常见的高分子材料性能范文

时间:2023-12-21 17:21:15

导语:如何才能写好一篇常见的高分子材料性能,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

常见的高分子材料性能

篇1

关键词:高分子材料;老化;老化原因;防老化措施

1高分子材料及老化现象

1.1高分子材料简述

高分子材料是指与人们生活息息相关的各种常见的材料,如塑料,橡胶,涂料,薄膜,纤维等。高分子材料被广泛应用于汽车工业,航空,建筑,军事建设等多种行业,为我国国民经济的发展做出了很大的贡献,同时也提高了人们的生活水平。但是高分子材料经常容易在强光,热辐射,水浸泡等因素作用下发生降解,失去其利用价值。

1.2高分子材料老化

高分子材料的老化由于其特性,使用条件的不同,发生老化的现象和表现出的现象也有很大不同。有的会变脆,变色,透明度下降等,也有的会出现弹性下降,变软,变粘等。归纳为如下几个方面:①外观变化:高分子材料在外观上的老化现象主要有:出现污渍,裂缝,斑点,银纹,粉化,发粘,收缩,或光学颜色改变;②物理性能改变:高分子性能在物理性能上老化的现象为:流变形能,溶胀性,溶解性变差,同时耐热性,透水性,透气性,耐寒性等也发生变化;③力学性能改变:力学性能的改变主要包括弯曲强度,剪切强度,拉伸强度,冲击强度等力学性能下降。同时,材料的应力松弛,相对伸长率等性能也会发生相应改变;④电性能改变:电性能的改变包括介电常数,表面电阻,体积电阻,电击穿强度等电化学性能的改变。

2引发高分子材料老化的原因

2.1内在因素

2.1.1材料的立体归整性

分子键排列规整的区域成为结晶区,不规整的区域成为非结晶区。这两种区域的分子排布差异很大,一般材料的老化发生在非结晶区,并逐步往结晶区蔓延。因此高分子材料的立体规整性对材料的老化会产生一定的影响。

2.1.2材料的分子量及其分布

材料的分子量和其分布直接影响了材料的老化性能。分子量分布的宽度影响了端基的数量,而端基的数量有决定了材料老化的难易程度。

2.1.3材料的化学结构

材料的链结构和聚集态结构直接影响了材料的性能。维持高分子材料聚集态的各分子间力中存在着很多弱键力,弱键很容易断裂产生自由基,这种自由基反应产生的物质会使高分子材料极速的发生老化。

2.1.4材料中的杂质

高分子材料的加工合成过程有时会引入一些杂质,或者残留一些化学助剂,这些都能引发高分子材料的老化。

2.2外在因素

①氧气:由于氧气的渗透作用,会与高分子聚合物上的弱键发生反应,引起主链结构的变化,从而引发材料的老化;②温度:温度的高低直接影响了高分子的性能和分子的断链速率。材料的温度越高,链运动速率越快,吸收的能量越多。当吸收的能量高于化学键的解离能时,链就会发生降解导致集团的脱落,使材料老化加剧。而当温度降低到一定程度,会阻碍链的运动速率,使高分子材料变得更硬,更脆;③湿度:水分子对材料的老化也有一定的影响。由于水分子的渗透性极强,会逐渐的渗透入分子间使材料发生溶胀,从而改变了分子间作用力。因此破坏了材料的聚集态,发生了老化现象;④光照:当高分子材料吸收的光能高于分子链断键的解离能时,会使分子链发生破坏,同时材料的结构也被迫发生改变,从而使材料的性能发生了改变,引起老化反应;⑤生物老化:在高分子材料的加工合成过程中,会使用一些助剂,助剂的使用同时也会引发霉菌的产生。霉菌微生物的生长代谢产生的分解霉和毒素不仅促使材料的被迫降解和老化,还会使接触者接触后感染到一系列疾病。

3高分子材料的放老化措施

3.1高分子材料的热老化预防措施

热老化预防措施主要通过改变材料的物理性质如温度。增塑剂是一种应用范围广泛的降低玻璃化温度的措施,可以使高分子材料在低温下保持原状态不发生老化。它包括分子增塑和结构增塑两种形式。分子增塑是指增塑剂在分子水平上与高分子混溶,从而降低了高分子链间的相互作用力,增强了材料的柔顺性。

3.2高分子材料的氧老化预防措施

在高分子材料的加工过程中,加入抗氧化物及含硫,磷有机化合物等,能够与过氧自由基发生反应,从而降低或终止老化反应进程。抗氧化剂包括两种类型,即自由基分解型和自由基受体型。这两种自由基抗氧剂协同作用,共同降低材料的老化速度。

3.3高分子材料的生物老化预防措施

霉菌是加快高分子材料老化的主要威胁。它能够在极短的时间内使高分子材料发生老化。

4结语

高分子材料的结构是及其复杂的,其功能众多。但其存在的老化问题也是亟待人们去解决的。上文已分析,引起高分子材料老化的因素有很多,其内部因素和外部因素共同作用引起高分子材料的结构改变,从而发生一系列的老化问题。在今后的研究中,必须要加大防老化的措施研究,才能从根本上解决高分子的缺陷。

参考文献: 

篇2

[关键词]建筑工程;智能高分子材料;应用

中图分类号:TU53;TQ317 文献标识码:A 文章编号:1009-914X(2017)22-0204-01

0 引言

文章综述了智能高分子材料在建筑工程中的应用。自修复型高分子材料可大大降低建筑工程的生产成本,同时提高建筑物的安全性和环保性;导电高分子材料可实现光能与电能、热能与电能的相互转化,为建筑物提供能源;环境敏感型高分子材料则会根据环境变化改变自身性能,从而起到美化建筑物、保护居民隐私和保温等作用。智能高分子材料应用于建筑工程中可以在很大程度上提高建筑物的智能化和人性化,改善居民的生活环境。

1 智能高分子材料概述

高分子材料具有独特的固有性能,与金属和无机材料相比,其生产成本较低,而且经过改性后无论是在强度还是在功能性上都可以与这两者相媲美。随着高分子学科近一个世纪的发展,越来越多的高分子材料种类的发现,高分子材料已经渗透到各个行业。尤其是在建筑行业,一些高分子材料具有保温、防潮、抗菌等优良的性能,可以大大改善居民的居住环境。

建筑行业是我国的一大支柱产业,据有关资料统计,在500亿平方米的既有建筑物中,大约450亿平方米左右的建筑物为非节能型建筑。建筑物的冬季供暖和夏季制冷措施造成了这些建筑的平均年能耗占我国所有产业总能耗的30%以上。节能建筑受到了广泛的关注,新增建筑物中节能建筑的比例有所提高,不过也仅有10%~20%。高分子材料的功能性使其具有良好的保温效果,将其应用于建筑工程中可以大大降低供暖和制冷的能耗,甚至一些具有储能作用的高分子材料还可以利用太阳能、风能等清洁能源为建筑物提供能源。

2 智能高分子材料在建筑工程中的应用综述

2.1 自修复型高分子材料

自修复型高分子材料是指材料在受到损伤后可以通过材料自身的作用完成修复,自修复材料囊括了热固性树脂、热塑性树脂、弹性体、橡胶等各类高分子材料,可满足建筑工程多方面的应用。将自修复型高分子材料应用于建筑工程,不仅可以提高材料的使用寿命和建筑施工的成本,而且还大大提高了建筑材料的环境友好性和安全性。

高分子材料基体中利用超分子作用进行自修复的过程也是一种可逆的修复过程,ChenYulin等于2012年制涑隽艘恢种Щ的聚丙烯酸酯,支链为带有酰胺基团的柔性侧链。由于柔性链段的作用,酰胺基团具有良好的动态性,而且在聚合物基体中存在着数以千计的酰胺基团,这些大量的动态氢键作用,可以在短时间内完成材料的自我修复。随后J.Hentschel等又通过可逆加成C断裂链转移聚合方法制备了苯乙烯C丙烯酸丁酯嵌段共聚物,并在链末端引入了2-脲-4-(1-氢)嘧啶酮基团(UPy)。利用末端基团UPy的超分子作用,在45℃下受损材料修复后拉伸强度可恢复到原有的90%以上,断裂伸长率可恢复到原有的75%以上。配体-金属的配合物可逆自修复体系是从根本上利用超分子作用进行自修复的。M.Burnworth等于2011年在乙烯和丁烯低聚物的末端引入含有杂原子的配体,然后利用配体与金属离子的配位作用制备出超分子聚合物。当材料受到损伤后,先利用紫外线辐射使金属和配体解离,从而将超分子聚合物还原成低聚物,使材料的裂痕均一化,然后撤掉紫外线辐射后,金属和配体重新配位,形成新的超分子聚合物。这种金属-配体的自修复体系的修复过程非常快,几分钟内便可完成修复。另外一种典型的超分子作用是离子作用,D.Mozhdehi等制备了一种侧链含有咪唑基团的无规聚苯乙烯材料,并在材料本体中添加金属锌盐。当材料受到损伤后,动态的咪唑基团和锌离子之间的超分子作用可帮助材料实现自修复,并且整个修复过程在常温下便可完成,3h内材料的力学性能可恢复到原有性能的100%。

2.2 导电高分子材料

在建筑工程中应用最广泛的智能高分子材料之一便是导电高分子材料,这类材料能实现光能和电能、热能和电能的相互转化。其中,实现光能和电能相互转化的导电高分子材料常用于能源材料和发光材料,如聚合物发光二极管(PLED)和聚合物太阳能电池;能实现热能和电能的相互转化的材料则常用于室内或墙体的保温材料。

与常见无机发光二极管(LED)和有机小分子发光二极管(OLED)相比,PLED的成本较低、对环境污染较小,而且随着喷墨打印技术的发展,PLED的制备、加工变得更加容易。PLED是一种以高分子材料为基体的材料,具有较突出的耐化学腐蚀性和耐候性,并且借助高分子材料优异的柔性和加工性能,可以制备出形状各异、美观大方的发光家具、发光地板、发光墙体等。聚合物制备的PLED器件具有较高的发光效率,且发光颜色和光强可以较容易地通过改变聚合物结构来进行调节,在建筑工程领域的应用前景较广泛。另外,可应用于制备PLED的聚合物材料种类繁多,如聚苯预聚体、聚苯胺、聚芴、聚噻吩等共轭高分子材料;以高分子骨架为配体的稀土金属配合物等。

