集成电路专业方向范文

时间:2023-12-20 17:57:33

导语:如何才能写好一篇集成电路专业方向,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

集成电路专业方向

篇1

集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。

我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。

一、专业课程体系存在的主要问题

1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握MOS晶体管的结构、工作原理和工作特性,学生在后面学习CMOS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。

但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。

2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习MOS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。

3. 课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。

二、专业课程体系改革的主要措施

1“。 4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CAD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。

我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业

大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CAD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CMOS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CMOS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。 2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。

在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。MOS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授MOS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。

对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CMOS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CMOS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为EDA工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。

篇2

关键词:电视技术;职业技能

《电视技术》课程是模拟电路、数字电路、高频电子线路等专业课程的综合应用,是一门涉及元器件、信号波形图和电路图等专业较强的课程。教师要从职业技能培养出发,以电路元器件的识别与检测能力训练、电路的读图能力训练、电路故障检测能力训练来提高学生的分析问题和解决问题的能力。

一、电路元器件识别与检测能力的训练

要求学生能对电视机元器件进行识别与检测,有利于提高学生对本专业技能知识的应用能力。

1.声表面滤波器(SAWF)的检测

彩色电视机中频电路普遍采用了声表面滤波器,它能够一次形成彩色电视机所需要的中频特性,而且选择性优良。对于声表面滤波器检测,我们可以单独测量SAWF各引脚间的电阻值,对于性能良好的SAWF,其中两个输入端①和②,两个输出端③和④以及两个输入端和两个输出之间的电阻值均为∞。

2.陶瓷滤波器和陶瓷陷波器的检测

为了实现信号选频,在电视机电路选择了滤波器,也采用了陷波器。在实际电路中,这两种器件虽然标识不同,但形状基本一样,容易混淆。电视机中6.5MHz陶瓷滤波器多为三端器件,一般位于预视放电路之后,是音中放的主要选频元件。而陶瓷陷波器具有良好的吸收性能,所以6.5MHz陷波器一般都设置在预视放电路中,用来抑制伴音对图像的干扰。通过单独检测引脚间的电阻值或者在线检测,可判断其是否损坏。

二、读图能力训练

通过电路原理图掌握维修电视机的依据,看懂电路图是每个电子专业技术人员必备的专业素质。

1.方框图读图训练

在分析一个具体电路工作原理之前,先分析该电路的方框图,有助于读懂具体电路的工作原理和特性。方框图粗略表达了某电路的组成情况,给出了这一电路主要单元电路的位置、名称及各部分之间的相互连接关系,在读图时要注意各单元电路之间信号传输方向,即电路中箭头所指的方向,箭头方向表示了信号传输的方向。

2.单元电路图读图训练

单元电路图是学习整机电原理图的基础。单元电路图就是将整体电路划分成若干个单元电路,然后再根据单元电路的特点来分析其在整体电路中的作用。通过单元图的读图训练,学生既掌握了基本的读图方法,也巩固了专业基础知识,加强了知识的连贯性。

3.整机电路图读图训练

整机电路图是由单元电路组成的。只有把单元电路分析透彻了,整机电路才容易掌握。在读整机电路时,先从直观入手,例如开关电源部分,首先找到220V输入端,然后查找整流、滤波、启动电路、振荡器/开关元件、稳压电路(脉冲调制电路)、保护电路和直流稳压输出电路等。其次就是找易读电路,如伴音电路、高频接收电路、行场扫描电路等。最后再读较难的电路,如彩色解码等。在读整机电路时,也可以从关键电路、关键元器件着手,逐步提高读图能力。

4.集成电路的读图训练

电视机采用的集成电路种类繁多,如CPU微处理集成电路、小信号处理及彩色解码集成电路、场输出集成电路、音频功放集成电路、伴音系统集成电路。掌握集成电路各引脚的作用是读集成电路的关键,可以通过查阅有关资料或根据集成电路的内部方框图分析。

三、电路故障检测能力训练

1.电路不带电检测训练

不带电检测可以通过直观检查法、电阻测量法和温度测试法对电路进行判断,以求对电路有初步的了解,如元器件是否损坏、变质,是否存在开路、短路等情况。

2.电路带电静态检测训练

电路的静态检测是指电视不接收信号条件下对电路电压的检测,以判断电路是否满足正常工作条件,元器件是否工作正常,如检测放大电路时,通过对静态工作点的测量可以判断电路是否工作在放大状态。

3.带电动态检测训练

电路的动态检测是指电视在接收信号情况下对电路电压、电流进行检测。电视电路中有许多端点的工作电压会随外来信号的进入而明显变化,变化后的工作电压便是动态电压了。

4.示波器检测训练

在电视故障维修中,我们最关注的是信号,它是以波形的形式来体现的。在用示波器测波形时,除测量其幅度外,还要测量波形的周期。必要时,可以参考维修手册上的正确波形加以对照,以便准确地判断出故障的范围。

参考文献:

篇3

【关键词】竞赛;集成电路;教学改革

Inspiration of 2011’Beijing Student Competition on Integrated Circuit

GENG Shu-qin HOU Li-gang WANG Jin-hui PENG Xiao-hong

VLSI & System laboratory Beijing University of Technology Beijing,China 100124

Abstract:Teaching 21stIntegrated circuit student is history task for teachers.Inspiration of 2011’Beijing Student Competition on Integrated Circuit is presented such as correct idea,right organize procedure,a steady preparation,corporation between university and company,teaching methods.The result of practice is that competition on Integrated circuit can push the procedure of cultivating of student,can push Quality Education,can advance the ability of theory and practice,can improve the ability of resolve problem,can cultivate the spirit of creativity,can enhance the ability of Team Corporation.It leads the point of teaching methods reformation.The student ability of plot and circuit design is increased.

Keywords:competition;Integrated circuit;teaching reformation

集成电路在社会发展中扮演着非同寻常的角色,几乎渗透到了各行各业。随着全球经济一体化的发展,集成电路的制造与开发中心正逐步向我国转移。我们肩负重大的历史使命,是要把我国建设成为集成电路的生产大国进而成为集成电路强国[1]。因此培养二十一世纪集成电路设计人才是我们教师面临的历史任务。北京华大九天软件有限公司致力于开发自主产权的EDA软件,提供高端的SoC解决方案和一站式设计生产服务,为培养集成电路设计人才提供了很好的软件平台。北京市2011首届“华大九天杯”大学生集成电路大赛以充分调动各方面的参与积极性。对学生来说,竞赛为他们提供了一个开阔眼界、互相学习和交流的好机会,这是任何课堂教学都无法替代的;对指导老师来说,竞赛可以促进他们转变陈旧的教学理念,改进落后的课程体系,积极寻求新的教学模式,真正做到教学目标、教学内容和教学方法与时俱进,切实达到面向应用、面向市场、面向社会并最终为社会提供优秀专业人才的最高教学目标[2]。实践表明,开展大学生集成电路设计竞赛,对于推进我国集成电路人才培养、推进素质教育、理论实践结合能力、解决问题的能力、培养学生创新精神、团队协作能力和培养学生的集体荣誉感等方面具有重要意义,同时也对高校的集成电路设计课程和实践教学改革起了一定的引导作用,极大的强化了学生绘制版图和电路设计能力。本人有幸带领学生参加了此次比赛,获得了一些启示。

1.立足现实,拓宽应用

本次大赛的活动宗旨是丰富微电子学专业学生的专业知识,培养学生理论联系实际、独立思考和操作能力,巩固和加深所学专业知识基础,推动京津地区高校微电子学专业的交流和发展,并对国产正版EDA软件的普及和应用起到积极推动作用。

2011年北京大学生集成电路设计大赛分成大学本科和研究生两个级别(本科生组33个组;研究生33个组),每组3人,进行笔试和上机操作。比赛相关规则:笔试阶段,采用闭卷形式,由各参赛队员独立完成,最终成绩计入小组总分;上机操作,以小组形式参加。

2.正确的指导思想

电子学会组织的此次大学生集成电路大赛立足高,紧密结合教学实际,着重基础、注重培养实践能力的原则为大赛成功举行树立了正确的指导思想。

“华大九天杯”集成电路大赛凝聚了各级领导、专家、学者和我校学科部领导、老师及每个参赛队员的心血与汗水。在比赛的前后,我们的指导思想是:参赛获奖不是最终目的,深人持久地开展教育教学改革,充分调动学生学习积极性,吸引更多的学生参加各类竞赛和科技活动,培养更多的优秀专业人才,才是我们的努力方向。集成电路大赛引来了众多企业,他们对参赛学生的青睐,对于与学校合作的重视,也正是我们学校所渴求的。在参赛中与同行各企业充分交流,学校与企业的紧密结合,才能更清楚市场对优秀毕业生的要求,进而能明确培养目标,并在平时的课程教学中加以渗透,在教学中不断改进;在参赛中与其他兄弟院校充分分享经验,不断学习别人的长处,分析参赛中暴露的共性问题,在教育教学中不断改进;在参赛中提高教师的指导水平和改进教育教学方法;在参赛中提高学生的综合素质,培养大批适应现代化建设需要的基础扎实、知识面宽、能力强、素质高、具有创新精神和实践能力的高级应用型人才,才是我们参加北京大学生集成电路设计竞赛的最终目的。

