流体力学及其工程应用范文

时间:2023-12-20 17:55:28

导语:如何才能写好一篇流体力学及其工程应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

流体力学及其工程应用

篇1

关键词:工程流体力学;课程体系;创新

Construction and improvement of course system on engineering fluid mechanics

Lan Yamei, Wang Shiming, Song Qiuhong, Liu Shuang

Shanghai Ocean University, Shanghai, 201306, China

Abstract: Combined with the working practice on construction process of engineering fluid mechanics, which is rated as Shanghai elite course, construction and improvement of course system is discussed on engineering fluid mechanics on Shanghai Ocean University. The main contents include teaching content, textbook publishing, improvement of experimental condition, training of innovation ability.

Key words: engineering fluid mechanics; course system; innovation

随着我国海洋战略布局和海洋经济的发展,我校在海洋学科和相关专业建设方面发展迅速,流体力学知识的应用愈来愈广泛。流体力学是工科院校普遍开设的专业基础课程,学科的渗透性很强,与所有基础和专业学科之间都有交叉,在学生知识能力培养和知识体系结构中起着承上启下的作用。2013年,我校流体力学被评为上海市精品课程。在4年多的建设过程中,流体力学课题组先后承担了校级、上海市级重点课程建设及重点教材建设等多项教改项目,坚持以培养海洋工程创新型人才为目标,在流体力学教学体系的建设方面取得了宝贵的经验。

1 结合海洋大学特点,调整教学内容,完善课程体系

我校流体力学类课程覆盖海洋渔业科学与技术、海洋环境、海洋技术、热能动力工程、建筑环境与设备工程、环境工程、环境科学、机械设计制造及其自动化等专业,每年选课学生超过700人。针对各个专业学生的不同需求,我们在课程设置、教学内容上都做了相应的调整与完善。本课程在我校的定位是:以海洋学院的海洋渔业科学与技术、海洋环境、海洋技术、环境工程专业为重点的海洋类本科生的专业基础主干课程;面向食品学院和生命学院的热能动力工程、建筑环境与设备工程、环境科学专业的工程应用类本科生的专业基础平台课程,满足工程学院的机制专业培养要求。以工程流体力学课程为龙头,以培养海洋人才的创新能力为目标,完善优化流体力学类课程群的配置、学时安排,并完成所有课程新教学大纲的编写工作,逐步形成一个完整的课程体系,重点完成了实验课和仿真课程软硬件的配套建设,突出强调流体力学的应用实践环节。根据工程实际需要,将流体力学的教学内容分为三个层次,即流体力学的基础理论、流体力学知识与进展、流体力学应用与实践。根据不同专业对流体力学知识的需要,设计了不同的模块组合。如对海洋相关专业的学生,增加了水波理论,重点强调实验实践环节;针对食品专业的需要,增加了气体及热力学类内容,并编写了多套相关自测题供学生选用;针对水产及生物类专业的学生,为让学生能够更好地研究鱼类等的动物习性,增加了数值仿真模拟,克服了以往过分重视理论知识的介绍,轻视其应用的弊端。此外,还相继开出了流体力学独立实验课、计算流体力学等。

2 出版多部教材,完善流体力学课程教材体系完备

2002年,《工程流体力学》教材被列为上海市教委普通高等学校教材重点建设项目,历经3年多的编写和有关专家的评审,我校教师编写的《工程流体力学》于2006年2月由上海交通大学出版社出版。该教材的最大特点是考虑到普通工科院校非力学专业学生的情况,尤其是一般工科专业学生的基础和专业需要,尽可能简化对公式、定理的数学推导,注重对物理概念的阐明、理解和应用,特别强调知识的实际应用。2007年,《工程流体力学》教材被上海市教委评为优秀教材三等奖,2008年获上海海洋大学教学成果一等奖。2011年,我们对第一版教材部分章节的内容进行了更新、充实和修订,更加注重拓宽知识面和实际工程应用。2012年9月,第二版《工程流体力学》及配套教材《工程流体力学习题解析》由上海交通大学出版社出版发行。2011年3月,由同济大学出版社出版的《力学基础实验指导―理论力学、材料力学、流体力学》,其中的流体力学部分(第三大部分),重点强化课程体系中的实验环节,完善了流体力学课程的教材体系。我们还完成了流体力学试题库建设工作,提高了试题质量,真正做到了教考分离,为相关师生提供了丰富的教学资源库,促进了教学质量的提高。

早在2006年,我们就开始了“流体力学研究型教学的改革与实践”上海水产大学(2008年更名为上海海洋大学)一般课题项目的研究工作;为配合新出版的教材,我们还申请了校级一般课程建设项目“工程流体力学(CAI课件)建设”,制作了与教材配套的、有自主知识产权的课件光盘,课件共有700余张PPT,图片色彩鲜明,其中插入的20多个原创动画形象生动逼真,做到了工程流体力学电子教案光盘版与教材同步发行。

3 完善实验教学条件,形成完整的实验教学体系

随着我国,特别是上海市海洋战略布局和海洋经济的发展,我校海洋学科发展迅速。首先,为配合新开设的独立实验课,添置了多种类、多套数的多功能流体力学实验装置、动量定理实验仪、空化实验仪等流体力学常规实验设备,保证了高质量完成流体力学本科实验教学任务。根据购置的实验设备,自行编写了实验指导书,明确了仪器设备的工作原理、实验过程的具体步骤、实验结果的分析和处理以及实验中的注意事项等内容;为了实现实验教学的多样化,自行编制了工程流体力学实验教学演示软件,内容形象直观,使学生一目了然;合作研制了小型循环水槽及直流式风洞,并配备了数据测试采集系统,可进行圆柱、翼型、浮标、波能装置等模型的流场显示及水动性能测试,使实验教学的质量和效率得到了提高。针对个别专业的特殊需要,开设了流体力学独立实验课。实际的流体运动非常复杂,而流体力学实验是揭示流体运动规律的一种重要手段,为此,经多方筹建,我校海洋环境专业于2009年开设了流体力学独立实验课,帮助学生加深对所学理论的理解,更好地用所学理论解决生产实际中的问题。实验课共16学时,实验内容主要包括:能量方程实验、雷诺实验、动量定律实验、沿程水头损失实验、局部水头损失实验、毕托管测速实验、管道测流量实验、流动显示实验、虹吸实验及势流叠加实验等。针对食品专业的需要,开设了气体及热力学类实验。

为了满足海洋学科对流体力学实验的更高要求,我们陆续建成了大型室内动力深水压力桶,配备了数据测试采集系统,可进行圆柱、翼型、浮标、波能装置等模型的流场显示及水动性能测试。我校地处临港,旁临东海,学生参加各种海试试验方便。利用这些实验平台,相继开设了多种设计性、综合性实验,主要包括湍流、流体数值模拟计算应用、波浪能发电装置开发等,对于学生创新能力的培养起到了至关重要的作用。

4 以科研促进教学,培养学生的创新能力,构建创新型培养体系

近三年,教师发表学术论文40余篇,SCI收录4篇;课题组教师主持省部级及以上科研课题共20余项,其中国家自然科学基金1项,上海市自然科学基金2项,农业部专项3项,海洋工程国家重点实验室开放基金2项,国家海洋局重大专项2项,上海市教委创新项目2项。有20余名硕士研究生、多名本科生参与科研项目,学生创新意识和能力得到了培养与锻炼。近年来,学生在科研创新方面热情很高。在全国“挑战杯”大学生课外学术科技作品竞赛中,2011年,我校羊晓晟、侯淑荣、马利娜、沈小青的“一种新型海洋波浪能发电装置”获得全国竞赛三等奖;2012年,曹星、陈功的“风浪发电转换机”获得全国三维数字化创新设计大赛上海赛区二等奖。工程学院学生孙奇结合所学流体力学知识,自主创业,创立了上海鑫靓科技服务有限公司,开办节水高效汽车洗车业务服务师生。2011~2012年,学生成功申报市、校、院级涉及海洋工程方向的大学生创新性项目16项。在流体力学教师指导下,学生还获得43项国家实用新型专利,另有多项发明专利进入实审阶段。学生参加教师科研项目19项,均取得了很好的成效。在我校机械设计制造及其自动化专业本科学生的毕业设计题目中,海洋工程类流体力学相关研究比例较高,特别是在大学生科技创新活动中心的组织下,我校成为上海市船舶与海洋工程学会的团体会员单位,并在我校建立了上海市船舶与海洋工程学会学生分会,流体力学的师生参与热情较高。

5 结束语

工程流体力学是一门非常重要的专业基础课程,它具有较强的理论性、抽象性和实践性。笔者主要介绍了我校工程流体力学课程体系的建设与实践,主要包括:多层次、多专业的课程体系构建;先后出版了《工程流体力学》《工程流体力学习题解析》和《力学基础实验指导―理论力学、材料学、流体力学》教材,流体力学课程教材充足;完善实验教学条件,形成完整的教学实验体系;培养学生创新能力,构建创新型培养体系;以科研促进教学,培养学生创新能力,构建创新型培养体系,不断培养学生的工程意识和工程实践能力,提高创新能力,使学生真正掌握该课程的核心知识,提高分析问题和解决问题的能力。

参考文献

[1] 徐文娟,赵存友,候清泉.《工程流体力学》精品课程创新人才培养模式设计与实践[J].高教论坛,2009(2):50-52.

[2] 陈国晶,赵存友,徐文娟.“工程流体力学”精品课程建设的研究与实践[J].中国电力教育,2013(5):105-106.

[3] 黄蔚雯,赵世明.打造职业特色鲜明的国家级精品课程[J].现代教育技术,2009,18(12):125-127.

[4] 邓辉,张志宏,顾建农.面向应用创新型人才培养的流体力学实验教学改革[J].实验室科学,2013,16(5):72-74,78.

[5] 王世明,宋秋红,兰雅梅.《工程流体力学》教学方法改革与研究[J].教育理论与教学研究,2012(4):32-34.

篇2

关键词:流体力学;教学改革;探讨

中图分类号:G642.0 文献标识码:A

流体力学是一门研究流体运动基本规律以及流体与物体之间的相互作用力的学科,它作为一门严密的且应用面很广的专业基础学科,是以数学、物理学为基础发展起来的,也是土木、机械、动力、水利、环境等学科的一门技术基础课程。改革开放以来,虽然各院校在该课程教学实践中都积累了丰富的经验并取得了不少成果,但是在该课程建设中仍存在着许多问题。论文结合教学现状,从学生兴趣培养、教学方法改革以及师资队伍建设三方面探讨提高流体力学教学水平的方法。

一、 流体力学教学现状

流体力学是一门主要研究流体平衡和运动规律及其实际应用的技术科学,具有理论性强、工程实际应用广、概念和方程较多且易混淆、对学生高等数学知识及综合分析和处理问题能力要求较高等特点。流体力学建立在理论、计算、实验三大技术手段之上,是化工、土木、机械等众多学科或专业的基础学科。另外,流体力学在环境工程设计和实际工程中也有着广泛的应用,是水处理设备设计与应用的必备知识,以及生态分析的重要理论基础。同时,流体力学是环境工程与其他学科体系沟通的桥梁,这个桥梁作用是其他基础课或专业课无法替代的,直接影响到环境工程学科体系的完善性。因此,提高流体力学课教学质量,使学生学好本门课程,培养学生分析问题的能力和创新能力,对流体力学课程教学进行改革以适应学科发展显得十分必要。

目前国内院校的流体力学课程教学过程大体可归纳为“课前预习、课堂教师讲授、实验室实验、课后教师评阅”的四段串行模式。实践证明,这种传统的教学模式在强化理论教学成果以及动手能力的培养方面效果比较显著,然而在创新意识培养方面却收效甚微。原因在于:①理论教学中注重经验理论与公式的讲解,而公式多且乏味,导致教师难教,学生难懂,课堂教学缺乏生动性。另外,本科流体力学理论教学模式多为填鸭式教育,对学生而言,流体力学课缺少客观体验,理论抽象,不易理解,而由此带来了一系列的问题是现在流体力学课程教学的主要障碍;②目前,大部分院校的流体力学实验教学多采用传统验证性实验,每一学生进行的实验完全相同,教师由实验报告的数据评定实验成绩。虽然实验有利于增进学生对理论知识的理解,但此手段不能激发学生的积极性,无法体现学生的主体性,也不能培养学生的创造性[1]。由于实验教学内容多数为验证性实验,在按既定的理论知识和实验方案实践的过程中,学生所得到的主要是从理论知识到实践成果的收获,而教师的作用主要是理论知识的传授,具体实验的演示、引导与纠错,甚至有时会耳提面命,因此学生作为学习主体的创造性很难有机会得到展示。

因此,采用一种有效的教学方法进行流体力学理论和实验教学的改革,激发学生的学习积极性和主动性,以提高流体力学课程教学质量,并对相关专业产生积极的影响,从而促进学生创新性的培养非常有必要。

二、 培养学生对逻辑思维的兴趣

学生对任何概念和公式的形成、理解有一个过程,而在流体力学中,这些概念、公式又较为抽象,要求学生具备较强的逻辑思维能力,因此,根据学生掌握知识的快慢,耐心引导学生进行逻辑思维,培养学生对逻辑思维的兴趣,使他们产生对逻辑推理的爱好,就成为教学中的关键。例如,流体力学中的三大方程――连续性方程、动量方程和能量方程需通过输运公式逐步推导而来,如此的教学安排便使知识较为系统、连贯、紧凑,并有利于认识各个方程的物理意义。而输运公式的推导由于逻辑性较强,讲授时就需要花费较多的学时和精力来理清逻辑思路,理解每一步推导中的物理含义和数学要领,使学生对输运公式有一个清晰准确地理解。最后,将输运公式中的物理量换成质量、动量、能量即可得出连续性方程、动量方程和能量方程,如此便形成了较为完整的逻辑演绎体系。此种方式不仅使理论教学更加清晰明了,而且会使学生对将要学习的知识接受产生极大兴趣,具有更加强烈的探索感和求知欲。

三、 教学方法探讨

教学方法作为联结教师和学生的重要纽带,在提高教学质量方面起着重要的保证作用。为了更好地适应学科发展要求,工科“流体力学”课程方法的改革势在必行,作者结合自身多年的教学经验,针对该课程特点,认为应该在以下几个方面进行课程教学方法改革。