2.3 环境敏感型高分子材料

环境敏感型高分子材料也是一种智能高分子材料,它们可以通过对环境改变的“感应”,来完成自身性能的变化。聚丙烯酰胺类材料是一种热致变色材料,这类材料具有两种不同的相结构,分别是高密度范德华力和高密度氢键结构,随着温度变化,这两种相结构会发生互相转换。材料会在较高的温度下呈现浅色,而较低的温度下呈深色,将这种材料应用于建筑外墙或制作窗户,在夏季或温度较高的白天则可以减少建筑物对热量的吸收,在冬季或温度较低的夜晚则提高建筑对热量的吸收程度,从而达到建筑物本身对热量和温度的智能调节的目的。聚NC异丙基丙烯酰胺便是一种热致变色的环境敏感型高分子材料,其相转变温度在人类较为舒适的体感温度范围内,约为31.5℃。当温度低于31.5℃时,其聚合物链内部氢键作用密度大,这时材料外观为黑色;当温度高于31.5℃时,聚合物内部氢键作用减小,大部分转变为范德华力,这时材料外观为白色。当将这种材料用于建筑外墙涂料时,在较低温度下显黑色,加速热量吸收,提高建筑内部温度(2℃左右);而在较高温度下显白色,反射热量来降低建筑内部温度(1℃左右),大大缓解了建筑供暖和制冷的能耗。

3 结语

智能高分子材料种类繁多,包括自修复高分子材料、导电高分子材料、环境敏感型高分子材料等。智能高分子材料不仅可以提高建筑物的智能化和人性化,还可以改善建筑的美观程度,改善居民的物质和生活环境,具有较为广泛的应用前景。

参考文献

篇3

一、生物医用高分子材料的特点

生物医用高分子材料是一种聚合物材料,主要用于制造人体内脏、体外器官、药物剂型及医疗器械。按照来源的不同,生物医用高分子材料可以分为天然生物高分子材料和合成生物高分子材料2种。前者是自然界形成的高分子材料,如纤维素、甲壳素、透明质酸、胶原蛋白、明胶及海藻酸钠等;后者主要通过化学合成的方法加以制备,常见的有合聚氨酯、硅橡胶、聚酯纤维、聚乙烯基吡咯烷酮、聚醚醚酮、聚甲基丙烯酸甲酯、聚乙烯醇、聚乳酸、聚乙烯等。按照材料的性质,生物医用高分子材料可以分为非降解材料和降解材料。前者主要包括聚乙烯、聚丙烯等聚烯烃,芳香聚酯、聚硅氧烷等;后者包括聚乙烯亚胺—聚氨基酸共聚物、聚乙烯亚胺—聚乙二醇—聚(β-胺酯)共聚物、聚乙烯亚胺—聚碳酸酯共聚物等。

生物医用高分子材料作为植入人体内的材料,必须满足人体内复杂的环境,因此对材料的性能有着严格的要求。首先,材料不能有毒性,不能造成畸形;其次,生物相容性比较好,不能与人体产生排异反应;第三,化学稳定性强,不容易分解;第四,具备一定的物理机械性能;第五,比较容易加工;最后,性价比适宜。其中最关键的性能是生物相容性。

根据国际标准化组织(InternationalStandardsOrganization,ISO)的解释,生物相容性是指非活性材料进入后,生命体组织对其产生反应的情况。当生物材料被植入人体后,生物材料和特定的生物组织环境相互产生影响和作用,这种作用会一直持续,直到达到平衡或者植入物被去除。生物相容性包括组织相容性、细胞相容性和血液相容性。

二、生物医用高分子材料的发展历史

人类对生物医用高分子材料的应用经过了漫长的阶段。根据记载,公元前3500年,古埃及人就用棉花纤维和马鬃缝合伤口,此后到19世纪中期,人类还主要停留在使用天然高分子材料的阶段;随后到20世纪20年代,人类开始学会对天然高分子材料进行改性,使之符合生物医学的要求;再后来人类开始尝试人工合成高分子材料;20世纪60年代以来,生物医用高分子材料得到了飞速发展和广泛的普及。1949年,美国就率先发表了研究论文,在文中第1次阐述了将有机玻璃作为人的头盖骨、关节和股骨,将聚酰胺纤维作为手术缝合线的临床应用情况,对医用高分子的应用前景进行了展望。这被认为是生物医用高分子材料的开端。

在20世纪50年代,人类发现有机硅聚合物功能多样,具有良好的生物相容性(无致敏性和无刺激性),之后有机硅聚合物被大量用于器官替代和整容领域。随着科技的发展,20世纪60年代,美国杜邦公司生产出了热塑性聚氨酯,这种材料的耐屈挠疲劳性优于硅橡胶,因此在植入生物体的医用装置及人工器官中得到了广泛应用。随后人工尿道、人工食道、人工心脏瓣膜、人工心肺等器官先后问世。生物医用高分子材料也从此走上快速发展的道路。

三、生物医用高分子材料的发展现状、前景和趋势

据相关研究调查显示,我国生物医用高分子材料研制和生产发展迅速。随着我国开始慢慢进入老龄化社会和经济发展水平的逐步提高,植入性医疗器械的需求日益增长,对生物医用高分子材料的需求也将日益旺盛。2015年1月28日,中国医药物资协会的《2014中国单体药店发展状况蓝皮书》显示,2014全年全国医疗器械销售规模约2556亿元,比2013年度的2120亿元增长了436亿元,增长率为20.06%。但是相比于医药市场总规模(预计为13326亿元)来说,医药和医疗消费比为1∶0.19还略低,因此业内普遍认为,医疗器械仍然还有较广阔的成长空间,生物医用高分子材料也将迎来良好的发展前景。

根据evaluateMedTech公司基于全球300家顶尖医疗器械生产商的公开数据而得出的报告《2015-2020全球医疗器械市场》预测,2020年全球医疗器械市场将达到4775亿美元,2016-2020年间的复合年均增长率为4.1%。世界医疗器械格局的前6大领域包括:诊断、心血管、影像大型设备、骨科、眼科、内窥镜,其中生物医用高分子材料在其中都得到了广泛的应用。

以往的医学研究对组织和器官的修复,更多是选择一种替代品,实现原有组织和器官的部分功能。随着再生医学和干细胞技术的迅速发展,利用生物技术再生和重建器官、个性化治疗和精准医学已经成为趋势。因此传统的生物医药高分子材料已经不能满足现有的需求,需要模拟生物的结构,恢复和改进生物体组织与器官的功能,最终实现器官和组织的再生,这也是生物医用高分子材料未来的发展方向。

生物医用高分子材料在医疗器械领域中得到了非常广泛的应用,主要体现在人工器官、医用塑料和医用高分子材料3个领域。

1.人工器官

人工器官指的是能植入人体或能与生物组织或生物流体相接触的材料;或者说是具有天然器官组织或部件功能的材料,如人工心瓣膜、人工血管、人工肾、人工关节、人工骨、人工肌腱等,通常被认为是植入性医疗器械。人工器官主要分为机械性人工器官、半机械性半生物性人工器官、生物性人工器官3种。第1种是指用高分子材料仿造器官,通常不具有生物活性;第2种是指将电子技术和生物技术结合;第3种是指用干细胞等纯生物的方法,人为“制造”出器官。目前生物医用高分子材料主要应用在第1种人工器官中。

目前,植入性医疗器械中骨科占据约为38%的市场份额;随后是心血管领域的36%;伤口护理和整形外科分别为8%左右。人工重建骨骼在骨科产品市场中占据了超过31%的市场份额,主要产品是人工膝盖,人工髋关节以及骨骼生物活性材料等,主要应用的生物医用高分子材料有聚甲基丙烯酸甲酯、高密度聚乙烯、聚砜、聚左旋乳酸、乙醇酸共聚物、液晶自增强聚乳酸、自增强聚乙醇酸等。心血管产品市场中支架占据了一半以上的市场份额,此外还有周边血管导管移植、血管通路装置和心跳节律器等。

目前各国都认识到了人工器官的重要价值,加大了研发力度,取得了一些进展。2015年,美国康奈尔大学的研究人员开发出了一种轻量级的柔性材料,并准备将其用于创建一个人工心脏。在我国,3D打印人工髋关节产品获得国家食品药品监督管理总局(CFDA)注册批准,这也是我国首个3D打印人体植入物。

人工器官未来发展趋势是诱导被损坏的组织或器官再生的材料和植入器械。人工骨制备的发展趋势是将生物活性物质和基质物质组合到一起,促进生物活性物质的黏附、增殖和分化。血管生物支架的发展趋势是聚合物共混技术,如海藻酸钠/壳聚糖、胶原/壳聚糖、胶原/琼脂糖、壳聚糖/明胶、壳聚糖/聚己内酯、聚乳酸/聚乙二醇等体系。

2.医用塑料

医用塑料,主要用于输血输液用器具、注射器、心导管、中心静脉插管、腹膜透析管、膀胱造瘘管、医用粘合剂以及各种医用导管、医用膜、创伤包扎材料和各种手术、护理用品等。注塑产品是医用塑料制品当中产量最大的品种。与普通塑料相比,医用塑料要求比较高,严格限制了单体、低聚物、金属离子的残留,对于原材料的纯度要求很高,对加工设备的要求也非常严格,在加工和改性过程中避免使用有毒助剂,通常具有表面亲水、抗凝血等特殊功能。常用医用塑料包括聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚四氟乙烯(PTFE)、热塑性聚氨酯(TPU)、聚碳酸酯(PC)、聚酯(PET)等。

目前医用塑料市场约占全球医疗器械市场的10%,并保持着每年7%~12%的年均增长率。统计数据显示,美国每人每年在医用塑料领域消费额为300美元,而我国只有30元,由此可见医用塑料在我国的发展潜力非常大。

我国医用塑料制品产业经过多年的发展,取得了长足的进步。中国医药保健品进出口商会统计数据显示,2015年上半年,纱布、绷带、医用导管、药棉、化纤制一次性或医用无纺布物服装、注射器等一次性耗材和中低端诊断治疗器械等成为我国医疗器械的出口大户。但是也必须清醒地认识到,我国的医用塑料发展水平还比较落后。医用塑料的原料门类不全、生产质量标准不规范、新技术和新产品的创新能力薄弱,导致一些高端原料导致国内所需的高端产品原料还主要靠进口。

目前各国都认识到了医用塑料的重要价值,加大了研发力度,取得了一些进展。2015年,英国伦敦克莱蒙特诊所率先开展了塑胶晶状体移植手术,不仅可以治疗远视眼或近视眼,还可以恢复患有白内障和散光者的视力;住友德马格公司推出一种聚甲醛(POM)齿轮微注塑设备,在新型白内障手术器械中具有重要作用;美国美利肯公司开发了一项技术,可使非处方药和保健品塑料瓶的抗湿性和抗氧化性提高30%;MHT模具与热流道技术公司开发出了PET血液试管,质量不足4g,优于玻璃试管;Rollprint公司与TOPAS先进高分子材料公司合作,采用环烯烃共聚物作为聚丙烯腈树脂的替代品,以满足苛刻的医疗标准;美国化合物生产商特诺尔爱佩斯推出了一款硬质PVC,以取代透明医疗零部件中用到的PC材料,如连接器、止回阀、Y接头、套管、鲁尔接口配件、过滤器、滴注器和盖子,以及样本容器。