3.准备认真,重在过程

承办方北方工业大学周密的准备工作和热情的服务为大赛成功举行创造了良好的外部环境。北方工业大学和华大九天公司组织的集训为成功参赛奠定了扎实的基础。

在学科部领导和各位老师的努力下,在实验室老师的大力协助下,在华大九天公司培训人员的大力支持下,我们组织了两个阶段的集中培训,并在培训的基础上进行了有针对性的辅导练习,并在参赛前举行了预赛。这些环节对学生和老师起到了很好的引导和督促作用,保证了良好的训练环境,营造了积极向上的参赛氛围。

在电子竞赛的准备过程中,适逢暑假,假期长,学生们可以充分利用暑假时间认真复习电子器件、数字电子电路、集成电路分析与设计等课程的理论知识。同时,学生们还学习华大EDA软件,进行实际电路和版图绘制上机练习,培养了理论联系实践的学风。通过竞赛准备,学生需要综合运用所学知识,解决竞赛中遇到的各种问题,提高了运用理论知识解决实际问题的能力。通过竞赛准备,磨合了小组间的默契配合和分工,增进了师生情谊,提高了团队作战能力。通过竞赛准备,找出了自己在知识上的不足,明确了社会的需要、工作岗位的需要和工作性质,树立了新的奋斗目标,产生了学习新的动力。

4.参赛对嵌入式系统和集成电路设计教学改革的启示

北京大学生集成电路设计竞赛对于培养学生参加实践的积极性、理论联系实际的学风和团队意识有着重要作用,竞赛给学生提供了一个施展才华、发挥创新能力的机会和平台。并对高校集成电路设计课程的教学内容和电子科学与技术的课程体系改革和学生今后工作起到一定的引导作用。

4.1 知识整合的系统教学思想

自从1958年基尔比发明集成电路以后,集成电路一直按照摩尔定律的预测飞速发展。面对集成电路如此迅猛的发展形势,教学工作也要与时俱进,不断改革创新。我承担《嵌入式系统》和《集成电路分析与设计》课程,深深体会到微电子专业的学生学习嵌入式系统与其他专业有所区别,因为芯片的设计方向日益朝着片上系统SOC、片上可编程系统SOPC的方向发展[3]。学生不仅需要有系统的概念[4],同时需要对典型处理器体系结构有清晰的理解,在设计SOC芯片时才会有系统的设计思想[5],又会对处理器内部体系架构有清晰的概念。因此,在对微电子专业的学生讲授嵌入式系统时,要紧密结合集成电路设计的要求,结合集成电路分析与设计、数字电子、模拟电子、电子器件等课程的内容,使学生不仅对处理器结构体系清楚,更熟悉各模块电路,如ALU单元电路、筒形移位器、乘法器、寄存器、SRAM、DRAM单元等等。在处理器的,培养学生系统的概念,掌握外部单元电路,如存储器单元电路、系统总线单元、SPI、IIC、UART等等接口电路,从使用者的期望角度出发,来进行芯片的设计,既是使用者,又是设计者。学生在学习集成电路设计的课程时,紧密结合嵌入式系统中的系统体系结构、结合处理器内部的体系结构,具有整体的大的系统性设计概念,整合学生对各个课程的分离的知识内容,培养综合运用所学知识解决系统问题。通过增加实验和上机课时,提高学生将理论与实践紧密结合,培养学生运用所学理论知识解决实际问题的能力。

4.2 改革传统的教学模式

我国的大学课堂教学模式长期以来被德国教育家赫尔巴特的“四段论”与前苏联教育家凯洛夫的“五环节”所主宰,在新的教育环境和教育目标下,他们所倡导的课堂教学结构和施教程序越来越明显地暴露出它的弊端,最突出的是“以教代学”的陈腐教学思想和“注入式”、“满堂灌”的落后教学方法.这种“以教师为中心,以教材为中心”的课堂教学,决定了学生在整个教学过程中所处的被动地位,很大程度地禁锢了学生的创造性思维,对学生自学能力、实践能力和创新能力的培养构成了严重的障碍[2]。

现代教育理论指出:指导学生从实践和探索中通过思考获取知识,又在解决问题的探索活动中,运用已获得的知识和技能是培养智能的最好途径。

本次竞赛上午闭卷完成理论知识的考试。本科生的上机操作内容是根据提供的状态图设计一个计数器电路,然后进行原理图的绘制,再次进行版图绘制,进而进行DRC、LVS等环节验证,并撰写设计报告。学生需要利用数字电路中所学的状态表,构造出逻辑关系式,运用卡诺图化简得到最简电路,最后再绘制单元电路,设计出具体的CMOS电路和版图,并进行验证。同时还需要构造出计数器所需的时钟电路。在上机的开始一个半小时中,指导老师可以参与指导,这样增加了比赛中老师对学生的限时指导内容,更有利于学生的竞赛,符合培养人才的现论要求。

学生基本上完成了从需求分析、电路设计、绘制电路、(仿真)、版图绘制、验证到撰写报告等环节。通过竞赛,使学生能亲自感受一个简单的集成电路设计流程,培养了学生的系统设计概念。学生从早晨9点一直进行到下午六点,在短短的一天内要完成笔试和7个小时的上机电路绘制和验证等工作,小组成员只有密切配合,充分发挥各自的优势,保持坚韧不拔的精神,才能取得最终的胜利。这种方式非常有利于培养学生的合作精神和团队精神,锻炼了学生的毅力和体力。

施教之功,贵在引导。可以看出,竞赛在很大程度上符合现代教育理论的要求,符合学生的认知规律。以学生为主体、教师为主导的教学模式正是以传授知识为前提,以形成技能为基点,以培养智能为重心,以全面发展人才为归宿。在《嵌入式系统》和《集成电路分析与设计》课程教学中,增大课程的实验内容,学生带着问题,进行学习,进行思考、小组讨论,经老师点拨,实现了运用所学理论解决实际问题的过程,既培养了学生的综合能力,又完成了教学任务,符合现代教育论的要求。

施教之旨,在于培养学习方法和思维方式,培养获取新知及再创造之本领。将学生分成小组,布置某一命题,发挥学生的主动性,引导他们查阅资料,分析归纳总结,并在课堂中进行报告或实验演示。学生反映效果很好,获取了知识,又培养了学生自学能力和主动获取知识的方法。

5.引导学生参与科研,撰写学术论文

通过大赛引导大学生形成一股扎扎实实的学习和研究的风气。激发学生在专业领域的学习兴趣,参与到老师平时的科研中,增加动手实践的机会。并在科研中进一步培养学生的研究兴趣,形成良性循环。对于取得的研究成果,可以引导学生撰写论文,并能在广大同学中起到表率作用。

6.结束语

培养二十一世纪集成电路设计人才是我们教师面临的历史任务。北京市2011首届“华大九天杯”大学生集成电路大赛以充分调动各方面的参与积极性。正确的指导思想、科学的组织程序、踏实认真的准备工作以及大赛对校企合作、对教学改革将产生重要的影响。实践表明,开展大学生集成电路设计竞赛,对于推进我国集成电路人才培养、推进素质教育、理论实践结合能力、解决问题的能力、培养学生创新精神、团队协作能力和培养学生的集体荣誉感等方面具有重要意义,同时也对高校的集成电路设计课程和实践教学改革起一定的引导作用,极大的强化了学生绘制版图、电路设计能力和集成电路设计思想。

参考文献

[1]甘学温,赵宝瑛等.集成电路原理与设计[M].北京:北京大学出版社,2007.

[2]陈建英,李涛,撒晓英.抓住竞赛契机 深化计算机专业教学改革[J].西南民族大学学报·自然科学版,2010,36(9):75-77.

[3]Ahmet Bindal,Sandeep Mann,Billal N.Ahmed.An Undergraduate System-on-Chip

(SoC)Course for Computer Engineering Students[J].IEEE TRANSACTIONS ON EDUCATION,2005,48(2):P279-289.

[4]Lei Jing,Zixue Cheng,Junbo Wang.A Spiral Step-by-Step Educational Method for Cultivating Competent Embedded System Engineers to Meet Industry Demands[J].IEEE TRANSACTIONS ON EDUCATION,1-10.

[5]Xiumin Shi,Ji Zhang,Yanbing Ju.Research and Practice in Undergraduate Embedded System Course[C].The 9th International Conference for Young Computer Scientists,

2569-2663.

致谢:竞赛工作是由国家自然基金赞助(No.60976028);北京工业大学博士基金赞助(No.X0002014201101,No.X0002012200802 and No.X00020

篇4

【关键词】电子信息科学与技术微电子课程体系建设教学改革

【基金项目】大连海事大学教改项目:电子信息科学与技术专业工程人才培养实践教学改革(项目编号:2016Z03);大连海事大学教改项目:面向2017级培养方案的《微电子技术基础》课程教学体系研究与设计(项目编号:2016Y21)。

【中图分类号】G42 【文献标识码】A【文章编号】2095-3089(2018)01-0228-02

1.開设《微电子技术基础》的意义

目前,高速发展的集成电路技术产业使集成电路设计人才成为最抢手的人才,掌握微电子技术是IC设计人才的重要基本技能之一。本文希望通过对《微电子技术基础》课程教学体系的研究与设计,能够提高学生对集成电路制作工艺的认识,提高从事微电子行业的兴趣,拓宽知识面和就业渠道,从而培养更多的微电子发展的综合人才,促进我国微电子产业的规模和科学技术水平的提高。

2.目前学科存在的问题

目前电子信息科学与技术专业的集成电路方向开设的课程已有低频电子线路、数字逻辑与系统设计、单片机原理、集成电路设计原理等。虽然课程开设种类较多,但课程体系不够完善。由于现在学科重心在电路设计上,缺少对于器件的微观结构、材料特性讲解[1],导致学生在后续课程学习中不能够完全理解。比如MOS管,虽然学生们学过其基本特性,但在实践中发现他们对N沟道和P沟道的工作原理知之甚少。

