流体力学理论及应用范文

时间:2023-12-20 17:57:30

导语:如何才能写好一篇流体力学理论及应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

流体力学理论及应用

篇1

关键词:计算流体力学;课程改革;应用型本科;项目驱动

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)22-0123-02

计算流体力学(Computational Fluid Dynamics,CFD)是一门集成了流体力学、计算数学与计算机科学的交叉学科。计算流体力学的基本思想为[1]:通过计算机数值计算和图像显示,对包含流体流动和传热等相关物理现象做出系统的分析。随着计算机技术的发展,计算流体力学在各行各业得到了广泛的应用。

《计算流体力学》课程开设的主要目的在于使学生掌握流动及传热问题数值模拟的基本理论与建模思路、掌握常用商用CFD软件的使用方法,能够利用计算流体力学方法解决实际研究问题[2]。课程内容涉及了流体力学理论、数值计算理论、计算机程序设计以及计算软件的工程应用等。课程理论内容较多,学生学习起来较为吃力,常处于被动学习状态,因此需要改进教学策略,培养学生学习兴趣,改被动学习为主动学习[2]。同时该课程还与实际应用联系紧密,如何将理论与工程实际相结合,培养学生解决实际工程问题的能力,也是本课程教学中需要探讨的问题。经过多年在教学过程中的改革和摸索,下面浅谈一下我们在《计算流体力学》课程改革方面的一些探索。

一、计算流体力学课程内容

计算流体力学包含内容甚广,从总体上讲,可按照不同的应用领域分为两个主要方向:

1.将计算流体力学自身作为对象的课程体系。该体系的研究对象为计算流体力学本身,主要以流体力学数学物理模型模型构建、数值离散方法、高性能数值计算算法开发为主要内容,侧重点为计算流体力学理论及其实现方法。

2.以算流体力学应用为主的课程体系。此体系以如何更好地将计算流体力学方法应用于工程作为研究对象,主要以应用技能为课程目标,侧重点为现实物理问题的简化建模、利用计算机程序解决物理问题以及对计算结果的科学解释等。

对于应用型本科《计算流体力学》课程来讲,应当更多地关注计算流体力学在工程中的应用,将计算流体力学作为一项解决工程问题的工具,培养学生在利用该工具解决实际工程中的流体问题的能力[3]。

二、原有教学方法的弊端

西南石油大学机械工程专业较早开设了《计算流体力学》课程,培养了多届学生,积累了一些宝贵的教学经验。然而,该课程教学方式仍不够成熟,存在一些弊端,教学效果受到影响。这些弊端主要表现为:

1.教学内容偏于理论。在教学过程中,当前的教学内容还延续中传统的计算流体力学的基本内容,即:流体流动控制方程的推导、离散方法及线性方程的解法等,在课程讲解过程中,仍以有限差分法、有限体积法及这些数值算法的收敛性、稳定性、计算精度等方面作为主要的讲解对象,教授过程中涉及到大量的理论推导及数学理论的应用。在教学过程中,学生们普遍反映教学内容难懂难学,枯燥乏味。同时大量的理论教学还影响了上机教学时间。

2.工程实践能力转化不足。当前教学计划中虽然搭配了16个课时的上机教学,但仍显不足。经过多次的上机练习,部分学生能够掌握利用计算流体动力学方法解决工程问题的一般流程,但是大部分学生仍然不具备解决新问题的能力。在上机练习过程中,学生按照教师提供的上机指导书中的计算模型操作完成,而对于计算中非常重要的如计算区域创建、网格划分、数值计算模型选择、边界条件、初始条件及计算控制参数等缺乏自主的思考。针对上述问题,迫切需要对课程进行教学改革,提出新的教学理念,利用合理的教学方式,提高教学质量。

三、课程改革措施

计算流体力学课程改革主要从三方面进行。

篇2

关键词:宏观,微观,介观,Boltzmann方程,流体力学方程

 

流体力学时研究流体运动规律的一门学科,经过多年的发展,已经取得了丰硕的成果,但由于流体运动的复杂性,还有很多实际的问题没有得到解决,在数学上,其复杂性反应在描述其运动的上,除了一些简单的情况,一般是很难得到这些方程的精确解的,因此,方程的求解问题也被美国CLAY数学促进会设立的7个100万美元奖金的千年难题之一。

现在,对流体力学的研究一般从宏观,微观,介观三个层次。。首先我们来介绍下这3个方面。

流体力学方程是从宏观层次上得到的,流体被假设为连续介质,流体运动满足质量守恒,动量守恒,能量守恒,并由Euler方程组Navier-Stokes方程组来描述,在数值计算中【1】,以非线性的微分方程为出发点,有有限差分法,有限容积法,有限元法,有限分析法,谱方法等,这类方法本质上是一种自顶向下的方法,对微分方程进行离散,得到代数方程组或者常微分方程系统,再利用标准的数值方法求解。

在微观上,流体不再被假设为连续介质,流体由大量的离散分子组成,分子受到相互间作用力和外加作用力的影响。任何系统的宏观特征和运动规律,再微观上都表现为分子的无规则的热运动。因而,一种最直接的想法就是通过模拟每一个分子的运动。再进行统计平均,已获得流体运动的规律。这种方法称为分子动力学模拟。由于这种方法主要是在计算机上实现的,所以在早期,受到计算机的限制,模拟的空间尺度和时间尺度都很有限。。但随着近年计算机技术的高速发展,分子动力学模拟方法也得到了迅速的发展,已经成为研究流体运动的一种重要的方法。。