未来医用塑料的发展趋势是开发可耐多种消毒方式的医用塑料,改善现有医用塑料的血液相容性和组织相容性,开发新型的治疗、诊断、预防、保健用塑料制品等。

3.药用高分子材料,

药用高分子材料在现代药物制剂研发及生产中扮演了重要的角色,在改善药品质量和研发新型药物传输系统中发挥了重要作用。药用高分子材料的应用主要包括2个方面:用于药品剂型的改善以及缓释和靶向作用,此外还可以合成新的药物。

药物缓释技术是指将衣物表面包裹一层医用高分子材料,使得药物进入人体后短时间内不会被吸收,而是在流动到治疗区域后再溶解到血液中,这时药物就可以最大限度的发挥作用。药物缓释技术主要有贮库型(膜控制型)、骨架型(基质型)、新型缓控释制剂(口服渗透泵控释系统、脉冲释放型释药系统、pH敏感型定位释药系统、结肠定位给药系统等)。

贮库型制剂是指在药物外包裹一层高分子膜,分为微孔膜控释系统、致密膜控释系统、肠溶性膜控释系统等,常用的高分子材料有丙烯酸树脂、聚乙二醇、羟丙基纤维素、聚维酮、醋酸纤维素等。骨架型制剂是指向药物分散到高分子材料形成的骨架中,分为不溶性骨架缓控释系统、亲水凝胶骨架缓控释系统、溶蚀性骨架缓控释系统,常用的高分子材料有无毒聚氯乙烯、聚乙烯、聚氧硅烷、甲基纤维素、羟丙甲纤维素、海藻酸钠、甲壳素、蜂蜡、硬脂酸丁酯等。

我国的高分子基础研究处于世界一流,但是药用高分子的应用发展相对滞后,品种不够多、规格不完整、质量不稳定,导致制剂研发能力与国际产生差距。国内市场规模前10大种类分别为明胶胶囊、蔗糖、淀粉、薄膜包衣粉、1,2-丙二醇、PVP、羟丙基甲基纤维素(HPMC)、微晶纤维素、HPC、乳糖。高端药用高分子材料几乎全部依赖进口。专业药用高分子企业则存在规模小、品种少、技术水平低、研发投入少的问题。

目前,药物剂型逐步走向定时、定位、定量的精准给药系统,考虑到医用高分子材料所具备的优异性能,将会在这一发展过程中发挥关键性的作用。未来发展趋势是开发生物活性物质(疫苗、蛋白、基因等)靶向控释载体。

四、结语

虽然生物医用高分子材料的应用已经取得了一些进展,但是,随着临床应用的不断推广,也暴露出不少问题,主要表现出功能有局限、免疫性不好、有效时间不长等问题。如植入血管支架后,血管易出现再度狭窄的情况;人工关节有效期相对较短,之所以出现这些问题,主要原因是人体与生俱来的排异性。

生物医用高分子材料隶属于医疗器械产业,其发展备受政策支持。国务院于2015年5月印发的《中国制造2025》明确指出,大力发展生物医药及高性能医疗器械,重点发展全降解血管支架等高值医用耗材,以及可穿戴、远程诊疗等移动医疗产品。可以预见,在未来20~30年,生物医用高分子材料就会迎来新一轮的快速发展。

参考文献

[1]奚廷斐.生物医用材料现状和发展趋势[J].中国医疗器械信息,2006(5):1-4.

[2]张真,卢晓风.生物材料有效性和安全性评价的现状与趋势[J].生物医学工程学,2002,19(1):117-121.

[3]董亮,何星.生物医用复合材料研究现状及发展趋势[J].世界复合医学,2015(4):340-342.

[4]奚廷斐.我国生物医用材料现状和发展趋势[J].中国医疗器械信息,2013(8):1-5.

[5]中国组织工程研究与临床康复.中国生物医用材料研究领域的问题及对策[J].中国组织工程研究与临床康复,2011(34):186.

[6]胡帼颖,张志雄,温叶飞,等.组织工程技术的发展现状及趋势(三)——组织工程用生物材料的研究[J].透析与人工器官,2009(3):9-27.

[7]张镇,王本力.我国生物医用材料产业发展研究[J].新材料产业,2015(3):2-5.

[8]章俊,胡兴斌,李雄.生物医用高分子材料在医疗中的应用[J].中国医院建筑与装备,2008(1):30-35.

[9]梅建国,庄金秋,汤少伟,等.生物医用高分子材料的生物相容性及其表面改性技术[J].材料导报,2014,28(19):139-142.

[10]黄琼俭,徐益.生物医用高分子材料在药物控释系统中的应用[J].生物技术世界,2013(2):82-82.

[11]吴桐.浅谈几种生物医用高分子材料的应用[J].科技资讯,2011(29):52-52.

[12]王建营,朱治国,孙家跃,等.聚醚醚酮人造骨关节材料研究[J].化学世界,2004,45(1):53-54.

[13]高茜斐.生物塑料发展现状及前景[J].广东化工,2015,42(15):87-88.

[14]龙先鹏.浅析我国生物塑料前景[J].科技创新导报,2011(14):96-96.

[15]全球医药塑料产量及潜力巨大[J].国外塑料,2013(9):69-69.

篇4

关键词:交叉学科;本科教学;互动;创新思维;实践认知

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)07-0143-03

现代社会科技进步日新月异,创新性的研究和产品不断涌现,其中非常多的成果都来自于交叉学科的贡献。一个已经被普遍接受的共识是:学科交叉点往往就是科学新的生长点、新的科学前沿,这里最有可能产生重大的科学突破,使科学发生革命性的变化;同时,交叉科学是综合性、跨学科的产物,因而有利于解决人类面临的重大复杂科学问题、社会问题和全球性问题[1]。所以,对于本科教学中的交叉学科课程的教学就提出了更高的要求,如要求教师纵览多个学科的发展,从而能站在交叉学科的前沿来引领学生去认知和创新性思考;同时,也要求学生积极主动地去检索相关资料,能互动地参与到整个课程教学的过程中来。只有这样,交叉学科的本科教学才能获得理想的教学效果,提高学生的科学敏锐力和培养学生的创新性思维。尽管教育界对交叉学科研究生阶段创新型人才培养已有较多思考[2],但是迄今为止对交叉学科的本科教学的交流还很少。

本文以四川大学高分子科学与工程学院开设的“生物高分子及制品”课程教学为例,从课堂教学的多个方面提出了对交叉学科的本科教学的思考和体会。

一、课程背景

“生物高分子及制品”是四川大学高分子科学与工程学院为大三学生开设的一门课程,任课教师均来自我院医用高分子材料及人工器官系。医用高分子材料专业建立于1978年,并分别于1986年和1992年获得硕士、博士学位授予权,是我国最早的培养生物医用高分子材料专业人才的基地之一。系内的教师在生物医用高分子材料及人工器官的科研、教学方面有30多年的丰富经验。本课程所使用教材主要为我系老师合力编写的普通高等教育“十一五”国家级规划教材《生物医用高分子材料》[3],并结合科研前沿做了丰富多样的专题讲解。目前一个年级有三个班平行授课,每个班的人数在70~90人。本门课程是典型的交叉学科产物,其内容涉及生物医学、材料学(高分子材料)、工程设计、医疗器械等多个领域。教材的主要章节包括绪论、高分子材料和生物体的相互作用、生物医用高分子材料的生物相容性和安全性评价、人工器官用高分子材料、医疗诊断用高分子材料、药物缓控释高分子材料、软硬组织替代和组织工程用高分子材料、医用高分子材料的设计。根据我院学生学术研究发展方向和工程应用发展方向并重的特点,在课堂讲授的时候授课教师会尽量同时扩展到前沿的科研领域(如医用高分子非病毒基因载体)和相关产业的应用环节(如生物医用高分子材料制品的生产、消毒)等。考查方式以课堂讨论、平时成绩和期末笔试成绩综合打分。

二、互动式授课的几点思考与体会

1.综合多学科领域的讲解方式。生物医用高分子材料是功能高分子材料中重要的组成部分,是指在生物及医学领域所使用的高分子材料。总体而言,本课程是两个一级学科:材料学(其中的高分子材料)和生物医学工程学(其中的生物材料)的交叉点。两个学科的跨度很大,如何能生动形象地讲解和引领学生思考至为关键。例如,在进行人工器官用高分子材料的讲解时,我们通常会采取由浅入深的启发式教学方法。首先,我们将人体器官做一个对应的抽象化的模型,其中包括脑—计算机、耳—声音探测器、肺—气体交换器、心—泵/液体输送器、肝—化学工厂、肾—分离/净化系统和血管—输送管路等,以方便同学们从功能上理解人体器官并能针对性地对人工器官进行设计、思考。通过讲解,同学们了解到研究人工器官并不能简单考虑其与人体组织器官的类似,更重要的是能使其再现或部分再现人体器官的功能。举例来说,在讲到人工肾时,我们会先从医学的角度讲述肾脏的结构和功能,重点描述肾小球的滤过作用和肾小管的重吸收作用。其中,肾小球每天以125ml/min的滤过率处理约180L的血液,肾小管将滤过液中大部分的水、电解质、葡萄糖和其他小分子有用物质重新吸收入血液,而每天最终排尿量仅为2.0L。通过上述讲解,同学们可以清楚地了解肾脏在人体中的主要功能,那么进一步的关于人工肾功能设计的讲解也就顺理成章了。人工肾是血液净化技术中所使用的最重要的人工器官,再通过进一步关联讲解病理学的内容,我们可以使同学们了解到使用人工肾的血液净化技术的目的和意义在于治疗与血液相关的疾病,既包括肾脏方面的疾病如肾衰竭,也包括各种由于血浆成分发生病理改变而产生的血液性或免疫性疾病,如巨球蛋白血症、系统性红斑狼疮、血友病和多发性骨髓瘤等。紧接着,针对不同的疾病和需要去除致病物质,我们很自然就将知识点转到不同的血液净化技术上来,分别讲述血液透析、血液滤过和血液透析滤过三种人工肾技术。最终,三种不同的人工肾技术就引出了不同的生物医用高分子材料和制品的需求和设计:通过对用于人工肾的各种生物医用高分子材料的化学成分、物理性能的分析,以及对完成其制品的各种工程技术的描述和表征,使同学们融会贯通,掌握这个跨多学科交叉领域的知识点。再举一个例子,在讲组织工程用高分子材料章节时,由于这是一个非常前沿的跨生物学、医学和材料学的交叉领域,如何有机结合多学科知识使同学们带着兴趣学习就非常关键。首先,我们会用“人耳鼠”等组织工程经典的图片展开绪论,使同学们的目光一下子就被吸引住了,让他们去思考:人类科技的进展真的有一天能实现更换人体的各个组织器官吗?由于多个现实的案例摆了出来,他们就会意识到这是有可能并已经部分实现了的前沿科技。进而,我们就会用搭房子来做一个形象的比喻讲解组织工程的三要素:细胞是砖块,生长因子是建筑工人,而生物材料就是整个房屋的支架。而组织工程支架材料对生物相容性、生物降解性能的要求就使得生物医用高分子成了其中的首选。在这样的引领下,同学们的关注点自然就转到了我们高分子学科与组织工程的关系,并能带着兴趣学习接下来的组织工程的原理和方法、软骨组织工程支架材料、神经组织工程支架材料、血管组织工程支架材料、肌腱组织工程支架材料、皮肤组织工程支架材料、角膜组织工程材料、组织工程支架制品的制备方法等多个知识点。在讲解的过程中,我们还会播放组织工程培养细胞、体外构建人工血管等录像资料,让同学们更直观地认识生物医用高分子材料在组织工程中的应用。