近来学校正在进行本科学生培养的综合改革,在制定集成电路方向课程体系时,课题组成员对部分学校的相关专业展开调研。我们发现大部分拥有电子信息类专业的高校都开设了微电子课程。譬如华中科技大学设置了固体电子学基础、微电子器件与IC设计、微电子工艺学以及电子材料物理等课程。[2]又如电子科技大学设置了固体物理、微电子技术学科前沿、半导体光电器件以及高级微电子技术等课程。[3]因此学科课题组决定在面向2017级电子信息科学与技术专业课程培养方案中,集成电路设计方向在原有的《集成电路设计原理》、《集成电路设计应用》基础上,新增设《微电子技术基础》课程。本课程希望学生通过掌握微电子技术的原理、工艺和设计方法,为后续深入学习集成电路设计和工程开发打下基础。

3.微电子课程设置

出于对整体课程体系的考虑,微电子课程总学时为32学时。课程呈现了微电子技术的基本概论、半导体器件的物理基础、集成电路的制造工艺及封装测试等内容。[4]如表1所示,为课程的教学大纲。

微电子技术的基本概论是本课程的入门。通过第一章节的学习,学生对本课程有初步的认识。

构成集成电路的核心是半导体器件,理解半导体器件的基本原理是理解集成电路特性的重要基础。为此,第二章重点介绍当代集成电路中的主要半导体器件,包括PN结、双极型晶体管、结型场效应晶体管(JFET)等器件的工作原理与特性。要求学生掌握基本的微电子器件设计创新方法,具备分析微电子器件性能和利用半导体物理学等基本原理解决问题的能力。

第三章介绍硅平面工艺的基本原理、工艺方法,同时简要介绍微电子技术不断发展对工艺技术提出的新要求。内容部分以集成电路发展的顺序展开,向学生展示各种技术的优点和局限,以此来培养学生不断学习和适应发展的能力。

第四章围绕芯片单片制造工艺以外的技术展开,涵盖着工艺集成技术、封装与测试以及集成电路工艺设计流程,使学生对微电子工艺的全貌有所了解。

4.教学模式

目前大部分高校的微电子课程仍沿用传统落后的教学模式,即以教师灌输理论知识,学生被动学习为主。这种模式在一定程度上限制了学生主动思考和自觉实践的能力,降低学习兴趣,与本课程授课的初衷相违背。[5]为避免上述问题,本文从以下几个方面阐述了《微电子技术基础》课程的教学模式。

教学内容:本课程理论知识点多数都难以理解且枯燥乏味,仅靠书本教学学生会十分吃力。因此,我们制作多媒体课件来辅助教学,将知识点采用动画的形式来展现。例如可通过动画了解PN结内电子的运动情况、PN结的掺杂工艺以及其制造技术。同时课件中补充了工艺集成与分装测试这部分内容,加强课堂学习与实际生产、科研的联系,便于学生掌握集成电路工艺设计流程。

教学形式:课内理论教学+课外拓展。

1)课内教学:理论讲解仍需教师向学生讲述基本原理,但是在理解运用方面采用启发式教学,课堂上增加教师提问并提供学生上台演示的机会,达到师生互动的目的。依托学校BBS平台,初步建立课程的教学课件讲义、课后习题及思考题和课外拓展资料的体系,以方便学生进行课后的巩固与深度学习。此外,利用微信或QQ群,在线上定期进行答疑,并反馈课堂学习的效果,利于老师不断调整教学方法和课程进度。还可充分利用微信公众号,譬如在课前预习指南,帮助学生做好课堂准备工作。

2)课外拓展:本课程目标是培养具有电子信息科学与技术学科理论基础,且有能力将理论付诸实践的高素质人才。平时学生很难直接观察到半导体器件、集成电路的模型及它们的封装制造流程,因此课题组计划在课余时间组织同学参观实验室或当地的相关企业,使教学过程更为直观,加深学生对制造工艺的理解。此外,教师需要充分利用现有的资源(譬如与课程有关的科研项目),鼓励学生参与和探究。

考核方式:一般来说,传统的微电子课程考核强调教学结果的评价,而本课程组希望考核结果更具有前瞻性和全面性,故需要增加教学进度中的考核。课题组决定采用期末笔试考核与平时课堂表现相结合的方式,期末笔试成绩由学生在期末考试中所得的卷面成绩按照一定比例折合而成,平时成绩考评方式有随堂小测、课后习题、小组作业等。这几种方式将考核过程融入教学,能有效地协助老师对学生的学习态度、学习状况以及学习能力做出准确评定。

5.结语

篇5

[STHZ]1[STBZ]专用集成电路设计重点实验室的实验教学改革实践 江苏省专用集成电路设计重点实验室(后简称“实验室”)有专职教师20人,承担南通大学杏林学院集成电路与集成系统专业实验课程12门,实验室近三年承担各级各类科研项目75项,79篇,其中SCI、EI论文43篇,有着良好的科研基础和科研成果。实验室老师在实验教学过程中,注重结合自身的科研方向向学生介绍集成电路相关新技术和新方法,并将计算机建模和仿真的新技术贯穿于专业实验教学中。比如,在“模拟电路”实验教学中引入Spice仿真软件,在“数字电路”实验教学中引入Quartus软件等。在设置的探索性实验课程中,只给学生引出若干思路,学生利用相关软件可在课堂内外自主练习,在互联网上查找相关技术资料,设计实验方案和实验步骤。通过这种引导,该专业学生对新技术掌握较快,在探索过程中遇到不懂的环节能相互进行探讨,主动向教师请教,逐步培养了自主式、合作式的学习习惯。

集成电路设计与集成系统专业培养掌握集成电路基本理论、集成电路设计基本技能,掌握集成电路设计的EDA工具,熟悉电路、计算机、信号处理、通信等相关系统知识,从事集成电路研究、设计、开发及应用,具有一定创新能力的应用型高级集成电路和电子系统集成技术人才。围绕该培养目标,实验教学内容上进行了与时俱进的改革。比如将LQFP64封装建模与仿真分析这一科研案例应用于实验教学中。实际科研案例的使用使得理论知识变得生动形象,加深了学生对基本理论知识的理解,学生学习兴趣和学习动力有了显著提高,能独立完成封装建模、仿真到最后优化的整个流程,为后续专业学习和就业打下牢固的基础,适应了我校独立学院“厚基础,强应用”的人才培养目标[2]。此外,教师紧密结合教学和科研实例编写教材,根据电路设计相关工作编写的《电路PSpice仿真实训教程》被列为教育部高等学校电子电气基础教学指导分委员会推荐教材。

从2009年承担集成电路与集成系统专业课程起,实验室鼓励高级职称人员承担实验课程,指导学生开展创新性实验项目。实验室教师指导本科生积极参加省级、校级大学生实践创新训练计划、校大学生课外学术科技作品等科技活动,获批“江苏省高校大学生实践创新训练计划”2项、南通大学“大学生实践创新训练计划”3项。所指导的集成电路设计与集成系统专业学生的参赛作品入围第三届 “华大九天杯”大学生集成电路设计大赛,荣获三等奖。“华大九天杯”大学生集成电路设计大赛是针对微电子及相关专业在校生的一次专业实践性赛事,是对我国集成电路设计领域人才培养的一次交流和检阅。

实验室成立于2002年,拥有集成电路工艺和器件仿真、集成电路电路仿真与版图设计、集成电路封装设计等先进的EDA软件工具,以及高性能工作站、网络分析仪、矢量信号发生器、微电材料与器件的光电测试系统、数模混合集成电路测试仪等硬件设备,仪器设备总值达1 000多万。这些仪器设备均属于科研仪器设备,由于场地紧、管理人员少,这些科研仪器设备目前还未对本科学生全面开放,主要为教师及研究生使用,仅有少量学生在参与教师的科研项目过程中能接触使用到部分科研仪器设备,重点实验室的仪器设备资源优势在本科实验教学改革中的作用发挥远远不够。

实验室围绕科研发展方向,三年多来先后邀请了中国科学院、北京大学、复旦大学、南京邮电大学、澳大利亚国立格里夫斯大学、美国密西根大学、新加坡南洋理工大学、日本富山县立大学等国内外知名科研学府的20多位专家学者来校进行讲学和交流,实验室教师也积极准备为学生举办专题讲座,此外还邀请了企业技术专家来校与师生进行面对面的交流。

2进一步加强科研与实验教学融合的探索

“授之以鱼不如授之以渔”,这要求教师与时俱进的将科研与实验教学紧密结合,使实验教学内容更贴近现代科研水平,让学生掌握有应用价值的知识和方法,培养符合社会实际应用需求的人才。

2.1加强科研新方法新技术在实验教学中的引入

以培养学生实践能力、科研能力和自主创新能力为目的进行的实验教学改革,必须与科研紧密结合,减少验证性实验项目,增加综合性实验项目,增设创新实验课程。将科研用到的新方法、新技术逐步引入到实验教学中,更新实验教学方法与手段,设置探索性实验项目来模拟科研全过程。引导学生自己去思考并寻找合理解释,鼓励学生查阅相关的参考资料,探索问题产生的真正原因,训练他们主动分析和独立解决问题的能力,实现实验教学与科研新技术、新方法训练的有机结合。

