时,必须详细测定垃圾渗滤液的各种成分,分析其特点,以便采取相应的对策。还应通过小试和中试,取得可靠优化的工艺参数,以获得理想的处理效果。

(2)多种方法应用于渗滤液的处理是可行的。在有条件的地方修筑生物塘,同时采用水生植物系统处理渗滤液,不仅投资省,而且运行费用低。土地处理也受到人们的重视,但在渗滤液的处理中选用尚少。生物膜法和活性污泥法有成熟的运行管理经验,近年来结合采用厌氧好氧工艺生物处理渗滤液较多。但修建专用的渗滤液处理厂投资大,运行管理费用高,而且随着填埋场的关闭,最终使水处理设施报废,故应慎重选用。

(3)我国目前真正能满足卫生填埋标准的填埋场并不多,许多填埋场因为投资所限无法按设计要求建造能达到环境保护要求的渗滤液收集系统。因此,宜发展投资省,效果好的渗滤液处理技术。垃圾填埋场渗滤液向填埋场回灌,利用土地吸附,土壤生物降解及垃圾填埋层的厌氧滤床作用使渗滤液降解,具有投资省、效果好,无需专门处理设施投资等特点。而且渗滤液的回灌可使垃圾保持湿润,加速填埋场的稳定。回灌法目前采用较少,可作深入研究,以明确回灌法的使用条件,处理效率及回灌处理的工程设计参数。

篇5

1引言

随着经济的不断发展,生产规模的不断扩大,人来需求的不断提高,随之而来的固体废物产生量也不断增加。目前,工业发达国家的工业固体废物每年平均以2%—4%的增长率增加,同样的,生活垃圾的产生量也在不断增长。目前,我国城市生活垃圾的年增长率平均为10%。

近来,城市垃圾的处理方法主要有焚烧、堆肥和填埋等。其中垃圾卫生填埋法由于成本低、技术相对简单、处理迅速,是目前国内外应用最为广泛的垃圾处置方式。填埋法处理城市生活垃圾会产生大量的污染物浓度高、持续时间长、流量极不均匀且水质变化大的渗滤液,这些渗滤液不加处理则会对周围环境水体产生严重的二次污染。城市生活垃圾填埋场渗滤液的处理一直是填埋场设计、运行和管理中非常迫切而棘手的问题。

2渗滤液的污染特性

2.1营养元素比例失衡

相对于生物处理,渗滤液C∶N∶P的比例不合适。

2.2渗滤液水质的易变性

(1)渗滤液水质随水量变化而变化;

(2)渗滤液水质在日、时尺度内变化较大;

(3)渗滤液水质随填埋阶段改变而改变。填埋初期,渗滤液呈黑色,可生化性较好,易于处理,而随着填埋时间的延长,渗滤液逐渐呈褐色,可生化性变差,且C∶N∶P比例失调更加严重。

2.3金属离子含量不高

渗滤液中含有多种金属离子,其浓度与所填埋垃圾的类型、组分和时间等密切相关。不同类型填埋场渗滤液种所含的金属含量并不相同,但大都不超过排放标准。

2.4微生物含量及病毒

填埋场作为“生物反应器”,其出水中含有大量的微生物种群,其中微生物主要是杆菌、大肠杆菌、大肠链球菌等,并且随填埋时间和渗滤液中的化学成分不同而发生较大变化。虽然很多市政垃圾填埋场中含有粪便,但在渗滤液中很少能发现肠道病菌。

2.5渗滤液的生物毒性

渗滤液的毒性与其所含的有机污染物含量有关。Assmuth对芬兰的3个填埋场的研究标明,渗滤液的致死性与渗滤液中所含的离子,特别是Cl-、NH3-N和轻金属含量有一定的关联性,同时发现其致死性还与反映硬度的指标(Ca2+、Mg2+等)有关。在酸性条件下,渗滤液中的金属和S对鱼的毒害作用更强,所含的悬浮物也将增加毒性,但温度的升高对毒性影响不大。垃圾渗滤液对大麦的毒性作用与渗滤液中CODCr含量有直接的关系。

3当前垃圾渗滤液处理工艺现状及问题

当前,垃圾渗滤液的处理方法包括物理化学法和生物法。物理化学法主要有活性炭吸附、化学沉淀、密度分离、化学氧化、化学还原、离子交换、膜渗析、气提及湿式氧化等多种;生物法分为好氧生物处理、厌氧生物处理以及二者的结合。好氧处理包括活性污泥法、曝气氧化池、好氧稳定塘、生物转盘和滴滤池等;厌氧处理包括上向流污泥床、厌氧固定化生物反应器、混合反应器及厌氧稳定塘。垃圾渗滤液处理的投资、运行成本远远高于一般城市污水和工业废水,由于在垃圾体已经经历了厌氧过程,其生化性相对较差,生物处理的停留时间较长,导致设施设备的投资较大,同时垃圾渗滤液处理量一般相对较小,导致折旧、维修费较高。

各种处理垃圾渗滤液的工艺所存在的问题可归纳为如下方面:技术上可行的工艺在经济性上均较差,如膜处理,投资和运行费用均很高,且还有原液体积1/5—1/4的浓缩液需进一步处理;活性炭吸附和化学氧化,运行成本基本无法承受;经济性好的工艺在处理效果上无法达标,如生物处理,投资和运行费用均较低,但通常情况下处理出水无法达标。

4垃圾渗滤液新工艺简介

4.1电化学处理法

电化学处理法作为一种“环境友好”技术已广泛用于垃圾渗滤液的处理。利用金属腐蚀原理,以Fe、C形成原电池对废水进行处理。废铁屑是铁和炭的合金,由纯铁和Fe3C及一些杂质组成,当铁屑加入废水中则形成成千上万个细小的微电池,由于渗滤液内存在着稳定的胶体,当这些胶体处于电场中将产生电泳作用而被富集,从而沉降出来。在开展这方面研究的过程中,许多学者已对电流密度、pH值、不同电解质、氯离子浓度等因素对处理效果的影响进行了探讨,取得了较大的成果。