在介观上,流体被离散成一系列的流体粒子,通俗的说,这些粒子比分子的级别要打,但从宏观上来说又无限小,其质量比起有限容积法中的控制容积质量要小得多,此时用数学的观点来描述此流体就应该Boltzmann 方程。

从以上的综述可以看出,对于同一流体,从宏观和介观可以由不同的方程来描述,因此,从数学的观点将其统一起来,就是非常必要的,下面,我们就从理论的角度,来证明,从介观的Boltzmann 方程可以恢复到到宏观的Navier-Stokes方程组。

首先我们简单的介绍下Boltzmann 方程。。这个方程是由统计力学的创始人之一Boltzmann所建立的,用以描述非平衡态分布函数演化规律的方程,其具体形式如下,

(1)

其中,称为碰撞算子,它的形式由下式给出:

在中的B称为碰撞核,它仅依赖于粒子间的碰撞,从物理背景出发,我们总假设仅依赖于和,这里我们不过多的牵涉到它的具体形式。

下面,我们就严格的推导,如何从Boltzmann 方程到大家所熟悉的Navier-Stokes方程组,首先引入下面一个引理:

引理【2】:对于,,始终有成立。

注:该引理的证明科参考文献[2],这里我们不给出严格的证明,我们将以上的称为守恒量。

下面我们给出本文主要结论,即从形式上出发,可以由Boltzmann 方程到Navier-Stokes方程【3】。

证明:首先在方程两边同时乘以,并积分,利用引理,就可以得到下面的积分方程

(2)

如果我们定义,,就可以得到,这就是大家所熟知的质量守恒方程。

类似地,如果在方程(1)两边同时乘以和,并积分,再利用引理,

如果我们再定义,,,

,就可以得到动量守恒方程和能量守恒方程。

,(3)

(4)

以上的方程(2),(3),(4)j就是流体力学方程组。

注:虽然我们根据这个定理从形式上得到了流体力学方程组。。但要真正发挥作用,还需要求得,,使其成为一个封闭的方程组,而严格求解Boltzmann 方程是很困难的,所以还有很多的问题没有解决。。

对于宏观和微观的问题,近来成为大家研究的热点,相信随着研究的深入,很多问题都会被解决,也会给工程中带来更多的应用。

参考文献:

【1】何雅玲,王勇,李庆,格子方法的理论及应用,科学出版社。

【2】2008李大潜,秦铁虎,物理学与偏微分方程,高等教育出版社,2005

【3】C.Cercignani,R.Illner,M.Pulvvirenti,稀薄气体的数学理论,高等教育出版社,2009

篇3

关键词: 农业物料学 理论教学 实验教学 一体化

农业物料学是应用近现代物理学理论、方法和技术来研究农业物料的物理特性,以及各个物理因子和生物特性相互作用的一门边缘性学科[1]。作为农业工程学科的基础,农业物料学已经成为农业高校农机化专业一门理论性和实践性并重的专业基础课程,主要培养学生掌握利用相关技术测试常见固体和液体农业物料物理特性的实验方法和原理。农业物料学涉及农学、生物学、机械力学、流体力学、电学、光学等多门学科的理论和技术,知识领域广,学科交叉,给该门课程的教学带来很大的挑战。为了更好地加强知识的理解、提高学习效率、进一步提高农业物料学的教学质量,结合教学内容和目标,对该课程进行理论与实验一体化教学模式的探索。

1.课程知识结构设计

1.1农业物料学研究对象及特征

农业物料学的研究对象是农业生产及农产品加工和处理所面对的植物物料和动物物料及其半成品和成品,如谷物种子、果蔬类、油类、肉、蛋、奶等,按存在状态可分为固体物料和液体物料。农业固体物料的结构形式表现出多样性,它们以块状、散粒体、粉状等规则或不规则的形式存在,它们的内在品质也具有很大的差异性,因材质的不同表现出不同的力学特性、电学特性和光学特性;农业液体物料作为连续介质,因其黏性不同而具有复杂的流动特性和流体动力学特性。

1.2理论模块设计

农业物料学所研究的内容是基于农业生产、加工、存储、运输、检测的机械装备和系统的设计需求,利用合适的技术和手段来研究各类农业物料基本物理参数、力学、光学及电学特性[2]。遵循主次分明、突出重点的原则,具体理论教学内容包括物料的基本物理参数(如形状、尺寸、体积、密度、孔隙度、表面积、比表面积、含水率等)的表达形式和测试方法、黏弹性物料的流变模型及应力松弛和蠕变理论、液体物料的黏度及液体物料流体阻力特性、散粒物料的内外摩擦力学特性及空气动力学特性、农业物料的换热理论及干燥理论、农业物料的介电特性和导电特性、农业物料的光学反射和透射理论等。

1.3实验模块设计

实验内容的设计在该教学模式中的作用尤为关键,通过实验课的实施,不仅使学生能够掌握典型农业物料物理特性的测试方法,同时是辅助学生理解和学习本课程理论知识的重要手段。为了达到此目的,实验内容须覆盖和融合本课程的理论要点。根据教学目标,结合理论教学内容,实验项目设置为谷物尺寸与硬度的测试,果蔬形状、体积和密度的测试,农业物料拉压流变实验,液体物料比重与黏度的测试,谷物种子空气动力学特性实验,散粒体物料休止角与内摩擦角的测定实验,谷物种子含水率测定实验,农业物料导热系数的测定,典型农业物料LCR电学参数测定,谷物考种实验、谷物营养成分光谱分析实验等。