2.2加强科研内容与实验教学内容的结合

在实验教学内容中,除了加强科研新方法、新技术的引入,还需要精选科研中的实际案例,让学生能真正地体验科研。依托科研项目来设置综合性实验,将成熟的科研成果及时转化为创新实验项目,使得实验内容兼具新颖性和探索性,有利于学生开阔视野,扩展知识面,激发专业热情。增加科研实例在实验教学内容中的灵活运用,提高综合性、设计性、创新实验的比重,让学生现在所学所练真正成为日后实际工作中的基础,学有所得,学有所用。

2.3加强对学生科研创新活动的引导

科技活动作为一种探索性的实践过程,具有科技性、实践性和探索性的特点,是培养学生创新素质的最佳切入点。吸收对科研感兴趣的学生参与到教师的科研活动中,承担一部分力所能及的科研课题,通过科研实践氛围的熏陶,激发学生的科学研究兴趣,引导学生积极探索[3]。鼓励学生积极申报大学生创新性实验计划项目,并为学生进行创新性实验研究提供条件,如设立“大学生创新基金”。组织学生参加竞赛,将本科学生科研创新实验与竞赛结合起来,培养学生的科学精神和创新能力。

2.4加强科研仪器设备在实验教学中的应用

为了挖 掘科研仪器设备利用的潜力,实现科研与教学资源共享,科研实验室需要在时间、空间、设备和实验课题等多方面进行开放。制定相关的规章制度,对本科学生的准入条件、经费支持和科研管理等多个方面加以规范,使得科研仪器设备在教学中也能发挥其优势,充分拓展现有科研仪器设备的使用范围,提高仪器设备利用率,同时为学生提供开展科研创新实验的环境,高质量、高效率地为科研与教学服务。通过优化资源配置,建立资源共享机制,为创新人才的培养提供良好的教学平台[4]。

2.5加强科研学术讲座在本科学生中的普及推广

学术讲座是进行学术交流,提高教学和科研水平的有效手段;是一场师生共赢的集会,有利于营造良好的的学术氛围。学术讲座向师生展示新观点、新知识和学科最新研究成果,有利于互通有无,开阔学术视野,提升学术层次,传达团队协作、学科间联合创新的重要性,对师生未来的学习工作都有一定的激励作用,也为学生的职业规划指引方向。本科学生即使暂时无法理解讲座中的高深内涵,但专家学者们思想的潜移默化以及通过后期的学习和钻研,对个人综合能力的发展影响深远。

3结束语

教学和科研是互促的,只有多角度加强双方的融合,构建教学与科研良性互动的实验教学模式,才能从根本上实现双方的可持续性发展,顺应高素质创新性人才培养的要求。

参考文献:

篇6

程:您好!在浦东新区政府和北京大学的大力支持和领导下,经过一年多的筹备,上海浦东微电子封装和系统集成公共服务平台已经正式开始运营。

平台由上海北京大学微电子研究院联合多家封装企业和研究单位共同建设,在上海市浦东新区科学技术委员会、上海市集成电路行业协会、上海张江集成电路产业区开发有限公司、上海浦东高新技术产业应用研究院和上海张江(集团)有限公司支持下运营。平台目标旨在通过跨地域、跨行业、跨学科的产学研用合作,集聚优势资源,为我国微电子产业(主要是中小型企业)提供需要的封装设计加工、测试、可靠性分析与测试等服务并开展微机械系统MEMS/微光电子机械系统(MOEMS)封装、3-D集成等系统集成技术研发,为集成电路行业培养封装和系统集成高端人才,逐步发展成能为全国集成电路企业提供优质技术服务的微电子封装与系统集成公共服务平台。

平台服务内容包括先进封装设计、小批量多品种集成电路封装与测试、系统集成、可靠性分析测试和封装人才培养等,将涵盖封装设计、仿真、材料、工艺和制造等多个领域。封装设计服务将提供封装设计及封装模拟,封装信号完整性分析等服务。小批量多品种封装服务将提供中小型集成电路设计企业需要的封装技术,为特殊应用领域(如宽禁带半导体高温电子封装、高频系统封装、大功率器件与集成电路封装等)提供封装服务。系统集成技术服务将提供圆片级封装技术(WLP)、微电子机械系统(MEMS)/微光电子机械系统(MOEMS)封装、3-D集成等先进封装/系统集成技术服务,同时广泛开展技术合作、技术孵化导入活动。可靠性分析测试服务将围绕可靠性测试技术发展需求,开发具有自主知识产权、具有广泛应用前景的技术和产品,为自主知识产权高端芯片的设计制造项目提供技术支撑,为微电子企业提供集成电路测试、分析、验证、老化筛选和完整的测试解决方案和咨询服务。另外,我国封装技术人才的严重短缺,成为制约集成电路封装业进一步发展的瓶颈。依托平台强大的封装研发力量,充分发挥海内外专业人才示范作用,尽快培养本土IC封装人才群,为企业作好人才梯队储备。

平台拥有一支以中青年人才为科技骨干的、拥有雄厚技术力量和战斗力的技术团队。平台的运营目前是以中芯国际、UTAC、58研究所、天水华天科技、772研究所、香港科技大学和上海北京大学微电子研究院为技术依托,以国内外知名封装、微电子领域学者和资深专家为核心,主要核心科学家和技术专家包括有中国工程院院士、微电子技术专家许居衍,北京大学教授、中国科学院院士王阳元,香港科技大学教授、资深电子封装专家、香港科大电子封装实验室主任、先进微系统封装中心主任李世伟等。

另外,上海北京大学微电子研究院在平台的技术和运营方面也有很多优势。我院依托北京大学拥有雄厚的人才资源和学科优势,在微电子产业战略、基础技术、关键技术、应用开发四个层面上展开工作,同时在射频电路、混合信号集成电路、EMI、纳米尺度MOS器件、MEMS技术、高压大功率器件与电路、高可靠性封装测试技术等领域取得了一系列研究成果。研究院具有许多在微电子主要领域和研究方向的专家、教授、研究员、工程师,同时也招收培养了一批优秀的研究生。他们在LED驱动芯片的设计与封装、芯片级封装、系统级封装、三维立体封装和可靠性封装方面有很深入的研究,并取得了不少成果和专利。SIP封装技术、三维立体封装和可靠性封装将成为北大上海微电子研究院重点发展的研究方向,这些技术基础为封装服务平台的建设发展提供了可靠的保障。

记者:成立该平台的背景是什么?它对行业有哪些积极作用?

程:随着封装技术不断发展演变,IC设计公司对微型化、轻便化、多功能化、高集成化和高可靠性的需求越来越高,目前浦东新区现有封装测试企业并不能满足中小型IC企业的要求,该平台可以使相关企业获得服务便捷、形式灵活、成本合理的封装测试服务,有利于提高产品质量,加快产品开发节奏,提高企业自身的竞争能力。

目前浦东已有100余家集成电路设计企业,随着近几年出现的多项目晶圆(MPW)服务的开展,进一步地降低了IC设计开发的初期投入,也大大促进了集成电路设计行业的发展。但是,中小型IC设计企业在起步阶段需要以QFP、BGA等形式封装,封装数量较小,很难获得大型封测企业的服务支持,导致产品开发周期加长和成本提高等诸多问题。而随着IC设计企业的成长,产品线的不断扩展,需要的封装品种也将不断增加,一般的封装企业不能提供有效的技术服务。因此小批量、多品种封装必然成为集成电路产业链中迫切的需求。

另外,很多企业和研究机构在对一些新型电路、高端产品和先进技术的探索、创新和研究上,需要有微小型、高密度、高频、高温、高压、大功率、高可靠性的封装技术来支持。而大型封测厂并不能针对这种高端的、专一的、小量的封装服务需求给予有力的帮助,因而这些集成电路企业和研究机构只能通过其它途径寻求提供特殊需求服务的国外封测单位,这样无形间带来产品开发时间和成本的压力。建设这样的封装服务平台则可以有效的解决此类问题,为他们创造便利的条件。

记者:对于解决封装行业存在的一些问题,国外有无类似的平台?我们建立该平台有无借鉴国外的一些经验?

程:世界半导体产业面临波浪式发展,目前各大公司纷纷在我国建立后工序工厂及设计公司,摩托罗拉、英特尔、AMD、三星、ST、亿恒、Amkor、日立、三菱、富士通、东芝、松下、三洋都在我国建有后工序工厂,飞利浦在江苏、广东新建两个后工序工厂。面对蓬勃发展的IC封装业,无论技术怎样发展,市场需求是产业发展原动力,既有规模化生产,又有市场变化对封装要求加工批量小、节奏快、变数大的特点,市场竞争不只是求规模,更重要的是求强,大不一定就是强,所以通过国际半导体形势的发展来看,封装产业的发展模式及战略十分值得重视与探讨。

该平台就是在总结了国内外集成电路封装产业存在的问题之后而建立的。目前国外和中国台湾地区有企业从事类似业务,但没有类似在政府和行业协会支持下专门从事封装技术支持的公共服务平台。

记者:该平台是只面向浦东还是面向全国?

程:面向全国。

记者:与一些大型封装测试公司相比,该平台有哪些优势?您认为它的前景怎样?