4.2Fenton试剂法

目前垃圾渗滤液的处理方法中生化法应用最为广泛,但由于其含有高度难降解有机物,不利于活性污泥法的运行。Fenton氧化法可以解决这一问题,它可使带有苯环、羟基、-COOH-S03-H、-NO2等取代基的有机化合物氧化分解,从而提高废水的可生化性,降低废水的毒性,改变其溶解性、混凝沉淀性,有利于后续的生化或混凝处理。

4.3高压脉冲放电技术

高压脉冲放电技术利用高功率脉冲电源对放电电极间的液体介质进行高电压、大电流的脉冲放电,本质是把较大的能量在空间和时间上进行压缩,使水介质在极短的时间内集聚极高的能量密度,形成等离子体通道,产生高温、高压、高密度活性粒子、强烈紫外光和超声波,实现对高浓度有机污染物的活性粒子氧化、光化学氧化、空化降解和超临界水氧化降解。该技术是一种降解能力高、无二次污染、适用范围广的有机污染物处理技术。

4.4蒸发处理

蒸发法主要在废水尤其是放射性废水的处理领域有较广泛的应用。它是利用外加能量蒸发废水中的水份,使其体积大大缩小。国内外关于渗滤液蒸发技术公开发表的文献很少。与传统处理工艺相比,渗滤液蒸发工艺对渗滤液的性质变化适应性强,包括BOD、COD、悬浮固体,溶解固体及进料温度等的变化。一般来说,渗滤液蒸发系统只对pH值较敏感,目前开发的蒸发器主要有热交换器式、浸没燃烧式和喷淋式三类。

5结语

显然,应进一步摸索各种技术可行、经济性又较佳的渗滤液处理新颖工艺,且主要应体现以下特点:降低运行费用;满足更严格的排放标准要求;适应渗滤液水质随时间的变化;去除难于处理的污染物,如总溶解性残渣;减少因渗滤液回灌或填埋场生物反应器运行方式而引起氨氮浓度的积累。

参考文献

[1]李颖,郭爱军.垃圾渗滤液处理技术及工程实例[M].中国环境科学出版社,2008.

[2]楼紫阳,赵由才,张全,等.渗滤液处理处置技术及工程实例[M].化学工业出版社,2007.

[3]石岩,王启山,岳琳,等.三维电极-电Fenton法处理垃圾渗滤液[J].天津大学学报,2009,(3).

[4]敖漉,周从直,冯孝杰,等.高压脉冲放电处理垃圾渗滤液的试验研究[J].环境科学导刊,2009,(4).

[5]刘咏,赵仕林,叶宣宏.Ph对电解处理垃圾渗滤液的影响[J].环境工程学报,2009,(4).

[6]张顺喜,王文清.紫外光—降膜反应器处理垃圾渗滤液的研究[J].武汉工业学院学报,2009,(3).

篇6

【关键词】技术,处理,垃圾,生物,氧化,有机,

随着我国经济的增长,城市化进程的加快,城市垃圾也随之增多。近年来,我国兴建了一批垃圾填埋场,改变了长期以来对垃圾的无控制处置的状况。然而垃圾填埋后产生的垃圾渗滤液是一种成分复杂的高浓度有机废水,如不妥善处理,对周围的环境造成严重的污染。为此,垃圾渗滤液的处理问题又摆在了人们的面前。合理、有效地处理垃圾渗滤液非常重要。

2.垃圾渗滤液的处理方法

对渗滤液的处理,不仅要考虑工艺方法对渗滤液的处理效果,而且要考虑工艺对水质、水量变化的适应性。渗滤液的处理一般包括物理化学法和生物处理法。

2.1生物法

生物法分为好氧生物处理法、厌氧生物处理法、厌氧-好氧结合法、土地处理法等。BOD5/COD一般在0.4-0.75,采用生物处理可达到良好的去除效果。但随着填埋时间的增长,垃圾层日趋稳定,易降解的小分子有机物浓度不断降低,难降解的大分子有机物逐步占有优势,其BOD5/COD值甚至可低于0.1,可生化性变差,这表明生物法处理垃圾渗滤液的效率随填埋年龄的增加越来越低。

2.1.1好氧处理法

好氧处理包括活性污泥法、生物膜法、氧化沟、生物塘、生物转盘和滴滤池等。生物膜法和活性污泥法在污水处理中应用广泛,活性污泥法因其运行费用低,效率高而得到广泛的应用。美国和德国的几个活性污泥法污水处理厂的运行结果表明,通过提高污泥浓度来降低污泥有机负荷,可以获得令人满意的垃圾渗滤液处理效果。Kaenan报导用活性污泥法能去除渗滤液中99%的 BOD5。Pirbazari等人对众多实际运行的垃圾渗滤液处理系统调查后发现,活性污泥法比其它好氧法处理效果更佳,但活行污泥法处理垃圾渗滤液的效果受温度影响较大。

与活性污泥法相比,生物膜法具有对水量、水质冲击负荷适应能力强等优点,而且生物膜上能生长世代较长的微生物,如硝化菌之类,能有较好的消化能力。C.Peddie等用直径0.9m的生物转盘处理COD小于1000mg/L、NH3-N小于50mg/L的渗滤液,其出水BOD5小于25mg/L、NH3-N小于0.1mg/L。与活性污泥相比,曝气氧化塘体积大,有机负荷低,尽管降解速度慢,但由于其工艺简单,在土地允许的条件下,是最省钱的垃圾渗滤液好氧处理方法。美国、加拿大、英国、澳大利亚和德国的小式规模的研究表明,采用曝气氧化塘能获得较好的垃圾渗滤液处理效果。总的来说,好氧处理法可有效地降低BOD5、COD和氨氮,还可去除铁、锰等金属,是应用广泛的处理方法。

2.1.2厌氧生物处理

厌氧生物处理的应用已有近百年的历史。处理的方式主要有厌氧生物滤池、厌氧接触池、上流式厌氧污泥床反应器及分段厌氧硝化等。但直到近20年来,随着微生物学、生物化学等学科发展和工程实践的积累,不断开发出新的厌氧处理工艺,克服了传统工艺的水力停留时间长,有机负荷低等特点,使它在理论和实践上有了很大进步,在处理高浓度有机废水方面取得了良好效果。而且能耗少,操作简单,投资及运行费用低廉,而且由于产生的剩余污泥量少,所需的营养物质也少。

