初中数学建模思想的培养范文

时间:2023-12-20 17:33:27

导语:如何才能写好一篇初中数学建模思想的培养,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

初中数学建模思想的培养

篇1

关键词: 初中数学教学 数学模型 数学建模 理论依据

随着数学教学的不断深入,重视数学知识与现实生活的联系,增强学生的应用意识,提高学生的实践能力已成为数学教育发展的趋势。建模教学是学生体会和理解数学与外部世界联系的基本途径,是数学知识与数学应用的桥梁。数学课程标准(修订稿)首次明确提出:在呈现作为知识和数学结果的同时,重视学生已有的经验,使学生体验从实际背景中发现数学问题,构建数学模型,寻求结果,解决问题。因此,在初中数学教学中加强建模教学,渗透建模思想是非常必要的。在中学开展数学建模活动是目前我国教育改革的重点和今后的发展趋向,需要中学第一线教师不断尝试、探索、实践。

一、数学模型与数学建模

所谓数学模型是指根据特定的研究目标,采用形式化的语言,抽象、概括地表征所研究对象的主要特征、关系所形成的一种数学结构。在初中数学中,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式及各种图表、图形等都是数学模型。数学模型与很多课程目标点密切相关,其本身也渗透于各课程领域中。提出模型思想能很好地促进这些课程目标的实现。

数学建模是通过建立模型的方法求得问题解决的数学活动的全过程。新课标指出:把现实世界中的实际问题加以提炼抽象成为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解决现实问题的过程就是数学建模。

二、数学建模的理论依据

以瑞士著名心理学家皮亚杰和前苏联心理学维果茨基为代表的建构主义学习理论,是数学建模的理论基础。建构主义认为知识并不是外部现实的确切表征,而是学习者在一定情况下借助他人帮助而获得的对于外部世界的意义建构。学生的学习是主动建构知识的过程,教育的目的是培养善于学习的终身学习者,提倡在教师的引导下,以学习者为中心的学习。为此,教师要树立以人为本的教育思想,形成正确的教育理念,让“人人都能获得良好的教育,不同的人在数学上得到不同的发展”。

三、如何在初中数学教学中培养学生的建模思想

数学建模的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。

首先,从现实生活或具体情境中抽象出数学问题是数学建模的起点。教师要引导学生从实际问题中筛选出有用的信息,从而发现数学问题。

例如正负数的教学中,给学生创设具体的情境,帮助学生充分理解正负数的含义,这对学生的后续学习很重要。在情境创设中可选取水位上升和下降、温度高低、盈利和亏损等建模,让学生明白正负数是表示相反意义的量,再用正数表示水位上升、零上温度、盈利情况,用负数表示水位下降、零下温度、亏损情况,从而在学生思想中建立一个数学模型,这将为后面的数轴学习奠定较好的基础。

其次,“用数学符号建立方程、不等式、函数等表示问题中的数量关系和变化规律”。在这一步中,学生通过已提出的问题全面分析其中的数量关系,探索出解决问题的方法。分析问题,建立模型是建立模型思想的核心。

例如:苏教版八年级(下)数学课本中有这样一道题:A、B两家旅行社推出家庭旅游优惠活动,两家旅行社的票价均为每人90元,但优惠办法不同。A旅行社的优惠办法是:全家有一人购全票,其余的半价优惠;B旅行社的优惠办法是:每人均按三分之二票价优惠,你将选择哪家旅行社?

分析:此问题既符合真实生活情境,又在学生的接受能力范围内,具备一定的难度,学生能通过小组协作得到问题的解决方法。本题可以作为数学建模情况的选题,符合建构主义学习的“情境性”和“最近发展区”理论。即建构主义认为的教学活动应当在一定的问题情况中进行,同时也要建立在学生已有的认知经验和基础上。

篇2

【关键词】初中数学;建模思想

一、数学建模思想的内涵分析

数学建模思想产生于上个世纪的六七十年代,在“新数运动”和“回到基础”的数学教学研究之后,数学教育的问题意识逐渐增强,数学建模作为问题素养培养的重要方法也逐渐被人们所认识到。在我国,以华罗庚为代表的数学家通过中学数学竞赛与数学讲座等方式向中学生介绍数学建模思想,虽然此时并没有明确采用数学建模的名称,但数学建模在解决数学问题中的应用已受到重视。在几十年的发展过程中,数学建模思想取得了很大发展。目前,我国初中数学建模思想在初中数学教育中广泛应用,新课程改革和素质教育的实施,推动了学生数学应用意识的加强,促进数学建模的教学方法的应用。但由于教师教育理念的陈旧和教学方法的不科学,导致数学建模思想的应用受到限制。数学建模思想的重要性在于以下几点:

首先,数学建模思想作为一种学习方法,可以将初中数学知识结合起来,在知识的相互渗透中挖掘出数学学习的规律。数学建模是一种综合性较强的数学解题方法,初中数学建模教学中,不仅包括实际的生活内容,还包括了多种学科,数学建模的范围比较广阔。

其次,数学建模可以简化信息。数学建模的目的是将繁杂的数学信息通过科学的模型直观反映出来,将问题的主要方面表现出来,以所学知识对问题进行解读。数学建模能够让学生体验建模的过程,教师将建模思想传授给学生,让学生在小组讨论中找出最佳的建模方法,将学生的独立思考和团队合作结合起来,为学生的建模活动提供良好的空间。

再次,数学建模将简化后的信息抽象为数学问题,利用已知条件,对数学问题进行分析,以数学思维将文字语言数学化,以解决问题,通过模型的建立,以简化、抽象的方法将数学学习中的问题进行有效解决。再者,数学建模强调教学中的因材施教,对学生的学习水平和认知差异进行分析,发挥学生的学习潜能和优势,提高学生的数学思维能力。

最后,数学建模的应用性强。随着经济社会道德快速发展,数学知识已深入到人们生产生活的各个方面,数学思维能力及数学应用能力的要求也越来越高,数学建模思想不仅能提高数学应用能力,还能极大促进数学思维能力的发展。在高考应用题解答中,建模思想能够方便学生的解题,情景模拟式的考题形式,对学生的语言能力及数学分析能力要求较高,数学建模思想体现了素质教育对学生全面发展的要求。

二、数学建模的实施步骤

(一)审题,即建模准备阶段

在初中数学的学习中,首先应仔细阅读题目,对问题的背景进行分析,将相关的已知数据进行整合,分清题目中的已知量与未知量之间的关系。在审题过程中,一定要把握住题干中关键字词的数学含义,如增加、减少、不大于、不小于、至少等等。在审题过程中,可以在头脑中形成一套解题思路,再根据已知量情况,选择最佳的问题解决方法。初中数学的审题有一定的难度,教师应引导学生对题目进行分析,找出问题的关键内容,提取有用的解题数据。在这个过程中,教师应加强对学生阅读能力的培养以及数学思维的培养,将形象繁杂的语言转化为抽象简洁的数学语言,为建模和解题做好准备工作。

(二)建立数学模型

在对题目信息进行准确分析之后,就应该着手建立数学模型。将繁杂的语言文字抽象化为简洁的数学语言,从题干中提取相关的数量关系,将该数量关系以数学符号或数学公式进行分析,从而建立起一个完整的数学模型。数学建模过程对学生来说有一定的难度,对于比较抽象的模型或相对复杂的建模方法,教师应先给出相应的范例,同时可以采取小组讨论的方法来激发学生的学习兴趣,根据学生的建模类型的适用性、可行性、效率等进行对比分析,根据题目类型选择最恰当的数学模型。

(三)求解数学模型

根据已建立的数学模型,运用所学知识选择最佳的问题解决方法,简化运算方式,以最短的时间求解出该问题的解。同时,应对求解过程中的变量范围和其他限制性条件予以注意。在模型求解过程中,应该重视算法简化及工具的使用,还包括跨学科知识的应用等方面的内容也应该予以重视。教师可以充分利用模型求解的过程,拓展学生的知识面,激发学生的学习兴趣和欲望,培养学生的数学思维。模型求解过程的难度不是很大,可以通过学生独立完成或者在分组中完成。

(四)模型验证

通过问题的求解,检验该求解结果是否与实际要求相符合,同时也应对该求解结果与数学模型的匹配性进行检验,实现最佳解决方案的实施。模型验证应在具体的问题中来检测,以实际问题现象和数据对结果进行分析,保证模型结果的适用性、合理性和准确性。如果检验结果不符,则要修改模型结构,通过不断改进以符合实际情况。模型验证环节是学生最易忽略的地方。在数学模型求解完成之后,由于模型与实际问题存在着一定地位问题,导致模型设计的不合理。这些都需要在模型验证过程中予以解决。因此,在模型求解完成之后,教师应要求学生将模型与公式对照检验,发现模型存在的问题,进而解决问题。在多次的测量中,得出比较准确的解题结果,之后则可以进行模型参数变化及扩展等教学内容。

三、数学建模的实施效果

篇3

[关键词] 初中数学 建模 教学

[中图分类号] G633.6 [文献标识码] A [文章编号] 1674 6058(2016)17 0021

一、初中数学建模教学方式的重要性

在初中数学教学工作的开展过程中,建模这种方式能够让学生更加立体直观的认识到数学课程教学内容的思想和意义,对于学生更好地理解所学知识有着重要的帮助.初中数学教学中,比较常见的几种建模类型有:方程(组)模型,不等式(组)模型,函数模型,几何或三角模型,统计模型,概率模型等.