答:随着封装技术不断发展演变,IC设计公司提出了微型化、轻便化、多功能化、高集成化和高可靠性的需求,目前一些大型封装公司并不能满足中小型IC企业的要求,而该平台的优势在于可以使相关企业获得服务便捷、形式灵活、成本合理的封装服务,有利于提高产品质量,加快产品开发节奏,例如为中小型IC设计/光电器件企业提供如下的服务:晶圆凸点制备、芯片级植焊球、有机底版设计及加工、表面贴装回流焊、BGA/FC/MCM封装及组装等。针对部分电子系统制造商的要求,开展特殊封装的研发与服务,主要包括:集成电力电子模块封装(IPEM)、大功率LED的封装、MEMS封装设计与服务等。为大学与科研机构提供各种特殊封装材料/形式的封装、咨询、培训、系统集成服务,以及各种可靠性测试和分析服务。上述服务都是一些大型封装测试公司无法做到的。所以该平台的服务模式本身就是一种优势。

另外,我国目前拥有良好的产业政策环境,浦东地区具有雄厚的产业基础,丰富的人才资源储备和较好的技术基础,加上广泛的市场需求和上海北京大学微电子研究院及其合作伙伴的技术和运营优势,该平台有着非常广阔的发展前景。

记者:成立这样一个平台,您一定也在这方面有非常深的了解,站在一个行业专家的角度,您对整个封装业的现状有哪些看法?

程:IC封装测试业是IC产业链中的一个重要环节。一直以来,外资企业在中国IC封装测试领域占据了优势,但内资封装测试企业蓬勃发展,中小企业不断涌现,内资特别是民营企业的发展为IC封装测试业增添了活力和希望。目前在长三角地区,汇聚了江阴长电、南通富士通、安靠、优特、威宇科技、上海纪元微科、上海华岭等众多大型微电子封装测试企业,在全国处于领先地位。西部地区封装测试业包括天水华天科技也有较快的发展。另外,2007年10月,英特尔(成都)有限公司微处理器工厂顺利运营并实现首枚多核处理器出口。同时,中芯国际(SMIC)、马来西亚友尼森(Unisem)、美国芯源系统(MPS)等半导体封装测试项目在成都相继投产,西部封装测试厂的产能将会进一步释放。

目前,国内外资IDM型封装测试企业主要为母公司服务,OEM型封装测试企业所接订单多为中高端产品,而内资封装测试企业的产品已由DIP、SOP 等传统低端产品向QFP、QFN、BGA、CSP等中高端产品发展。

综观目前国内整个封装业在对中小型集成电路设计企业的服务方面存在以下不足:

(1)国内企业高端技术投资有限,产品多集中于中低端,难以在高端市场上取得突破;

(2)国内先进封装技术的实施几乎完全依靠从国外引入;

(3)已有封装企业对于处于起步阶段的IC设计公司小批量封装要求能提供的服务极少,不利于整个IC产业的发展;

(4)无法满足小批量集成电路特殊封装的需求。

(下转第47页)

记者:未来封测业的发展怎样?该平台的未来发展规划是怎样?

篇7

关键词:微电子学;预实验;开放式实验

作者简介:梁海莲(1979-),女,江西高安人,江南大学物联网工程学院、信息与控制实验教学中心,讲师;赵琳娜(1979-),女,天津人,江南大学物联网工程学院、信息与控制实验教学中心,讲师。(江苏 无锡 214122)

基金项目:本文系江苏省研究生教育教学改革研究与实践课题(课题编号:YJG08_YB26)的研究成果。

中图分类号: G642.423 文献标识码:A 文章编号:1007-0079(2013)20-0092-02

随着社会的飞速发展,传统封闭式、单向传输的课程教学模式,已不能适应现代社会发展的需要。近年来,多数高校正积极开展面向高校、企业与科研中心一体化的“产学研”相结合的课程教学改革。[1]

作为电子信息产业核心技术之一的微电子技术,已经成为现代电子信息技术,是当前计算机和通讯技术发展的主要驱动力。[2]作为微电子学专业核心课程之一的“微电子专业实验”,所涉及的基础理论知识面较广,涵盖了“电路”、“模拟电子技术”、“数字电子技术”、“模拟集成电路”、“数字集成电路”、“半导体物理”、“半导体器件物理”、“电子设计CAD”、“集成电路封装、制造”等多门专业课程知识。鉴于该课程所需实验设备仪器种类较多、测控要求高、仪器价格昂贵、维护成本高等特点,且受人力、物力的限制,课程中不同实验所需配套设备购置数量较少。然而随着微电子产业对专业人才需求的不断增大,所需人才技能水平日益提高,高校在面向社会、面向未来,构建研究型综合大学的奋斗目标下,必须提高人才培养效率,改变传统教学模式,从根本上解决学生人数多、实验时间短、实践技能提升缓慢等现实问题,这是课程教学改革的关键。

基于上述“微电子专业实验”的课程特点与现实受限因素,迫切需要针对实验教学内容、实验教学方式和实验管理制度等方面进行改革与创新。这是因为实验教学在高校人才培养过程中起着非常重要的作用,是连接知识与实践、实践与创新,并使理论知识向实践能力转化的重要桥梁。[3]为践行研究型综合大学与时俱进的教学理念,[4]在“微电子专业实验”课程教学改革中,以提高学生的综合素质为目标,以学生为主体,在实验教学内容、实验过程、实验管理等方面进行了开放式微电子专业实验课程教学,并取得了良好的教学效果。

一、实验教学内容的设计与完善

针对该课程实验内容系统性强、理论知识抽象复杂的特点,为使学生在进入实验环节之前,对理论知识有一个形象、直接的感触体验,提高学生实验探索的兴趣,设计了一套相关实验所需理论知识的预实验系统。该系统结合电子设计CAD、专业仿真软件、动画演示等,将抽象复杂的专业理论知识形象化,有助于强化学生对理论知识的理解,较好地实现理论与实验相结合的过渡衔接。通过理论知识复习和预实验,既可有效促进学生对理论的理解,又能让学生在预实验中掌握下一步实验过程中的操作技巧,还能为学生获得新的理论知识打下良好的基础。

经初步尝试,整套预实验系统中的电路仿真软件Multisim、印制版电路仿真软件Protel、FPGA嵌入式系统设计、虚拟电子实验室Labview,以及电路系统功能仿真软件MATLAB、集成电路系统仿真软件HSPICE、Cadence电子设计软件及半导体器件仿真TCAD等软件,可实现微电子专业实验从单个器件向电路模块乃至整个电路系统,从前端系统功能设计向后端电路制作及电路性能验证的全功能预实验仿真。借助上述预实验系统,一方面可以加深学生对电路结构、原理的认识与理解;另一方面还能训练学生熟练地使用仪器,掌握正确的测量方法,提升学生的实验数据分析与鉴别能力,还有利于减少实验损伤,提高实验效率。

二、实验管理制度的设计与完善

虽然上述预实验在一定程度上有助于提高实验效率,但在提高学生动手能力、专业技能等方面尚有欠缺。为了进一步解决微电子专业实验仪器精密、贵重且量少,操控较为复杂、耗时费力等问题,仍需改革原有的实验管理制度,改变实验管理方法,提高仪器的使用效率。

针对微电子专业实验仪器精密、贵重、数量较为单一的特点,在购置相关仪器时,建立了专业对口教师采购、运行并维护的主负责管理制度,同时配备该仪器适用专业方向的研究生,经专业培训上岗,辅助指导实验学生正确操控、使用仪器。在新置仪器运行之前,要求厂家针对专业对口主负责教师和若干辅助测控的研究生进行系统运行、维护、管理培训,培训后主负责教师针对“微电子专业实验”课程的培养人数、课程日程、学分等情况,制定了学生实验分组、分时计划,并相应指定各实验小组的助教研究生,指导学生使用该仪器,协助管理实验仪器的运行、维护,并记载相应的实验运行状况、实验人员等。

同时,结合“微电子专业实验”课程系统性强的特点,通过相应的实验教学环节,培养学生独立完成半导体材料特性测试、微电子器件特性测试、微电子技术工艺参数测试和电路系统性能参数测试等,提升学生的综合测试技能和实验分析能力,巩固和强化现代微电子技术与集成电路制造技术的相关知识,并为学生进行理论知识创新提供了一个良好的实验平台和理论基础,综合锻炼了学生分析、探讨和总结实验结果的能力。

三、开放式微电子专业实验课程教改案例

以MOS集成运算放大器设计为例,制备工艺平台为0.6um CMOS工艺,2层多晶硅,5层金属连线,电路工作电压为3~5V。

首先,指定实验内容,两级CMOS集成运算放大器电路原理如图1所示,[5]其中M1~M4为有源负载的差分输入级,M5提供该级工作电流,M8、M9构成了共源放大电路,为输出级,M7为源跟随器,提供增益为1的缓冲器,以克服补偿电容的前馈效应,并消除零点,M6提供M7所需的工作电流,M10、M11组成运放偏置电路。电路性能与目标设计要求输出电压摆幅大于±3V,最大转换速率为30V/μs,补偿电容Cc为10pF。

其次,让参与实验的学生在电路仿真环境HSPICE中结合图1所示电路进行预实验,测试集成运算放大器在数学、物理理论模型下的理想实验参数,完成预实验,本预实验环节所需课时约3学时。在进入下一实验环节前递交实验预习报告,由学生在实验前联系专业机房的管理人员,自行安排课外时间完成。

再次,让学生在Cadence系统中使用Virtuoso软件完成CMOS集成运算放大器的版图设计,版图画完后需采用Design Rules Checker(DRC),按照电路设计规则检查设计的版图文件、运行和找出错误,并在相应版图位置中做出标记和解释。在检查完版图之后,还需进一步对Electrical Rules Checker(ERC)进行检查,以查找线路中的短路、开路和浮空结点,ERC检查到短路错误后将错误提示局限在最短的连接通路上。在修正上述版图、电路连接问题后,仍需使用Layout Versus Schematic(LVS)比较集成电路版图与其原理报告版图的连接是否一致,从而进行反复修改,直到版图和电路原理图达成一致。最终在完成集成运算放大器的版图验证与电路系统性能后仿的物理验证工作之后,方可与相关半导体代工厂联系,确定设计数据文件的大小、后端数据接口处的端口设计及其尺寸等,并交付半导体代工厂制备。本实验环节所需课时约6学时。