2.学生积极参与的教学互动形式。除了教师的有效引领作用外,学生能否积极参与教学过程的互动也是交叉学科本科教学能否成功的关键。对于本课程,我们主要采取了课外检索学术资料做PPT报告和分组讨论的形式。如前所述,我们将人体组织、器官分开并做了一个对应的抽象化的模型。对应于此,我们将学生分成了若干个小组,安排每个小组负责准备和主持一个主题的PPT报告和讨论。我们会提前一周通知负责组的同学(通常为4~8人),事先与他们讨论讲述的主线和子方向,要求同学们分工合作,其中一些同学负责每人5分钟的PPT讲解,其他一些同学负责资料收集和整理工作。例如对肺的一个主题,通过一周的准备,同学们查阅了一定数量的文献资料,准备了精美的PPT资料和讲解内容:第一个同学做了呼吸系统和常见呼吸系统疾病的综述;第二个同学的报告集中于描述现有的呼吸系统手术(尤其是肺部手术)中使用的大量生物医用高分子材料和制品,例如包括呼吸道麻醉科导管、单肺通气封堵导管等医疗器械;第三个同学从人工肺的研究角度出发,用较多的学术资料描述了该领域的研究前沿,进一步通过阅读资料提出了现有研究的不足,并提出他们小组讨论后对该领域的展望;最后一个同学结合工程实际,从生产设备、生产工艺等方面描述该领域医用高分子制品的制备方法,并简单提及国内外的主要生产企业。通过这样的一个“准备—讲述”的过程,该组同学系统地掌握了交叉学科从基本概念到学术研究,再到工业领域的诸多方面,并能逻辑清晰地讲述给全班同学。在同学们的PPT讲述过程中,任课教师会组织听报告的同学们进行有益的讨论。例如,在讲解到有关生物医用高分子材料和制品的生物相容性的时候,有做报告的同学会以隐形眼镜为例讲解,其制备原料主要是聚羟乙基甲基丙烯酸酯类材料。这时,我们会请有戴过隐形眼镜的同学举手,并组织讨论:为什么隐形眼镜有日抛、月抛和年抛的区别,它们对材料的要求有何不同?为什么夜晚要取下眼镜进行清洗保养?作为使用者,自己戴隐形眼镜会有什么样的要求?通过这些问题的讨论,同学们可以进一步了解作为交叉学科的产品,生物医用高分子材料和制品不仅要在功能上满足使用的医学目的,还要求我们从材料学和工程学的角度去设计,才能获得较为理想的使用性能。而且这样的讨论也容易引起同学们的兴趣,避免过多过深的理论讲解会导致的注意力分散。在整个PPT报告和讨论的过程中,任课教师会针对同学们的资料准备情况、PPT讲解情况和讨论情况进行评价和打分,作为成绩考核的重要标准之一。

3.创造条件结合实践教学。交叉学科除了能在学术前沿激发出更多的创新性火花之外,往往还可以通过学科的交叉设计、生产出大量的实用的制品。本门课程针对的生物医用高分子材料和制品就是典型例子,其所涉及的产业主要为医疗行业和医疗材料(器械)企业。因此,创造条件结合实践进行教学就成了本门课程重要的组成部分。本门课程的授课教师大多与上述行业的企业有长年的产学研合作关系,已经完成或正在研发多项生物医用高分子材料和制品的工作,因而具备较好的实际条件进行实践教学。例如,任课教师与成都市的多家医疗器械生产企业建立了长期的科研关系,从而能将课程的认识实践带到其中的一些单位,包括人工肾的生产企业和医疗耗材(导管、输液制品)企业等。通过实习参观企业,以及在课堂上观摩老师带的各种生物医用高分子材料和医疗器械,同学们对这门交叉学科涉及的产业有了更好的认识。另外,经常有高端的相关行业展会在成都举行,例如2012年的第68届中国国际医疗器械秋季博览会在成都云集了国内外的多家企业。这种时候,任课教师就会及时公布展会时间,并鼓励同学们去参观,通过学习和对比国内外企业的产品,了解其设计理念和所使用的生物医用高分子材料。展会结束之后,我们会和同学们在课堂上针对展会上的所见所想进行很多有益的讨论,很好地帮助同学们更进一步地认识这门交叉学科的知识和产业。

4.结合教学内容邀请专业医生讲座的教学。结合课堂讲授内容,我们会定期或不定期邀请一些医生到课堂进行讲座,如讲授到血液透析时,我们会专门邀请四川大学华西医院肾内科进行血液透析的医生到课堂进行讲座,从医生的角度讲述医用高分子材料在血液透析制品方面的临床应用。通过这些讲座,使同学们更深刻了解医用高分子材料及制品的实际应用,增加了学习的积极性和兴趣。最后,由于交叉学科课程覆盖的知识面非常广,简单地进行死记硬背的考试是不适宜的。经过商讨,本课程的多位任课老师达成了一致的共识:平时的讨论和报告占学生成绩的很大一部分,期末考试以开卷方式进行,出题尽量是基于交叉学科的特点来综合性地考查学生的逻辑思维、判断和创新能力。通过八年多的教学实践,我们发觉本课程的教学互动效果很好,也起到了很好的引领作用,有很多学生对这门交叉学科产生了浓厚的兴趣,并相继进入了生物医用高分子材料和制品的科研或产业领域。

总而言之,交叉学科的独特性决定了对其本科教学方法的灵活性、多样性的要求。只有不断解放思想、更新教学理念和完善教学手段,才能保证交叉学科教学的质量,才能更加有效地提高同学们的兴趣和综合能力,为更高阶段的交叉学科创新性研究以及相关交叉学科的产业输送人才。

参考文献:

[1]路甬祥.学科交叉与交叉学科的意义[J].中国科学院院刊,2005,20(1):58-60.

[2]吴宜灿.学科交叉与创新型人才培养的实践与思考[J].中国科学院院刊,2009,24(5):511-517.

[3]赵长生.生物医用高分子材料[M].化学工业出版社,2009.

篇5

[论文摘要]目前,静电在生物工程中有着重要的应用。介绍高分子抗静电的方法,阐明高分子材料抗静电技术在我国的发展和策略。

静电广泛地存在于自然界和日常生活之中,如人们每时每刻呼吸的空气每厘米就含有100500个带电粒子;自然界的雷电;干燥季节里人身上化纤衣物由于摩擦起电而粘附在身体上,这一切都是比较常见的静电现象。实际上,静电在生物工程中有着重要的应用。

一、高分子抗静电的方法概述

高聚物表面聚集的电荷量取决于高聚物本身对电荷泄放的性质,其主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,三者中以表面传导为主要途径。因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。

(一)添加导电填料

这类方法通常是将各种无机导电填料掺入高分子材料基体中,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。

(二)与结构型导电高分子材料共混

导电高分子材料中的高分子(或聚合物)是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、成型困难、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。

(三)添加抗静电剂法

1.有机小分子抗静电剂。有机小分子抗静电剂是一类具有表面活性剂特征结构的有机物质,其结构通式为RYx,其中R为亲油基团,x为亲水基团,Y为连接基。分子中非极性部分的亲油基和极性部分的亲水基之间应具有适当的平衡与高分子材料要有一定的相容性,C12以上的烷基是典型的亲油基团,羟基、羧基、磺酸基和醚键是典型的亲水基团,此类有机小分子抗静电剂可分为阳离子型、阴离子型、非离子型和两性离子型4大类:阳离子型抗静电剂;阴离子型抗静电剂;非离子型抗静电剂;两性型抗静电剂。

导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下4种:(1)抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成“海一岛”型水性的导电膜。(2)离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。(3)介电常数大的抗静电剂可增加摩擦体间隙的介电性。(4)增加制品的表面平滑性,降低其表面的摩擦系数。概括起来一是降低制品的表面电阻,增加导电性和加快静电电荷的漏泄;二是减少摩擦电荷的产生。

2.永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。

二、我国高分子材料抗静电技术的发展状况

我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、ABPS(烷基苯氧基丙烷磺酸钠)、DPE(烷基二苯醚磺酸钾);上海助剂厂开发目前多家企业生产的抗静电剂SN(十八烷基羟乙基二甲胺硝酸盐),另外该厂生产的抗静电剂PM(硫酸二甲酯与乙醇胺的络合物)、抗静电剂P(磷酸酯与乙醇胺的缩合物);北京化工研究院开发的ASA一10(三组份或二组份硬脂酸单甘酯复合物)、ASA一150(阳离子与非离子表面活性剂复合物),近年来又开发出ASH系列、ASP系列和AB系列产品,其中ASA系列抗静电剂由多元醇脂肪酸酯、聚氧乙烯化合物等非离子表面活性剂;ASB系列产品则为有机硼表面活性剂(主要是硼酸双多元醇脂与环氧乙烷加成物的脂肪酸酯)与其他非离子表面活性剂复合而成;ASH和ASP系列主要是阳离子与非离子表面活性复合而成,杭州化工研究所开发的HZ一1(羟乙基脂肪胺与一些配合剂复合物)、CH(烷基醇酰胺);天津合成材料工业研究所开发的IC一消静电剂(咪唑一氯化钙络合物);上海合成洗涤剂三厂开发生产的SH系列塑料抗静电剂,已经形成系列产品,在使用效果和性能上处于国内领先地位,部分品种可以替代进口,如SH一102(季铵盐型两性表面活性剂)、SH一103、104、105等(均为季铵盐型阳离子表面活性剂),SH抗静电剂属于结构较新的带多羟基阳离子表面活性剂;济南化工研究所JH一非离子型抗静电剂。(聚氧乙烯烷基胺复合物)等;河南大学开发的KF系列等,如KF一100(非离子多羟基长碳链型抗静电剂)、KF-101(醚结构、多羟基阳离子永久型抗静电剂),另外还有聚氧乙烯醚类抗静电剂,聚乙烯、聚丙烯和聚氯乙烯专用抗静电剂202、203、204等;抗静电剂TM系列产品也是目前国内常用的,主要用于合成纤维领域。