2.1.3厌氧-好氧结合法

厌氧法适用于处理污染物浓度较高的废水,但出水水质达不到排放标准,因而常将厌氧与好氧系统组合起来。实践证明,对高浓度的垃圾渗滤液,厌氧与好氧结合法是经济高效的处理工艺。邹莲花等人报导了采用厌氧-吹脱-好氧-混凝沉淀流程处理深圳市玉龙坑生活垃圾填埋场渗滤液,当渗滤液COD为25000mg/L、BOD5为15000mg/L、NH3-N为1000mg/L时,出水各项指标都能达标。

2.1.4 土地处理法

土地处理主要通过土壤颗粒的过滤,离子交换吸附和沉淀等作用去除渗滤液中悬浮固体和溶解成分。利用土壤微生物(好氧性微生物和厌氧性微生物)作用使渗滤液中的有机物和氮发生转化,通过蒸发作用减少渗滤液的水量。对其去除机理,唐家富等作了土壤净化试验研究。目前用于渗滤液处理的土地法主要是回灌法和人工湿地。回灌法是将不经过任何处理的渗滤液用泵直接回喷到填埋层表面,借助填埋场覆土层的生物降解、物理化学作用等达到净化水质的目的,同时依靠土壤表面的蒸发和表层植被的蒸腾作用,削减渗滤液水量。回灌减轻了污染物的溶出负荷,加快了污染物的溶出过程,减轻了对环境潜在的污染。同时渗滤液回灌使渗滤液水质得到均化,减轻了渗滤液处理设施的冲击负荷,有利于提高处理效果。因此渗滤液回灌是一种值得推广的填埋场管理方法。卢成洪等对回灌法处理垃圾填埋场渗滤液的依据、工艺流程、技术参数均作了阐述。唐山市垃圾填埋场和贵阳高雁城市城市生活垃圾卫生填埋场也用回灌法来处理垃圾渗滤液。人工湿地是近几年才出现的一种新的土地处理工艺。

2.2物理化学法

物化法主要有化学沉淀、膜法(包括微滤,超滤、反渗透等)、吸附法、化学氧化、光电催化氧化等方法。

2.2.1化学沉淀法

该法是从液态连续介质中分离出呈分散状态的颗粒杂质的重要手段。混凝过程包括混合、凝聚、絮凝等几种作用。其主要原理是通过向水中投加混凝剂和絮凝剂,使其中颗粒杂质脱稳并絮凝成较大的絮凝体,继而通过沉降、上浮、过滤等过程进行分离。常用的混凝剂主要有铝盐、铁盐等。

化学沉淀对于去除重金属离子是比较有效的,但该法对于去除渗滤液中的其它有机污染物的效果不好,处理后废水的CODCr仍然远远高于有关的排放标准。因此,该法不能作为单一工艺来处理垃圾渗滤液,同时沉淀物的后处理仍将是一个问题。

2.2.2膜法

也称膜分离技术,是利用特殊的薄膜对水中的成分进行选择性分离,包括电渗析、扩散渗析、反渗透、超滤和液体膜渗析等分离技术。膜分离是利用某些膜的半渗透性进行溶质与水的分离,半透膜只允许水和某些溶质透过,而其它溶质及颗粒物均无法通过,与传统的简单过滤相比,超滤和反渗透有所不同。砂滤及超微滤可截留分子量10000-100000 g/mol以上的分子,反渗透则可截留摩尔质量在几十g/mol以上的离子和分子。由于截留物质大大增加,超滤与反渗透一般是在简单过滤预处理之后进行。

膜分离污染物的效果是显而易见,经分离后的出水能够达到国家相应的排放标准,该法能连续操作,机械化程度高,易于管理,水质的不稳定性对膜处理效果的影响较小。但该技术在国内至今不能被应用欲实际工程,究其原因为膜材料成本高,且膜在处理这种受污染较严重的水体时,膜极易被污染,较难清洗,难以再次利用。开发一种成本低廉的膜产品以及相应的膜清洗技术对该法的实际工程应用价值的提高具有深远意义。

2.2.3吸附法

吸附处理中常用的吸附剂是活性炭。活性炭对水中苯类化学物、酚类化学物等许多有机物有较强的吸附作用,对分子直径在10-8-10-5cm或分子量在400以下的低分子溶解性有机物的吸附性好,对极性强的低分子化学物及腐质酸类高分子有机物的吸附能力差,此外,活性炭对一些重金属氧化物有较强的吸附能力。活性炭吸附具有装置简单,对水质、水量变化适应性强等特点。J.Fettig等人对活性炭吸附预处理垃圾渗滤液进行了研究。

2.2.4化学氧化法

化学氧化法是利用氧化还原反应改变水中的有毒、有害物质的化学性状,使其达到无害化的一种处理方法。化学氧化可用于脱色、去除重金属、酚、氰和有机化合物的降解及消毒、除澡等。氯气、臭氧、双氧水、高锰酸钾等通常被用作氧化剂。化学氧化法应用于垃圾渗滤液的处理中主要效果在于除臭和脱硫,COD去除率通常在20-50%之间。但可以大大提高了渗滤液的可生化性。

2.2.5光、电催化氧化法

光、电催化氧化法是近年发展起来的一种污(废)水处理新技术。

弓晓峰等人在利用紫外光氧化法深度处理垃圾渗滤液的研究中发现,当pH=3时对COD的去除率最高,也即在酸性条件下Fenton试剂光照处理渗滤液的效果最好。黄本生等人将ZnO/TiO2复合半导体催化剂用于垃圾渗滤液的深度处理,出水水质达到了国家排放标准。

光、电催化氧化反应同样存在运行费用高这一缺点,欲采用该方法处理渗滤液,其首要问题是提高电流的利用率,所以选择优良的电极材料以及设计电子—空穴产率高的光、电催化反应器已经成为该法处理渗滤液的两大主要研究方向。