2.理论实验一体化教学模式的实现

2.1理论实验一体化教学思想

传统的教学是将理论教学与实验教学分阶段进行,一般先在课堂讲授理论,后集中进行实验。这种教学模式容易导致理论和实验结合不紧密,实验对理论的反馈作用发挥不及时、不充分。尤其对于农业物料学理论知识体系繁多、学科跨度大,仅课堂讲解理解难度大。由于理论教学与实践性教学是一种相互加强与相互补充的关系[3,4],通过构建理论实验一体化教学模式,将理论教学与实践教学融为一体,两者同步开展。按照“讲、听、做、学”的流程,教师首先提出本次课的教学任务和知识目标,对相关知识点进行讲授,讲授内容分为两部分,一部分为知识点的概念、原理等基础理论知识,另一部分是讲解基于这些理论知识的实验方法和步骤。学生在明确教学任务和知识目标后,有目的性地对所讲授的内容进行听记,接着按照实验方法有步骤地进行实验。实验过程中,教师要有计划、有目的地对实验关键环节涉及的理论原理、支撑技术进行提示和讲解;实验结束后,结合实验,以问题解答、讨论互动等形式对相关理论知识进行归纳、总结、再学习,进而加深理解,真正掌握和巩固知识点。

2.2理论与实验的融合性

为了实现农业物料学课程一体化教学过程中理论知识与实验的有效融合,实验内容的设置及教学过程设计非常关键。在本课程实验内容的设置中,谷物尺寸与硬度的测试实验和果蔬形状、体积和密度的测试实验对应农业物料基本物理参数的表达及测量理论;农业物料拉压流变实验、液体物料比重与黏度的测试实验对应黏弹性物料的流变模型及应力松弛和蠕变理论及液体物料的黏度及液体物料流体阻力特性知识;谷物种子空气动力学特性实验、散粒体物料休止角与内摩擦角的测定对应散粒物料的内、外摩擦力学特性及空气动力学特性理论;谷物种子水分测试实验(直接法)、农业物料导热系数的测定实验对应农业物料的换热理论及干燥理论;典型农业物料LCR电学参数测定、谷物种子水分测试实验(间接法)对应物料的介电特性和导电特性理论;谷物考种实验、谷物营养成分光谱分析实验则涵盖物料的光学反射和投射理论。

例如对于谷物种子含水率及其测定方法知识模块的学习,该模块的教学目的是要求学生掌握谷物种子含水率的基本概念、含水率的实验测定方法及其测定原理。谷物种子含水率的测定方法有两种:直接烘干法和间接测定法。针对两种方法,分别安排两个含水率测定实验:一个是红外加热烘干实验,另一个是基于介电常数的电子水分速测实验。第一个实验测定原理包含了红外线热效应理论、谷物干燥理论等知识;第二个实验测定原理包含了种子电特性理论中的含水率与介电常数知识。因此,该模块的教学中,按照“讲、听、做、学”的流程,在实验中渗入理论学习,在理论学习中见证其应用,两者相辅相成,既掌握了实验测定应用方法,又加深了对理论知识的理解渗透。

3.结语

针对农业物料学课程学科知识结构的特点,引入理论实验一体化教学模式可将理论性、实践性、开放性有机融合,打破常规理论课与实验课的界限,理论与实验形成互补、相互促进,实现教、学、做三位一体,有效启发、活跃学生的思维,促进师生互动沟通,一方面,有效提高了本门课程的教学质量,另一方面,培养了学生的学习知识的兴趣和积极主动的学习态度。

参考文献:

[1]周祖锷.农业物料学[M].北京:农业出版社,1994.

[2]姜瑞涉,王俊.农业物料物理特性及其应用[J].粮油加工与食品机械,2002(1):35.

篇4

关键词:热能动力;热能转换与利用;教学内容

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2015)03-0139-02

在能源的利用中,绝大部分是通过热能这一形态加以利用的,或由热能转换成其他形式的能量后再加以利用。在未被充分利用的余能中,绝大部分也是以余热的形式存在的。对各种余热的回收与利用,也离不开热能转换与利用的知识[1]。自热力学理论确立后,人们虽然从理论上认识到,热力学过程中能量的交换及其利用,应根据热力学第一定律和第二定律对能量的数量和品质两方面进行分析研究。但是,在实际热能工程技术的设计、管理和改进上,主要还是依据热力学第一定律,即能量守恒与转换定律。也就是说,只是单一地从能量的数量角度出发,以焓为基础的热平衡计算分析方法。然而,由于此法未考虑热力学第二定律所表明的能量品质,因为人们生活在地球表面的一定客观环境中,供给人们所需的能量有可以利用的部分(称有用能或“火用”)和受环境限制无法利用的部分(称无用能或“火无”),即相同数量的不同形式的能量所含的“火用”和“火无”的数量是不一定相同的,或者说能量还具有另一方面的问题――品质。因此,在认识所谓能量损失上就产生一定程度的混淆,由此在确定能量损失的分布及采取提高能量利用效率的技术措施时,就难免在热力学上得出错误的结论,达不到预期的效果。为此,近几十年来,国内外有关专家学者在热力学的理论领域内和工程技术的管理上大力提倡把热力学第一定律和第二定律综合起来考虑,并以第二定律为主,即从热力过程不可逆性引起可用能损失变成无用能的角度出发,以用火用为基准的火用分析方法来评价能量利用的科学性和合理性。由于此“火用分析法”中的“火用效率”更能准确地反映各热力设备或整个装置系统技术上或热力学的完善程度,可以从中明确提高能源利用效率的正确目标,并采取相应的措施。所以最近几十年来,前苏联、德、日、法、美等国家已将“火用分析法”广泛应用于能源利用及动力、低温、制冷、热泵、化工、冶金等方面。最近二三十年来,我国也在火用分析的基础理论及其实际应用方面做了大量的研究,并已引起了科技界和高等工科院校的广泛重视。许多院校的热动专业都增设了“火用分析”的相关课程[2]。