最后,将流片后的芯片在逻辑分析仪、混合信号测试仪、半导体参数分析仪等实验平台测试集成电路中器件的电学参数和集成运算放大器性能参数等,并结合预实验的仿真数据对比分析,进一步优化、改进版图,以提高集成运算放大器的综合性能,此实验环节约占3学时。由于本实验环节受仪器数量的限制,实验前需要先把已完成前两环节的实验学生分成2~3人一组,将半导体器件与集成电路测试和版图观测的实验平台安排在一个集成电路测试实验室,而将逻辑分析仪、混合信号测试仪等电路系统测试仪器等实验平台安排在另一个电子电学测试实验室,实现不同类别实验平台的相互独立,有助于不同实验室合理高效地实行开放式实验。当然不同实验平台均有指定能够熟悉操作的助教研究生协助,参与实验的学生能独立完成所需测试类型的实验。实验结束后,学生以书面形式阐述实验过程、分析测试数据、总结实验结果、完成实验报告。教师针对实验过程中出现的新现象、新问题,提出问题的查找方向,鼓励学生积极探索,查阅课外文献,提出具有独到见解的实验观点,为理论知识的创新、发展培养正确的科研方法。同时,也需要对全面开放的专业实验教学模式进行评价和提出建议。

四、结论

调查结果显示,学生对这种开放式微电子专业实验课程教学改革积极性较高,认真负责的配合教师、助教研究生完成实验任务。与传统单一、封闭教学模式相比,本课程教学改革在原实验管理员的积极支持下取得了良好的实验效果,也深受同学们欢迎,有助于提高同学们的学习兴趣和自我学习能力。

参考文献:

[1]刘瑞,伍登学,邬齐荣,等.创建培养微电子人才教学实验基地的探索与实践[J].实验室研究与探索,2004,(5):6-8,23.

[2]杨依忠,解光军,易茂祥,等.创建微电子专业实验室的探索与实践[J].实验技术与管理,2009,26(12):137-143.

[3]马瑶,石瑞英,袁菁,等.开放式专业实验教学模式探索和实践[J].高等教育发展研究,2008,25(1):42-45.

篇8

关键词:电子科学与技术;课程建设;实践创新能力

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)25-0103-02

电子科学与技术作为信息技术发展的基石,伴随着计算机技术、数字技术、移动通信技术、多媒体技术和W络技术的出现得到了迅猛的发展,从初期的小规模集成电路(SSI)发展到今天的巨大规模集成电路(GSI),成为使人类社会进入了信息化时代的先导技术。电子科学与技术专业是国家重点扶植的学科,本专业作为信息领域的核心学科,培养国家急需的电子科学与技术专业高级人才。

在新的历史条件下,开展电子科学与技术专业课程建设的改革与实践研究是非常必要的,这对于培养出具有知识、能力、素质协调发展的微电子技术应用型创新创业人才具有重要的指导意义和战略意义。本文依据电子科学与技术专业本科生课程建设的实际情况,详细分析了本专业在课程建设过程中存在的问题,提出了关于电子科学与技术专业课程建设的几点改革方案,并进行了一定的探索性实践。

一、目前课程建设中存在的一些问题

1.在课程设置方面,与行业发展结合不紧密,缺乏专业特色和课程群的建设,课程之间缺少有效地衔接,难以满足当前人才培养的需求。本专业的课程设置应当以培养具有扎实的微电子技术领域理论基础和工程实践能力,能从事超大规模集成电路设计、半导体器件和集成电路工艺制造以及相关电子信息技术应用工作的高级工程技术人才和创新创业人才为培养目标来进行课程建设。

2.在创新实践教学方面,存在重理论教学和课堂教学,缺乏必要的实践环节,尤其是创新实践环节的教学,相关实践和实验教学手段和教学方法过于单一,仅在教师课堂教学讲授范例和实验过程的基础上,指导学生进行课程实验,学生按照课程实验手册上的具体步骤逐一进行操作,完成课程所要求的实验。单一的实验和实践教学方式难以提升学生的创新实践和动手能力,更难以实现对所学知识的实践和灵活运用,难以满足当前强调以实践为主,培养实践型创新人才的要求。

二、课程建设改革的目的与任务

结合集成电路行业未来的发展趋势以及电子科学与技术专业总体就业前景和对人才的需求结构。根据我国电子科学与技术产业的现状和发展需求,通过对电子科学与技术专业的课程建设进行改革,重点强调工程实训与创新实践,在课程教学中体现“激发兴趣、夯实基础、引导创新、全面培养”的教学方针。重新规划专业培养方案和课程设置,以集成电路工艺与设计为重点,设置课程群,构建新的科学的课程体系,突出特色,强化能力培养。

三、课程建设改革的具体内容

人才培养目标以厚基础、宽口径、重实践、偏工程为宗旨,培养具有扎实的微电子技术领域理论基础和工程实践能力,能从事超大规模集成电路设计、半导体器件和集成电路工艺制造以及相关电子信息技术应用工作的高级工程技术人才和创新创业人才。以大规模集成电路设计、制造和工艺、电子器件和半导体材料、光电子技术应用等方面为专业特色进行课程建设改革,具体的改革内容如下。

1.课程设置。首先,根据本专业人才培养目标要求按需设课,明确设课目的,并注意专业通识课、专业基础课、专业限选课和专业任选课之间的衔接与学时比例,加强集成电路设计与集成电路工艺方面的课程设置,突出微电子技术方向的特色,明确专业的发展目标和方向,将相关课程设置为课程群,通过相关课程的有效衔接,突出能力培养。其次,随着电子科学与技术的不断发展,注重本专业课程设置的不断更新和调整。

2.教学方式。首先,加强对青年教师的培养和训练,注重讲课、实验、考试及课下各个环节的相互结合,即课堂与课下相结合,讲课与实验相结合,平时与考试相结合。其次,讲课中注重讲解和启发相结合,板书和多媒体相结合;实验中注重方法和原理相结合,知识和能力相结合;考试中注重面上与重点相结合,概念与计算相结合,开卷与闭卷相结合,重点开展课程的网络化建设,将相关实验课程的教学录像上网,通过网络教学加强学生的实验实践能力培养和提高。第三,注重双语课程的开设与优秀经典教材的使用相结合,双语课程与国际该课程接轨。

四、结语

科学与技术专业课程建设应当围绕电子科学与技术专业应用型人才的培养和专业特色,通过制订适用集成电路人才培养目标的培养方案、课程设置、实验体系和教学计划,突出集成电路工艺与设计实践环节,进而有效地提高实验和实践教学质量,为培养具有实践创新能力的科技创新型人才奠定了基础。

参考文献:

[1]刘一婷,李新,关艳霞,等.突出专业特色的电子科学与技术专业人才培养方案构建[J].高教学刊,2016,(7):74-75.

[2]李新,刘一婷,揣荣岩,等.集成电路产业人才培养的课程体系建设[J].教育教学论坛,2016,(1):63-64.

[3]潘宇恒.电子科学与技术专业的课程优化[J].科研,2016,(3):00209.

[4]韩益锋,姚文卿,董良威.电子科学与技术专业课程体系建设与实践[J].考试周刊,2014,(45):148-149.

[5]陶建平.电子科学与技术专业本科教育质量探索与实践[J].公安海警学院学报,2014,(2):34-37.

[6]谢海情,唐立军,唐俊龙,等.集成电路设计专业课程体系改革与实践[J].教育教学论坛,2015,(34):76-77.

[7]全国高等学校教学研究中心.电子科学与技术专业发展战略研究报告[EB/OL].http:///link?rl=fsRthBj31TQQh1FCB740v-yPMYbTKEDaxrKs_caajUeYpVorqPMpcpzfV9wyz-vx3Vd7-hKL37B5rClIwE37dIk5CqZU2M-quD7BTAE_tSMwq,2007-06-18.

[8]刘继春,毛剑波,杨明武.“电子科学与技术专业”学科建设的探索与实践[J].合肥工业大学学报(社会科学版),2008,(06):138-141.

[9]王敏杰,朱连轩,袁超.电子信息科学与技术本科人才培养探索[J].科技信息,2009,(30):20.

[10]李俊杰.浅谈电子信息科学技术发展[J].魅力中国,2010,(10):237.

[11]陈力颖.《大规模可编程逻辑器件设计》课程实验考试改革的探索[J].教育教学论坛,2013,(52):255-257.

[12]何伟明.高等学校电子科学与技术本科专业发展战略研究报告2006-2010年教育部高等W校电子科学与技术专业教学指导分委员会[J].电气电子教学学报,2009,(S1):1-13.

Reform and Exploration of Course Construction of Electronic Science and Technology

CHEN Li-ying

(School of Electronics and Information Engineering,Tianjin Polytechnic University,Tianjin 300387,China)

篇9

Abstract: Combining with the practical situation and characteristics of the university, based on training target of micro-electronics specialty and from the concept of undergraduate talents cultivation, this paper discussed the cultivating pattern of applied talents from course offering, teaching contents, teachers team construction, experimental teaching practice, and put forward a series of feasible and effective measures, so as to promote rapid development of our new professionals of microelectronics and cultivate application-oriented talents of microelectronics.