(1)重视绪论课的作用

部分教师认为绪论课仅是对流体力学的简单介绍,作用不大,所以对绪论的授课过程照本宣科、枯燥无味。其实绪论课对整个教学活动的成功与否起了至关重要的作用,它不仅是学生了解流体力学课程的窗口,也是教师教学水平的第一次展示。

讲授绪论课的较好方法是介绍流体力学的成就、发展方向、广阔前景及其在国民经济中的重要作用等。教师要注重讲解流体力学知识在工程中的应用,特别是教师自己承担的科研项目,以展示流体力学在科学和工程技术中所取得的辉煌成就[2]。例如,通过介绍流体力学理论在“神舟号”系列飞船上的广泛应用,使学生明白流体力学这门相对古老的学科还具有旺盛的生命力;通过介绍美国华盛顿州的塔科马悬索桥在1940年秋天的大风中倒塌的例子,说明在实际工程中忽视流体力学会造成巨大的灾难[3]。另外,流体力学的发展史对于激励学生的学习热情也有着非常重要的作用。在上课的同时,要善于借助互联网,及时的将一些重要理论的发展过程、重要研究成果展现在学生的面前[4]。

(2)从实例中引出教学内容

流体力学虽有概念多、逻辑性强、理论上较难理解的特点,但却与生活和生产实际密切相关。在具体教学内容的讲解过程中,穿插一些生活中的现象,并结合课本中的理论“双管齐下”,利用学生求趣、求新、求知的心理,引导学生学习并掌握教学内容。例如,在讲流体粘性时,比较水的粘性和油的粘性;在讲流体静力学知识时,可讲一些水库垮坝事件,主要是设计时有缺陷和施工存在着质量问题,不能承受水对壁面的静压力。另外,还可以进行一些相关事例的延伸,如是否建设三峡工程时流体力学专家的争论,通过分析得到的建设三峡工程必要性的结论等,使学生切实体会到学好流体力学的重要性[5]。利用这些鲜活的事例,使课堂教学更生动、更有意义。

(3)师生互动,培养良好学风

调动学生主动的学习,培养学生良好的学风,提高学生综合素质,是加强流体力学教学效果的重要条件。作者在每次讲课后都会对本次课程的内容进行总结,然后下次课随机抽取部分学生回顾上次课的内容,并让其他学生作出补充和建议。在课堂上,多为学生提供随堂练习的机会,师生互相之间进行探讨和思考,针对练习中的问题讲解做题思路和方法,给予纠正和补充。这种授课模式充分调动了学生的主观能动性,课堂气氛活跃,有利于拓宽学生的思维深度,查漏补缺。学风对于任何一门课程教学的成功与否都起到了非常关键的作用,所以从第一堂课、第一次作业就要严格要求学生,对作业的批改做到一丝不苟,指出其作业中的各种问题并要求其修改。例如,要求学生对作业中的每道题,在解答时必须写出已知、求解,并画出相应图示,这些小细节可以帮助学生以简明的方式加深理解题意,取得了较好的效果。

(4)重视实验教学

流体力学按研究方法可以分为理论流体力学、实验流体力学和计算流体力学。实验流体力学是理论流体力学发展的基础,是计算流体力学的检验依据。因此,实验教学在流体力学教学中有着极其重要的地位。流体力学中的公式繁多,难以记忆,难以理解,通过实验可以加强学生对公式的感性认识,有助于学生深刻理解公式和概念的物理意义。例如,在讲解伯努利方程意义的时候,单从公式上讲解并不形象,通过能量方程实验,可以使学生非常直观的理解伯努利方程中每一项对应的意义。对于没有开的实验课,通过在网络上收集照片、视频等展示给学生,也可提高学生对理论知识的理解[6]。

(5)传统教学方式和多媒体技术互补

过去,流体力学课程在教学手段上采用板书教学,这种方式能够在教师的书写和同步的讲解中促进学生的积极思维与参与意识,但对教学内容中比较抽象的概念、复杂的流动现象和流动规律,很难用语言和文字准确、形象地描述。多媒体教学最大的优点是形象、生动、具体、直观、易于理解且信息量大,但也有不能突出推导过程和思维、学生对知识的掌握比较肤浅的一些弊端。将传统教学方法和多媒体技术综合应用于教学过程是一种很好的方法,在讲授偏重于推导过程的内容时采用传统授课方式,而讲授直观形象的内容时采用多媒体教学方法,做到取长补短、优化组合,会获得较好的教学效果[7]。

四、师资队伍的建设

为适应素质教育的需要,教师不仅要掌握先进的教学手段,而且要努力研究实施素质教育的教学方法。在实际教学过程中,要灵活应用各种教学方法,并且要善于归纳总结教学经验,虚心向有经验的教师请教,同时要高度重视学生的反馈信息,不断调整自己的教学思路,只有这样才能逐步提高自己的教学水平。社会发展对教师的自身素质提出了更高的要求,教师要明确教学水平的提高和发展是一个毕生的过程,教师应该不断开阔视野,更新知识体系,才能形成对流体力学更深层次的理解和认识。

五、 结论

论文结合流体力学教学现状,从学生兴趣培养、教学方法改革及师资队伍建设三方面论述的教学方法,将教与学有机结合起来,使枯燥的流体力学课堂变得生动活泼,多方面激发学生的主动性、积极性及创造性。将上述方法运用于教学实践后发现,该方法能够有效的提高流体力学课程的教学效果。

参考文献

[1]梁丽珍,牛俊玲.互动式流体力学教学模式探索[J].化工时刊,2011(2):66-67

[2]王发辉,桑俊勇,张丹.“流体力学”立体化教学体系的构建[J].电力教育,2009(12):102-103

[3]邹惠芬,张培红,叶盛.流体力学多媒体教学的探讨[J].沈阳建筑大学学报(社会科学版),2008(4):507-509

[4]潘良明,何川,陈红.流体力学立体教学法初探[J].中国电力教育,2008(11):73-74.

[5]陈霞.流体力学教学方法的探讨和研究[J].科技文汇,2011(9):104-108

[6]岳建芝,李刚.流体力学教学中的几点体会[J].科技信息,2009(29):187

篇3

论文关键词:工程流体力学;教学研究;改革探索

“工程流体力学”课程在能源动力类工科专业中占有非常重要的地位,主要研究流体(液体和气体)的平衡、运动规律及其实际工程应用的技术科学,是力学的一个重要的分支学科。通过本课程流体力学的基本概念和基本原理的学习,学生掌握分析和解决本专业中涉及流体力学问题的能力,为后续专业课程学习奠定基础,然而当前的教学效果并不理想。自然界和人类生活中,以及工农业生产的各行各业中均广泛存在流体流动现象,但是由于缺乏对生活的观察,学生很难做到对课本讲授内容形成直观映像。此外,自然界中的流动现象往往包含多种流动方式,在理论分析与公式推导中涉及许多复杂的数学理论与方法,经验公式多,且不易理解记忆,给学生的学习带来很大困难,导致教师难教、学生难学,实践与应用起来更是难上加难,教学效果不理想,教学目的难以实现。还对后续专业课的学习造成很大影响,进而影响本科教学的整体质量。因此,“工程流体力学”教学改革势在必行。

一、“工程流体力学”教学调查研究

“工程流体力学”课程通常是开设于热能动力工程专业二年级阶段。对扬州大学的学生的问卷调查显示,多数学生对“工程流体力学”课程的评价是“难学”。为何会有这样的评价,通过分析发现,存在几个方面的原因。

1.研究对象比较抽象

“工程流体力学”课程本身研究对象是流体,没有一定的形状和具有流动性,这是流体区别于固体的本质特征。这一特征决定了流体力学研究理论比较抽象、经验公式繁多且推导过程复杂不易理解、易混淆,进而导致了本课程教师难教、学生难学,教学效果不够理想。因此,能否将前面学习过的对“固体”平衡和运动物理规律的分析方法通过比拟的方式移植到“流体”上,并使其形成正向的学习迁移是学生能否很快的掌握本门课程学习方法、学好本课程的一个很重要的方面。

2.教师与学生

“教学”包括“教”与“学”两个方面的内容,忽视任何一个方面都有可能造成教学效果的不理想。理论课教学是工程流体力学课程教学的主要方面,是进行实验指导和应用于工程实践的基础。某些任课教师为了自己的方便省事,教材和教学内容仍然是多年前的老教材,对现阶段流体力学的发展方向和研究成果,以及本学科的最新科技前沿理论及工程应用进展不能做到及时更新,教学内容与实际应用严重脱节。

教学方法单一呆板,无法吸引学生的兴趣。经常看到这样一种现象:教师在讲台上只顾着自己滔滔不绝地讲,忽视了课堂教学的互动性和学生的主观能动性,学生了无兴趣的在座位上睡觉、开小差、玩手机,基本上是教师在向学生单方面地传授知识,这样的教学效果是很低的。

本专业本科生新的培养方案中课程设置有这样一个特点:课程增加,课时压缩,总学分保持不变。“工程流体力学”课程理论课学时从64压缩到48学时,在教学内容总量不变的情况下,每堂课教授的内容,即学生需要接受的信息量就大大增加了,严重增加了学生的负担。“浮躁”是当代很多大学生所普遍具有的心理特征,导致的直接结果是学生自制力差、怕吃苦,上课前不预习、课后不认真复习、作业普遍抄袭。

二、教学改革的目标

围绕当前“工程流体力学”课程教学中存在的问题,以提高课程教学质量、实现教学目标为目的,进行了如下方面的改革:改变教育理念,以课程改革与教学适应新时代的要求为目的;加强教学方法与教学手段的改革,提高“教”的质量;加强课程的应用性,解决基础理论课程的知识教育、应用能力与创新能力的培养,全面提升学生的综合素质;加强课程教学评价与考核体系改革,引入全程教学评价与考核机制。

三、“工程流体力学”教学改革探索

从上面的分析可知,“工程流体力学”课程教学效果不理想存在很多方面的原因,因此,教学改革也要同时从多方面入手才可以起到事半功倍的效果。以下是笔者在扬州大学热能与动力工程专业本科生课程教学中进行的探索与尝试,取得了较好的效果。

1.教学方法的探索与实践

(1)俗话说“良好的开端是成功的一半”,第一堂课的重要性也就不言而喻了。兴趣是学生学习的直接原动力,能否在开始就激发学生对“工程流体力学”课程的学习兴趣是学好本课程的关键。运用多媒体技术,通过生动的视频和动画向学生展示生活中随处可见的流体力学现象。如,男孩子喜欢足球、乒乓球的比较多,可以用“香蕉球”和“弧圈球”现象的流体力学解释来吸引他们的注意力,还有其他的现象如高尔夫球表面的凹坑设计依据,飞机机翼能够产生巨大升力,跑车外形设计成流线型又是什么道理等等。此外我国正在实施的“南水北调”工程同样涉及很多流体力学相关知识,以上这些事例都是学生所非常熟悉而又在学习之前无法用理论来解释的现象,很容易引起学生的注意力和想要探索的兴趣。

(2)合理使用多媒体。在流体力学的教学过程中,采用多媒体有利于学生对流动现象的感性认识,加深对概念的理解,提高学习兴趣。但是,采用过多或华丽的多媒体也会产生一些负面作用,如多媒体教学替代板书节约了时间,增加了授课容量,但相应的讲课速度也就比较快,学生不易吸收和消化,容易造成学生“跟不上”进度,产生厌学情绪。因此,传统板书与多媒体有机结合的教学方式可以充分利用各自的优点,达到最佳教学效果。当然,不同教学方式之间的比例分配的“度”是需要关注的问题。

2.教学内容的选择

“工程流体力学”课程是机械、能源、化工、动力、建筑、生物、航天等专业的重要的专业基础课,这些专业具有不同的特点,对流体力学知识需求的侧重点也不同。因此,教材的选取要有针对性,即根据本专业特点和要求、学生层次来选择教材。此外,教师要能够跟踪掌握现阶段流体力学最新的发展方向与研究成果,不断更新和补充教学内容,做到课程内容的与时俱进。

3.重视实验教学

实验教学是“工程流体力学”课程教学必不可少的组成部分,属于实践教学环节。通过实验对理论进行验证,从而加深对课程基本概念和理论的理解和掌握。在基础实验外增加设计性实验、建立开放性实验室,锻炼学生的动手能力,培养学生发现问题、分析问题和综合运用所学知识解决实际问题的能力。

4.课程评价与考核体系

对于“工程流体力学”课程来说,学习要达到的目的是学生运用所学知识对实际工程问题的进行分析和解决的能力,而不是对课本理论知识和大量复杂公式的记忆能力。因此建立合理、公正、客观的课程评价与考核体系非常重要。针对学生普遍存在的平时不努力、考前几天突击考试的现象,摒弃“一考定成绩”的考核方式,采用灵活的、全程考核方式取得了很好的教学效果。具体做法是:提高平时成绩所占最终成绩权重,包括出勤率、课堂互动和讨论、小测试、作业质量等平时学习各方面的表现;期末考试成绩权重减少,采用闭卷方式,但考题中所涉及的公式、图表等会在试卷中集中给出,并增加一些干扰公式进去,既避免了学生花大量时间去记忆毫无规律可言、而又易忘的经验公式,同时也达到了考核学生选取基本理论和公式去分析、解决实际问题的能力,实现了教学目的。

篇4

[论文摘要]论文结合教学实践,提出了以传统教学模式为主、以现代化教学手段为辅的教学方法。结合实例讲清楚基本概念,够用为度重点突出理论公式的应用是常规教学应遵循的模式,并与多媒体辅助教学手段有机地结合起来,力求课堂教学的形式和方法多样化,既能保证课堂信息量大,又能避免单纯多媒体授课的不足,达到提高教学效果、提升教学质量的目的。

一、前言

《流体力学》是研究流体所遵循的宏观运动规律以及流体和周围物体之间的相互作用规律的科学,它建立在现场观测、实验室模拟、经典理论分析、数值计算基础上,具有严谨的理论性、原理的抽象性、概念多、方程推导繁杂等特点,对学生具备高等数学知识及综合分析与处理问题能力的要求较高,因而大部分学生觉得该课程抽象、枯燥、难懂,普遍缺乏对流体力学理论的感性认识,都有某种程度的畏惧感,导致教师难教、学生难懂成为较普遍的现象。

我校机械设计制造及自动化、过程装备与控制工程、土木工程、安全工程、采矿工程、环境工程、矿物加工工程、建筑环境与设备工程、工程力学等专业的学生都须具备不同程度的流体力学知识和技能,它是各专业后续课程如:液压传动、水力学、流体机械、空气调节、传热学等课程的基础。