2.2.6蒸发法

垃圾渗滤液蒸发处理时,水从渗滤液中沸出,污染物残留在浓缩液中。所有重金属和无机物以及大部分有机物的挥发性均比水弱,因此会保留在浓缩液中,只有部分挥发性烃、挥发性有机酸和氨等污染物会进入蒸汽,最终存在与冷凝液中。蒸发处理工艺可把渗滤液浓缩到不足原液体积的2%-10%。与其他处理不同,蒸发对水质变化的影响不大,但pH是蒸发的重要影响因素,pH影响渗滤液中挥发性有机酸和氨的离解状态,从而改变它们的挥发程度,另外,酸性条件对蒸发器金属材料腐蚀性较强。

3研究方向

根据渗滤液处理存在的问题,目前我国垃圾渗滤液处理工艺的关键主要集中在以下两个方面:高浓度氨氮处理技术和渗滤液深度处理技术。

3.1高浓度氨氮处理技术

高浓度氨氮处理技术,目前应用较多的主要有氨吹脱和生物脱氨技术。氨吹脱技术大多用空气为吹脱介质,低效率的吹脱设备吹脱的方式。因此,新型高效吹脱装置的开发,脱氨尾气的妥善处理成为了今后研究的方向。

除了氨吹脱的方法脱氨以外,生物脱氮也是一种经济、有效的脱氨方式。Mavinic D.S.等人的研究表明,在外加碳源的条件下,采用前置反硝化的MLE工艺处理高氨氮渗滤液时,试验取得了较好的结果,并在研究中提出了厌氧氨氧化去除氨氮的概念。这些技术如果能在渗滤液中应用成功,将可以提高生物脱氮的能力。

3.2渗滤液深度处理技术

对于"老化"的渗滤液,由于生物处理基本无效,因此,必须采用以物化为主的深度处理技术处理。深度处理技术一般有深度氧化法,如臭氧氧化、臭氧+光催化氧化、臭氧催化氧化,以及膜处理技术等。

深度氧化技术的研究主要集中在高效反应器的研制,以提高单位能耗的处理效率,降低反应的能量输入,找出适合中国国情的渗滤液深度处理技术,使渗滤液达到相应排放标准。

4 结束语

由于高级的处理技术意味着较高的投资和运行费用,如何找到一种廉价的处理方式,成为人们关注的问题。人工湿地处理技术由于具有建设和运行成本低、设备简单、易于维护等优点,用该技术处理渗滤液在近几年得到了一定应用。

人工湿地系统对于处理"老化"渗滤液具有较好的效果,因此也可作为渗滤液深度处理的方法,对于有地方建造湿地的填埋场应予以推广。另外对于封场后的垃圾填埋场的渗滤液也可采用人工湿地的处理方式。这是由于封场后的填埋场一般需在其表面覆盖粘土和营养土,并种上绿化植物,以防止雨水的侵入和填埋气体的扩散。如果将绿化植物改为芦苇等植物,并做好渗滤液的收集排放设施,这样不但可以利用闲置的土地大幅度降低渗滤液的处理成本,还可以取得良好的处理效果。

参考文献

[1]朱志亮,束世平,殷红燕,魏建华,垃圾渗滤液氨吹脱塔运行情况报告, 精细与专用化学品,2002,10。

[2]邢丽贞,冯雷,陈华东,光催化氧化技术在水处理中的研究进展,水科学与工程技术,2008.1。

[3]王成丽,马可为,张红涛,物化法处理垃圾渗滤液中难降解物质,水科学与工程技术,2008.1。

[4]杨健,王晓云,化学混凝+CSBR处理垃圾渗滤液废水试验研究,能源与环境 ,2008.2。

[5]刘益贵,成应向,李瑾 城市垃圾渗滤液处理技术的研究,工业水处理 ,2008.5。

[6]沈飞,严滨,李成等 ,双轴旋转超滤膜组件过滤厌氧泥水混合液,膜科学与技术,2008.2。

[7]胡巧开 ,微波改性壳聚糖的制备及其对垃圾渗滤液的处理研究,上 海 化 工,2008.5。

[8]陈金发,卿东红,阮尚全 ,组合人工湿地对渗滤液中重金属的去除,水处 理 技 术,2008.5。

[9]刘文辉,武奇,刘增超,郑先俊,化学沉淀/Fenton法处理垃圾渗滤液的研究,工业 安 全 与 环 保,2008.5。

[10]吴淳,厌氧一好氧工艺处理生活垃圾填埋场的渗滤液,污染防治技术,2008.4。

篇7

关键词:垃圾填埋场;渗滤液;处理技术

Abstract: urban landfill leachate treatment is a kind of high concentration organic wastewater treatment, difficult of, this article reviewed city of landfill leachate treatment technology, and to all sorts of leachate treatment scheme and technical analysis.

Keywords: landfill; Leachate; Processing technology

中图分类号: R124.3 文献标识码:A 文章编号:

城市垃圾渗滤液是指垃圾在堆放和填埋过程中由于发酵、雨水淋刷和地表水、地下水的浸泡而滤出来的污水,它是一种成分复杂的高浓度有机废水,若不加处理或处理不当排放,会对周边环境及地下水造成更为严重的二次污染。垃圾渗滤液的处理是国内外环境治理领域的面临的共同难题,其处理措施已引起国内外水处理领域研究者广泛关注。

一、垃圾渗滤液的产生和特点

渗滤液是液体在填埋场重力流动的产物,如物理、化学以及生物等因素可能影响到渗滤液的性质,使渗滤液的性质在一个相当大的范围内变动。城市生活垃圾渗滤液污染物成分及浓度如表1所示[1]:

垃圾渗滤液的水质特点是:水质复杂,有机污染物种类多;金属含量高;CODCr和BOD5浓度高;氨氮含量高,C/N比例失调。垃圾渗滤液另外一个特点是其成分随填埋时间而发生变化。

二、垃圾渗滤液的处理技术

目前,国内外垃圾渗滤液的处理技术分为场外处理,场内处理两大类。

场外处理多是将渗滤液引入附近的城市污水处理厂进行处理,这是最为简单的场外处理方案,可以节省单独建设渗滤液处理系统的高额费用,从而降低处理成本 [2]。

虽然合并处理比较经济、简单,但受各种客观因素的限制,只能建立独立的场内完全处理系统。用于垃圾渗滤液的场内处理方式主要有物化法和生物法:

1、物化处理技术

物理化学法通常包括:吸附、化学混凝沉淀、化学氧化(或还原)、离子交换、膜渗析、气提、湿式氧化、密度分离、消毒等法。

Rajkumar等[3]用电化学降解与活性碳吸附联合处理垃圾渗滤液,COD和TOC去除率分别为83%和58.9%。

混凝法是化学沉淀法中最重要的一种方法,常用的混凝剂有硫酸铝、氯化铁和聚合氯化铝等。Tatsi等[4]人用硫酸铝和氯化铁处理渗滤液,对新生的渗滤液COD去除率为25%-38%,最佳铝盐投加量为3g/L;对老化的渗滤液COD去除率可达75%,在最佳处理条件下COD的去除率可达80%。

化学氧化法可以分解废水中难降解的有机物,从而提高废水的可生化降解性。Fenton法作为其中的一种,由于它处理效果好、操作简便而受到人们的重视。张晖等[5]以Fenton法处理垃圾渗滤液的中型试验表明,当双氧水与亚铁盐的总投加比一定时,COD的去除率随双氧水投加量的增加而增加。

膜技术是利用隔膜使溶剂同溶质微粒分离的一种水处理法,可以分成反渗法、超滤和微孔过滤等。Hurd等[6]选用3种低压聚酰胺Ro膜处理Toll Road垃圾填埋场渗滤液的试验结果表明,透过液的流量取决于操作压力大小及TOC的浓度,条件适宜时,TOC和Cl-的去除率>96%,NH3-N的去除率>88%。

2、生物处理技术

国内几大主要垃圾填埋场污水处理技术多采用生物技术,包括好氧生物处理、厌氧生物处理和厌氧-好氧相结合的处理方式。

徐竺等[7]采用上流式厌氧过滤器对垃圾渗滤液进行处理的效果良好,CODCr去除率可达到90-95%左右。程洁红等人[8]对城市垃圾渗滤液采用缺氧-SBR法-混凝法工艺处理,结果表明,C0D总去除率达到91.2%,氨氮去除率达90 .4%,取得较好的去除有机物和脱氮效果。但该工艺处理时间长达48小时,且适用于中小水量。

3、土地处理技术

土地处理技术是利用土壤、微生物和植物组成的陆地生态系统的自我调控机制和对污染物的综合净化功能处理污水。污染物通过物理的过滤、吸附、挥发、淋溶,化学的分解与转化,植物的吸收与微生物的降解、吸收等作用得到去除。

4、蒸发处理技术

蒸发法在废水处理领域,尤其是在放射性废水的处理领域,有着广泛的作用。所说的蒸发法就是利用外加能量蒸发废水中的水分,使其体积大大缩小。国内外关于渗滤液蒸发技术公开发表的文献很少。与传统处理工艺相比,蒸发工艺可以很容易地适应渗滤液的性质变化。

三、结论

几乎所有废水处理方法都在垃圾渗滤液处理中进行尝试,也各有一定效果,但都没有从根本上解决渗滤液排放中的诸多污染问题。我国现有城市垃圾填埋场多选用厌氧加好氧的生物处理方法,但运行效果普遍较差。

垃圾填埋场渗滤液有着不同的处理方案,选择应用何种处理工艺,需要根据垃圾渗滤液水质情况、经济承受能力等合理探讨。

参考文献:

[1] Cai Z Y.Long-term monitoring and prediction for leachate concentrations in Shang Hai refuse landfill[J].Water ,Air and Soil Pollution ,2000,122:281-297

[2] 沈耀良,赵丹,杨铨大.好氧-厌氧法处理渗滤液与城市污水混合废水的可行性[J],污染防止技术,2000,13(2):63-67.

[3] D. Rajkumar,K. Palanivelu,N. Balasubramanian. Combined electrochemical degradation and activated carbon adsorption treatments for wastewater containing mixed phenolic compounds [J],J. Environ. Eng. Sci.,2005,4:1-9.

[4] Tasti A A,Zouboulis A I,Matis K A et al.Coagulation-flocculation pretreatment of sanitary landfill leachates [J],Chemosphere,2003,53:727-744.

[5] 张晖,Huang C P.Fenton法处理渗滤液[J],中国给水排水,2001,17(3):1-3

[6]. Hurd S, Kennedy K, Droste J, et al .Low-pressur reverse osmosis treatment of landfill leachate [J],Journal of Soild Waste Technology and Management,2001,27(1):1-14.

[7] 徐竺,李正山,杨玖贤.上流式厌氧过滤器处理垃圾渗滤液的研究[J],中国沼气,2002,20(2):12-15,33.

篇8

关键词:垃圾填埋;渗滤液;UASB;综合物化法

1概述

对于实行填埋、焚烧和回收同步运行综合处理处置策略的城市而言,其垃圾填埋场的处置对象一般仅限于生活垃圾,不包括工业垃圾、医疗垃圾和其它有毒、有害废弃物。垃圾填埋场产生的垃圾渗滤液,是垃圾填埋场的主要废水污染源。渗滤液含污染物浓度高,以有机污染物为主,若不进行治理将会造成水域的污染影响。渗滤液的收集系统是垃圾填埋场主体工程之一,收集系统采取底层纵横网盲沟导流和垂直立管的组合收集,能够达到有效收集渗滤液的目的。收集后的渗滤液采用UASB―综合物化法联合处理,经处理后的渗滤液重金属可满足《生活垃圾填埋污染控制标准》(GBl6889―2008)表2中浓度限值,其它污染物指标可以满足城镇污水处理厂进水水质要求,可排入城市二级污水处理厂。