关键词: 应用型人才;微电子专业;素质教育

Key words: applied talents;microelectronics major;quality education

中图分类号:G64 文献标识码:A文章编号:1006-4311(2010)29-0234-02

0引言

微电子学是在物理学、电子学、材料科学、计算机科学、集成电路设计制造学等多种学科基础上发展起来的一门新兴学科,是发展现代高新技术和国民经济现代化的重要基础。作为电子通信类高校,南京邮电大学建校近50年来,正朝着信息科技类大学进军。随着电子、通信和信息等产业的飞速发展,国内外微电子学人才都十分紧缺,建立微电子学专业,也可为我国的 ASIC设计方面,培养急需的人才[1-6]。在现代科学和技术迅速发展的今天,社会要求大学的培养目标同经济发展的需要相结合,如果培养出来的学生能够适应社会的需求,不仅学生能有用武之地,找到自己的价值和自信,而且学校的知名度也得以提升。因此现今的学校越来越注重某一专门职业的培养,注重培养有能力,有效率的人。因此当今的高校教育不仅需要培养大量理论基础较扎实、具有开拓创新精神的专业型人才,也更需要培养大量工程应用型人才。应用型人才培养模式的具体内涵是随着高等教育的发展而不断发展的,“应用型人才培养模式是以能力为中心,以培养技术应用型专门人才为目标的”。本科应用型是本科层次教育,既有着普通本科教育的共性,又有别于普通本科的自身特点,它更加注重的是实践性、应用性和技术性。即基础知识比高职高专学生深厚、实践能力比传统本科生强,是本科应用型人才最本质的特征。本科应用型人才培养模式是根据社会、经济和科技发展的需要,在一定的教育思想指导下,人才培养目标、制度、过程等要素特定的多样化组合方式[7]。

1培养应用型人才的措施探讨

培养应用型人才不是单方面的强化和提升,而是涉及到方方面面。比如,学校自身的特点,目标的定位,课程的设置等等,因此,培养应用型的人才可以采取以下措施:

1.1 明确学校和学科的特点和优势每一所高校都有自身的办学特色,每一个学科都有自身的历史传统。只有实事求是地综合分析学校已有的学科基础、特色、优势和不足,才能明确学科发展的科学定位,才能培养出有自身特色的专业人才[6]。微电子专业在我校还是一个新专业,如何把这个新专业做大做强,真正体现出南京邮电大学的微电子专业的专业特色,是一个值得探讨的问题。根据我校长期为IT行业培养人才和相关院系的基础和优势,设置了以通信集成电路设计为主要方向,并对专业方向的发展作了规划,同时兼顾工艺设计与器件设计。与此同时,确立我校微电子专业人才的培养目标为:根据学校的办学指导思想,树立“理科本科教育以培养应用基础和理工融合型人才为主,在坚持人才培养质量统一要求的基础上,鼓励学生个性化、多样化发展,强化学生的创新精神和实践能力培养”的教学工作指导思想。从教育理念上讲,应用型人才培养应强调以知识为基础,以能力为重点,知识能力素质协调发展。强调学生综合素质和专业核心能力的培养。侧重学科、专业知识的学习和专业能力的培养;培养适应社会主义现代化建设和信息产业发展需要,在德智体诸方面全面发展,具有较高思想道德、良好的科学文化素质、敬业精神和社会责任感,在拥有微电子学领域内扎实的理论基础上、还具备实验能力和专业知识,具有较强的创新精神和工程实践能力,能在应用微电子学、半导体技术及相关的电子信息科学领域从事产品设计、科技开发、工程技术、生产管理与行政管理等工作。

1.2 课程设置课程的设置是否合理对应用型人才的培养起到了至关重要的作用,其结构是否连贯、课程安排是否合理直接影响后续的教学培养工作。

1.2.1 课程的设置考虑到应用型人才的特点,必须根据行业的需求来安排和设置课程,在进行课程设置的时候,必须先进行广泛的调研,考虑到社会的实际需求,社会需要什么样的人才,对今后毕业生的去向有充分的了解,了解用人单位的性质,了解用人单位要求毕业生具备什么知识和能力,更重要的是,培养学生自学的能力、解决问题的能力、判断能力和创新能力。在微电子专业正式招生之前,我们组织教师到国内不少高校进行调研,并与多所学校的教师进行了交流。在广泛调研的基础上,我们了解了国内外、省内外的同类专业的发展状况和我校微电子专业的实力、优势及所处的地位,了解到国内外微电子学及集成电路设计人才都十分紧缺,为此,我们提出通讯集成电路和新型微电子器件作为我们的专业方向和特色,并在教学和科研中体现出来。为此,在课程设置上,我们必须在对已经投入适应的培养方案进行分析和总结、不断地进行修订和完善,将整个学科的课程结构体系,到具体到每一门课程的知识体系,都应该进行优化设计,以期在最短的学时内使学生掌握牢固的知识。最终使学生获得以下几方面的知识和能力:①掌握数学、物理等方面的基本理论和基本知识,具有较好的人文社会科学基础,并熟练掌握一门外语;掌握微电子学、半导体科学与技术的基本知识、基本理论和基本实验技能;②熟悉国家信息产业政策及国内外有关知识产权的法律法规;了解微电子学的理论前沿、应用前景和最新发展动态,以及信息产业发展状况。③具备较好的运用专业知识进行器件设计、集成电路设计的能力,成为工程应用型人才。

1.2.2 理论课程的内容针对江苏省和南京市的集成电路发展特色,以及南京邮电大学的学科特点和电子科学与工程学院的实际情况,适当加强通讯集成电路、新型微电子器件和光电集成的课程,体现专业特色。以能力培养为基础来设计的。在进行社会行业的调查中,首先考虑学生毕业后从事何种职业,然后对这种工作需要哪些能力和知识,根据工作的要求对教学终的课程进行专项的能力和综合能力。在通识基础课中设置了高等数学、大学物理、物理实验、程序设计等。学科基础课中设置了数理方程、概率论、信号与系统、数字电路与逻辑设计、模拟电子技术及电工电子实验等。这些是所有涉及到电类专业的学生都必须学习的课程。在微电子专业的专业基础课中安排了固体物理、半导体物理、半导体集成电路工艺、半导体器件物理、通信原理,这些课程都是基础理论课程,是为微电子专业的学生打下基本的专业基础。考虑到应用型人才的培养,在集成电路与CAD的课程设置上,不同于专业型人才的培养模式,专门设置了16小时的实验,加强学生的实验和操作技能。在集成电路分析与设计的课程设置中,专门将模拟和数字分开,设置了各48小时的模拟集成电路分析与设计、数字集成电路分析与设计,这不同于其他院校的课程设置,应该也算是我专业的一个特色和优势。使学生掌握初步的集成电路设计知识,加强了学生的集成电路分析和设计的能力。另外还设置了32小时的VLSI设计实验课和32小时的微电子专业实验,这也大大加强了实验和上机比例。具体来讲,已经在建设的ASIC设计实验室的基础上开展了ASIC设计实验课程的教学,并筹备建立了微电子专业实验室,拥有了一批工作站、计算机等硬件资源和ISE、MAXPlus II、Synopsys Cadence等软件资源、学会一到两种EDA工具的使用方法。建设微电子器件和半导体物理专业实验课程,在广泛调研的基础上购置了必要的仪器设备、编写了实验教程、开展了半导体材料实验和晶体管测试实验;基于以上措施,建立一整套完备的、覆盖微电子产业前端和后端工序的微电子实验课程体系。开展了器件和工艺设计实验。掌握一定微电子实验能力是微电子专业本科生应当具备的基本素质。在微电子专业的专业选修课中设置了VLSI版图设计基础、片上系统设计、微电子器件设计、MEMS与微系统设计、新型微电子器件、通信集成电路等多门课程,涵盖了微电子方向的器件设计、电路设计、工艺设计等各个方面。更好地体现了应用型人才的培养方向和目标。

1.2.3 实践课程的内容课程突出职业能力。对于应用型人才来讲,在学习过程中训练学生的职业技能是学生是否成功的关键之一;学习过程重点基于问题的学习,这是培养学生解决问题能力、判断能力和创新能力的又一关键;学习过程还要培养学生的沟通能力。此外,还拟通过建立微电子专业实验室,开设微电子和半导体测试实验课,在培养学生理论知识的同时,加强实践能力的培养,培养既有较深理论基础,又有一定动手能力的全面发展的学生。微电子专业是一个实践性较强、实践内容多的专业,从集成电路的生成流程来看,其实践内容包括系统和电路设计、器件设计、工艺设计、版图设计、实际流片和测试。作为高等学校,而非生产厂家,不可能具备从前端到后端整个流程的实践条件,为此,我们拟对其中的主要环节开展实践教学。在实践型环节的课程设置中,通识基础课和学科基础课中安排了电类学科所必须的程序设计、电装实习、电子电路课程设计等。在专业基础课和专业课中,设置了软件设计、微电子课程设计等,设计内容都是与本专业紧密相关,全面运用到所学的专业知识。同时建立校外实习基地,使学生能够初步了解芯片生产过程。通过参加国外IC CAD公司的大学计划、购置器件和工艺设计CAD工具,并通过和IC生产企业建立良好合作关系,建立生产实习基地。注重学生与工业界的直接联系。争取在毕业设计阶段,大部分学生的毕业设计都能在企业完成的,而且不少学生的第一个工作就是在所实习和进行毕业设计的单位里找到的。