一、“热能转换与利用”课程定位

首先,从学科角度讲,认识到“热能转换与利用”课程的衔接和过渡作用。本课程向上承接“工程热力学”等前期专业基础课程,是对上述基础课程内容的扩展和深化;向下则与后续的“热力发电厂”、“燃气―蒸汽联合循环发电”、“制冷与低温技术”、“能源与节能技术”等专业课程紧密相连,为学生理解掌握相关专业知识奠定基础[3]。热能动力工程专业的学生通过本课程的学习,可掌握热能转换的基本原理,并具备一定的分析研究和解决热能利用中的具体问题的能力,为今后在实际工作中,管好、用好能源,降低企业的能源消耗,提高能源利用率打下基础。热能转换与利用内容丰富、发展迅速、学科交叉性强,涉及热力学、流体力学、传热学等诸多专业课程,是热能动力工程专业的一门重要的技术基础课程。因此开设“热能转换与利用”课程非常必要,对于学生回顾深化所学过的“热力学”等专业基础课程,深入学习掌握后续专业课程,培养锻炼学生利用所学理论知识分析、解决实际问题的能力,都有着非常重要的作用[4]。

二、热能动力工程专业“热能转换与利用”课程设计

本课程要介绍有关热能转换与利用的基本原理、分析方法,以及实际转换设备与系统地特点和设计计算方法。给学生在“工程热力学”的基础上提供“火用分析法”的基本理论、基本知识和基本方法,培养学生分析、解决实际问题的能力,为将来合理地利用能源及从事节能工作打下必要的基础。“热能转换与利用”课程是热能动力工程专业的专业必修课,共48学时。先后介绍了能源概论、能量转换基础、热力系统分析、工业企业中的热能利用、热回收用换热设备。

第1章能量概论,在介绍有关能源的一些基本概念的基础上,认识热能的重要性,了解热能利用现状。热能是人类使用最为广泛的一种能量形式,在一次能源中,热能资源也占了绝大部分。在能源的利用中,绝大部分是通过热能这一形态加以利用的,或由热能转换成其他形式的能量后再加以利用。在未被充分利用的余能中,绝大部分也是以余热的形式存在的。

第2章能量转换的基础理论,重点介绍能量的质量分析―火用分析的方法。为了有效地利用热能,正确地指导节能工作的开展,找到能量损失所在,需要结合热力学第一定律和第二定律,从量和质两个方面全面地进行分析。本章就是要运用工程热力学理论,介绍分析能量转换过程的方法,着重介绍火用分析的方法,详细叙述了不同条件下的火用、火用损失的计算方法及其影响因素,并介绍实际热工设备的火用平衡、火用效率的分析方法。

第3章热力系统分析,是用火用分析方法具体分析热力循环和热力系统,弄清影响热力系统效率的因素和提高效率的途径。重点分析动力循环、热电联产系统和热泵系统,分析各个转换过程及系统的火用损失大小,找到减少火用损失的主攻方向,提出改进整个热力系统,提高火用效率的主要途径。

第4章工业企业中的热能利用,介绍企业中的余热资源及其利用方法,分析企业的能源平衡、能耗指标以及余热资源情况。介绍各种不同的余热资源的回收方法、回收系统对节能效果的影响。提高企业的能源利用效率,挖掘节能潜力,对企业能源系统进行分析,通过能量平衡确定其有效利用部分和各项损失的大小,寻求减少损失及有效回收利用余能的途径。

第5章热回收用换热设备,介绍余热回收用的各种换热器的工作原理、结构特点、设计计算方法、使用场合等内容,为今后进行余热回收时,能正确选择和设计计算换热器,并为研究开发高效新型换热器打下一定的基础。同时介绍热管换热器、流化床换热器等新型换热器和换热器的发展趋势及优化设计。

课程内容分为理论与实践两部分,第一章、第二章运用热力学基本理论阐述“火用”及“火用分析法”的基本概念、火用和火用损失的计算及火用分析的基本方法,即为火用和火用分析的基础理论部分。第三~五章以工程实例说明火用分析法的具体应用,分别对蒸汽动力装置、气体动力装置及制冷、热泵装置进行具体火用分析。并结合工业企业中的热能利用介绍了余热回收方法与换热设备。对于本校的“热能与动力工程专业”来说,本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,训练进行动力机械与热工设备设计、运行、实验研究的基本能力。专业培养方案设置了电厂热能与动力工程、工业炉窑工程、制冷及低温工程、供热工程等方向的专业课程。从专业培养方案的设置可以看出“热能转换与利用”是热动专业的基础课程,热能转换与利用的热力学基础理论是热动专业的理论基础,热能转换与利用的热力系统分析则是热动专业的核心内容,包括蒸汽动力循环的系统分析、燃气―蒸汽联合循环系统分析、热电联产系统分析、中低温余热动力回收的热力系统分析、热泵系统分析等,是热动专业的主要专业课程及核心课程。热能转换与利用课程的学习为后续的专业课程奠定了坚实的基础,也为热动专业的学习奠定了深厚的基础。因此,我们提出将热力系统分析作为教学的主要侧重内容,热能动力工程专业的学生通过本课程的学习,可掌握热能转换的基本原理,并具备一定的分析研究和解决热能利用中的具体问题的能力,为今后在实际工作中,管好、用好能源,降低企业的能源消耗,提高能源利用率打下基础。