2垃圾渗滤液处理工艺的选择

2.1垃圾渗滤液水质

渗滤液与城市生活污水相类似,但污染物浓度远比一般城市生活污水要高得多。另外渗滤液的污染物含量也随填埋场运行状况而存在较大差异。渗滤液的污染物来源,主要是由有机物在微生物作用下,将原垃圾中分子量大、结构较复杂的不溶于水的有机物,降解为分子量较低、结构较简单的易溶于水的有机成份而产生的。垃圾渗滤液具有水质复杂,水质水量变化大且不呈周期性,COD、BOD5、NH3-N、重金属浓度高及微生物营养元素比例失调等特点。其各种成份变化主要取决于填埋场的年龄、深度、微生物环境以及所填埋的垃圾的组成等,其中填埋场的场龄是影响垃圾渗滤液水质的最重要因素。

垃圾渗滤液水质指标详见表1。

表1 垃圾填埋场渗滤液水质浓度

项目名称 COD(mg/L) BOD5(mg/L) SS(mg/L) NH3-H(mg/L) pH

浓度值 10000-20000 6000-12000 300-500 500-2000 6-9

2.2垃圾渗滤液产生量计算

垃圾填埋场渗滤液产生量受垃圾本身含水量、场地水文地质条件、气候条件、填埋方式等诸多因素影响,其产生量呈明显的无周期性,渗滤液产量可以下式估算:

Q=(W2―W2―W3―W4―W5)×A

式中:Q―渗滤液水量 A―填埋场汇水面积 W1―降雨量

W2―单位面积地下水渗入量 W3―单位面积垃圾及覆土的含水量

W4―单位面积地表径流量

W5―单位面积自然蒸发量

根据以上计算公式,同时参考德国对多个垃圾填埋场的统计(渗滤液量为降水量的25%―58%),综合以上两种估算方法确定垃圾填埋场建成运行垃圾渗滤液产生量。根据垃圾填埋场渗滤液产生量可确定污水处理规模。

2.3处理工艺的选择

2.3.1垃圾渗滤液处理工艺

处理工艺充分考虑了垃圾渗滤液水质、水量特点,综合各种因素及现有垃圾渗滤液处理的经验教训,确定采用UASB一综合物化处理工艺流程(工艺流程如图1所示)。填埋场垃圾渗滤液自调蓄池流入渗液处理厂格栅区池,格栅出水后经调理槽提升至UASB反应池,然后渗滤液自流至分解池、置换反应池、絮凝反应池、沉淀池出水排出。在气温高,厌氧反应良好且出水达标时,可超越物化分解池,直接进入下一个处理单元进行处理。

图1 工艺流程图

经上述工艺处理后的垃圾填埋场渗滤液中重金属可满足《生活垃圾填埋污染控制标准》(GBl6889―2008)表2中浓度限值,其它污染物指标可以满足城镇污水处理厂进水水质要求,排入城市二级污水处理厂进行最终处理。

2.3.2渗滤液处理工艺特点

污水调蓄池不仅具有调蓄水量、均匀水质的作用,而且具有沉淀、厌氧酸化水解等作用,COD、BOD5、TN的去除率均可达50%左右,其容量和处理规模是卫生填埋场的重要设计参数。

UASB系统主要靠厌氧微生物来降解垃圾渗滤液中有机污染物,有较高污染物去除效率,同时具有较高的容积负荷率和去除率,同时可去除氮、磷,大幅度消灭虫卵及致病菌,且运行费用底,工艺比较成熟,管理方便,操作简单。

综合物化法是通过超声波系统、负氧离子发生器、水中放电和絮凝沉淀等一系列物理发生器,使渗滤液产生一系列物理化学作用,氧化各种有机物并使之矿化。其技术特点是:

①对水质及环境变化的适应性强,抗冲击负荷能力高;

②处理设施自动化程度高,且运行可靠、操作简便;

③对填埋场后期可生化性差、氨氮高的渗滤液有很好的处理效果;

④污泥稳定性强,粘度低,沉降性能好,易处理。

从总体思路上分析,选用厌氧UASB―综合物化处理工艺流程是可行的,首先经过厌氧菌的作用,将渗滤液中长链大分子难降解有机物转变为小分子有机物,可进一步提高综合废水的可生化性,消耗废水中的N、P等污染物质,然后通过综合物化作用,使出水有机物浓度达标。

3注意问题

考虑到垃圾渗滤液废水的特殊性,应注意以下几个问题:

1、随着填埋时间的延长,特别是在终场后,废水可生化性将明显降低,原有工艺参数可能无法满足新的水质要求,效果变差,因此在处理过程中,应不断研究调整,使处理工艺保持较高的处理效果:

2、加强清污分流工作,尽可能削减垃圾渗滤液的产生量,以减少对处理工艺的负荷冲击;同样,过多的截流洪水进入垃圾渗滤液将会造成水质的巨大波动,影响最终出水水质:

3、渗滤液集水池、调蓄池对于稳定水质,降低污染负荷具有明显作用,应充分发挥调蓄池的调蓄作用,尽可能延长废水在池中的停留时间,削减污水处理厂的污染负荷:

4、回灌法与物化和生物法相比,能更好适应渗滤液水质、水量的变化,是一种投资省、运行费用低且能加速城市垃圾填埋场稳定的方法,建议在采用生物处理工艺基础上,配套进行垃圾渗滤液的回灌处理,利用垃圾本身对污染物进行吸附降解处理,将明显降低污水负荷,提高后续处理工艺的效果。

4参考文献:

[1] 高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999,5.

[2] 唐受印,戴友芝,汪大.废水处理工程[M].北京:化学工业出版社,2004,7.

[3] 胡纪萃. 废水厌氧生物处理理论与技术[M]. 中国建筑工业出版社, 2003,5.