从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。

三、结语

我国合成材料抗静电剂行业发展前景较好,针对目前国内研究、生产、应用与需求现状,对我国合成材料抗静电剂工业发展提出以下建议。

(一)加大新品种开发力度

近年来国外开发的高性能伯醇多聚氧化乙醚类非离子型表面活性剂;用于聚碳酸酯的脂肪酸单缩水甘油酯;用于磁带工业的添加了聚氯化乙烯醚醇的磷酸衍生物;适应于聚烯烃、聚氯乙烯、聚氨酯等多种合成材料的多元醇脂肪酸酯和三聚氰胺加成物等,总之国内科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。

(二)加快复合抗静电剂和母粒的研究与生产

今后要加快多种结构抗静电剂及其他塑料助剂的复配,向适应范围广、效率高、系列化、多功能、复合型等方向发展。另外合成材料多功能母粒作为助剂已经成为今后合成树脂加工改性的重要原材料,如着色、阻燃、抗菌、成核等母粒在国内开发方兴未艾,国内要加快抗静电母粒的开发与研究,促进我国抗静电剂工业发展。

参考文献:

[1]高绪珊、童俨,导电纤维及抗静电纤维[M].北京:纺织工业出版社,1991.148154.

篇6

关键词:高分子专业;实验教学;改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)22-0098-02

长期以来,国内高校高分子材料专业教学偏重理论课,专业实验课所受重视程度不够,基本上还是传统的实验。针对现存问题,笔者所在高校进行了高分子材料专业实验教学改革,取得了良好的教学效果。鉴于此,高分子材料本科专业实验教学改革应着力于以下五个方面。

一、正确认识实验教学的作用,提高实验课程在专业培养计划中的比重

正确认识实验教学是提高实验教学效果的基础。高分子材料专业理论教学与实验教学这两个方面相对独立、相互依存、相互促进。实验教学与理论教学相比,更具有直观性、趣味性和连贯性,对于培养学生的动手能力、科学能力和创新能力具有不可替代的作用。实验教学内容以理论教学内容为基础,但比理论教学内容更加注重实际,强调动手能力与运用知识的能力。学生通过实验教学的各个环节,能提高分析问题、解决问题以及创新的能力。由于以往过于强调理论教学,对实验教学重视不够,因而高分子材料专业实验教学课时少,在专业培养计划中的比重相对较小。为改变这一状况,本实验课程新增了60课时用于综合性实验教学,另外还新增了课时用于设计性创新性实验。这样,高分子材料专业实验教学课时大幅增加,为保证实验教学质量打下了基础。

二、引入开放式实验教学模式

集中实验教学有其本身的优点,能在规定的时间内训练学生的基本实验操作技能,引导学生形成科学的实验方法和严谨的实验作风。然而,所有专业实验都集中开课的话,学生实验的积极性和主动性难以提高,主观能动性不能得到很好的调动,不利于创新能力的培养。针对集中实验的缺点,需要做大幅的改革。在学生接受了一定的集中实验训练,具备基本实验技能之后,新增了综合性与设计性创新性实验,以激发主观能动性,锻炼学生分析问题解决问题的能力。将该部分专业实验设置为开放性实验,学生根据自己的课表选择实验时间,预约实验平台进行实验,可提高学生的实验主动性,也能解决实验场地与时间难以安排的问题,从而弥补了集中实验教学的缺陷。

三、补充更新实验仪器设备,并将科研仪器用于实验教学

由于全校化学实验教学的整合,高分子材料专业实验仪器设备人均占有率下降,并且部分专业实验教学仪器设备老化。通过申请专项经费,补充更新了实验教学设备,保证学生能及时开展实验。同时,针对开展综合性实验和设计性创新性实验,为缓解实验教学仪器设备的不足,学院测试中心为学生专业实验提供免费测试分析服务。笔者所在学院测试中心由仪器分析中心和高分子材料加工中心两部分组成,属于211工程和985项目投资建设的公共实验平台,具有较大的规模,总面积达900平方米,拥有50余台先进精密的大中型仪器设备,并且高端先进仪器设备还在不断地引进当中。此外,还有双螺杆挤出机、注射成型机、开炼机、密炼机和平板压机等加工设备,面向高分子材料加工研究方向。该中心能为专业实验教学提供强大的分析测试平台支撑。学院还动员各课题组参与实验教学,并可免费使用各课题组自有的仪器设备。

四、对实验教学各部分内容进行合理组织,分阶段进行教学

1.加强基础实验,训练基本实验技能。高分子材料专业基础实验以演示性和验证性实验为主,侧重于某个反应、某个性能、单一操作的基本训练,以巩固和加深对专业基础理论的理解,培养学生基本实验操作技能,是养成良好实验习惯的基本环节。通过这些基础实验的训练,为后续的综合性实验和设计性创新型实验打下了基础。根据高分子材料三门专业课的内容,可以安排如表1所示的20个基础实验,基本涵盖了高分子化学实验、高分子物理实验和高分子材料加工实验。

2.增加综合性实验,提高综合运用专业知识解决问题的能力。综合性实验要求对所学理论知识和基础实验知识进行有机融合,去解决比较复杂的实验问题,其目的是综合运用专业知识能力去分析和解决问题。综合性实验的选题在注重科学性的同时还要兼顾可行性和实用性,难度也要适中,最好能涵盖高分子化学实验、高分子物理实验和高分子材料加工实验这三部分内容。综合性实验要体现多门课程的融合,实验操作涉及多种实验技能的运用。在之前专业基本实验的基础上,再通过综合性验的训练,让学生经历一个循序渐进的提高实验技能的过程,掌握专业研究的基本方法。高分子材料专业综合性实验安排在基础实验之后进行,在大学第六个学期开课,综合性实验目录如表2所示。

3.通过设计性创新性实验提高创新能力。设计性创新性实验本质上属于“真刀真枪”的科研工作,共分为两部分。第一部分是新型高分子材料实验的设计,训练学生实验的构思、设计能力。学生与指导教师互选,共同确定感兴趣的研究课题。学生查阅资料,了解课题研究背景与创新性,明确研究目标,提出具体实验方案。与指导教师讨论,修改、确定实验方案,最后撰写实验设计报告。在上述实验设计训练的基础上,可通过学校的PRP(Participation in Research Program)项目,开展创新性实验工作,这是设计性创新性实验的第二部分内容。PRP项目是我校专门为本科生开展创新性实验提供的科研项目,有专门经费支持。通过师生互选,共同申报该类项目,学校批准后实施。PRP项目在老师指导下进课题组实验室完成,属于开放式实验,包括课题立项、开题、中期汇报和结题答辩四个过程。

设计性创新性实验是实验教学方式方法的革新。由指导教师提出实验项目、实验目的,学生综合运用专业知识设计实验方案与具体步骤,在老师指导下完成实验,最后总结,写出实验项目报告。通过设计性创新性实验的训练,动手能力、分析与解决问题的能力得到了提高,逐步了解科学研究的思路和方法,全方位地提升学生的创新能力。

五、采用实验操作与实验报告并重的评价方式

学生实验成绩的评价是实验教学的重要环节,也是专业实验教学改革的重要部分。以往基本上依据实验报告做评价的方式存在严重弊端,需要进行改革。新的实验成绩的评价注重操作、注重过程、注重综合运用知识的能力。根据实验教学类型,成绩评价有以下三种方式。对于基础实验,出勤和实验预习报告占20%,实验操作技能及实验结果占50%,实验报告占30%。对于综合性实验,实验开题报告占30%,实验操作技能及实验结果占50%,实验报告占20%。对于设计性综合性实验,考核成绩由实验总结报告成绩和项目答辩的成绩组成,分别占60%与40%的比重,强调综合运用专业知识解决实际问题的能力。

综上所述,对高分子材料专业实验教学改革进行上述五个方面的改革实践,并通过这一系列专业实验的科学训练,高分子材料专业学生能熟悉使用常见专业实验仪器,达到掌握基本的实验技能和实验方法,综合运用专业知识的能力得到加强,分析与解决问题的能力显著提高,为毕业论文及以后的科研工作打下牢固的基础。

参考文献:

[1]卞军.高分子材料与工程专业基础实验教学改革探析――借鉴美国大学理工科实验教学及管理经验[J].教育教学论坛,2014,(9):26C28.

[2]韩哲文高分子科学教程[M].第2版.上海:华东理工大学出版社,2011.

篇7

关键词: 光学胶; 超弹性; 黏弹性; 动态力学行为; 本构模型; 静态压缩; 落球试验

中图分类号: TQ433; TB115.1文献标志码: B

引言

随着消费电子产品功能的集成化、复杂化,大量的结构连接通过黏胶黏结实现.在当前最热的移动终端市场,智能手机、平板电脑等结构中均出现大量的黏胶.黏胶材料的动态力学行为对结构可靠性的影响也越来越大.因此,在结构仿真中,黏胶材料动态力学行为定义的准确性对结构仿真结果的影响变得越来越重要.

常见的黏胶为高分子材料,一方面高分子材料均具有非线性的弹和大变形特性——超弹性特性[1];另一方面,高分子材料的力学行为均表现出显著的时间相关性,即率相关性[2].高分子材料力学行为的复杂性,导致当前还不存在一个物理意义明确,既可以描述高分子材料超弹性,又可以准确描述率相关性的本构模型.当前,对高分子材料超弹性的描述应用比较广泛的是建立在唯象理论基础上的应变能密度函数模型[3].对材料力学行为的率相关性定义的方法通常有2种:(1)以不同应变率下的材料变形行为为基础,通过对不同应变率的力学行为进行插值,获得材料的率相关特性[4];(2)以特定与时间无关力学行为为基础,通过引入与时间相关的函数方法对基准力学行为进行与时间相关的缩放,从而实现材料力学行为的率相关性描述[5].

本文选择一种常见的光学胶为研究对象,基于Abaqus的超弹性和黏弹性材料模型,定义光学胶的动态力学性能,通过静态压缩和动态落球测试的仿真与试验对比,基于Abaqus超弹性和黏弹性理论模型,对光学胶动态力学行为定义的有效性和准确性进行探讨.