为此,作者通过教学实践,就多样化的教学方法、更新的教学内容、引入高科技的教学手段等方面进行探讨,以期提高《流体力学》的教学质量。

二、以传统课堂教学为主

《流体力学》的课程体系分为基本理论、基本应用和专门课题三大知识模块,它要求学生具备扎实的微积分知识、力学知识等。学生在接触流体力学课程伊始,对抽象的理论理解速度慢,对枯燥的公式及其推导过程容易厌烦,因而《流体力学》的教学应该以传统教学方法为主。因为在传统的课堂教学中,学生获取知识主要是听教师讲课,通过板书教师细致耐心地阐述概念、推导公式、突出重点、强调难点,以学生容易接受的讲课速度,留给学生更多的思考和消化的时间,再配合上教师的表情、手势、师生之间的互动,会达到很好的教学效果。

(一)结合实例,讲清楚基本概念

流体力学的概念多、现象多,且很多概念和现象比较抽象,难以理解,诸如:拉格朗日法、欧拉法、流线、迹线、边界层等。因而利用身边的实例对这些抽象的概念进行讲解,例如在讲授描述流体运动的两种方法——拉格朗日法和欧拉法时,学生们很难理解。为了将概念通俗化,上课时笔者以城市公共交通部门统计客运量所采用两种方法为例:①在每一辆公交车上安排记录员,记录每辆车在不同时刻(站点)上下车人数,此法类似于拉格朗日法的质点跟踪,它与迹线的定义对应;②在每一公交站点安排记录员,记录不同时刻经过该站点车辆的上下车人数,此法等同于欧拉法,与流线的定义对应。

在讲解伯努利方程原理的时候,例举1912年“豪克”号铁甲巡洋舰与同行疾驶“奥林匹克”号远洋轮相撞的船吸现象,让学生清楚掌握流体的压强与它的流速有关,流速越大,压强越小;反之亦然。

概念是公式推演的基石,没有准确的概念,后续的公式推演几乎难以为继,清晰的概念会使公式的讲解和推演变得更加简易。利用浅显易懂的生活实例来阐述抽象的概念及其之间的内部联系和区别,教师易教、学生易懂,将会达到事半功倍的效果。

(二)以用为度,重点突出理论公式的应用

伯努利方程是能量守恒定律在流体力学中的具体应用,是流体静力学和流体动力学的基础,始终贯穿着整篇教材。在讲解该理论公式的时候,先从容易理解的静力学平衡微分方程推导开始,强调公式所依据的原理是牛顿第二定律,假设条件是平衡、理想、静止的流体,重点引导学生如何理解公式各项的几何意义和物理含义,掌握公式的实际应用。这样学习到后面的动力学伯努利方程时,先易后难、循序渐进,学生就觉得不会那么深奥。在讲解相对平衡的流体压强分布规律时,就要求学生必须掌握推导过程,因为它在解决一般平衡流体内部的压强分布规律及其对固体壁面的作用力问题时非常重要。而对于连续性方程和动量方程的学习,只强调记住结论和理解公式中各个物理量的含义。这样做,有效地避免了大量公式繁琐的推导给学生带来的畏难情绪,也能够做到以用为度、重点突出。

不可否认,依靠粉笔与黑板的教学条件、以教师为主体的传统教学模式,教学形式单一,教学手段不先进,教学效率不高,适应不了课程教学学时少、受教育学生数增加的情况。

三、以现代化的教学手段为辅

当前以计算机多媒体技术为主的现代化教学手段已经普遍地应用于高校的教学中。制作教学用的视频、多媒体软件、电子课件等素材,作为课堂教学有力的辅助教学手段,可以在有限的时间内,利用图文并茂的信息传播方式,将课程内容及有关背景资料以影像、图片等形式,直观地传播给学习者,将流体力学中抽象的概念和理论具体化、形象化,激发学生学习兴趣,使得学生能够从感性认识开始,逐步上升到理性认识,进而能够达到运用知识解决问题的能力。

结合流体力学精品课程的建设,教学团队制作了流体力学多媒体电子教案,并在教学过程中不断完善,逐步取得了良好的教学效果。在设计与制作多媒体课件时,遵循课堂教学的基本规律,既发挥传统板书教学中容易带动学生思路、逐条在黑板上书写的特点,在课件制作中根据讲解的进度逐条展现公式条目等内容,同时又将难以理解、难以用语言描述的拉格朗日法和欧拉法、流线、边界层和紊流等抽象概念和流动现象,以多媒体的方式在课堂上直观地呈现出来,帮助学生建立清晰的印象。教学团队收集、制作了大量的多媒体素材,例如在讲解雷诺判据的时候,制作了雷诺实验的FLIASH素材,以动画的形式向学生展示了流体流动的两种不同状态,以及流态判据—雷诺数与流动速度、管径、流体种类有关系。运用多媒体辅助手段表达后,能够帮助学生很好地理解课程的重、难点,提高教学效率。利用多媒体技术,还可以制作需占用大量时间板书和不易通过板书表述的内容,提高了教学效率。

多媒体教学的内容一定要做到提纲挈领、重点突出,有所为有所不为。多媒体技术没有好坏之分,只有合理使用与不当使用之别。但是实践应用中,发现有的教师完全抛弃以往的黑板式教学模式,离开多媒体手段就上不了课;有的教师将教材内容全部照搬到了课件中,自己就成了的幻灯片放映员,“照机宣科”;有的教师制作的多媒体课件过分追求课件的美观性,界面过于华丽,淡化了教学重点;也有的教师忽略学生对课件内容理解消化的时间,致使学生的思维跟不上教师讲解的速度,降低了教学效果。上述现象将会造成一种新形式的“满堂灌”,只不过是由“人灌”变成“机灌”而已。

四、总结

流体力学作为一门专业基础课程,其重要性不言而喻。传统教学模式能够将前后知识贯通,突出重点,化烦就简、引入实例形象阐述概念原理,促进知识的系统化进程;多媒体教学能将难于理解的知识通过图文、音像生动地显现出来,帮助学生理解性记忆。借助于先进的教学手段,将多媒体辅助教学手段与传统教学方法有机地结合起来,力求课堂教学的形式和方法多样化,既能保证课堂信息量大,又能避免单纯多媒体授课的不足,才能提高教学效果、提升教学质量。以上是笔者在流体力学教学实践中的体会,愿与同行共同切磋。

基金项目:2009年安徽省教育厅《流体力学》精品课程

[参考文献]

[1]许贤良,王传礼,张军等.流体力学[M].北京:国防工业出版社,2006.

篇5

论文摘要:从石油工业对油气储运工程专业本科毕业生的综合素质和业务能力的要求出发,通过对教学内容和教学方法手段进行改革,改变传统的教学理念,不断培养学生工程意识和工程实践能力,提高创新能力。  

 

在西部大开发的推动下,石油工业也以惊人的速度迅猛发展,培养高素质的应用型石油工业人才已迫在眉睫。特别是榆林学院(以下简称“我院”)所在的榆林市,作为重要的国家能源化工基地,对油气储运人才的需要更加突出。在学院领导的努力下,我院的油气储运专业已被评为陕西省特色专业。为了加强油气储运专业学生能力的培养,造就工程型人才,对油气储运专业的教学进行了全面的改革,将专业理论与实践教学有机地结合起来,统筹规划,使学生能更深刻地理解和掌握专业理论知识,培养工程意识,提高学生独立实验能力,强化学生工程实践能力,全面提高专业素质。但是,由于我院油气储运专业的发展相对榆林市石油工业的发展具有一定的滞后性,导致毕业学生不能达到目前油田企业的要求。因此,提高我院油气储运专业的教学水平具有重要的意义。鉴于这样的形势,本项目提出对油气储运专业课程最重要的专业课程之一工程流体力学课程的教学改革。 

 

一、教学中存在的问题 

 

在油气储运的课程编排中,《工程流体力学》课程是可以将储运专业理论知识与实践相衔接的很好桥梁。目前该课程的授课方式有所不妥,使得这门课不能充分发挥应有的作用。因此,在理论知识与实践相结合的条件下,应该配套一系列仿真课件,与教学相结合,学生才能更好地将书本知识融入脑海。仿真课件可以使学生掌握难以理解的抽象理论,从而更好地学习该专业最重要的基础课程,以便为将来的其它专业课程打下坚实的理论基础。 

在加强工程流体力学课程理论教学的同时,还要加以仿真课件的训练,再配合实践教学环节。通过该课程的学习,结合实习与毕业设计环节,可以综合地将课本理论知识与实际相结合,以利于提高学生综合素质,对于他们今后的工作或继续深造发挥潜移默化的作用。 

分析目前我院工程流体力学课程与实践教学之间的现状,发现存在的主要问题是:教学体系、内容与实践课之间存在脱节现象,具体表现在以下方面:首先,作为专业最重要的课程之一,《工程流体力学》课程是学习其它专业课程的基础,如果这个基础打不好,那么其它课就很难学习。据调查发现,学生很多都不太明白课程中一些具体的流态名词,以及抽象的流体损失问题,如果有了仿真课件,这些疑难问题就一目了然了。其次,我院储运专业的实验室设备中,有些由于厂家设计问题造成数据不准确,所以原本刚够学生分组实验的仪器数目,现在只能增加每小组的人数才可以维持正常开设实验课程。由于该课程中涉及的实验数目较多,也导致了场地的严重不足。再次,教学中不能很好地将理论课知识与生产实习相互渗透。而《工程流体力学》课程作为本专业的基础课程,与生产实习的相互渗透又甚为重要。 

 

二、改革教学方法,激发学生的学习兴趣 

 

为了更好地发挥该课程的作用,针对我院工程流体力学课程开设的现状,以及国内一些知名高校开设这门课程的情况,笔者提出几点改革建议,以使学生能够把学到的知识活学活用,提高他们分析问题和解决问题的能力。 

1.按照实用、新颖、精练的要求,着力进行教学内容的提炼与更新 

课程建设旨在突破学科专业局限,又要照顾到专业需要,对课程进行整合、优化,合理安排教学内容。例如在本课程中加入非牛顿流体部分的教学内容,形成课程的特色。 

2.强调计算机在流体力学教学中的应用 

应该在教学中加入一部分符合我院具体专业情况的仿真模拟课件的使用量,学生可以将所学的知识和课件相结合,更加深他们对知识的理解和应用。这样,不但顺应时代的发展,也节省了学生花在琢磨流型变化上的很多时间。鉴于课程自身的特点,对于各种工艺流程图的介绍,传统的板书方法已不能完全满足教学需求。笔者因此针对不同专业的教学大纲,制定了相应的教学课件,通过多媒体教学,以弥补传统教学方法中抽象、晦涩、枯燥的缺点,使学生从动态的画面中,比较轻松地理解教师在教学中要传授给学生的知识内容。 

3.有效组织实践环节至关重要 

工程流体力学是一门综合性和实践性均非常强的课程,因此有效组织实践环节至关重要。学生通过在工厂的实习,可以将在学校中学到的理论知识与工厂中实际生产有效地结合起来,增强对理论知识的理解。应尽快解决实验设备结论不准确的现象,使教学仪器百分之百地准确投入到学生的学习当中去,尽可能地将流体力学作为向外专业进行开放实验,让有兴趣的学生也能参与。 

通过该项目制定的措施实施于油气储运专业教学中,使每届油气储运专业学生受益。提高学生对专业理论知识的理解深度,增强他们的专业技能,并能够将所学知识活学活用。此举对学生的就业和继续深造具有非常重要的意义。 

 

三、教学效果的考核 

 

前已述及,这门课程主要是油气储运学科的专业基础,这门课程的培养目标旨在为以后的专业课打好扎实的基础,树立学生的应用能力。因此,在考试方式上,更注重应用能力的测试,考察学生与社会的接轨程度。这样,考试题型多是一些发挥性的,让学生用“渔”的本领去为本门课程的学习画上休止符。 

四、结语 

总之,对于《工程流体力学》课程教学内容改革的初步探索分析,可以促进教学观念的改变,按此目标授课,对教师提出了更高的要求。同时,还可以促进教材建设、实验室建设及其仪器设备的更新,提高学生的动手能力及科研能力,从而实现“学有所用”,“教学相长”。 

高等教育教学改革,特别是专业课程体系及教学内容的改革,是一个系统和长期艰巨的实践过程,专业教师任重而道远。只要不断努力和探索实践,就可以开拓出一条提高油气储运工程专业教学质量、更加富有成效的新途径,而且可以取得更好的教改成果。 

 

篇6

[关键词]流体力学 板书教学 多媒体教学 教学方法

[中图分类号] TB126 [文献标识码] A [文章编号] 2095-3437(2013)012-0052-02

随着计算机技术的发展,越来越多课程的板书教学被多媒体教学取代。流体力学作为机械、土木、能源、采矿等专业的基础课程,主要是研究包括液体和气体在内的流体在静止和运动时的力学规律及其与固体壁面间的相互作用力的一门科学。流体力学的研究方法与理论力学、材料力学、弹性力学等有所不同,其主要反映在用场论的观点处理力学问题上。

流体力学中介绍了拉格朗日和欧拉法之间的区别,我们原来都是用的拉格朗日法来解决问题,即对物体的某个质点属性进行研究。而由于流体力学中的研究对象流体具有易流动性,因此某个质点的研究就不能代表整个流体,此时我们引入了欧拉法,即将物理参数(速度、压强、动量等)通过空间点的属性来进行研究,这是在学习中容易造成混乱的一个地方。此外,流体力学在研究不同问题时分别都做了各种假设条件。例如,N-S方程,到目前为止还没有一般解的存在,那么在对N-S方程求解时,就必须做一些假设来简化该方程使其求解,这也是不太容易理解的一个地方。

流体力学被认为是高等数学在工程力学中的应用。因此,要想学好流体力学,首先要有扎实的高等数学、工程力学及大学物理的基础。流体力学还有许多抽象的概念,如什么是黏性,在流体中体现在什么方面,黏性随温度、压力变化的关系等都需要教师去认真细致地讲解。所以学习流体力学首先要改变观念,要有比较强的建立物理模型和数学模型的能力,这样才能学好这门课。那么如何教授这门课、将复杂的数学问题转化为容易理解的物理概念,并让学生理解且记住,这就是教学方法的问题了。