篇9

关键词:生活垃圾卫生填埋场;垃圾渗滤液;污染治理

前言

目前我国的大中城市均建有卫生填埋场,垃圾渗滤液的污染治理是生活垃圾卫生填埋场建设管理的重点之一,分析各填埋场的污染治理措施,对垃圾渗滤液治理措施中应注意的问题进行探讨。

1 渗滤液处理存在的主要问题

垃圾渗滤液的组分复杂,具有污染物种类繁多、浓度高、变化范围大、色度大、毒性强等特点。目前,处理垃圾渗滤液存在的问题主要表现在两个方面,一方面是渗滤液高浓度氨氮的问题,另一方面是渗滤液可生化性差的问题。

2 渗滤液处理工艺比较分析

从垃圾渗滤液的处理方法来看,主要有物理化学法、生物法及各种方法的组合工艺。

2.1 多级反渗透膜处理工艺

反渗透法处理渗滤液是一种离子/分子水平的物理分离技术,在高压下使渗滤液中的水份通过半透膜析出,可以有效的除去其中的细菌、悬浮物、有机污染物、重金属离子、氨氮等污染物质。可以确保出水水质符合有关排放标准。

该工艺的主要特点:

①对COD和氨氮的去除率可超过99%,出水水质稳定,可以达到国家生活垃圾填埋场污染控制标准(GB16889-1997)中一级排放要求;

②该工艺设备能够适应渗滤液水质变化,随填埋时间的延长,其出水仍能满足要求;

③占地面积小,操作简便, 维护管理方便.

但是,该技术由于存在以下几点致命的弱点,而限制了其在我国垃圾渗滤液处理领域中的运用:

①由于借助物理分离技术,与生物处理技术相比,未从根本上彻底分解除去渗滤液中的各种污染物质,而造成浓缩液中污染物浓度更高;处理过程中产生大量浓缩液,可能造成二次污染。

②该工艺的一次性投资高,一般每天处理1m3渗滤液需投资6~8万元,且由于膜组件有一定的使用寿命,后续更换膜的费用也很高;运行费用较高,一般在20元/吨以上;

2.2 生化-膜法组合工艺

由于垃圾渗滤液水质复杂,一般多采用组合工艺进行处理,生化-膜法组合工艺已有一些应用的实例。生化处理阶段可以采用活性污泥法(氧化沟、SBR及推流式曝气池)、稳定塘和生物膜法(生物转盘、接触氧化及曝气生物滤池)。而应用膜分离技术处理垃圾渗滤液主要是应用了膜对物质的截留性能,垃圾渗滤液中的有机物和氮都可被分离膜有效截留,从而达到垃圾渗滤液的净化目的。该工艺出水水质按不同阶段控制可以分别达到生活垃圾渗滤液排放控制限值三级标准和一级标准。膜法主要有微滤、纳滤、超滤和反渗透等。此组合工艺优势很明显,主要表现在以下几个方面

①生物法运行费用相对较低、处理效率高,不会出现化学污泥等造成的二次污染;

②联合使用了膜法可以使垃圾渗滤液的出水水质达标稳定;

③显著的减少了排放的污染物,同时向环境排放出高质量的净化水,大大消除了垃圾渗滤液对环境的负面影响。

但是该工艺在运用于处理垃圾渗滤液时,以下几个方面还有待进一步改进。

①采用普通生化法时,好氧活性污泥法和生物转盘法工程投资大,运行管理费用高;

②厌氧工艺地停留时间长,污染物去除率相对较低,对温度变化敏感;

③稳定塘占地面积大,处理效果随季节变化较大,接触氧化法须设置二沉池,增加了土地占地面积和处理成本。

④联合使用的膜法,由于其操作需要有一定的压力,耗电高;膜表面容易形成附着层,使膜的通量显著下降;膜法处理过程中会产生浓缩液,其处理费用很高。

2.3 高级氧化与生化组合处理工艺

目前应用和研究得比较多的高级氧化技术(AOP)包括臭氧氧化、Fenton氧化、O3/ H2O2、Fenton/UV、O3/UV、H2O2/UV以及TiO2光催化氧化等。该技术已经在废水、饮用水、地下水、有毒污泥和污染土壤等处理方面得到越来越多的应用。

高级氧化与生化组合工艺处理垃圾渗滤液在国内仅处于实验室研究阶段,结果表明在适当脱氮预处理基础上,高级氧化技术不但去除了一部分有机质,而且大大地改善了渗滤液中残余有机质的可生化性,提高了后续生物处理的效果,采用此组合工艺能够使渗滤液处理后水质达到一级排放标准。该组合工艺处理垃圾渗滤液的局限性主要表现在:

①由于采用高级氧化技术作为预处理,造成处理成本较高;

②由于垃圾渗滤液中水质构成非常复杂,其中许多无机离子将会大量消耗氧化剂,从而大大地增加了氧化剂的用量;

③残余的氧化剂会影响后续生物处理系统中微生物的活性;有些氧化过程中会产生一部分有毒副产物,因此其安全性需要大量的研究和实际运行结果来证实。

2.4 固定化微生物曝滤池

近几年来,国内研发推出了固定化微生物曝气滤池处理工艺,该工艺其生物处理原理仍然为厌氧及好氧微生物处理有机物的原理和流程,主要特点是其采用了软性多孔生物载体作填料的曝气滤池,选用高效微生物培养并固定多孔载体中,大提高其污染负荷,载体中兼氧、好氧过程同时进行,使渗滤液经处理可达到二级排放标准,该工艺投资少、脱氮效率高,运行费用为12~15元/吨,是近年有发展前景的一种渗滤液处理工艺。

我国现有垃圾渗滤液处理工艺优缺点比较分析见表1。

参考文献

篇10

关键词:生物反应器填埋场;渗滤液;回灌

Effects of leachate recirculation on its nutrient substance

Zhang Chaoping 1,Zhou Shengyong 1,Jiang Jianguo 2,

(1. Shenzhen Xiaping Sanitary Landfill, Shenzhen 518019, P.R.China;2. Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China)

Abstract: This paper studied the impacts of recirculation volume on removing element N、P of the leachate. Four simulated bioreactor landfill columns were operated weekly with different recirculation ratios, respectively 5.3%, 2.7%, 0.67% leachate and 0.33% water, in this comparative research. The results indicate that: leachate recirculation brings good effects on removing its nutrient substance

Keywords: bioreactor landfill; leachate; recirculation

渗滤液回灌是一种简单的增加填埋场内部湿度,加速填埋场稳定化进程的方法,同时还能降低渗滤液污染物浓度,加速填埋气体产生[1,2]。采用渗滤液回灌技术的生物反应器填埋场已经由实验室规模实验走向中试规模实验和全规模实验并开始得到实际应用。截至1993年,在美国、德国、英国和瑞典,已经有接近20个生物反应器填埋场[3]。北美固体废弃物组织1997年的调查表明,在美国境内,已经有超过130个填埋场实行了渗滤液回灌[4],积累了相当丰富的运行管理经验。