三、结论

“热能转换与利用”课程在热能与动力工程专业学生的学习过程中,起着承上启下的衔接作用,课程内容非常重要。由于热能转换与利用发展迅速,内容丰富,本文以我校开设“热能转换与利用”课程的实践为例,从“热能转换与利用”课程的定位、“热能转换与利用”课程教学内容的编排两个方面进行了详细的介绍。提出将热力系统分析作为教学的主要侧重内容,以培养学生分析、解决实际问题的能力,为将来合理地利用能源及从事节能工作打下必要的基础。我校“热能转换与利用”课程的内容和教学体系设计总体上思路清晰、内容充实、层次分明,很好地完成了“热能转换与利用”课程的既定目标和要求。

参考文献:

[1]汤学忠,热能转换与利用[M].北京:冶金工业出版社,2002.

[2]吴存真,张诗针,孙志坚.热力过程火用分析基础[M].杭州:浙江大学出版社,2000.

篇5

[关键词]工程素质力学教学体系

力学课程是学生在大学阶段接触到的第一门与工程实际相结合的课程,其工程实践性强,是工科机械类学生进行后续课学习及从事设计工作所需知识的必备课程。力学经过100多年的积累与沉淀形成了比较经典的理论体系,但工程实际中的仍有一些问题无法得到精确解和完备的理论解释。随着近代计算力学的发展、计算机技术与数学的发展,在工程设计中,一些新的设计方法日趋完善与经典力学相互应证,在现代复杂工程设计中充当了重要的角色。材料科学日新月异的飞速发展,使新兴材料的力学性能与传统材料产生了很大的差别。这些相关学科的发展都极大的推进了力学的发展,如何在非力学专业的机械类学生中进行力学课程的教学,在发展的时代面前面临新的问题。

我校是以应用型人才培养为目标,注重培养学生的工程素养,课程组就基础力学教学与工程应用及工科大学生素质能力培养体系展开研究,围绕学校办学特色,结合机械工程、车辆工程、材料工程专业特点,在基础力学教学中提出“课程体系贯通化、求解问题工程化、工程构件模型化、教学手段多样化、经典力学柔性化、反映学科现代化”的建设目标,并实施了改革实践,突出培养学生的实践应用能力、抽象简化能力、初步的科学研究能力和综合的工程素质。

一、课程体系贯通化

(一)调整教学内容,实现力学课程体系与其它课程贯通

我校机械类工科专业在力学课后会开出机械原理、机械设计、汽车理论、汽车设计等专业课,这些课程用到大量的力学知识,而以学科划分的课程不能反映出学科间的相互联系与变化,造成课程体系僵化、课程内容重复、课程信息陈旧等问题。通过调研基础力学先修课和后续课的教学内容,适当打破原课程体系的严格界限,建立贯通化课程体系,对基础力学课程的教学内容进行有机组合和优化。对于同一类教学内容或采用合并或在力学教学中只简单复习不再深入讨论。重点与后续专业课的某些知识点建立联系,将后续课程的研究对象引入力学课堂,这样,学生在后期的学习中其所用的理论分析体系已经熟悉,专业课的再次提及既可强化简力学应用,又可减少理论分析时间,为学生学习专业课夯实力学基础。

(二)确立“三年力学学习不断线”渗透式的教学体系

大学二年级通过两门基础力学课程学习力学基本理论和方法,融入力学竞赛与力学小课题。大学三年级在有限元法基础与应用课程中进一步深入力学模型的概念,结合工程实例介绍力学模型构建的思路,并通过典型的力学模型的理论解与仿真结果对比,提高学生的仿真和力学应用分析能力。同时成立CAE课外兴趣小组,对学生实行个性化培养。大学四年级将力学课题渗透到课程设计、毕业设计课题中,进一步强化力学在工程实际中的应用。

二、求解问题工程化

力学问题来源于实践,回归于实践。将力学理论紧密结合实际问题是其立足之本。

(一)深入实际进行调研

通过往届毕业生的“基础力学教学与工科大学生工程素质的培养研究”调研表,了解毕业生从事的工作中运用力学知识的重要程度、应用的重点内容、应用中理论的充足性以及毕业生对基础力学课程教学内容的建议,收集他们在工作中应用力学知识解决实际问题的实例。通过分析总结课程组进一步增强了基础力学教学改革及培养学生工程应用能力与创新能力的信心。同时对奇瑞汽车公司、东风有限商用车技术中心CAE室等单位进行了调研,了解汽车生产中较为集中的力学设计计算内容及设计部门对基础力学教学的建议,了解CAE室最新发展状况,收集生产部门的具体力学实例,掌握力学在生产实际与前沿研究中的应用,积累了大量的工程素材。

(二)建立工程实例素材的共享库

通过教师的教学实践和科研成果的资料收集,整理出上百个与机械和汽车相关的工程实际问题及其力学模型,包含生活领域及自然界中与力学问题有关的趣味例子,形成较为丰富的课程资源库。这些资源可直接用于教学,为每一章新内容的引入与理论应用提供了良好的工程平台,由于学生学习目的明确,易于接受,使较为严谨的力学课堂教学吸引力有了极大提升。同时,该工程实例库面对全体课程组教师实现教学资源共享,不同的经验可以相互借鉴,为教师整体教学水平的提高和团队以老带新打下良好基础。