一、板书教学方法

我们知道传统的教学方法就是板书加讲解,有的时候会用到一些教具,但这些都是静态的,对于一些抽象的难理解的概念很难表达清楚。流体力学这门课程具有理论性强、概念抽象等特点,传统的板书教学方法只能口述进行概念讲解,学生看不到实物,即使和实验课相结合,有部分概念还是无法表达清楚。而且除了概念以外,该课程还有大量的方程推导,很多的文字说明、画图等需要大量的板书,每次课几乎都是在不停地写、不停地擦,不仅教师感到筋疲力尽,学生也难以理解,因此很多教师和学生都反应流体力学是很枯燥无味的一门课,但是很重要,不得不硬着头皮去学。

二、多媒体教学方法

多媒体教学作为一种全新的教学方式,现在被越来越多地使用。但现在绝大多数的课程都是在幻灯片中放上讲课的内容,在上课的时候放出来进行“照本宣科”,有的干脆只是课本的扫描,上这样的课,绝大多数学生都是昏昏欲睡。

多媒体教学不仅是幻灯片在课堂上的应用,还应该包括二维及三维动画的演示,甚至是视频或者实验录像、现场工程录像等。多媒体教学为理解难懂的概念、定义提供了先进的手段,尤其是丰富的现场工程、实验的图片、录像等不仅丰富了课程的信息量,更能刺激学生的感官、激发学生的兴趣、拓宽学生的思路、开阔学生的视野。

但对于流体力学这样的课程如果仅有幻灯片加板书的内容,那么对公式的推导也不能很全面地讲解。我们知道,公式推导就是边讲解边思考边进行,这样才能更好地掌握。如果省略板书学生对于前因后果都不太容易理解,且信息量大,没有思考时间。

如何将板书和多媒体相结合并能取得最佳的教学效果,一直是很多高校教师在研究的问题。

三、板书和多媒体教学有效结合的教学方法

对于制作的课件(包括幻灯片、动画、影片等)应该与课本结合紧密,包括章节名称、讲解顺序、重难点等都要根据课本内容在PPT中按照板书表达出来。这里值得注意的一点是,不能一次出现整页的文字,这样不仅让人看得眼花缭乱,也没有时间思考,直接就能看到结果,根本不能达到预期的效果,而应该逐字逐句通过人为的控制出现。在这个过程中我们可以边讲解边让学生思考,逐渐地出现我们所需要的答案。当然这样做需要很多的时间,但教学效果会大大提高。下面具体说明怎样将多媒体与板书相结合。

首先,对于第一章绪论部分的讲解,可以结合大量的实例,如都江堰、大禹治水、足球射门、火箭升空、消防等动画或视频对学生讲解本门课程的目的、学习方法和意义,以此可得出该课程与社会各领域之间的紧密联系,让学生对流体力学课程产生兴趣,感到该课程并不难。

其次,对于难理解概念的讲解,可以制作动画来表现。例如,流体质点,我们定义的文字叙述是指体积无限小的流体微团,即宏观尺寸充分小,微观尺寸足够大。那么如何来理解这两句话呢?如何利用动画来表示?我们首先可以在一个流体中取出非常小的一个点,指出该点就是一个流体质点,由于是一个点我们可以说它是没有尺寸的,这个尺寸指的就是宏观尺寸。再利用放大功能将该点无限放大,此时该点的区域内部存在无限多个细小颗粒(点),这无限多个点就代表了足够大的微观尺寸,再将放大镜去掉,那么就又回到了宏观上一个无尺寸的点。通过这个动画很好地表达了我们的第一个概念――流体的研究对象:流体质点的定义,形象直观,并能给学生留下深刻的印象。对于其他的内容,如拉格朗日法、欧拉法的说明,以及流线、迹线等概念的解释都可以用动画来表达清楚。这样,学生对于这个生涩的定义就有了很好的理解。

再次,对于公式推导方面的讲解,可以和板书相结合。例如,在讲解静止流体对平面壁的作用力时,用幻灯片给出已知条件即平面壁面积,与水平面所成的夹角,重心、型心所在的高度等,以及示意图。但是,公式的推导过程必须使用板书,推导时给示意图添加一些当时所需要的力或假设条件,得到结论以后,就可以通过幻灯片对每一个物理量进行更深层次的讲解。例如,平面壁上的总压力P=γhcA,这里说明A是淹没面积,此时根据需要,幻灯片上的淹没面积就可以用另一种颜色表示出来,这样学生对公式的每个数学符号在计算时就不会带错值,对公式也能有很深刻的认识。

另外,对于实验方面,可以将动画和实验视频相结合播放给学生观看并讲解。以雷诺实验为例,可利用flas对该实验装置进行描述,再逐一播放动画使学生了解层流和紊流的定义,以及各自存在的条件。等学生有了最初的印象后,再播放整个实验过程的录像。这样学生在做实验之前就能对该实验有一个大概的印象,真正实验时就能更好地记住实验的条件、过程以及结论,并能很好地记住该实验的结果及一些注意事项。

最后,对于例题、作业的讲解,如果是选择题、填空题都可以直接在大屏幕上显示出来。如果是计算题、证明题可以和公式推导类似,大屏幕上显示题目和图,利用黑板进行讲解。

四、结语

多媒体教学并不意味着摒弃一切传统的教学方法和手段,而对于流体力学这门课的多媒体教学方法更需要我们不断地进行探索。多媒体教学不能完全替代传统的板书教学方法,只有将两者有机结合才能发挥出最佳的教学效果。我们最终的目标是让学生感到流体力学这门课上起来是生动有趣的,让教师感到一节课下来是轻松惬意的。

[ 参 考 文 献 ]

[1] 李忠宝,王梓.生命化课堂教学的理论与实践研究[J].大学教育,2012,(12):79-80.

[2] 陈二云.多媒体技术在工程流体力学教学过程中的应用[J].经济研究导刊,2010,(3):247.

[3] 吴益华,谢洪勇.流体力学教学方法与教学手段初探[J].陕西教育,2009,(8):65.

篇7

[关键词]专业认证;液压与气压传动;教学大纲;评价体系

[中图分类号] G642.0 [文献标识码] A [文章编号] 2095-3437(2017)04-0090-02

概述

工程教育专业认证是国际通行的工程教育质量保证制度,是检查专业设置是否适应国家和地区经济建设的需要,是否适应社会发展的标准。[1][2]专业认证工作是职业工程师认证工作的基础,通过专业认证工作的开展,可以更新教育思想,促进真正意义的以学生为中心的教育观念的形成,保证受教育者的权益。[3][4]

2006年,我国教育部正式组织开展了工程教育专业认证工作,成立了全国工程教育专业认证专门机构,目前已有机械制造及其自动化等10个专业开始了专业认证的试点工作。[5]河南工业大学2015年开始进行机械制造及其自动化专业的认证申请,根据专业认证对该专业的要求进行系统改革,包括培养目标、毕业要求、课程体系、师资条件,其中课程体系是改革的重中之重。以专业认证为契机,机电学院液压与气压传动课程组对该课程进行了较全面的改革。

一、液压与气压传动课程在机械制造及其自动化专业中的地位

液压与气压传动课程在机械制造及其自动化专业的课程体系中属于专业基础课,是主干课程,其在机械类R悼纬烫逑抵衅鹱懦猩掀粝碌闹匾作用。课程主要通过授课、实验等教学环节,使学生熟悉流体传动的基础知识,让学生掌握各种液压与气动元件的结构特点、工作原理及其应用,掌握基本回路的组成和分析方法,进而掌握液压与气动系统的分析及设计方法。学生通过对本课程的学习,能为后续专业课程的学习打下基础。

本课程在专业认证的毕业要求部分共支撑5个指标点,2个课堂讲授目标,3个实验目标。课堂讲授目标包括:1.理解数学、自然科学基本原理,能够将其与实际工程应用相结合;2.理解工程基础知识原理,能将其应用于复杂工程问题的表述、建模和求解过程中。实验目标总结起来为能够利用课堂讲授知识制订合理的实验方案,并利用正确的方法搭建实验平台,实施实验过程,得到实验数据;同时能够对所得实验数据进行分析,得出正确结论。

针对以上所提的毕业要求,我们对原课程进行了较大程度的改革,提出了最新课程目标,具体包括以下几个方面。1.要求学生掌握流体传动的流体力学基础(包括流体静力学、运动学、动力学),并能与实际相结合推导实际应用问题的静、动力学数学模型。2.掌握各种流体传动元件(动力元件、执行元件、控制元件、辅助元件)的工作原理、结构及设计方法;理解、分析基本液压回路(方向回路、压力回路、流量回路);能够运用工程知识,通过类比、改进或创新等方式,提出满足特定需求的典型流体传动系统的合理设计方案,并体现创新意识。3.能够针对流体传动与控制装置的性能等有效制定研究或验证实验方案,并根据实验方案建立简单实验系统进行实验;解决实验过程中出现的问题,得到实验数据后能正确分析,解释实验数据,并通过信息综合得到合理有效的结论。

二、课程改革

(一)调整课程大纲

1.内容调整。针对新的课程目标,课程大纲的调整首先从学时入手,将原来的46学时调整为54学时,扩充了原课程第二章流体力学基础部分的内容。这一部分在原大纲里的讲授内容包括:(1)液压油的主要物理性质及选用;(2)液体静、动力学基础;(3)液体流动能量损失与流量计算。由于学时的限制,教师在讲解这一部分内容的时候大多采取简单带过的做法,学生则无法真正理解流体力学与以往学过的固体力学之间的关系,这就导致部分学生只能机械地记住一些教师强调过的公式以应付考试。

新大纲在(1)部分增加了流体的概念及连续性介质假设部分。这部分内容的增加对于学生理解流体与固体的区别,理解流体力学与固体力学的联系至关重要。此外,新大纲在内容(2)中增加了流体运动学基础部分内容。这部分内容的增加主要是为了让学生更好地了解流体动力学部分公式推导的基础,更好地理解掌握连续性方程、伯努利方程及流量方程的来龙去脉,为学生在后续液压传动内容中应用这些公式打下坚实的理论基础。

2.调整实验大纲。根据毕业要求调整实验项目,增加设计型实验项目,减少验证型实验项目。通过设计型实验的方案搭建、论证,实验的过程记录,数据分析等过程,主要培养学生将课堂所学知识应用于实际的能力。与此相适应,实验报告中增加实验方案设计、论证部分,并有相应的评分标准。

3.增加“成绩考核评定”部分。新大纲中增加了考核成绩评定办法的表格,表格中规定了成绩组成、考核评价环节、分值、评价细则与对应毕业的要求项,这为课程的后续评价提供了定量标准。通过这张表格,任课教师可以很清楚课堂教学中的每个环节对于学生相应能力培养的作用,从而使得各环节的实施更具有目的性和方向性。此外,表格中项目的具体内容由任课教师自主设置,教师可以根据课程特点设定平时成绩、考试成绩等的比例,并制订行之有效的评价细则,这样更有助于提高课程评价的科学性与合理性。

(二)建立课程评价体系

课程结束后,如何评价课程达到的效果是教学中至关重要的一环,这一环节涉及后续的改进。合理、科学的评价体系是持续提高课堂效果,达到课程教学目标的基础。以往的教学大部分以课程结课考试作为教学终点,并不会对结束后得到的教学资料进行客观的分析,仅仅以简单的试卷分析报告作为最终资料归档。

通过对专业认证要求的分析,我们建立了液压与气压传动课程的评价体系,具体环节如图1所示。课堂教学环节结束后,课程负责人需要填写课程自评表,自评教学过程是否支撑对应的毕业要求。如满足要求,则进入考核环节。教师根据教学过程,对应毕业要求给出考核学生的题目――试卷,并根据试题的具体情况填写课程试卷命题检查表。表中总结了对应于每个课程目标的试题分值,通过这张表出}教师可以一目了然地看出所出试题是否与教学环节相适应,即是否可以对学生在教学环节的表现做出客观评价。如果满足要求,则试题可以用来作为课程是否达成课程目标,学生通过课程的学习是否达到相应毕业要求的评价基础。

考试结束并得到学生的考试成绩后,教师需要对成绩进行汇总,根据汇总结果填写分析报告。同时,学生需要填写课程问卷调查,包括课堂教学过程以及试卷等方面,问卷调查的结果要在分析报告中体现。至此,本课程告一段落,分析报告作为重要的存档材料将对课程的总体教学效果起到持续指导的作用。

(三)课程达成度评价

任课教师对自己任课的班级进行自我评价后,由课程负责人对课程的总体情况进行课程目标达成度评价,给出达成度的数值,填写课程达成度评价表,对课程的总体效果给出客观评价。

三、结论

改革优化了课程内容,增加了流体力学部分在本课程中所占的比重,使学生在课程初期对力学,包括固体力学与流体力学有了全面的认识,能够做到融会贯通,为后续液压与气压内容打下坚实的理论基础。改革建立了学生―任课教师―课程负责人为主的课程评价体系,通过各个环节的监控与评估,使学生达到课程所服务的毕业要求。

[ 参 考 文 献 ]

[1] 余天佐,刘少雪.从外部评估转向自我改进――美国工程教育专业认证标准EC2000的变革及启示[J].高等工程教育研究,2014(6).

[2] 陈平,专业认证理念推进工科专业建设内涵式发展[J].中国大学教学,2014(1).

[3] 韩楚.以专业认证为契机促进学风建设之探究[J].新校园(上旬),2016(2).