渗滤液回灌过程中,栖息于覆盖土壤、垃圾体中的微生物能吸收利用大量的有机污染物,而有机和无机胶体的吸附、络合和螯合、离子交换、机械阻留对渗滤液也有一定的处理作用[5]。处理渗滤液也是生物反应器填埋场的主要优势之一,回灌对渗滤液处理效果的考察是本试验研究的重点内容之一。渗滤液中含有大量的营养物质,主要是N、P等元素,N和P在生物法中、特别是厌氧工艺中,去除效率较低,对于有机物浓度高且普遍采用厌氧方法处理的渗滤液而言,需要单独添加脱氮除磷工艺以使其达标排放。下坪填埋场使用吹脱法去除氨氮,运行费用很高。在以往的文献报道中,厌氧型生物反应器填埋场对N和P的去除效果很小,而局部改进了氧化还原环境的局部兼氧型填埋场则有更好的去除效果[6-10]。渗滤液回灌对N和P的去除效果,是本试验考察的主要目的。

1、实验装置及实验方法

1.1 实验装置

本实验由四个平行的中试规模实验柱和相应的集水池组成,实验柱结构如图1所示。

图1 中试实验柱结构示意图

Fig.1 Schematic of simulated bioreactor column

实验柱规模为2.5×3×5.5 m3,池壁在不同高度设有采样口两个,并设置有温度探头。各实验柱中均填入净高4m的垃圾,垃圾的下部和上部均有HDPE网和砾石作为导水和导气层,实验柱内壁以及顶部均用HDPE膜焊接密封。上层砾石中埋有渗滤液布水管和填埋气体收集管,渗滤液布水管连接到渗滤液调节池,填埋气体收集管接有阀门和累积型气体流量计。下层砾石中埋有渗滤液出水管,用于收集实验柱产生的渗滤液,出水管上设置有液位计,用于观察垃圾体中水位高度。

1.2 实验材料

实验所用垃圾取自深圳市当日收集的新鲜垃圾,垃圾被压缩车送来后,均匀地填入四个实验柱中,并人工压实,填埋垃圾组分见表1。四个实验柱的垃圾密度均接近1t/m3,此密实度参考了深圳下坪固体废弃物填埋场实际垃圾填埋密度。

本实验所采用的回灌渗滤液为填埋场渗滤液调节池的原渗滤液,此渗滤液为弱碱性,具有调节酸碱度和接种的作用。

表1 实验柱填埋垃圾组分

1.3 实验方法

1号、2号和3号实验柱分别回灌1.6 m3,0.8 m3,0.2 m3的渗滤液,其回灌量分别为垃圾填埋量的5.3%、2.7%和0.67%;4号实验柱作为控制柱回灌0.1m3的清水,其回灌量为垃圾填埋量的0.33%。回灌每周进行一次。

实验期间定期采样分析进出流渗滤液,同时对实验柱温度和填埋气体产生量进行监测。

2、实验结果

2.1 N的变化规律

渗滤液回灌前后NH3-N和TN的变化规律分别如图2和3所示。

图2NH3-N变化规律

图3TN变化规律

从图3-6和3-7的试验结果不难看出,在回灌35周之前,垃圾体对于回灌渗滤液中的N没有去除效果,出流渗滤液N污染物浓度甚至高于回灌渗滤液浓度中N的浓度。回灌初始阶段,回灌柱的出流NH3-N有两个主要来源:一是回灌渗滤液含有的,二是垃圾中蛋白质等含氮物质降解产生的。同时,回灌柱中微生物的增长要消耗一定的含氮物质。在15周以前,回灌柱的NH3-N和TN浓度都与回灌渗滤液相近,说明此阶段垃圾分解所产生的含N污染物与微生物生长所需要的量相近。而到15周时,回灌柱的NH3-N浓度开始明显增长,并达到整个回灌过程的顶峰,变化幅度要明显大于回灌渗滤液中NH3-N的变化规律,这说明此时微生物的水解作用占主导地位,大量的含N污染物被溶解释放,速率超过了微生物增长所需。控制柱NH3-N变化规律也与此类似,但变化幅度要小于回灌柱。在回灌进行17周左右的时间内,3个回灌柱NH3-N峰值浓度分别为回灌渗滤液浓度的1.55、1.47和1.73倍。

17周之后,出流N污染物浓度开始下降,直至35周左右,出流NH3-N浓度开始低于回灌渗滤液NH3-N浓度。从40周开始,反应柱出流NH3-N与回灌渗滤液NH3-N浓度开始保持一种稳定相关的状态,回灌后NH3-N的浓度降低的值基本保持稳定,说明微生物环境基本稳定,易经降解释放N污染物的有机物消耗殆尽,生物活动所消耗的N保持稳定状态。此阶段回灌对渗滤液的NH3-N有一定的去除作用。40周后3个回灌柱的NH3-N平均去除效果为42.8%、45.1%和41.4%,去除率虽然远低于有机物的去除效果,但对高NH3-N浓度的渗滤液而言,已经有不错的效果。

2.2 TP的变化规律

渗滤液回灌前后TP的变化规律分别如图4所示。

图4TP变化规律

厌氧条件下,微生物对P的需求比对N的需求更低,故生物处理P的去除率十分有限。从图3-8可以看出,30周前反应柱出流渗滤液P的变化规律与N的变化规律基本相同。在最初的回灌期,TP浓度不断降低,而到了10周以后则开始上升,在15周时达到峰值并重新下降,说明此阶段内微生物活性增加,更多的P从垃圾中水解溶出,而到了30周以后趋向稳定。与NH3-N不同的是,回灌柱出流TP的浓度与回灌渗滤液的浓度相差无几,并没有明显的去除效果,这完全是厌氧微生物对磷的需求很低造成的。总体说来,回灌法对P几乎没有处理效果。

3、小结