(三)根据自身特点,编写出版教材

为突出课程培养特色,课程组在配套十一五优秀教材的基础上,编写工程针对性强的习题册。一些习题来源于工程实际设计课题,涉及车辆部件、机床结构、机械手、加工工装及工艺等。习题册内同时增加一部分有一定深度题目,也涉及实验测设方法与理论分析相结合的实验方案确定问题,强化实际应用,拓展学生的思维,培养学生的研究能力。

三、工程构件模型化

力学建模是联结力学与工程应用最为重要的纽带,其重要性毋庸置疑。基于这点共识,工科高校也纷纷开设力学建模的讲座或课程。因此,课程组在课程中为力学建模设置单独教学单元,就模型简化的载荷处理、约束处理、等效替换等问题通过实例进行分析。同时,本课程组提出“力学建模贯穿式”教学,该模式符合“三年力学学习不断线”的教学体系。即在基础力学学习中,采用概念实例力学模型的教学模式展开,力学模型描述的内容含有构件的几何、材料、受力和约束模型。而工程结构力学模型的参数估计和模型的检验在后续有限元法课程中将涉猎。

四、教学手段多样化

针对教学手段以“处方式”为主、学生“按方取药”,建立了“课内与课外相结合、多媒体与板书相结合、理论与实验相结合”的教学模式。

(一)课内与课外相结合

课内教学坚持以学生为主体,教师为主导的原则,在教学手段方面形成了基础力学课程的教学特色,即基于基础原理传授式教学、基于工程背景启发式教学、基于力学专题研究型教学、基于思考题讨论式教学。在夯实第一课堂的基础上,大力拓展第二课堂,鼓励学生不满足书本上的知识,积极进行课外研究。1)建成基础力学教学网络平台。开发了一套具有不同教师个性化的、能反映教学过程管理和监控的网上辅助教学系统。该教学平台包括隶属于每位教师的教学资料、教学管理信息,以及课程公共的资料信息,能够构建基础力学课程的课后学习及教师日常教学管理等环境。考虑到力学系列课程的建设,网站除了开辟了理论力学,材料力学课程外,还增设了流体力学和有限元法基础等课程。课程网站建设的除包括基本的课程简介、教学大纲、授课教案、网络课件、教学录像、力学实验外,还包含力学论文、力学自测题、趣味力学、力学小课题和力学名人新颖的内容。为学生课外复习课堂内容,学习课程相关知识提供了便利的条件。2) 开展力学竞赛。为提高工科学生力学知识水平及应用能力,巩固所学的基础知识、活跃思维和激发钻研力学问题的热情,课题组每年举办力学竞赛。竞赛增进了学生对力学学习和研究的兴趣,促进了基础力学的教学改革。3)考研单独辅导。基础力学两门课程是工科类学生考研的专业课,分值高达150分。课题组教师收集了各个学校的考研试题,分析总结了试题的知识点、分值分布和解题方法,对需要的学生进行单独辅导。4)开展力学小课题的活动。充分考虑学生个体化差异,实现常规教学与个性培养相结合、课内和课外相结合的教学模式,着力培养和提高学生的创新能力和综合应用能力。力学小课题融新颖、灵活、趣味于一体,理论联系实际、包括讨论题、设计题、利用计算机求解的问题等。

(二)多媒体与板书相结合

课程教学中,采用传统的黑板教学和现代多媒体技术相结合,利用现代计算机数值模拟仿真动画技术,直观揭示构件各种变形下的应力分布规律、变形特点等;通过启发式教学,揭示知识发生过程。例如,在讲解应力集中问题时,由于缺乏相应的配套实验,学生往往很难理解。利用通用有限元分析软件能够模拟出带小圆孔方板的应力分布图,同时还可以引导学生分析孔的大小、形状及位置与应力集中的关系,如图1。对于某些强调学生思考的问题,可以在黑板上逐步进行引导,让学生给出求解思路和方法,这样的方式互动性强,促进学生主动思考。

(三)理论与实验相结合

除开出教学基本要求的实验外,实验室实行分期全天开放,为学生提供可选做的实验项目,学生可也利用实验设备,自行验证理论、设计实验。实验教师开发出新的设计性实验项目,实验内容注重工程背景、追求真刀真枪、突出学科交叉。如:闭口方钢的性能测试及数值模拟分析,槽钢的性能测试及数值模拟分析等,通过理论计算、电测试验和仿真模拟,研究结构在变形时的力学性能和特点。在理论层次、实验方法设计层次方面对学生的实践应用和研究能力都有一个大的提升。

五、经典力学柔性化

专业基础课要“厚”,不仅体现在课程本身的教学内容上,还涉及科研精神的培养与教学中体现的人文精神。

(一)实现基础力学课程的模块化教学,由1+1变为2+2。尝试多学时力学课程分模块化教学

使学生分阶段重点掌握知识内容,易于学习消化,易于监督检查,在一定程度上防止了学生前期懒散最终一次性复习的不良习惯,培养学生持之以恒进行科学研究的工程素质。经过三轮教学实践,考试成绩分析及试卷分析报告说明:实施模块化教学能更加全面的考察学生对课程的掌握情况,学生前期内容明显掌握扎实,避免了大学分课程一次性考试刚度过大的问题,同时帮助学生逐步养成脚踏实地、坚持不懈的优良学习习惯,逐步建立做人做事上不要投机取巧的思维模式。

(二)在经典力学教学体系中引入人文教育

力学课程内容严谨、逻辑性强、推到繁杂,学生学习有一定的难度。在授课中适当介绍本学科相关历史和发展进程及关键人物。如,讲胡克定律时介绍中国古代郑玄的贡献;讲梁的合理截面时介绍中国古代对矩形截面梁高宽比的认识;讲梁弯曲时介绍圣维南的贡献等。学生在学习力学知识的同时,对其发展过程有初步的了解,认识前人在学科发展中探索研究的艰苦历程和学科发展史与人类文明史之间的关系,激发学生学习兴趣和探索钻研精神。