篇8

[关键词] 力学 学科 发展报告

福建省力学学科在广大的省内力学工作者长期不懈努力下,通过与国内外同行广泛交流、相互学习,以及不断从国内外引进优秀力学人才,近十年来取得不少成果。目前,虽然总体上在国内还无法处于先进行列,但在某些领域的一些研究成果达到了国内甚至国际先进水准,国内影响也日益增加。但是,福建毕竟是力学小省,从事力学研究的队伍很小,真正从事力学理论、基础研究的人才更少。迄今,我省高校还没有设置力学专业,更没有力学或航空航天学院。正因为我们没有强大的力学研究队伍,我们的研究成果不够系统,也无法形成国内外影响力大的研究团队。力学是目前世界上发展非常快的一个学科,是众多工程技术的基础,其研究成果被广泛应用于先进的航天航空技术、舰船技术、兵器技术、尖端的建筑领域、车辆技术、机器人技术、高速精密机床、电子技术、防震救灾等等。力学学科强的省份,其工程技术各个领域普遍也强。由于经济实力有限,福建省同其他一些省市一样,对力学等基础学科重视不够,导致工程技术人才队伍总体素质不是很高,研究后劲不足。除了高层建筑、大型桥梁、水库等事关国计民生的大项目外,很少见到生产企业借助力学寻找疑难问题的答案,或开发设计新产品。为此,总结力学学科发展,不仅仅是有助于本学科更快更好的发展,更重要的是促进力学对工业进步的推动作用。此外,还可以帮助年轻的力学工作者、力学爱好者,以及政府有关部门,更快更好了解我省乃至全世界力学发展动态、应用与存在的问题,促进力学人才队伍的发展壮大。虽然我省力学人才数量与培养机制在国内处于劣势,然而,力学学科也同其他学科一样, 有能力、也期待在海西建设中发挥更大的作用、得到更快的发展。

目前,我省力学学科研究领域主要集中固体力学、流体力学、计算力学、机械动力学与控制、细观力学、实验力学、结构力学等方面。研究内容既有理论方面的,也有许多工程实际应用的,还有关于力学教育的。本学科报告将根据上述7个领域展开。

1固体力学

固体力学研究变形固体在外界因素(如载荷、温度、湿度等)作用下受力、变形、流动、断裂等。包括杆件及理想弹性体变形和破坏;变形固体塑性变形与外力的关系;细长杆稳定性理论;杆系结构、薄板壳以及它们的组合体;裂纹尖端应力场、应变场以及裂纹扩展规律。复合材料构件的力学性能、变形规律和设计准则。固体力学不但促进了近代土木建筑、机械制造和航空航天等工业的进步和繁荣,而且为广泛的自然科学提供了范例或理论基础[1-2]。大到桥梁、航天航空器、核动力结构,小到计算机芯片、生物组织以及近年来高速发展的微/纳米机械等都需要借助固体力学理论和方法。

1.1 我省固体力学研究现状

1.1.1 断裂与疲劳方向

通过三点弯曲疲劳试验,分别跟踪监测了40Cr钢及它的两种表面处理试样疲劳损伤过程,得出了40Cr钢经过两种表面处理对其疲劳裂纹萌生寿命有显著影响的结果,提出了对疲劳裂纹萌生寿命测量的一种新方法[3]。根据材料对称循环持久极限和静载强度极限,导出任意循环特征下材料持久极限的估算公式。通过非线性有限元方法对橡胶―钢球支座的橡胶层与钢球粘结界面上及橡胶中间层在扭转载荷作用下存在中心裂纹和环形边缘裂纹的情况进行了数值模拟,给出撕裂能与裂纹尺寸、载荷和橡胶层厚度的关系曲线[4]。针对抽油机井常用油管在循环载荷作用下的疲劳断裂问题进行了理论与实验研究。在实测油管载荷谱与应变谱的基础上应用弹塑性有限元法计算油管螺纹内的应力应变场,并进行了有关的疲劳实验,以得到油管的疲劳强度。

* 第一执笔人:严世榕,福州大学车辆振动与电子控制研究所所长、教授。

1.1.2 板壳、薄壁杆件及复合材料方向

利用群论方法提出周期区域的分片正交多项式连续函数,在周期区域内利用正交分片多项式逼近位移函数可以大大地降低计算量[5]。推导了一般各向异性板弯曲的积分方程,运用加权残数配点法求解了正交各向异性板弯曲的积分方程。提出了两种新的近似基本解加权双三角级数广义各向同性板解析形式的基本解和加权双三角级数的叠加。根据Timoshenko几何变形假设和Boltzmann叠加原理,推导出控制损伤粘弹性Timoshenko中厚板的非线性动力方程以及简化的Galerkin截断方程组;然后利用非线性动力系统中的数值方法求解了简化方程组[6]。假设翘曲位移及切向位移的分布函数,考虑剪切变形的影响,利用最小势能原理建立了单位均布畸变荷载作用下的薄壁杆件畸变角微分方程[7]。采用一般解法对该畸变角微分方程进行求解,并推导求解的初参数法。采用加权余量法提出一个简支工字型梁在横向荷载作用下临界荷载的计算公式;利用这个式子算出的值与试验结果以及其它数值方法等得到的结果吻合得很好,说明文献[7]提出的公式能迅速、有效地计算薄壁杆件的横向临界荷载。以均布荷载下的抛物线钢管拱为研究对象,在考虑双重非线性的有限元分析基础上,提出纯压钢管拱稳定临界荷载计算的等效柱法[8]。提出了基于杆件连续分布的结构优化方法,优化结果不仅更接近理论解,而且克服了理论解的非均匀各向异性材料的制造困难,也完全避免了各种数值拓扑优化普遍具有的数值不稳定问题[9]。

1.1.3 弹性动力学方向

分析了一般粘弹结构特征值问题的特点,建立了一般粘弹结构的模态分析方法。与粘弹结构已有的模态分析方法相比,该方法通用于更一般的粘弹结构,在形式上不涉及粘弹本构关系项,并只涉及一种模态向量[10]。导出了时间步长内计算扰动的确定方法,并进一步采用同步计算消除计算扰动效应和后续步计算消除计算扰动效应,两种途径抵消其不利影响。基于Distorted-Born Iterative方法,提出了一种求解弹性波强非线性逆散射问题的迭代方法。在数值模拟运算时利用矩阵法进行离散处理,并采用正则化原理避免求解病态矩阵方程。应用多重尺度法推得从平方非线性振动系统势能井逃逸的时间。近似势能法用于克服非线性带来的困难。推导了系统的运动学、动力学方程。分析表明,结合系统动量及动量矩守恒关系得到的系统广义Jacobi关系为系统惯性参数的非线性函数。证明了借助于增广变量法可以将增广广义Jacobi矩阵表示为一组适当选择的惯性参数的线性函数。在此基础上,给出了系统参数未知时由空间机械臂末端惯性空间期望轨迹产生机械臂关节铰期望角速度、角加速度的增广自适应控制算法。在高速公路刚架拱实桥动测及单车荷载作用研究基础上,建立多车荷载激振模型,发展了研究刚架拱桥车激共振特性的可视化仿真方法,探讨刚架拱桥在高速多车荷载作用下的共振条件,分析车距、车速和车数对竖向瞬态振动峰值的影响,编制运行多车荷载下振动仿真分析可视化程序。提出了基于压力传感器的汽车重心实时监测机理的力学模型。利用该模型能实时监测汽车的整车重量、重心位置,提供安全装载和安全车速监测与报警,可为汽车安全系统提供可靠的重心计算力学模型,为研制汽车重心实时监测系统提供了必要参数与依据。论述数值计算中新的小波基无单元方法,即用小波基函数取代传统无单元方法中的幂级数基之后,使无单元法具有了小波变换的局域化和多分辨率等优良特性,并能有效地克服有限单元法的网格敏感性和单元之间应力不连续现象,从而不但拓展和丰富了无单元法的理论内容,也为其工程应用开辟了新的途径[11]。

1.1.4 工程应用

推导了T型截面梁的弯矩-轴力-曲率关系,提出了分析大偏心体外预应力筋的应力增量和梁弯曲性能的通用方法。比较荷载作用前后,转向座和锚具的变形差,计算出体外筋的应变和应力。因此这一方法考虑了体外筋的变形协调条件,同时自动地考虑了体外筋偏心距的损失。以B样条函数结合配点法直接求解框剪间有限个作用力与力矩,导出的递推公式对任意水平荷载可直接应用。采用动力特解边界元法在时域内求解坝-水-地基动力相互作用问题特性,研究了坝体、地基和系统阻尼对坝体的动力特性、动水压力、动力放大系数及稳定系数的影响。提出了一种求解柔性多体系统控制方程数值方法,在每一时间步,利用Newmark-β直接积分法计算迭代初值,基于控制方程及约束方程的泰勒展开,推导出Newton-Raphson迭代公式,对位移及拉格朗日乘子进行修正。引用Blajer提出的违约修正方法对数值积分过程中约束方程的违约进行修正。提出了地震作用下摩擦耗能支撑参数优化的一种新的数学模型,在给定的几条地震波作用下,在满足框架的规范层间位移角限值要求下,框架各层安装的耗能支撑刚度之和最小,从而实现安装较少的耗能装置而能达到相同的抗震要求[16]。

1.2 与国内外发展现状的对比与不足

整体上,我省还没有建立起几个系统、稳定的固体力学研究方向。与国内外比较尚处于相对落后的研究水平。许多研究领域尚处于空白。系统性、原创性研究成果就更少了。

1.3 国内外固体力学发展趋势预测

固体力学的研究对象向跨尺度和复杂性方向发展;研究手段以跨学科、交叉性和系统性为特色。 其基本理论以研究力与热、电、磁、声、光、化学及生命领域的相互作用,实现从原子、分子的微观结构到纳米结构、细观显微结构,直至宏观结构的多尺度关联理论框架的建立。固体力学可以将地震、边坡失稳、泥石流、矿井崩塌等自然灾害提炼成为具有群体缺陷、裂纹和裂隙的不连续、非均匀介质的力学演化过程,预测和防范突发灾害的发生。固体力学在陆地和海洋石油勘探采集和输运、核电技术、风能技术、高坝技术和高功率水力发电技术、大型工程结构的选址等重大工程中也将发挥愈来愈重要的作用。集传感功能和驱动功能为一体的智能材料和结构蕴含着许多与传统领域不同的力学问题。新型材料与结构的多场耦合力学,包括力-电-磁-热耦合场基础理论与体系、破坏理论、智能结构性能等是固体力学领域充满生机的研究方向。 利用生物学和生物技术来设计材料与器件将极大地冲击整个工程界、生物界和医学界。

1.4 我省固体力学发展对策

目前普遍强调工程应用的大社会背景对力学这门基础性学科的发展是极为不利的。鼓励自由探索,促进系统性、原创性、基础性的研究工作是促进力学学科发展的最重要基础工作。主要体现在如下几个方面:

(1)固体力学作为影响广泛的重要基础学科,需要长期、稳定地投入。自由探索和基础研究是科学新思想、新理论和新方法的重要源泉。需要以全面发展的观点长期稳定地处理好基础研究、应用基础研究和工程需求的关系,营造在各方面都鼓励创新的环境。

(2)人才培养,特别是充分发挥优秀人才作用是力学学科发展的重要源泉。建立有利于人才培养的长期、公正、公平、合理的科研成果和科技人才评价体系,力学学科的科学研究和人才培养尤其要避免急功近利。各高校在力学学科的建设上不能以其能否直接解决工程实际问题为取舍的依据,而要以现有人才和研究基础为依据。稳定、扎实的力学学科人才培养可以直接惠及众多相关学科的发展。

(3)从固体力学学科的性质、现状和发展趋势,以及国家需求来看,目前的重要科学问题和前沿领域主要有:微纳米力学、多尺度力学与跨尺度关联和计算、新材料与结构的多场耦合力学、生物材料与仿生材料力学、科学与工程计算与软件、仪器设备研制及实验力学新技术与新表征方法。国家建设需求的重要支撑点和应用发展方向主要有:固体强度与破坏力学、计算力学软件、固体力学在国家安全以及航空航天工程中的应用、大型工程结构与工业装备的力学问题、爆炸与冲击力学、环境与灾害关键力学问题等。

2流体力学

2.1 计算流体力学

流体力学是力学的一个分支,它主要研究流体的运动以及流体和其它介质间相互作用和流动的规律。流体涉及面广,它可以是气、水,也可以是油或其它流变物质。流体力学在气象、水文、石油勘探、船舶、飞行器和工业机械等领域均有广泛应用。流体力学数学上的描述是著名的Navier-Stokes方程及其各种变化。

空气动力学是流体力学针对空气运动问题的一个分支,也是流体力学研究的一个主要内容。20世纪初,飞机的出现极大地促进了空气动力学的发展。航空器的研究需要了解飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪中后期,流体力学开始和其他学科互相交叉和渗透,形成了新的交学科,如物理-化学流体动力学、磁流体力学等。

流体力学研究的手段主要有三:实验,理论分析,数值计算。理论分析是根据流体力学基本方程,通过数学方法进行分析,得出各种定量和定性结果。由于流体运动的复杂性,实验方法在流体力学中占有重要的地位。现代流体力学就是在纯理论的古典流体力学与偏重实验的古典水力学结合后才蓬勃发展起来的。实验对于验证流体运动的基本规律,测定经验参数,解释物理现象均有重要意义。

随着计算机技术和各种高效计算方法的发展,使许多原来无法用理论分析或实验研究的复杂流体问题有了求得数值解的可能性,形成了“计算流体力学”学科。从20世纪60年代起,在飞行器和其它相关工程的设计中,开始大量采用数值模拟,使得数值模拟成为与实验和理论分析相辅相成的一个重要研究手段,并正在成为流体力学的主要发展方向。数值模拟方法特点如下:

①给出流体运动区域内的离散解,而不是一般理论分析方法所关注的解析解;

②它的发展与计算机技术的发展直接相关,因为复杂的流动问题要求大计算量的运算;

③若物理问题的数学模型是正确的,则可在较广泛的流动参数(如马赫数、雷诺数、气体性质、模型尺度等)范围内研究流体力学问题,且能给出流场参数的定量结果。

厦门大学在计算流体力学学科开展了多方面的研究,其主要研究力量分布在数学、海洋、化学、材料、物理机电等院系,并建立了多套高水平的大型计算服务器。特别值得一提的工作是:数学科学学院在可压和不可压粘性流体数学模型的理论探索和高阶数值模拟的研究中取得了具有国际水平的成果,丰富和发展了下面几个重要方法:

2.1.1 谱方法(Spectral method)[17-19]。该方法是一类高阶方法,它利用整体高阶多项式逼近偏微分方程的解。它主要有两种形式:从弱形式出发的Galerkin谱方法和从强形式出发的配点法,它们都可以认为是加权残差法的特殊形式。其中配点方法更像差分法,它要求在配置点上满足原方程,与差分法不同的是:它用高阶多项式的准确求导代替了导数的差分逼近。Galerkin谱方法与有限元方法在原理上类似,都是先将偏微分方程定解问题转化成与之等价的变分形式,然后通过试探函数和检验函数的选取来逼近解,它们的主要不同在于试探函数和检验函数的选取以及高维情况下基函数的构造。谱方法的收敛速度取决于解的正则度,当解无限光滑时可以达到指数阶收敛,即比任何代数阶的收敛速度都快,这是谱方法相比差分法和有限元法的一个主要优点。