1试验方法

1.1静态压缩试验参数

测试设备为岛津AG50kNX万能试验机,压缩速度为0.1 mm/min,样品尺寸为10 mm×10 mm×1 mm.

1.2动态落球测试参数

动态落球测试在自制的落球测试系统内完成,动态落球测试系统示意见图1.

图 1动态落球测试系统示意

落球测试系统为三明治结构.光学胶由上、下2个垫块夹持,落球对上垫块施加一个冲击载荷,光学胶作为载体,在下垫块处产生一个冲击力,通过力传感器采集该动态冲击力信号.落球高度不同,则施加在光学胶上的冲击压缩速度不同,从而在光学胶上产生不同冲击压缩速率作用,实现光学胶在不同应变率下的变形工况.本文中具体动态落球测试参数见表1.表1动态落球测试参数落球质量/g130样品尺寸20 mm×20 mm×1 mm落球高度/mm5, 10, 15, 20

2仿真建模

2.1材料模型

本文选用的材料模型为Abaqus提供的超弹性和黏弹性理论模型.超弹性参数描述材料在静态变形过程中的非线性弹;黏弹性参数的引入,起到随应变率缩放的效应,从而实现材料力学性能与时间相关的率相关性.

Abaqus中对超弹性材料模型的定义存在多种应变能函数形式:MooneyRivlin,Odgen和多项式等.本文选择的模型为Marlow模型,直接采用测试数据定义即可.光学胶超弹性由单轴静态压缩数据进行定义.

2.2仿真模型

本文中静态压缩和动态落球仿真均采用Abaqus/Explicit分析.由于光学胶的大变形特性,选择的单元类型为C3D8R,用沙漏控制.

3结果与讨论

3.1静态压缩仿真与试验

采用Abaqus/Explicit分析进行光学胶静态压缩仿真,计算时间为20 ms.考虑到准静态分析的目的,在压缩仿真时不考虑材料力学性能率相关特性,因此,材料卡片的定义不包括黏弹性(率相关性).静态压缩仿真与试验结果对比见图2,可知,仿真结果与试验结果几乎完全重合,表明超弹性模型对该光学胶非线性力学行为的定义和描述非常准确.图 2静态压缩仿真与试验结果对比4.2动态落球仿真与试验对比

为验证光学胶动态力学行为定义的准确性,本文采用自制的动态落球系统进行实际测试和仿真对比验证.通过调整落球高度,实现光学胶在不同应变率下的冲击压缩工况.不同高度落球仿真与试验结果对比见图3,可知,随着跌落高度的增加,落球系统的接触反力峰值增加,冲击振动的周期减小;同时,在应力波的周期和峰值方面,仿真与试验结果均吻合较好.

另外,图3存在3个方面的小差异:(1)在落球高度较低时(5和10 mm),起始阶段仿真和试验的冲击波重合性很高,而在15和20 mm落球时,冲击波起始阶段存在一定差异;(2)峰值存在差异,仿真结果均大于试验结果;(3)应力波的下降阶段均存在偏差.对于第一个差异点,可能与仿真接触定义有关,上垫块与光学胶的刚度差异较大,而本文采用简单的通用接触,并未对其接触刚度约束进行详细的定义,接触阻尼等也没有考虑,因此在仿真结果中,冲击振动起始阶段存在一些微小偏差.对于第二个差异点,在整个落球试验仿真系统中,除黏胶引入黏弹性特性外,落球系统其他组成部分的材料阻尼、结构阻尼等没有被考虑,导致仿真结果与试验结果在峰值上存在一点差异.对于差异点三,应力波下降阶段在落球试验的过程中反映的是光学胶压缩中的回弹阶段,这个结果表明当前光学胶参数定义中其加载阶段比较准确,但是其卸载行为还存在一定的偏差,这主要是由于光学胶的非线性力学行为的复杂性引起的.在高分子材料的加载和卸载过程中,由于Mullins效应的存在,其加载路径和卸载路径并不重合.在Abaqus中对高分子材料Mullins效应的定义提供理论模型,但是由于其无法与率相关性(黏弹性)同时使用,本文没有引入.

在仿真与试验对比的基础上,给出在准静态压缩和动态落球时光学胶压缩变形的应变率分析结果,见图4.

图 4不同工况下光学胶变形应变率对比

在静态压缩过程中,光学胶压缩变形的应变率为0.001 67 s-1;在动态落球仿真分析中,随着落球高度的增加,光学胶的最大冲击应变率增加.当落球高度为5 mm时,光学胶的最大压缩应变率为18 s-1;当跌落高度为20 mm时,光学胶的压缩应变率最大值接近50 s-1,光学胶变形的应变率在10~50 s-1量级,该结果表明本文落球系统有效实现光学胶在高应变率下的变形.结合二者的应变率分析和仿真与试验对比分析,在准静态到高应变率变形范围内,基于Abaqus超弹性和黏弹性定义的光学胶力学参数,有效且准确地描述光学胶的动态力学行为,仿真与试验结果均吻合较好,充分说明基于Abaqus的超弹性和黏弹性模型的本构定义,可以准确地描述光学胶的动态力学行为——非线性和率相关性.

4结论

从仿真与试验对比的角度,分析基于Abaqus超弹性和黏弹性本构模型,对黏胶动态力学行为定义的准确性和可靠性,得到以下结论.

(1)Abaqus提供较完备的定义高分子材料非线性力学行为及其率相关性的方法,可以准确地描述高分子材料动态力学行为——非线性弹性和率相关性.

(2)给出一种简单、方便地验证黏胶材料高应变率力学行为的方法.

(3)在动态冲击系统仿真中,接触方式、阻尼等因素对结果存在一定影响,该部分工作还需进一步的研究.

参考文献:

[1]CHARTON D J, YANG J. A review of methods to characterize rubber elastic behavior for use in finite element analysis[J]. Rubber Chem & Technol, 1994, 67(3): 481483.

[2]XIE J R. Analysis of strain rate impact on make up of oil field premium casing connections[C]//SIMULIA Customer Conf, 2011: 110.

[3]AMIN A F M S, ALAM M S, OKUI Y. An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification[J]. Mech Mat, 2002, 34(2): 7595.

[4]KOLLING S, du BOIS P A, BENSON D J, et al. A tabulated formulation of hyperelasticity with rate effects and damage[J]. Comput Mech, 2007, 40(5): 885899.

篇8

【关键词】环保购物袋;可降解;油墨;石头纸

0.前言

随着人们生活水平的不断提高,人们的环保观念也不断提升。大家对过度包装浪费资源,包装物弃置污染环境等情况不断发出声讨。国家也出台了“限塑”令,通过有偿使用减小购物袋的用量。但作为日常生活必不可少的用品,大部份购物袋在使用完后仍然会被丢弃成为生活垃圾。绝大部分最终作为塑料垃圾进入环境,而塑料大多化学性能稳定,在自然环境中分解需要100~300年。如果用焚烧方法处理,焚烧设施不仅需投入大量资金,焚烧时还会有二恶英等多种有毒物质产生,造成二次污染。而对于回收利用,收集或即使强制收集进行回收利用,它的经济效益也不太好。所以要从根本上解决废塑料的环境污染问题,就应该用能降解或易降解的购物袋代替普通塑料购物袋。现在笔者根据多年的印刷和油墨生产实践经验,应如何为制造可降解环保购物袋的几点应用体会,愿与大家共同探讨。

1.制造可降解环保购物袋材料

制造新型可解环保购物袋,最重要的是要选用合适的材料。首先就是选用无污染的可降解材料替代普通塑料薄膜,还有就是选用合适的环保型印刷油墨。这样才有可能制造出符合环保要求的购物袋。

1.1环保基材的选择

目前可用的可降解材料有以下几种:

1.1.1光降解塑料

光降解塑料一般是指在光(紫外光)的照射下,引起光化学反应而使大分子链断裂和分解的塑料。光降解塑料可分为添加型和合成型两类。添加型是在高分子材料中添加光敏剂,由光敏剂吸收光能后产生自由基,促使高分子材料发生氧化作用后进而引发聚合物分子链断裂使其降解。降解式将光敏基团(如羧基、双键等)导入高分子结构内赋予材料光降解的特性。常用的光敏剂有过渡金属络合物、硬脂酸盐、N,N-二丁基二硫代氨基甲酸铁等,用量约1%~3%(质量)。合成型光降解塑料是通过共聚反应在塑料的高分子主链上引入羰基等感光基团而赋予其光降解特性的,并可以通过调节光敏基团的含量来控制光降解活性。现在已知以一氧化碳或乙烯酮类为光敏单体与烯烃类单体共聚,可合成含羰基结构的聚乙烯(PE),聚丙烯(PP),聚氯乙烯(PVC)等光降解聚合物。光降解塑料只能在光照下降解,受气候环境、地理因素制约很大,如果埋地部分不能降解,而且价格较高,因此光降解塑料很难广泛推广使用。

1.1.2生物降解塑料

生物降解能很好的解决埋地部分不能降解的问题。目前研究开发的生物降解材料有天然高分子材料、微生物合成高分子材料、 人工合成高分子材料以及共混性高分子(添加型)材料。天然高分子型是利用淀粉、纤维紊、甲壳质、蛋白质等天然高分子材料制备的生物降解材料。其特点是贮存运输方便,只要保持干燥,不需避光,应用范围广,不但可以用于农用地膜、包装袋,而且广泛用于医药领域。生物合成的完全生物降解塑料是微生物把某些有机物作为食物源,通过生命活动合成的高分子化合物。通过微生物合成而得到的生物降解塑料以聚羟基脂肪酸酯(PHA)类为多,其中最常见的有聚3-羟基丁酸酯(PHB)、聚羟基戊酸酯(PHV)及PHB和PHV的共聚物(PHBV)。化学合成法合成的生物降解塑料大多是在分子结构中引入能被微生物降解的含酯基结构的脂肪族聚酯,目前具有代表性的产品有聚己内酯(PCL),聚琥珀酸丁二醇酯(PBS),聚乳酸(PLA),以及最近国内研究最热的二氧化碳基生物降解塑料等。另外按降解方法分生物降解可以分为:(1)生物物理降解法:当微生物攻击侵蚀高聚物材料后由于生物细胞的增长使聚合物组分水解、电离或质子化而分裂成低聚物碎片,聚合物分子结构不变,这是聚合物生物物理作用而发生的降解过程。(2)生物化学降解法:由于微生物或酶的直接作用,使聚合物分解或氧化降解成小分子,直至最终分解成为二氧化碳和水,这种降解方式属于生物化学降解方式。同样生物降解塑料也存在价格较高