六、反映学科现代化

笔者认为将课程的前沿内容引入到教学中是对教师能力的一个极大挑战。现代科学发展迅猛,一些传统的设计方法在碰到复杂大型设计问题上会显得繁杂而无力,在力学学科中新的技术、理论及应用也在不断涌现,其理论新、涉及面广、实用性强。将这些先进的方法融入教学对开拓学生视野无疑具有积极的作用。课程组教师结合自身科研对一些现代先进的科技成果和学科的发展动态适当的增加,如:当代力学计算手段有什么,可以应用到什么方面的设计,引入优化、非线性、有限元分析技术介绍等。在专项内容方面,讲授上除经典理论外,将最新研究成果进行介绍,使学生在这一方面有初步的、较为全面的知识把握。如讲授疲劳内容时,将疲劳的新、旧理论进行介绍,阐明单轴与多轴疲劳应力分析之间的区别与联系,对其应用背景进行阐述。在材料力学性能讲授时,对新兴各向异性复合材料的性能与各向同性经典材料进行对比等。

通过“六化”建设目标的提出和实施,课程组力争全方位构建培养高素质人才的工科力学教学体系。该体系集基础性、层次性、系统性为一体,具有“立足培养目标、突出工程背景、张显与时俱进、强化综合交叉、体现学科成果”五个特点,为理论与实践相结合的工程素质教育培养探索出一条有益的道路。

[参考文献]

[1]李乐山.高等学校进行研究型教学的方法和意义[J].西安交通大学学报,2008,(28).

[2]张田梅,高春,王志伟.应用型本科院校材料力学课程研究型教学的几点实践[C].北京:高等教育出版社,2009.

篇6

一、大学物理教学现状分析

(一)学生基础参差不齐

高校生源来自全国各地,不同地域的学生对基础物理知识掌握的平均水平也各异,造成了同一个教学班级中学生听课的效果相差较大的状况,教师在授课的过程中难以很好的把握讲课的深度与广度。如何提高学生,特别是基础相对较差的学生对物理的学习兴趣,让他们端正学习态度,争取做到对每一位学生“不抛弃,不放弃”,是每一位任课教师应该认真思考的问题。

(二)教学手段和方式单一

随着多媒体技术的发展,课件在课堂教学中的应用越来越广泛,已由传统的“板书式”授课模式转变为“PPT式”授课模式。不可否认,与传统的授课模式相比较,多媒体技术以其文字、图片及可链接动画视频等特点,使课堂教学变得生动、直观,可以有效的提高学生的学习兴趣。但是在用多媒体进行大学物理教学过程中,有些教师往往由于过度的依赖,让自己的角色发生了转变,由课堂的主导者变成了幻灯放映员和讲解员,一堂课下来,板书寥寥无几。学生机械的听,盲目的记,加之多媒体翻页速度快、重难点不够突出、逻辑思路跨度大,造成留给学生思考、讨论、总结的时间很少,更难存在科学想象的空间,教学效果难以保证。

(三)课程内容广而不深

现用的教科书中物理教学所涉及知识点涵盖了力学、热学、电学、磁学、相对论及量子论等广泛的内容,而且过于抽象化,没有把经典理论与当今科技相融合。大学物理作为一门基础课,授课对象是不同专业的学生,这就要求我们要打破原有的课程设置体系,设置多层次,多类型的大学物理课程。应该针对不同专业的学生,制订分层次、多元化的教学大纲。在制订教学大纲的过程中,应针对不同专业的授课对象,特别是要根据应用型本科院校不同专业的特点合理确定教学课时及教学内容的深度,比如对涉海专业的学生应把重点放在流体力学上,同时增加这部分内容在期末考试中的比重,真正的为接下来专业课的学习打好基础。通过调研,在充分了解学生所学专业特点的基础上,分析判断哪些物理学知识是其必要的基础,在有限的课时下精选教学内容进行重点讲解。在教学过程同时,还要注重培养学生的创造与探索精神,结合所学内容,适当拓展当今世界该领域的科技发展前沿,增强学习的兴趣和爱好,要做到层次分明,重难点突出;并结合相关的物理实验和实际问题进行讲解,做到学以致用,使授课内容源于课本,又要高于课本。

二、课程改革方案的探究

通过几年来结合个人的教学与学生的反馈情况,可以考虑从以下几个方面着手,对应用型本科院校大学物理教学进行探索与改进。

(一)推动教学创新发挥学生潜能

创新本身就是一项自主性的活动。创新教学方式的目的就是在于激发学生的学习主动性、积极性,创设有助于学生自主学习的问题情境。这就要求逐渐改变长期以来课堂教学就是教师讲、学生听的“一言堂”或“满堂灌”模式,这样往往造成“胃口大的会饿坏,胃口小的会撑坏,胃口不对的会倒胃”的结果。应该努力推行“互动式”、“体验式”、“参与式”等教学方式。这样不但能够创造条件充分调动学生的自觉性,培养学生的创新能力,让学生成为学习的主角,成为知识的主动探索者,也有利于营造民主、和谐的课堂氛围,让正能量充满课堂。要想达到以上效果,就必须要求在教学目标上实现三个转变:以教为主(老师满堂灌)向以学为主转变,以课堂为主(过分重课堂)向课内外结合转变,以结果评价为主(过分重分数)向结果过程评价结合转变。相对课堂教与学的固定时间、地点、模式而言,网络已经走进人们生活的各个方面,利用网络学习也是大学物理教学改革的另一种形式,由传统的同时同地的面授模式转变为传统模式与MOOC(大型开放式网络课程)、SPOC(小规模限制性在线课程)等现代信息化教学模式相结合,最大限度的发挥学生的创造潜能。