2.1.2 拟谱法和谱元法[20-21]。拟谱方法(Pseudo-spectral method)是一类准谱方法,可以通过从弱形式出发的广义Galerkin谱方法构造,也可以由强形式出发的配点法得到。两者在某些特殊情形下是等价的,但对绝大多数问题,配点法无法导出简洁的弱形式,导致理论分析十分困难。现在配点法正渐渐淡出研究人员的视线。基于广义Galerkin方法的拟谱方法的构造分两步:首先构造问题的Galerkin谱方法,然后利用高精度Gauss型数值积分近似弱形式中的积分。有别于标准谱方法中使用的正交多项式基,在拟谱方法中,基函数通常选择基于数值积分的Lagrange多项式基,这给计算,尤其是非线性问题的计算带来了很大的便利。由于Gauss型数值积分的高精度,在大多数情形下拟谱方法的收敛速度与谱方法相同。传统意义下的谱方法对于复杂区域的处理能力极其有限,这限制了它的应用范围。20世纪80年展起来的谱元法(spectral element method)很好地解决了这个问题。谱元法结合了谱方法和有限元法各自的优点,既能处理复杂的计算区域,又有谱方法的高精度,它在不可压流体的计算中取得了很大的成功,如今已是计算流体中最常用的方法之一。谱元法与hp-有限元方法很相似,但两者在发展的初期有许多不同点,hp-有限元使用的多项式阶数不高,所使用的基函数也与谱元法不一样。不过随着两类方法的发展,它们呈现出越来越多的共同点,有些学者已把两类方法归结为同一种方法。由于谱方法还具有低耗散,低色散的优点,如今它已成为湍流数值模拟的主要方法。

2.1.3 湍流大涡模拟(Large eddy simulation,LES) [20-22]。 自然界中的流体运动主要有两种形式,即层流(laminar) 和湍流(turbulence),层流是指流动时流线相互平行的流动,而湍流则是无规则脉动的,有强的涡旋和掺混性。目前一般的看法是:无论是层流还是湍流,它们都服从Navier-Stokes (NS)方程。由于湍流运动特征尺度的多样性,一般来说,直接数值模拟(DNS)仅局限于湍流机理的基础理论研究和一些较简单的问题。湍流大涡模拟(LES)是介于DNS和雷诺平均NS(RANS) 之间的一个折衷方法。LES需要的网格点数比DNS大大减少,这使得它能够应用于许多实际工程计算中。LES仅计算大尺度部分,而亚格子尺度运动(SGS)通过附加模型实现。目前广泛使用的SGS模型有1963年Smagorinsky 提出的“涡粘性” 模型及其变种,如“尺度相似性” 模型,“动力学模型”,“代数涡粘性”模型和“重正化群”模型等,这些模型均在某些特定的情形和适当的假设下适用, 且跟所选择的数值方法相关。较新的LES模型包括速度估计模型以及无(显式)模型的单调积分LES(MILES)和谱消去粘性(Spectral vanishing viscosity, 即SVV)LES。MILES的基本思想是借助非线性高频限制器来限制高频波段上的能量振荡,可以起到与显式SGS模型同样的效果。而SVV-LES是在谱元法框架内提出的,其基本思想是通过引入线性高频粘性项来抑制可解尺度量在截断频率附件的震荡。与其它LES方法相比,SVV-LES简单且无附加计算量。

3计算力学

20世纪50年代,随着计算机的发展,计算力学这个力学和科学计算的交叉学科得到了快速发展,特别是60年代后有限元法及其相应软件产业的迅猛发展,使得计算力学这个新兴学科迅速渗透到土木、水利、机械、航空、电子及生命科学等各个领域,成为计算机辅助设计(CAE)的重要核心内容,也使得力学这个传统的学科焕发了新的强盛的生命力。在当今科学研究和工程实践中, 科学计算已经成为与科学理论、科学实验并行的重要科学方法。2006年美国自然科学基金委员会了《基于数值模拟的工程科学》的研究报告,明确指出计算力学和数值模拟在工程科学发展中的重要地位。

近年来我省科技工作者在计算力学及其工程应用方面开展了积极的研究工作,取得了一定的科技成果。在计算力学方法方面,我省学者系统地发展了土木水利、机械、航空航天等领域常见的梁板壳结构的高效无网格分析方法,该方法采用整体坐标建立板壳无网格近似,不仅简便直接,适用于任意复杂形状的壳体,并且可以避免参数变换,大大提高了计算效率。同时该方法利用稳定节点积分构造离散方程,兼顾了稳定、效率和精度,为快速准确地分析和设计这种类型结构提供了一种有效的数值工具。同时,针对福建省暴雨天气常见的土质边坡失稳而产生的滑坡问题,建立了暴雨条件下土质边坡突发失稳的大变形高效无网格模拟法,该方法可有效模拟失稳剪切带所引发的边坡非线性大变形损伤破坏全过程,实现边坡失稳的高效无网格法全过程仿真分析,可为暴雨条件下边坡工程的设计施工、滑坡灾害的预报、预防和加固处理提供理论依据和指导,有重要的理论和实际工程意义。另外,在杂交元研究方面提出了基于基本变形模式的正交化单元构造方法,不仅概念明晰,而且由于不依赖于材料参数而大大提高了计算效率。并且,在拓扑优化方面提出了类桁架结构连续体的拓扑优化方法,有效地避免了棋盘格问题。这些计算力学方法所取得的研究成果得到了国内外同行的引用和认可。

在工程应用方面,我省学者对汽车减震及管道密封橡胶构件的受力断裂行为进行了非线性有限元和无网格分析和模拟,提出了合理的设计方案。对于大型土木结构例如大跨桥梁、大坝与深水进水塔以及深埋特长隧洞等结构,应用有限元法进行了动力抗震抗风分析,取得了满意的结果,提供了有效的工程服务。另外,应用从微观第一原理到宏观有限元无网格计算的多尺度高性能计算方法,成功地进行了材料微观设计。

虽然我省计算力学研究与应用已经得到快速发展,但在国内仍然处于相对落后的地位,表现在原创性研究偏少,参与解决工程实际问题不够。当前我省相关科研工作者应抓住海西发展的大好时机加大科研力度,争取在高性能计算方法、大规模工程问题数值仿真分析、灾害条件下工程机构性能的计算模拟及评估预防、先进的汽车仿真方法与应用以及高性能材料计算设计等方面取得新的突破,同时密切联系实际,切实提高解决海西建设中的工程技术问题的能力。

4机械动力学与控制

近年来,福州大学、厦门大学、福建农林大学、华侨大学等在机械动力学与控制方面做了不少工作。我省的机械动力学与控制在以下几个方面的研究在国内具有较鲜明的特色和一定的影响力。

4.1 机器人系统动力学与控制问题的研究

福州大学在单臂、多臂、柔性臂空间机器人系统的运动学规划、动力学分析及控制系统设计等方面进行了系统的研究工作。他们研究了载体姿态无扰、末端爪手障碍规避、机械臂关节受限等不同目标要求下的多种运动学规划方法。在控制系统设计方面,分别给出了单、双臂空间机器人关节空间轨迹及末端爪手惯性空间轨迹跟踪的非线性反馈控制、变结构滑模控制、Terminal滑模控制、模糊变结构控制、鲁棒控制、自适应控制、复合自适应控制、终端滑模自适应控制、鲁棒自适应混合控制、自适应Backstepping滑模控制、自适应模糊滑模控制、基于模糊神经网络的动力学控制、基于速度滤波器的鲁棒控制、模糊小波神经网络控制、模糊基函数自适应神经网络控制、基于RBF神经网络的自适应补偿控制、模糊神经网络自学习控制、神经网络前馈控制及闭链双臂空间机器人基于内力优化配置原则的滑模变结构控制、RBF神经网络滑模补偿控制等一系列相关的控制方案[23-35]。在柔性臂空间机器人控制系统设计方面,给出了各类期望运动的Terminal滑模控制、Backstepping反演控制、于奇异摄动法的Backstepping反演控制、关节运动自适应控制及柔性振动的快速实时抑制、运动模糊控制及柔性振动主动抑制、运动鲁棒跟踪控制及柔性振动主动抑制等多种控制方案。其成果以150余篇论文形式,在国内外学术期刊及会议上发表与交流。此外,福州大学还开展了爬墙机器人安全系统的控制研究,对其提出了变结构控制方法、模糊控制方法等[36-37]。

4.2 机械系统动力学研究

福州大学针对立井提升系统动力学与控制、摊铺机和振动压路机动力学分析、以及汽车底盘动力学控制[38-42]等方面进行了系列研究,分析了影响提升设备动力学特性的有关结构参数、运动参数,提出了减少其工作过程振动的变结构控制与模糊控制方法;针对高等级道路建设中重要设备――摊铺机的国产化改造与开发设计,系统研究了其工作原理、动力学特性等,建立了相关的动力学模型,确定了影响整机正常工作的动力学特性及其影响因素;为消化吸收并赶超国外先进的汽车电子控制技术,开展了系统的汽车底盘总成的动力学与电子控制技术的系列研究,其研究成果有助于相关新产品的问世或改进。福州大学还对轴向运动弦线横向振动控制进行了多种控制方法的研究[43-46],其成果可用于指导相应产品的开发设计。

4.3 研究不足与展望

迄今,还没有系统地将机械动力学及其控制的研究成果应用于产品开发与产品的更新换代中。目前,国内急需高精尖机床的开发技术与动态分析优化技术等。我省目前是工程机械大省,但还不是强省,进一步提高相关产品性能与可靠性,仍然需要开展大量的工作。我省的工程机械产品的更新换代(如集成优化、计算机智能控制等)、工程机械新产品开发设计与分析、汽车整车集成优化与设计分析、新型汽车电子控制系统开发设计、高速设备性能分析与改进、机械设备计算机智能故障诊断、微型机械产品开发设计等等,均以力学的分析研究为其成功的关键。

为改变这个落后局面,尤其是海西经济建设中更好发挥力学的作用,需要政府、企业、高校等投入更多人力物力,更积极主动地对重要机械产品、大批量生产的机械产品与汽车等开展机械动力学分析研究,对相关进口软件进行二次开发或早日开发出自己的专用机械动力学分析软件,以提高企业的产品开发能力与开发速度。同时增强完善实验能力与手段,实现对重要机械产品开展动力学特性实验,以确保产品性能稳定与可靠性。积极利用国内外的动力学研究成果,开展重要设备、大型设备、危险设施或设备的动态故障诊断研究,确保这些设备、设施安全可靠高效地运行。

5细观力学

细观力学是固体力学的一大分支,即采用连续介质力学方法分析具有细观结构的材料的力学问题,是固体力学与材料科学的交叉学科,其发展对固体力学研究层次的深入以及对材料科学规律的定量化表达都有重要意义。

前几年我省在细观力学方面的研究进展不多,近几年来才有所发展。研究主要集中在PZT和PLZT铁电陶瓷的电致疲劳机理,微观电畴原位观测,应力、高温、腐蚀性环境介质等耦合作用下固体材料的微结构和变形断裂行为的演变规律等几个方向:

①根据铁电材料自发应变与自发极化不唯一性,以及晶界的不同取向,提出自发极化过程中材料能量密度是变形梯度和电位移向量的非凸函数,从能量角度出发,导出铁电铁弹材料的自极化稳定构形所应满足的必要条件,利用两电畴的Gibbs 自由能之差作为畴变方向的判据,由要求板的Gibbs 函数最小来确定畴变量的大小。②进行了PZT 铁电陶瓷四点弯曲试样在交变力、交变电场及机电耦合疲劳作用前后的微裂纹和电畴的观察,获得裂纹扩展与极化方向,加载类型之间关系。③发展了一种原位XRD观测电畴系统,对电疲劳过程中PLZT铁电陶瓷试样表面X射线衍射峰随疲劳次数的变化进行了原位观测。同时,利用SEM观察了疲劳前后试样的断口形貌,并系统地进行了电场特征和温度对PLZT试样电疲劳性能影响的实验观测。④基于Raman散射原理,建立原位观测电畴翻转的Raman测试系统,对三种不同预极化处理的PLZT试样在静电场作用、电循环作用下的裂纹尖端的畴变行为进行了系统研究;通过原位Raman观测PLZT材料在准同型相界附近的相变过程。⑤系统进行牛皮质骨在拉伸、剪切、撕裂三种载荷类型下的裂纹起裂韧性研究。研究了皮质骨中矿物成分对皮质骨动态粘弹性性能的影响,发现皮质骨中的矿物质成分存在将降低胶原纤维的可动性,增强材料的粘弹性特性。⑥对牙齿等生物复合材料的性能进行了研究,发现牙齿具有很明显的压电效应,压电性能与湿度和细管的分布密切相关。⑦研究在不同保护气氛中,不同退火温度对碳化硅纤维的材料断裂强度的影响,揭示了微结构的演变和宏观性能之间的相互关系。2004年3月29~31日,张颖教授于厦门组织召开了全国细观力学会议,清华大学,中科院力学所,浙江大学,同济大学,复旦大学等国内知名高校和研究所的众多教授、专家参加了本次会议。

细观力学和微纳米力学在全球、全国范围内正在迅速扩展和深入,具有多学科交叉的强烈特征,国际竞争非常激烈。我省学者在细观力学方面和微纳米力学方面的投入较少,今后应该在非线性,动态,多物理场,跨尺度、尺度效应,微纳米力学和器件等方面加大研究投入。

6实验力学

1991年,福建省力学学会成立了实验力学专业委员会。福建省力学学会实验力学专业委员挂靠福州大学土木工程学院。

为更好开展实验力学工作,经过多年多方面努力,我省实验力学条件不断改善。2006年6月福州大学“工程结构福建省高校重点实验室”被批准成立,2008年与台湾大学联合成立了“福建省海峡两岸地震工程研究中心”,2008年“土木工程本科实验教学中心”获批“福建省本科实验教学示范中心”。2008年福州大学土木工程学院实验中心拥有土木综合实验馆、工程结构实验馆、岩土及地下工程实验馆、水利工程实验馆等场馆,总面积超过1.7万多平米,现有仪器设备总价值超过6000万元。其中装备的美国MTS大型结构加载系统价值超过1280万元,共有7个作动器,具备静载全过程、疲劳、多维拟静力和多维拟动力试验功能。此外,正在建设的“福州大学地震模拟振动台三台阵系统”(价值2500余万元)包括三个振动台,其中中间为固定的4m×4m水平三自由度振动台,两边为2.5m×2.5m可移动的水平三自由度振动台各一个,三个台在12m32m的基坑内呈一直线布置,其中边台最大可移动距离10m,可实现多台同步或异步地震输入,拓展了地震模拟实验的空间,该台阵系统将于2009年12月全面建成投入使用。该台阵系统的建成将使福州大学成为目前世界上少数几个拥有地震模拟振动台台阵的单位之一。