1.1.3光-生物双降解塑料

光-生物双降解塑料具有光、生物的双重降解性。是当前世界降解塑料的主要开发方向之一。试验表明光-生物双降解塑料可在一个特定时间内(通常为9个月~5年)在环境中能完全分解。但由于合成型光降解塑料成本较高,研究较少。目前研究较多的是掺混型光一生物双降解塑料。

1.1.4石头纸

石头纸是一种由碳酸钙研磨粉与高分子聚合物、胶合剂为原材料的新型材料,广义上说石头纸也是光-生物双降解类材料。石头纸具有既可替代传统的植物纤维纸张、专业性纸张,又能替代传统的大部分塑料薄膜,且具有成本低、可控性降解的特点,能够为使用者节省大量的成本,且不会产生污染。从替代塑料包装物角度看,它能为国家节省大量的石油资源,产品使用后能够降解,不会造成二次白色污染。另外石头纸与上面进过的几种可降解塑料相比,还具有不可燃性,可书写和办公室打印,适用于大多数印刷方式,包括胶印(柯式印刷、平版印刷)、凹版印刷、凸版印刷、丝网印刷、轮转印刷等。最重要目前已经能大量工业化生产,这是用于生产非塑料型环保购物袋的理想新材料。当然石头纸也有一些不足的地方:就是石头纸因含有大量的碳酸钙而不透明性,硬度也偏大而导致抗屈拆性差等。

表1 几种可降解基材性能对比表

1.2印刷油墨的选择

印刷油墨是制造购物袋必不可少的组成部分。须然印刷油墨占购物袋的成本很小,只占3%~5%左右。但对于一个购物袋是否符合环保要求就尤为重要了。选择印刷油墨要注意以下几点:

1.2.1油墨的可降解性

油墨的连结料多为高分子聚合物,本质上也是一种塑料。因此现用大部分印刷油墨降解性能较差,如果将这些油墨和塑料一起填埋处理,让其自然降解,一般需要50年以上才能在环境中能完全分解。因此为配套降解基材,必需选用以可快速降解的连结料所生产的油墨。现在市面上能找到的可降解油墨有以大豆油油墨、聚乙烯醇油墨、聚酮油墨,这几类油墨通常只需5~10年即可完全降解。

1.2.2油墨中的重金属含量

众所周知人体如果摄入过量的重金属,可造成严重的生理损害,引发多种疾病。重金属进入人的机体后,会在人体内部积聚下来,并可能转化为毒性更强的金属化合物。以镉为例,镉元素进入人体后,在体内形成镉硫蛋白,通过血液到达全身,并有选择性地蓄 积于肾、肝中。情况严重时,使骨骼的生长代谢受阻碍,从而造成骨骼疏松、萎缩、变形等。慢性镉中毒主要影响肾脏,最典型的例子是日本著名的公害病——痛痛病。慢性镉中毒还可引起贫血。油墨中的重金属通常来自于颜料,特别是一些重金属化合物颜料,如镉红、铬红、铬黄及银朱等。另外可溶性重金属盐毒性大易于进入人体,因此我国、欧盟、美国都制定了油墨(涂料)涂层中可溶性重金限制:(见下表)

1.2.3油墨中其它有毒有害物质

油墨中可能存在有毒有害物质有:(1)连结料生产合成时残留的单体,如剧毒物游离甲苯二异氰酸酯;(2)颜料生产合成时残留的强致癌物多氯联苯(PCB)、芳胺(MAK-Ⅲ);(3)溶剂残留导致苯、甲苯、二甲苯、甲醛超量。许多国家严格控制油墨干膜中的有毒有害物质含量。以甲醛为例:日本要求甲醛含量

2.结语

随着近年不断有新材料的发明,并逐步进入实用化、产业化。带动更多环境友好的产品将进入我们的生活。我们相信,在不久的将来,真正可降解型环保购物袋会进入我们的生活,使“白色污染”会逐渐从环境中消失。我更期待这些环保新技术、新发明将为人类与自然的真正和谐作出巨大的贡献。

【参考文献】

[1]刘彦平,杨志远,杨建业.我国生物全降解塑料的研究进展.[期刊论文]-塑料工业,2006,(z1).

[2]王广文.生物塑料和降解塑料的研究进展.[期刊论文]-塑料科技,2011,5.

篇9

大部分高分子材料在空气中都是可燃的,所以存在一定的火灾隐患,尤其是用于人员流量较大的公共场所的高分子材料,一旦发生火灾将会给人们的生命财产安全带来巨大的损失。频频发生的重大火灾事故也督促着我们加快阻燃材料的研究,以在灾难发生时为更多的生命争取时间。

1常见阻燃填料的分类

在高分子材料中添加的起阻燃作用的物质也称为阻燃助剂。任何物质燃烧都需要三个条件,即可燃物、氧气(空气)和点火源(热量)。根据阻燃方式可将阻燃剂分为膨胀型阻燃剂和非膨胀型阻燃剂。膨胀型阻燃助剂不是单纯的一种物质,而是几种不同物质相互匹配,协同作用达到阻燃的效果,包括成炭剂、成炭催化剂和发泡剂。其中发泡剂在材料受热时能分解出不燃性气体(水蒸气、氨气、CO2等)使涂层膨胀发泡,常用的发泡剂有三聚氰胺、氯化联苯、氯化石蜡等。成炭剂是在涂层发泡后,使其形成碳化层的物质,一般是含高碳的有机化合物,如淀粉、改性纤维素、季戊四醇等。成炭催化剂在高温或火焰的作用下分解出酸性物质,促使成炭剂失水碳化。常用的成炭催化剂有聚磷酸铵、硫酸铵、磷酸铵、三聚氰胺、三(二溴丙基)磷酸酯、三氯乙基磷酸酯、磷酸二氢胺、磷酸氢二铵等。3种物质需搭配合理才能取得良好的阻燃效果。实际研究应用中常见的搭配是聚磷酸铵、三聚氰胺和季戊四醇的组合[1-3]。非膨胀型阻燃助剂常用的有含磷和卤素的有机化合物(如氯化石蜡、十溴联苯醚、磷酸三甲苯酯和β-三氯乙烯磷酸酯等)以及三氧化二锑、硼酸纳、氢氧化铝等无机类阻燃剂。在实际应用中某一种阻燃剂可以起到阻燃的效果,但不会太显著,因此一般会选择几种不同的阻燃剂搭配使用,效果会更好。杨保平等[4]以SBR、丙烯酸单体和苯乙烯合成的丙烯酸接枝SBR树脂为成膜物质,以Sb2O3、氯化石蜡、氢氧化铝和硼酸锌作为阻燃剂制备了符合要求的超薄型钢结构防火涂料。蒋浩等[5]以红磷和氢氧化铝为阻燃剂制备了有机硅改性的环氧阻燃涂料,结果表明:有机硅改性环氧阻燃涂料的热稳定性能良好。根据阻燃剂所含元素的不同可以将其分为无机阻燃剂、溴系阻燃剂、磷系阻燃剂、氯系阻燃剂、氮系阻燃剂和其他阻燃剂。溴系阻燃剂和氯系阻燃剂是卤属阻燃剂,目前应用比较广泛,其生产工艺成熟,性价比较高,同时具有良好的阻燃效果,作用于气相燃烧区,捕捉燃烧反应中的自由基,从而阻止火焰的传播,使燃烧区的火焰密度下降,最终使燃烧反应速度下降直至终止。但由于其在阻燃过程中会释放对环境和人体有害的气体,应用逐渐受到限制[6]。磷系阻燃剂包括无机物红磷[5]、磷酸氢二铵[7]等和有机物磷酸酯、聚磷酸酯等。无机阻燃剂是使用最多的一类阻燃剂,大部分无机阻燃剂具有自身难燃的优势,并且在温度升高时融化吸热。除了上述提到的无机阻燃剂外,还有很多无机物具有优异的阻燃效果,如氢氧化镁、碳酸钙、碳酸镁等[8]无机矿物,蒙脱土、高岭土等陶土[9-11],以及云母和石墨粉[12]等。

2新型阻燃填料

随着各行各业对高分子材料需求标准的不断提高,对新型高效的阻燃剂的研究也成为了阻燃材料研究的一个重要方面。XinLi等[13]用水热合成法通过异丙醇铝和碳酸氢钠的反应制备了NaAl(OH)2CO3晶须,将其应用到乙烯和乙酸乙烯酯的共聚物中时,聚合物表现出了优异的阻燃性能。BaoxianDu[14]等做了一系列实验,比较了几种纳米阻燃填料对聚丙烯阻燃性能的影响,包括有机蒙脱土、层状双金属氢氧化物、多面体低聚硅倍半氧烷和碳纳米管。通过TG和锥形量热仪测试,发现不同的纳米填料在阻燃过程中发挥不同的作用,加入有机蒙脱土的聚丙烯的阻燃性能最好。

3阻燃填料的应用

阻燃剂种类和性能的多样性,使得制造各种各样的阻燃高分子材料成为了可能。Siska.Hamdani等[15]制备了3组以钙和铝元素物质为阻燃剂的硅复合电缆材料:非水合填料,如碳酸钙;可释放水的填料,如氢氧化钙、氢氧化铝、勃姆石;羟基官能化的填料,如氧化铝、云母。JohanLindholm等[16]以几组不同的阻燃剂加到聚氨酯中制备了聚氨酯阻燃胶黏剂:五水合偏硅酸钠,碳酸钾和硅胶的混合物,碳酸氢钠,一水合草酸钙,锌、氯化镁、钾、氯化铝和氢氧化镁的混合物,聚磷酸铵,钠和钾的磷酸盐。热重分析结果表明:偏硅酸钠的水合物在样品表面形成了一层硅酸钠的保护层,显著延长了燃烧需要的时间。另外,加入聚磷酸铵的样品具有最低的燃烧热释放速率。SonglinWang等[17]通过共沉淀的方法制备了Mg-Al-CO3LDH,并将它作为阻燃纸张的填料。Mg-Al-CO3LDH的结晶性和粒度以及阻燃纸张的各项性能通过XRD、FT-IR、TEM、TG-DTA、SEM等测试研究获得。测试结果表明:Mg-Al-CO3LDH是具有高正电荷密度的六角层状纳米粒子,具备完美的晶体结构。阻燃纸张的氧指数在填料含量为20%时高于25%。Chuen-ShiiChou等[12]制备了膨胀型阻燃涂料,除加入了传统阻燃涂料所必需的阻燃剂外还添加了季戊四醇作为碳源。实验中分别使用了3种阻燃剂,分别是人工石墨粉、云母和石墨。阻燃测试结果表明:加入碳源的阻燃涂料与传统阻燃涂料相比,阻燃效果明显提高。