1.3 师资队伍的建设没有高水平的师资队伍,培养高素质的人才也只能是纸上谈兵。而且本学院的主要任务就是能培养具有良好的学习、工作和创新的高级应用型人才,因此从这个方面来讲,没有年龄结构、学历结构、职称结构合理的高水平师资队伍,也是不能完成高校所承担的任务的。而且针对应用型人才的培养目标,师资队伍本身也要具备能培养应用型人才的能力和水平。

1.3.1 积极培养学科带头人培育创新型人才就要统筹考虑学科直接承担的教学、科研、服务三大职能的关系,加速建设学科带头人、重点骨干教师和优秀青年教师4个层次的学术梯队。以中青年学科(术)带头人的培养为重点,并加大向青年骨干教师和一线教师倾斜的力度,创造一个公开、平等、竞争、择优的用人环境,营造一个和谐、宽松、温馨的工作氛围。学校要为人才成长创造一流的工作和实验条件,打造一个凝聚人心的事业平台,通过培养和引进,形成一批整体素质高、学术实力强、结构合理、具有团结协作精神的学术梯队,使其在学科建设中发挥突出作用。

1.3.2 在教师中增加培养应用型人才的意识目前,我校的微电子技术系拥有教师7名,平均年龄35岁以下,年轻教师占了90%以上。我们学院的老师都是从大学毕业直接来教大学,导致对学生的培养从源头上还是在按照“理论型”或“学术型”的培养模式在进行。因此,建立既具有深厚扎实的理论知识功底,又具有精通实践,有很强的动手操作能力和解决生产实际问题能力的“双师型”教师队伍,培养高层次高质量的实用型、应用型教学人才迫在眉睫。今后学院应把如何培养“应用型教师”作为一个重要目标,来加强师资队伍的建设。在教师中增加培养应用型人才的意识。

积极筹措资金,进一步完善微电子设计、测试实验室,开出更多的实验项目,增加实验组数,鼓励教师在课程教学中增加设计、实验类的课时比例,让学生多动手动脑。鼓励教师积极申报应用型或工程类的项目,这样既可以满足一定的科研工作量,也可以让学生参与到项目中来锻炼学生的从事科研和工程技术类的工作,积累一定的设计、实验和操作经验。鼓励教师与公司、研究所合作,给学生提供实习、工作的机会和场所,也可以提高就业率。鼓励教师到国内外高校去做访问学者,积极参加国内外举办的国际会议,从而了解专业的最新发展、前沿问题,并开阔了眼界。设立专款建立青年教师培养基金,资助青年教师开展注重应用类的教学科研工作。在进行教学工作的同时,也与企业界密切合作进行科研工作和技术开发工作,保证自己在理论和技术方面的领先性,在授课时结合自己的研究成果、把新的观念、新的方法、新的理论传授给学生,当自己的研究成果转化为产品后,可以将最新产品和最新技术溶入工业中。

只要通过以上措施,从学科目标、理论课程、实践环节及师资队伍建设等工作常抓不懈,经过一定的阶段,一定会培养出高水平的拥有微电子学领域内扎实的理论基础、较强的创新精神和工程实践能力,从事产品设计、科技开发、工程技术、生产管理与行政管理等工作的应用型人才。

2小结

总的来说,微电子学是发展现代高新技术和国民经济现代化的重要基础。而国内外微电子学人才都十分紧缺,尤其注重某一专门职业的培养。因此我校也更需要培养大量的微电子方面的工程应用型人才。而培养应用型的人才必须采取的措施是:明确我校的特点和优势,以通信集成电路设计为主要方向,同时兼顾工艺设计与器件设计;在课程的设置上,必须根据行业的需求来安排和设置课程,除了基础理论课,也要大大加强实验和上机比例。在培养学生理论知识的同时,加强实践能力的培养,培养既有较深理论基础,又有一定动手能力的全面发展的学生;同时在教师中增加培养应用型人才的意识,鼓励教师与公司、研究所合作,积极申报应用型或工程类的项目,让学生参与到项目中积累一定的设计、实验和操作经验。鼓励教师给学生提供实习、工作的机会和场所。相信通过各方面的工作的配合,一定会培养出高质量的微电子学领域内的应用型人才,为我国的微电子工业做出贡献。

参考文献:

[1]杨宏,王鹤.微电子机械技术的发展与现状.微电子学,2001,31(6):392-394.

[2]严兆辉.微电子的过去,现在和未来.武汉工程职业技术学院学报,2003,15(2):30-34.

[3]李斌,黄明文.微电子技术专业创新教育探索.中山大学学报论丛,2002,22(1):108-109.

[4]刘瑞,伍登学,邬齐荣等.创建培养微电子人才教学实验基地的探索与实践.实验室研究与探索,2004,23(5):6-8,23.

[5]李文石,钱敏,黄秋萍.施敏院士论微电子学教育.教育家,2003,(3):11-16.

篇10

学术界对计算机的发明与发展一般认为经历了四个阶段。第一阶段是在20世纪40年代,称为电子管计算机时代,计算机发展之初,体积大、速度慢主要应用的数字计算。20世纪50年代末60年代初晶体管取代电子管,称为第二代计算机。第三代计算机是中小规模集成电路的时代,也是计算机飞速发展和快速普及的时代,这一代计算机已经具备现代计算机的雏形,也突破了计算机数字计算时代,三代机可以处理文字、图像等资料,也使软件技术得以突破和发展。目前使用计算机成为第四代计算机,计算机进入了超大规模集成电路和数字电路时代,计算机实现了智能化、微型化、网络化和多媒体化,价格更便宜,更容易携带,所以更加普及从国防到工业、现代农业、商业,教育,医疗卫生,娱乐、生活,计算机正在改变人们的生活,成为现代社会不可缺少的生产资料。

2当前计算机硬件的现状

现代计算硬件的核心还是由中央处理器(CPU),内部存储器和输入输出设备组成,中央处理器是计算机运算、控制的核心。它的运算速度和处理能力是计算机性能的主要体现。内部存储器用来储存“程序”和“数据”。中央处理器执行程序时,从内存中存取程序和数据。输入设备是向计算机输入数据和信息的设备,是计算机与用户或其他设备通信的桥梁。输出设备是人与计算机交互的一种部件,用于数据的输出,它把各种计算结果数据或信息以数字、字符、图像、声音等形式表示出来。这三大核心部件是如何发展的。(1)中央处理器(CPU)。目前中央处理器按照处理信息的字节长度可以分为4位、8位、16位、32位、64位处理器,处理信息速度可以达到1000MIPS,随着纳米集成电路的发展,能够集成的晶体管数量还会进一步增加,处理速度也会相应增加,但是纳米级集成电路也不能无限集成,他也有技术极限,要想有更大的突破,还需改变目前处理器硬件逻辑,创造新一代信息处理方法。(2)内部存储器。内部存储器储存计算机程序和信息的硬件,一般认为对于内部存储器来说,希望它能具有更大信息存储量,更高的信息交换速度和更低的能耗。(3)输入输出设备。使用过计算机的人都知道传统的输入输出设备一般包括键盘、鼠标、显示器、音频设备、打印机和一些图像处理设备等,这些设备也是经过不断发展的,从机械键盘,机械鼠标,到光电设备,从三基色CRT显示器到LED液晶显示器,这一类硬件发展速度非常快,而且更加专业化、数字化和智能化,使计算机的操作者人机界面更加友好。

3未来计算机硬件的发展方向

从计算机问世至今,计算机硬件的发展一直在追求一个方向,那就是要使计算机运算速度更快、存储能力更强,集成化程度更高,也就是让计算机体积更小,价格更便宜,应用更加智能。但是当进入一个信息化、数字化发飞速发展的今天,对计算机的要求也不断提高,希望计算机能能够帮助人类做更多的事情。所以现在研究计算机发展时发现下一代计算没有固定的发展方向了,呈现出数轴状的发展趋势,例如计算机体积就像两个极端发展一个是微型化,一方是巨型化。计算机应用的过程中希望单体硬件越小越好,便于携带和使用。另一方各国都在研制巨型计算机用于国防、天文、气象、经济等领域顶级科研应用,其实这两种方向都要求计算机硬件特别是处理器能在更小的体积上集成更多的半导体材料。同时希望计算机更加智能,又要求计算机能更加专业,智能是要让计算机像人脑一样,处理更多的问题,在工业上还要求计算机在精度、速度能够满足特定工艺具有专长。这要求计算机运算速度更快,使用更加可靠稳定,处理信息的能力要更高,更加安全。从上分析得出结论,下一代计算机是要求速度快,智能程度高,安全稳定,处理信息能力强,根据这些要求现在计算机硬件终究会有极限和瓶颈,集成程度高,散热就是问题。纳米级集成电路也有尺寸极限。这是计算机硬件发展中一定会遇到的硬件墙。那么解决这一问题的根本方法就是发展革命性信息处理技术的硬件。现在已经在攻关的下一代计算机有光计算机,量子计算机、生物计算机等。希望在这些领域尽快突破,将人类文明引领于新时代。

4结语

计算机从问世至今已经有70多年的发展史,从晶体管计算机到目前超大规模集成电路,计算机的发展经历了几次跨时代的革命。其中计算机硬件的革新是推动计算机革命的主要动力源泉。目前认为计算机经过了四展,现有技术主要还是建立在半导体集成技术的基础上,也在研究和展望下一代计算机发展方向,有科学及预计下一代计算机硬件技术可能出现颠覆性创新和多方向发展,光计算机,量子计算机,超导计算机都是未来计算机发展方向。文章不能全方位阐述计算机硬件的发展,只是根据个人观点探讨硬件的发展,寻找一个研究方向和目标。

作者:李晓坚 单位:黑龙江商业职业学院

参考文献