7结构力学

结构力学是土木工程专业的专业基础课,涉及建筑工程、结构工程、道路工程、桥隧工程、水利工程及地下工程等。一方面它以高等数学、理论力学、材料力学等课程为基础,另一方面,它又成为钢结构、钢筋混凝土结构、土力学与地基基础、结构抗震等专业课程的基础,在基础课和专业课的学习中起着承前启后的关键作用。

为增强基础教育并提高结构力学在工程中的应用,自上世纪90年代初,我省高校兴起结构力学教学法研究热潮,把结构力学教学改革推向新的高度,对教学内容进行了模块结构改革,将结构力学教学内容归纳为基础型、扩展型和研究型模块。使用高等教育出版社出版的由龙驭球、李廉锟等教授主编的统编教材的同时,在结构动力学部分,融入结构抗风、抗震、车激振动等学科前沿知识,增加了隔震结构动力反应的内容,补充和修正了传统教学内容中关于“伴生自由振动”的相关结论,实现了与学生原有知识的有机融合;有两项重要教研成果:阶梯形变截面梁“图乘贴补简化”计算方法和刚架拱“考虑二阶效应影响线”问题引入课堂讨论,更新了教学内容。

上世纪90年代末,我省结构力学平面教材和多媒体立体化教材建设取得突破,先后出版了《结构力学解题与思考》(陈,中国矿业大学出版社,1999。2007年该书由煤炭工业出版社修订再版)、《广义结构力学及其工程应用》(陈,中国铁道出版社,2003)、《结构力学》(祁皑参编,清华大学出版社,2006)等。

正如王光远院士所指出,结构力学学科呈现出“从狭义到广义,从被动到主动,从确定到不确定,并与结构工程渗透融合”的发展趋势。我国在力学领域的理论研究已位居世界先进行列,但在应用软件的研制方面落后了一大步,具有自主知识产权的应用软件寥若晨星。结构力学作为专业基础教育与国际先进水平接轨,体现现代结构力学教育思想;完善教学资源库建设,加强国际教学交流是当务之急。根据工科专业特点,面向能力培养、面向工程实践、面向信息时代、面向一流水准,应是我省结构力学研究与教学所追求的目标。

参考文献:

[1] 国家自然科学基金委员会数学物理科学部. 力学学科发展研究报告[M].北京: 科学出版社, 2007.

[2] 中国科学技术协会. 2006-2007力学学科发展报告[M]. 北京: 中国科学技术出版社, 2007.

[3] 吴维青. 40Cr钢疲劳裂纹萌生寿命的测量[J]. 应用力学学报, 2003, 20(3): 141-144.

[4] 杨晓翔, 刘晓明. 橡胶-钢球支座在扭转载荷作用下的断裂分析[J]. 应用力学学报, 2009, 26(1):176-180.

[5] 林福泳. 板弯曲问题的群论方法[J]. 计算力学学报, 2004, 21(4):459-463.

[6] 程昌钧, 盛冬发等. 损伤粘弹性Timoshenko梁的拟静态力学行为分析[J]. 应用数学和力学, 2006, 27(3):267-274.

[7] 王全凤, 李华煌. 薄壁杆件侧向稳定的近似闭合解[J]. 工程力学, 1996, 13 (2):24-33.

[8] 韦建刚, 陈宝春等. 纯压钢管拱稳定临界荷载计算的等效柱法[J]. 应用力学学报, 2009, 26(1):194-200.

[9] 周克民, 李俊峰. 结构拓扑优化研究方法综述[J]. 力学进展, 2005, 35(1): 69-76.

[10] 童昕, 顾崇衔. 一般粘弹结构的模态分析[J]. 应用力学学报, 2000, 17(1): 67-75.

[11] 周瑞忠, 周小平等. 小波基无单元法及其工程应用[J]. 工程力学,2003, 20(6):70-74.

[12] 黄庆丰, 王全凤等. Wilson-θ法直接积分的运动约束和计算扰动[J]. 计算力学学报,2005,22(4):477-481.

[13] 方德平, 王全凤. 框-剪结构剪力墙可中断高度的分析研究[J]. 工程力学,2007,24(4):124-128.

[14] 叶荣华. 框―剪体系无连续化假定的简化算法[J]. 工程力学, 1994,11(1): 52-59.

[15] 陶忠, 高献. FRP约束混凝土的应力-应变关系[J]. 工程力学, 2005, 22 (4):187-195.

[16] 施景勋, 林建华. 重力坝与水、地基动力祸合系统地震反应的时域分析[J]. 工程力学, 1994, 11(3):99-108.

[17] Mejdi Azaiez, Jie Shen, Chuanju Xu, and Qingqu Zhuang, A Laguerre- Legendre Spectral Method for the Stokes Problem in a Semi-Infinite Channel , SIAM J. Numer. Anal., 2008, 47(1): 271-292.

[18] Roger Peyret, Spectral Methods with Application to Incompressible Viscous Flow, Springer Verlag, 2002.

[19] Chuanju Xu, Yumin Lin, A numerical comparison of outflow boundary conditions for spectral element simulations of incompressible flows , Commun. Comput. Phys., 2007,(2): 477-500.

[20] R.Pasquetti, Chuanju Xu, High-Order Algorithms for Large-Eddy Simulation of incompressible Flows, J. Scient. Computing, 2002, 17(1-3): 273-284.

[21] Zhijian Rong, Chuanju Xu, Spectral Vanishing Viscosity for Large-Eddy Simulations by Spectral Element Methods , Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 1-7.

[22] Chuanju Xu, Stabilization Methods for Spectral Element Computations of Incompressible Flows, Journal of Scientific Computing, 2006, 27(1-3): 495-505.

[23] 郭益深,陈力. Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance[J]. Applied Mathematics and Mechanacs, 2008, 29(5):583-590.

[24] 陈志煌,陈力. 漂浮基双臂空间机器人姿态与末端抓手惯性空间轨迹协调运动的模糊滑模控制[J]. 力学季刊, 2008, 29(3): 399-404.

[25] 唐晓腾,陈力.自由漂浮双臂空间机器人基联坐标系内轨迹的一种增广变结构鲁棒控制方法[J]. 中国机械工程, 2008, 19(19): 2278-2282.

[26] 洪昭斌,陈力.双臂空间机器人关节运动的一种增广自适应控制方法[J]. 空间科学学报,2007, 27(4): 347-352.

[27] 陈力, 刘延柱. 带滑移铰空间机械臂协调运动的复合自适应控制[J]. 高技术通讯, 2001, 11(10): 78-82.

[28] 陈力. 参数不确定空间机械臂系统的鲁棒自适应混合控制[J].控制理论与应用. 2004, 21(4): 512-516.

[29] 梁捷,陈力. 具有未知载荷参数的漂浮基空间机械臂姿态、关节协调运动的模糊自适应补偿控制[J]. 空间科学学报,2009,29(3): 338-345.

[30] 洪昭斌,陈力. 基于速度滤波器的漂浮基空间机械臂鲁棒控制[C]. 中国航天可持续发展高峰论坛暨中国宇航学会第三届学术年会, 北京, 2008

[31] 郭益深, 陈力. 漂浮基空间机械臂姿态、末端爪手协调运动的自适应神经网络控制[J].工程力学, 2009, 26(7): 181-187.

[32] 郭益深,陈力. 基于RBF神经元网络的漂浮基空间机械臂关节运动自适应控制方法[J]. 中国机械工程, 2008, 19(20): 2463-2468.

[33] 洪昭彬,陈力. 漂浮基双臂空间机器人系统的模糊神经网络自学习控制[J]. 机器人, 2008, 30(5): 435-439.

[34] 黄登峰, 陈力.Neural Network Feed-forward Control of Free-floating Dual-arm Space robot System in Joint Space.The 59th International Astronautical Congress, Glasgow, Scotland, 29 September 3 October 2008.

[35] 郭益深,陈力.漂浮基柔性空间机械臂姿态与关节协调运动的Terminal滑模控制[J]. 动力学与控制学报, 2009, 7(2): 158-163.

[36] 严世榕,S.K. Tso,A new suspension-type maintenance system for tall buildings and its mechanical analysis, Proceedings of IEEE mechatronics and machine vision in practice, Perth, Australia,2003.12.

[37] 严世榕,S.K. Tso,爬墙式机器人安全系统的动力学变结构控制研究[J].机器人,2002,24(2): 122-125.

[38] 严世榕,刘梅,等. 双容器提升系统在加速过程中的动力学控制研究[J]. 振动工程学报,2001,14(3): 322-324.

[39] 严世榕,闻邦椿. 摊铺机压实机构的一种非线性动力学理论研究[J]. 中国公路学报,2000,13(3): 123-126.

[40] 严世榕,林志伟. Study on a new safety control method for a vehicle, Proceedings of IEEE ICAL 2009, Shenyang, 2009.

[41] 严世榕,苏振海. Dynamic control of an electric steering vehicle, Proceedings of IEEE ICAL 2008, Qingdao, 2008.

[42] 管迪,陈乐生. 振动压路机的一种非线性动力学建模与仿真[J]. 系统仿真学报,2007,19(24): 5809-5811,5817.

[43] 张伟,陈立群. Vibration control of an axially moving string system: wave cancellation method. Applied Mathematics and Computation,2006, 175(1).

[44] 张伟,陈立群. 轴向运动弦线横向振动的自适应方法[J]. 机械工程学报, 2006, 42(4): 96-100.

[45] 张伟,陈立群. 轴向运动弦线横向振动控制的Lyapunov方法[J]. 控制理论与应用, 2006, 23(4): 531-535.

[46] 张伟,陈立群. 轴向运动弦线横向振动的线性反馈控制[J].应用力学学报,2006,23(2): 242-245.

[47] 向宇, 程璇, 张颖. PZT 在机电疲劳作用下的微裂纹和畴变[J]. 厦门大学学报,2001,40(1): 74-80.

[48] 张颖. 关于铁电铁弹材料的自然构形[J]. 力学学报, 2000,32(2): 213- 222.

[49] 张颖. 外加电场作用下层状铁电多晶材料板的模拟[J]. 厦门大学学报(自然科学版),1999,38(3): 396-402.

[50] Zhang S, Cheng X., Zhang Y., Recent progress in observations of domain switching in ferroelectric ceramics, RARE METAL MATERIALS AND ENGINEERING,34:31-36 Suppl.2 SEP(2005).

[51] Zhang S, Cheng X., Zhang Y., In situ Raman spectroscopy observation for domain switching of ferroelectric ceramics, ACTA METALLURGICA SINICA, 2005,41 (6).

[52] Chen ZW, Lu ZY, Chen XM, Cheng X., Zhang Y., Effects of electrical characters on electrical fatigue behavior in PLZT ferroelectric ceramics, HIGH-PERFORMANCE CERAMICS, 2005, 1 (2).

[53] Zhang Y., Chen ZW, Cheng X., Zhang S, In situ XRD investigation of domain switching in ferroelectric ceramics PLZT during an electric fatigue process, ACTA METALLURGICA SINICA, 2004, 40 (12).

[54] Chen ZW, Cheng X., Zhang Y., Effect of temperature on electric fatigue behaviour of PLZT ferroelectric ceramics, RARE METAL MATERIALS AND ENGINEERING, 2004, 33 (8).

[55] Chen ZW, Cheng X., Zhang Y., Mechanism of electric fatigue in PLZE ceramics, ACTA METALLURGICA SINICA, 2004, 40 (3).

[56] Ying Zhang, Xuan Cheng, Rong Qian, Fatigue behavior of ferroelectric ceramics under mechanically_/electrically coupled cyclic loads, Materials Science and Engineering A351 (2003):81-85.

[57] Ting Wang, Zude Feng, Dynamic mechanical properties of cortical bone: The effect of mineral content, Materials Letters 59 (2005) 2277 2280.

[58] Zude Feng a,), Jae Rho b, Seung Han c, Israel Ziv, Orientation and loading condition dependence of fracture toughness in cortical bone, Materials Science and Engineering C 11 _2000. 4146.

[59] 冯祖德.皮质骨在拉伸型、剪切型和撕裂型加载条件下的断裂韧性――纵向断裂和横向断裂的比较[J]. 生物医学工程学杂志,1997, 14(3): 199-204.

[60] Liu Y. X., Cheng X., Zhang Y. Phase transitions near morphotropic phase boundary in PLZT ceramics observed by in situ Raman spectroscopy, ACTA METALLURGICA SINICA,2008, 44(1):29-33.

[61] ZHANG Sa, CHENC Xuan, ZHANG Ying, In-situ observation on domain switching of PLZT via Raman spectroscopy, Transactions of Nonferrous Metals Society of China, 2006, 16:638-642.

[62] Siwei Li, Zude Feng, Hui Mei, Litong Zhang, Mechanical and microstructural evolution of Hi-Nicalon Trade Mark SiC fibers annealed in O2H2OAr atmospheres, Materials Science and Engineering A 487 (2008):424-430.

[63] Yao R. Q., Wang Y. Y. Feng Z. D., The effect of high-temperature annealing on tensile strength and its mechanism of Hi-Nicalon SiC fibres under inert atmosphere, FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2008, 31(9):777-787.

[64] 陈.工程力学教改实践中的几个关键问题[J].高等教育研究,1998, (1).

[65] 祁皑,陈,陈贞钜.在《结构力学》课程中融入前沿知识的尝试[J].力学与实践,2005, 27(4): 70-72.

[66] 陈.贴补法对图乘计算的简化[J]. 力学与实践,1996, 18(2): 58, 62.

[67] 陈, 等.考虑Ⅱ阶效应的刚架拱影响线[J]. 福州大学学报(自然科学版),2002, (1): 20.

[68] 陈.结构力学教学改革十年回顾[J]. 福州大学学报(哲社版),2005年教育专辑.

[69] 张建霖等.土木工程专业力学教学的改革与探索[J]. 厦门大学学报(哲社版),2000年增刊.

[70] 陈等.箱梁现浇预应力组合桁式膺架体系研究[J]. 土木工程学报,2004,(11): 9.

[71] 周克民, 胡云昌.利用有限元构造Michell桁架的一种方法[J]. 力学学报,2002, 34(6): 935-944.

[72] 陈, 唐意, 黄文机.多车荷载下刚架拱桥车振仿真可视化研究[J]. 工程力学,2005, 22(1): 218-222.