(二)提高教师素质增强育人观念

现代教学理论认为:“教师真正的本领,主要不是在于讲授知识,而是在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然的参与到教学全过程中来,经过自己的思维活动和动手操作获得知识”。要培养适合时展的“新教师”,那就首先要求教师必须适时更新自己的观念,了解学科最新发展前沿,树立崭新的课程观。课程的学习活动方式以理解、体验、反思、探究和创造为根本。教师和学生不是课程的简单执行者,而是课程的创生者,课程也要由此变成一种动态的、生长性的“生态系统”和完整文化。这样,未来的教师也就既是科学家又是教育家、心理学家;既能指导学生掌握自学的方法,教给学生使用工具书、资料、数据和图表的本领,培养学生严谨求实的科学态度,提高课堂效率,又能善于与学生建立友谊,以情育人。当今科技的发展一方面促进了人们生活水平的提高,但另一方面又出现了人情淡化,导致了高技术与高情感的不平衡,而以情育人在调动学生的学习积极性的同时,也培养了学生健全的精神品质。

(三)启发学生思维提升教学实效

正如爱因斯坦所说:“提出一个问题往往比解决一个问题重要,因为解决问题也许仅是一个数学上或试验上的技能而已。而提出新的问题、新的可能,从新的角度去看旧的问题,都需要有创造性的想象力,而且标志着科学的真正进步。”教师的任务不仅仅是把有问题的学生教得没有问题,也要把没有问题的学生教得有问题,以产生新的问题作为“会学”的开始,实现由“考生”向“学生”的转变。教师要根据授课的内容,先提出问题,然后借题发挥,启发学生思考,逐步引导出所讲内容。当学生带着疑问积极的参与到教学过程当中的时候,能激励他们的发散思维,让学生通过自己的讨论、思考、分析和总结,从大量的发散结果中经过慎重思考选择出正确答案。即使在讲授定理以及规律时,教师也应尽量的减少和盘托出,可以先提出问题,并指出之前的知识在解决此问题时遇到的困难,进而鼓励学生自己寻找解决问题的办法。教师在讲解内容的过程当中,要注意将经典理论与时代科技相互联系,如由恒定电场一章中的“霍尔效应”的讲解联系到当今世界该领域的研究前沿“反常霍尔效应”。大学物理教师在教学中应先让学生了解科研,懂得科研是怎么回事,引导学生理性地热爱科研,掌握一定的研究方法,然后部分地、有选择性地参与科研。教师要及时了解学生中存在的个体差异,平等的对待每一位学生,积极评价学生的创新思维,最后进行总结,得出结论。

(四)优化课程载体区分层次维度

课程是教学过程的基本环节,是组成教学计划的细胞。所谓优化课程体系,就是“从培养目标出发调整各方面的内容及其比例关系,并以最后是否达到培养目标要求作为衡量的标准”。随着时代的发展,培养人才的目标定位也不断发生变化,如:学校教育由单纯知识型人才的培养向综合能力型和全面素质型人才的培养转变,这无疑是当前和未来社会发展对人才素质的要求在教育与课程上的反映,它对今后本科类院校教育模式、教师要求及课程的发展走向必将产生深远的影响。为了适应学校减少基础课学时的客观情况,教师必须优化大学物理课程的教学内容,这就要求大学本科课程的设置必须具有灵活性、针对性和多样性,传统教材对经典物理中的力、热、电、光有着详细的介绍,而对于反映出当代物理发展丰硕成果的近代物理特别是量子理论只是简简单单的一提而过,社会的发展已由信息时代进入量子时代,必须增加量子理论的教学内容和所占比重,以更好的适应社会的发展。正如甘子钊院士所言:“整个当代物理教学的关键就在于量子力学的教学,这不仅仅是对物理系的教学,而且对化学、材料科学、生命科学、工程科学、地球科学等系科的教学,也是同样的……”此外,还要设置好必修课和选修课之间的比例,设置多类型、多层次的课程结构,给学生提供更多自主选择学习内容的机会。同时,在调整课程的同时必须考虑到课程设置体系的平衡性,培养“专才”和“通才”相结合的人,以适应社会建设过程中不同层次、不同类型的人才需求。

三、总结

综上所述,本科院校的人才培养规格、层次和类型很大程度上取决于教学方式和目标,教学方式和目标则决定着人才培养的类型。可以通过调研欧美国家高水平大学和国内同类高水平大学在教育教学、人才培养方面的经验,寻找差距,明确自身存在的问题和发展方向,从而结合自身实际努力构建适合本科院校人才培养的教学目标、课程设置及评价模式,进一步完善教学评估体系建设,培养合格的学生,以适应应用型队伍的人才需求。大学物理作为一门基础学科,教师还要努力倡导教学自觉,沉淀教学文化,营造重教氛围;以服务社会为目标,加强制度建设,改进育人模式;推进协同创新,协调好教学、科研和务实的互动,让大学物理教学更好的服务于应用型高层次人才的培养。

作者:张玉强 崔烨 单位:公安海警学院基础部

参考文献:

[1]刘国瑜.大学学术发展的科学思考[J].中国高教研究,2009(3):26-28.

[2]陆国栋.教学方法改革的模式与举措[J].中国大学教学,2011(8):14-16.