保温隔热填料

随着煤、石油和天然气类化石燃料储存量的日渐减少和能源消耗量的日益增加,能源短缺问题成为一个不容忽视、亟待解决的难题。下面主要介绍用于建筑材料保温隔热填料。建筑物在使用期间,采暖、空调、通风、热水供应等方面消耗了大量的能源,这些能源约占人类总能源消耗的30%~40%。我国能源利用率全国平均仅为30%左右,而工业发达国家能源利用率已达70%以上,在热能损失中因保温不良造成的损失占很大比例[18]。为了保持建筑物内部温度、减少空调能源的消耗,响应对建筑节能提出的要求,近年来国内外在保温涂料的保温机理和产品开发方面做了大量的研究工作。外墙保温涂料主要分两大类,一类是厚层外保温系统,利用降低热传递的阻隔原理,例如胶粉聚苯颗粒保温,无机玻化微珠保温等,效果明显;另一类是薄层涂料,利用减少太阳光吸收的原理减少热能的侵入,太阳辐射热易通过向阳面,特别是东、西向窗户和外墙以及屋面进入室内,从而造成室内过热,因此这些部位也是建筑物夏季隔热的关键部位。外墙保温涂料系统由粘结胶浆、保温板、抹面胶浆、玻璃网格布、装饰面层等多种材料组成,能起到良好保温隔热、抗裂耐候、透气节能及装饰作用的新型建筑物外墙外保温装饰系统已成为现今最经济有效的节能解决方案之一。

1常见保温隔热填料的分类

根据保温隔热机理的不同可将建筑用保温隔热填料分为阻隔型、反射型和辐射型3类,其绝热机理不同,应用场合和所得到的效果也不同[19]。目前国内生产和使用最为广泛的保温建筑涂料使用的是阻隔型保温填料,其保温机理是利用导热性能较差的材料添加入涂料中,降低涂料整体的导热性。尤其是复合硅酸盐类保温涂料,是以多种含铝、镁的硅酸盐非金属矿物纤维为原料,掺杂一定数量的辅料和填充剂,并加入化学添加剂制成的,典型产品主要由海泡石、蛀石、珍珠岩粉等无机隔热骨料、无机及有机黏结剂及引气剂等助剂组成[20]。另一类保温隔热填料为反射型填料,由于添加的填料对太阳光有反射作用,由其制成的反射太阳热型绝热涂料能够有效降低炎热地区夏季墙面的温度,其应用已引起众多学者的关注并对其进行研究。空心玻璃微珠是目前反射型保温隔热填料中最主要的功能性填料,它是20世纪60年展起来的一种微粒材料,由钠硼硅酸盐材料经特殊工艺制成薄壁、封闭的微小球体,球体内部包裹一定量的气体,具有低密度、低导热、低吸油率、耐高温、电绝缘强度高、热稳定性好、耐腐蚀、粒径及化学组成可控等优点[21-22]。第3类为辐射型填料,以红外辐射为代表,其隔热原理是通过将吸收到的太阳光能转为热能,再将热能以红外辐射的方式向外扩散。因此,由其制成的涂料具有降温的作用。研究表明多种金属氧化物(如Fe203、MnO2、CO2O3、CuO等)掺杂形成的具有反型尖晶石结构的物质具有热发射率高的特点[23],因而广泛用作隔热节能涂料的填料。利用多种隔热机理的综合作用制备的复合型保温涂料,可充分发挥各方面的优势,使其具有更好的保温效果。

2新型保温隔热填料

纳米颗粒材料又称为超微颗粒材料,尺寸在1~100nm之间,是处在原子簇和宏观物体交界过渡区域一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,显示出许多奇异的特性,包括光学、热学、电学、磁学、力学以及化学方面的性质。有学者研究了一些纳米无机填料,掺杂在成膜物中可制备出透明隔热涂层,用于建筑物窗户玻璃的透光隔热,效果显著。这类纳米无机填料主要是纳米氧化锡锑和纳米氧化铟锡等。对于纳米隔热填料的隔热机理,钟树良等[24]认为,太阳光的入射频率高于涂膜中纳米粒子的振动频率时会引起振动粒子的高反射,从而对红外波段能量起反射阻隔作用。罗为等[25]认为,其隔热性能源于分散在其中的纳米ATO对太阳辐射的吸收,而非反射。

篇10

关键词:药物 控制释放 速率 微凝胶

传统给药方式主要有口服、眼部给药等方式,但均存在一定缺陷。如口服蛋白质药物时,肠内的多种蛋白酶、肽酶都会使蛋白质药物发生降解失活;并且,血药浓度必须达到最低药效浓度,药物才具有疗效,而多数情况下,只有部分药物能够到达患病部位,大多随血液分散到身体的各部位,许多药物都有一定的毒副作用,药物剂量的增加有可能会伤害正常的组织、器官,甚至可能引发新疾病或后遗症。

药物控释缓释系统对药物在人体的释放进行控制,使患病部位的药物浓度在所需时间内达到血药浓度,能显著提高药效、降低用药量、减少毒副作用,那么作为药物载体的生物材料就起着关键作用,要对药物缓释、导向、延长寿命均能发挥效果,因此对载体材料的要求就相当高。目前常见的药物缓控释系统主要有微球、胶束和水凝胶三大类[1-3],且研究中有关药物缓释的载体大多数为不可降解的智能型或可降解但响应性较差的高分子材料,而我们需要的是同时具有智能响应并生物体内可降解特性在药物控制缓释载体材料领域进行应用。

理想的药物控制缓释系统能在控制药物在有机体内释放地速率的同时,保持药物有效浓度、降低毒副作用,释药速率是该系统研究的重要指标。对于实现药物控制缓释的方式,目前一般使用的主要有扩散、化学、渗透及磁控制四种:

扩散控制体系是人们研究最早、最透彻、应用最广的,有储库、基质两种形式。在储库型系统中,药物被包裹在高分子膜里,释放时通过高分子膜的扩散过程,控制着释药速率。但此类体系应用较少,因为高分子膜一旦破裂,被包裹的药物就会全部释放出来,在临床应用中存在极大的安全隐患。而基质型系统中,药物以溶解或分散的形式均匀地分在聚合物基内,释放时通过高分子基质的扩散过程控制着释药速率。靠近高分子膜表面的药物可直接释放,膜内的药物则得先扩散到膜表面再释放,所以药物向膜表面扩散的距离增加而药物的释放量呈现下降趋势,即释药量会随时间的延续而下降。另外,渗透体系通过调节聚合物在某溶剂里膨胀或盐类产生的高渗透压加药物压出,以实现对聚合物中释药速率的控制。最后一种是磁控制体系,是以调节振荡磁场的强度控制来聚合物分子链的运动,进而控制分散在聚合物内药物的释放速率,释药速率随聚合物分子链运动加强、磁场强度增大而加快。

微凝胶属于上述常见缓释系统的微球类,并同时存在扩撒和渗透两种机理。微凝胶是一种在良好溶剂中可以溶胀的、尺寸一般在纳、微米水凝胶微粒,具有与水凝胶类似的交联的三维网络骨架结构,一个分子便构成一个微凝胶粒子。微凝胶特殊的结构与尺寸使其近年来被广泛地应用于医学等领域行业,其热点主要集中于负载模型药物实现控释缓释效果。

微凝胶在溶胀时内部网络孔径增大,药物或活性组分进入,消溶涨时,微凝胶网络孔径缩小,药物将被“关”在微凝胶内,实现包裹。根据微凝胶特性,药物速率主要可通过温度、pH、电场、磁场及降解等方式进行控制。载药微凝胶进入人体后,由于病灶部位的温度和化学环境等较正常部位有所不同,微凝胶会自行释放所载的药物[4]。

Hoare等研究水溶性药物(尤其是阳离子药物)的电性与PNIPAm类微凝胶表面分布的羧基在特定范围的相互作用,考察载药影响因素。表面有较多羧基的微凝胶结合的阳离子药物较少,中性及阴离子药物的吸收,不依赖微凝颗粒表面分布的羧基影响。阳离子药物的吸收最大值出现在羧基主要分布在核的微凝胶,比羧基主要集中在壳面的多1倍。该现象可能是由于微凝胶表面的羧基与阳离子药物结合,使微凝胶表面 “皮肤层”发生塌陷。随着药物疏水性的增大,以及阳离子诱导“皮肤层”发生相转变,致使微凝胶表面变得越来越紧密,阻碍药物的吸收,导致载药量大幅减少。使用表面无羧基分布的PNIPAm微凝胶模型研究载药时,同样可以观察到药物的高吸收,这说明疏水性在调节药物-微凝胶相互作用也有重要影响。

Liu等以苯硼酸(PBA)对P(NIPAm-AA)微凝胶单层膜进行了修饰,得到了P(NIPAM-PBA)微凝胶膜层。分别用茜素红S(ARS)和异硫氰酸荧光素(FITC)标记胰岛素,并将分别装载在P(NIPAM-PBA)微凝胶膜层中,研究葡萄糖对该微凝胶体的调节控制行为。实验发现:较低温度下,标记过的胰岛素的释放以被动扩散方式进行;温度一旦高于P(NIPAM-PBA)微凝胶的相变温度,药物由于微凝胶消溶涨而以被“挤出”微凝胶外的方式释放。ARS和葡萄糖均可以与苯硼酸结合,因此,在整个实验温度内,葡萄糖存在以及和微凝胶表面苯硼酸的结合,会刺激微凝胶中ARS标记的胰岛素进行释放。而对于胰岛素经异硫氰酸荧光素标记在P(NIPAM-PBA)微凝胶中的释放, 4℃和37℃时,葡萄糖的作用分别为促进和阻碍其释放,实验结果证明该P(NIPAM-PBA)微凝胶对葡萄糖具有明显响应行为,可应用于葡萄糖控制的缓释系统。

药物在经由控释体系的释放效果是否达到预期,主要取决于该系统中药物的载体的性质,所以,生物可降解的高分子载体是近年来药用材料的研究热点。虽然可生物降解高分子材料制备的微凝胶在生物医学上具有明显优势,但目前科研水平距离负载药物于人体内控制缓释仍旧有很多工作需要完善。因此,研究应更多的注重实用性以及实际应用的安全性,继续开发符合并满足人类需求的聚合物微凝胶将是今后的研究所侧重的方向。

参考文献

[1]兰婷. 聚乳酸微球的制备及性能研究[D]. 西安:西北大学,2007.

[2]杨柳. 生物可吸收聚乳酸-聚乙二醇嵌段共聚物自组装纳米胶束药物控释体系研究.上海:复旦大学,2010.

[3]王君莲. 可注射温敏水凝胶的制备及性能研究[D].西安:西北大学,2011.