[73] 陈,陈五湖,祁皑.结构力学网络教学综合系统研究[J]. 高等建筑教育,2004, 13(4): 75-77.

课题组成员:

1、严世榕,福州大学车辆振动与电子控制研究所所长、教授。

2、周瑞忠,福州大学土木工程学院教授(本文顾问)。

3、周克民,华侨大学土木工程学院教授。

4、许传矩,厦门大学数学科学学院教授。

5、王东东,厦门大学建筑与土木学院教授。

6、陈力,福州大学机械工程学院教授。

7、周志东,厦门大学材料学院副教授。

篇9

关键词:研究型教学模式;流体力学;数值模拟

【中图分类号】G64.25 【文献标识码】A 【文章编号】

所谓研究型教学模式是指在教学中引导学生逐步深入研究某一个问题的教学模式,是以具体的实例为研究对象,利用所学的基础理论知识,并结合现代的研究手段进行逐步的深入研究,并对结果进行分析,目的是培养学生从事科学研究的思维模式和严谨的科研态度。这是将现代科研研究方法和研究内容引入课堂的重要途径,也是达到培养研究型人才的重要过程。本文在流体力学的教学实践中进行了相关的尝试,并获得了较好的教学效果。

一、 研究题目的选取

由于是课堂教学,受时间的限制,研究题目要求适当,即简单易懂、清晰明了,又有实用价值和深入研究的前景,在具体教学中选取了如下的问题。

结构如图1所示,阀门A固定,阀门B可上下移动,水在阀门A、B所开启的通道内流动。若阀门A入口处的来流速度为已知,试分析流域内的压力分布、速度分布,并计算阀门B所受到的合力。

对于这个问题,在引导学生对流动进行分析的同时,提出了如下的问题:

(1) 水流对阀门B的作用力是促使阀门B关闭还是开启?

(2) 水流在a、b处的流动方向如何?

(3) 水流对阀门B的作用力与阀门开启之间的关系如何?

这个题目是来自于工程实践中的阀门控制问题,在进行阀门开启的自动控制设计中,要求确认阀门B的受力大小及方向。问题提出后,可要求学生根据自己对问题的理解,先猜想一下结果,然后再进行深入的计算研究加以验证,并利用流体力学基本原理进行理论的分析和解释。

二、 研究手段应具有先进性

介绍先进的研究方法,把现代研究工具融入到日常教学中,是教学改革的重要内容和任务。就本问题而言,这个问题看似简单,实际是一个比较复杂的紊流流动问题。鉴于理论求解的复杂性和实验研究的局限性,采用数值模拟的方法即体现了先进的研究手段,又适合于课堂研究讨论和对问题的深入研究和引导。

目前流体力学的研究方法有三种,一是理论的方法,二是实验的方法,三是数值的方法。传统的流体力学教学内容与方法,基本上是基于理论的教学,并辅之以部分简单的实验。利用理论解析的方法求解流体流动问题,由于受到求解非线性方程没有成熟的数学方法的制约,研究进展缓慢,到目前为止,也只有极少数的特例得以进行理论求解。对于利用实验方法进行研究,由于受到实验的局限性,以及大量人力物力的消耗,不适于本问题的课堂教学研究和教学目的。近年来,随着计算技术的飞速发展,社会生活和科学研究方法也产生了巨大的变化,利用数值模拟计算的方法已经是当前各个研究单位的首选研究手段。

鉴于以上论述,在对问题进行分析的基础上,同时介绍现代的研究方法和数值模拟计算平台(例如Fluent,CFX等),即给学生深入研究提供了研究手段,又达到了将教学内容与现代研究方法相结合的目的,对培养研究型人才具有重要意义。

三、 计算结果应有合理的解释和分析

本文利用数值模拟的方法,通过对流域的建模、计算和后处理,对本问题进行了流动过程的研究。对这一部分教学内容,应该对流场的边界条件、边界类型、紊流模型和计算方法等进行较详细的介绍和讲解。鉴于大学本科教学内容和流体专业知识的限制,可对流场的边界条件和边界类型多做一些讲解,例如速度边界、压力出流边界等;对紊流模型的来源及其应用做简单介绍,而对诸如SIMPLE、PISO算法等仅仅介绍一下怎样选取和使用即可。

经过数值模拟计算,有如下发现:

(1) 水流的流动对阀门B产生一个向下的力,促使阀门B趋向于关闭

对此结果,必须要有合理的解释。通过计算,发现通道内的压强分布如图2所示。对于阀门B来说,其上部为低压区,而下部为高压区,在这个压力差作用下,迫使阀门B有向下运动的趋势。

这一部分的流动,由于通道的变形,迫使水流改变原有的流动方向,在冲击阀门B下端壁面的同时,也使阀门B上端壁面产生了低压区,从而产生一个向下的合力。

(2)下部a处,水向通道内流动

数值模拟计算结果表明,经过口b的流动方向是向上的,这很好理解,但经过口a处的流动方向也是向上的,而不是向下的出流,流动情况如图3所示,这就可能与最初的猜想相悖。

对此情况,可利用伯努利方程进行解释。当水流流经阀门A、B相接处时,由于通道的变窄,使得流动速度加快,并产生一定的真空度。由于设定a处为大气压,则在此真空度的作用下,迫使水流向通道内流动。

四、 指出进一步的研究内容

通过前面的教学,使学生对数值模拟这一现代研究手段及研究过程有了初步的了解,达到了将现代研究方法引入课堂的目的。为了更加有效的掌握教学内容,在介绍完数值模拟平台的使用,并对问题进行了初步研究之后,还必须引导学生进一步思考和研究。

具体到本次教学,提出了阀门B的受力大小与阀门开启之间有什么样的关系,要求进一步深入研究。这里首先要定义阀门的开启度,应该是一个无量纲的量。然后利用数值模拟平台,进行逐步的研究,并把计算结果绘制成曲线。这一部分工作,可留给同学课后完成,并要求以科研论文的格式写出研究报告。实践证明,这样的要求激发了学生的研究热情,也使学生对科学研究的方法和内容有了更深的体会。

本科生写出科研论文是卓越工程师计划的一部分,因此,这一部分的教学内容对参与卓越工程师计划的专业尤为重要。

五、 教学实践中应该注意的一些问题

采用这种研究型教学模式,有如下的体会。

1、 教学时机的把握

采用这种教学方法,应该是在讲授完流体力学基本内容之后进行。这里的流体力学基本内容包括流体流动的连续性方程、伯努利方程和动量定理,并对粘性流动的层流和紊流等进行介绍之后进行。

2、 教学方式即可以采用演示的方法,也可以采用师生互动的方法

对于有条件的,应该尽量采用师生互动的方法进行教学,从方案的设定,到计算结果的处理和分析,要求师生一起进行,并进行充分的讨论,这样的教学效果是最好的。

3、 题目的选取

采用研究型教学模式进行教学,应以讲解研究方法和研究过程为宗旨。其中题目的选取至关重要,一般来说,题目不易选得过于复杂,最好是来自于工程实际,并具有一定的代表性和后续研究内容。

4、 教学后期的把握

这种教学过程的重要一环是学生的课后练习和对题目的进一步深入研究。另外,在要求完成本课题的后续研究并形成报告的同时,还应鼓励学生独自去发现问题,并利用学到的工具去解决问题。对于所完成的研究报告,应影响到本门课程的最终成绩。

本文所阐述的研究型教学方法,通过几年来的教学实践,对培养学生的研究能力起到了积极的作用,取得了较好的教学效果。教学效果在本科毕业设计阶段得到较充分的体现,受到师生的好评。

参考文献:

篇10

关键词:教学模式;项目教学;教学方法;合作学习;考核评价

作者简介:徐砚(1961-),女,黑龙江呼兰人,哈尔滨电力职业技术学院动力工程系,副教授;王洪旗(1964-),男,河北河间人,哈尔滨电力职业技术学院动力工程系,副教授。(黑龙江 哈尔滨 150030)

中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)33-0057-01

在电厂热能动力装置专业(简称热动专业)开展的基于工作过程系统化课程开发试点工作中,根据热动专业人才培养方案和培养目标,认真研究和分析了本专业岗位的典型工作任务和职业素质需求特点,将原“工程流体力学”课程进行分析论证整合,调整为学习领域课程“流体流动能量分析”,旨在强调流体作为电力生产的重要工作介质所起的能量输送和转换的重要作用。采用更具有职教特点、更适合岗位工作要求的教学方法和内容,先进的教学设计理念和现代教育手段,小组合作学习的方法,注重学习过程和素质能力的评价方式,全面提升教学质量,全面提高学生的综合职业素质,为学习后续课程、考取本专业相关的“职业资格证书”、完成本专业相关岗位的工作任务打下良好基础。

一、教学模式和教学内容

电厂热能动力装置专业主要面向发电、电力建设等企业,培养能够完成热力设备安装、检修、运行、调试和技术管理工作任务,德、智、体、美全面发展的高等技术应用型专门人才。“流体流动能量分析”课程是本专业进行职业岗位能力培养的一门核心课程,属于专业基础课的范畴,不直接对应典型的工作任务,反映部分典型工作任务的某些共性内容与要求。在本专业主要岗位群中(汽轮机运行值班员、锅炉运行值班员、除尘脱硫值班员、锅炉检修工、汽轮机检修工、泵与风机检修工等)都必备流体力学知识。按照本专业岗位的实际工作任务需求构建课程体系、组织教学内容、设计教学项目,采取了项目教学、任务驱动、行动导向的教学模式,注重学生在校学习与实际工作的一致性,使理论教学与实验教学紧密联系,为岗位需求提供职业能力,为培养高端技能型人才提供保证。

采用将教学内容模块化、层次化的教学方式,面向电力生产技术,根据工作任务和工作过程确定教学内容,再通过归纳、总结、提炼并遵循认识规律将教学内容总结为教学项目,依据电厂热力设备和系统的实际水力分析及计算的工作任务设计教学项目和学习任务。针对每个学习任务按照咨询、决策计划、实施、检查评价等进行教学组织设计。本课程共设计了“流体及其压力的认识”、“静止流体势能转换分析”、“流动流体机械能转换分析”、“流动阻力损失的计算”、“绕流运动分析”、“气体流动特性分析”六个教学项目(含18个教学任务),每个教学项目设有知识目标、专业能力目标、职业素质目标。知识目标侧重于应知,重在基本概念、基本原理的掌握和理解;能力目标侧重于应会,能用所学的流体力学知识分析和解决工程实际问题;素质目标强调团队精神、职业道德、交流和学习能力的培养。紧密围绕本专业岗位需求,学习实际工程所涉及到的流体力学的基本概念、基本原理,并具有一定的流体能量分析能力和管路水力计算能力。在完成相关训练项目的过程中学习有关的技术知识,分别对应理论验证和单项技术运用能力的培养、动手能力与设计计算能力的培养、知识拓展能力和创新能力的培养。

二、教学方法和教学手段

采用工学结合、理实一体的教学模式,根据不同项目内容,在教学中灵活运用项目导向、任务驱动、案例分析、多媒体演示、分组讨论、实验、启发引导、边讲边练等教学方法,引导学生积极思考、乐于实践,提高教与学的效果。授课前一周向学生下达项目任务书,内容包括学习任务描述,学习场地、设备,知识、素质、能力目标,咨询问题和途径等,学生按照任务书的要求,咨询信息形成学习笔记,小组讨论形成项目实施方案。做到课内教学与课外教学相结合,自主学习与指导教学相结合。通过贴近岗位工作的电力生产实际案例导入知识,训练分析和计算能力,使能力培养与工程实践相结合。选题、选材注重共识性、综合性、工程性、创新性,同时体现新颖性、趣味性、互动性。将实践性强、技能训练要求高的内容,通过模拟实验、实验操作、边讲边练的方式,提高学生的动手能力。将传统教学方法与现代教育技术相融合,向学生提供教学资源库(包括教学课件、自学指导书、习题集、实验指导书、模拟实验软件、相关电力生产设备及系统视频和图片、国家精品课网址、其他参考教材等),开阔学生视野,拓宽学习渠道。充分利用多媒体课件、录像片、图、表、网络等现代化的教学手段,通过视觉、听觉,全方位加强学生对知识的理解和记忆,同时结合板书等传统授课手段,扬长避短,获得最佳效果。

三、学习方法和考核评价

以学生为中心,支持学生自主学习、协作学习和探究式学习,每个项目的实施都采用小组合作学习的方法,强化学生的团队协作精神,增强学生主动参与和个性发展。班级40人,分成4个小组,课上先由小组派代表汇报咨询信息情况、存在问题,再由教师适时讲解、分析,最后小组讨论总结,实验和水力计算项目由小组自行设计方案,分工合作完成。事实证明,试点班学生的学习能力、学习积极性和主动性明显提升。

突破传统考核模式,加强过程考核,注重素质和能力培养,全面公正评价学生的学习效果。职业能力评价占总成绩的70%,职业素养评价占总成绩的30%。

1.职业能力评价

(1)基础知识评价。主要侧重于对各个工作任务中所涉及到的基本概念、基本原理的掌握和理解,如连续性方程、能量方程、阻力损失计算等。考核方式为期中测试和期末考试。

(2)专业能力评价。主要侧重于用所学的流体力学知识分析和解决工程实际问题。包括实验项目的操作能力表现,设计计算能力,分析和解决问题的能力。考核方式为完成每个教学项目过程中的咨询问题回答、学习档案检查、实验操作检查、课业报告检查。

2.职业素养评价

(1)平时考勤评价。根据平时上课和实验出勤率进行评价。

(2)学习态度评价。根据每个学习任务完成过程的实际表现,如学习态度、是否遵守纪律、是否团结互助等进行评定。考核方式为个人评价、教师评价、小组评价和小组互评。

四、结束语

工学结合作为职业教育的重要特征已被大家所认识,探索和建立适合国情、符合工学结合要求的新型职业教育课程模式,成为广大职业院校提高教学质量的重要手段。对热动专业的“工程流体力学”课程进行了基于工作过程系统化的改革研究与实践探索,旨在找到更具有职教特点、更适合岗位工作要求的教学方法和教学内容,全面提升教学质量,全面提高学生的综合职业素质、能力。

参考文献:

[1]赵志群.职业教育工学结合一体化课程开发指南[M].北京:清华大学出版社,2009.

[2]徐国庆.职业教育项目课程开发指南[M].上海:华东师范大学出版社,2009.