通过构建数学模型,能够让教师在教学水平上有所提升,数学教学工作的开展,需要从多个角度培养教师的教学能力,教学的手段和教学水平是体现一个教师教学能力的重要指标,教师的教学手段能否更加适应教学需求,这一点是从多个角度展现的.因此,在具体的教学工作开展过程中,教师个人的建模能力,对于教学效果的实现来讲有着重要意义.所以,在教学工作的开展过程中,通过构建数学模型,有针对性地对数学教学工作进行建模构造,提高建模能力,对于教师个人教学能力的培养也是有非常重要的引导意义.

二、初中数学建模教学中存在的问题

当前在初中数学的教学工作开展过程中,建模教学对于教师教学能力的开闸发挥着重要的影响.但是,就目前的情况来看,教师的建模教学工作整体还存在着一定的不足.

首先,教师对于建模教学的认识不够深入,建模教学这种教学手段的运用效果并没有完全推广和实现.究其原因,很重要的一点在于,很多教师在教学工作中对于建模教学的实践应用比较少.教师教学采用何种教学方式,在很大程度上会影响到教师的教学设计,在一定程度上也会影响教学进度.同时,从建模教学这种教学手段的特点上来讲,通过这种手段进行教学,还会在很大程度上考验教师个人对知识的把握效果.因此,建模教学对于初中数学工作而言是一次比较大的教学考验.一些教师对于数学建模教学的认识不够到位,认为建模教学的效果一般,不能够取得良好的教学效果.同时,认为建模教学这种方式会耗费大量的教学时间,对于建模教学的理解存在偏见.因此,在具体的教学工作开展中,很多教师不喜欢运用建模教学方式.同时,对于这种教学的认知存在偏见,运用起来也就存在一些不足,制约了教学效果.

其次,建模教学在数学中的应用还表现在一般层次,教师建模能力存在一定的不足,学生对于建模教学方式的理解也面临着影响.很多教师在建模教学的过程中对于模型的构建可行性论证不到位,采用的建模方式和具体的知识之间存在偏差.学生对于建模知识的理解也存在着一定的不足,这突出表现在,学生对于教师所设计的模型的理解不够到位,影响了学生的学习能力的发挥

三、做好初中数学教学建模教学的对策分析

在当前初中数学教学工作的开展过程中,数学建模是数学教学工作开展的一个重要方法和重要途径,如何做好数学建模,如何提升数学建模对于数学教学的意义,这对于数学教师工作的开展有着重要的影响,综合分析当前初中数学建模教学的现状,未来,数学建模教学工作的开展可以从几个方面发展.

篇4

【摘 要】建模作为一种形象直观的辅助教学手段,在初中数学教学过程中发挥着举足轻重的作用。本文根据笔者实践教学经验,主要就如何通过建立数学模型来提升初中生数学应用题解题能力问题进行了浅要探讨与分析。

关键词 初中数学;应用题;建立模型;解题能力

引言

在课改的推动下,数学教学要以创新的模式进行讲解,其中数学建模就是方法之一。教师应利用数学建模的方式,把抽象的现象和过程形象化、直观化。在教学过程中,不断向同学们渗透数学建模的意识,有意识的利用数学建模的方法来解决应用题,以切实提升学生应用题的解题能力。

1.什么是数学建模

数学建模就是对一特定的对象做出简化和假设来达到某种目的。例如运用数学工具得到数学模型,再用数学模型来解决特定的现象或状况,常见的数学模型为:实际问题模型假设模型建立模型求解模型分析检验与评价应用。利用数学模型解决实际问题,可以解决很多理论很难让同学们理解的问题。例如欧几里得几何和万有引力定律都是数学建模的典范。如今,计算机的广泛应用,使数学建模的应用就显得更加容易,更加有意义。

针对初中生,教师要从课本知识出发,并对教学知识进行创新,不断渗透建模意识。教师可以从学生理解的日常生活入手。例如:小明买四支铅笔和五本练习本的钱不到二十二元,而买六支铅笔和三本练习本的钱就超过了二十四元。问同学们,两支铅笔和三本练习本哪种更贵?

解析:教师让同学们根据自己的理解进行讨论,然后再由教师引入课本知识“不等式”的概念,设铅笔的价钱为X元,练习本的价钱为Y元。将实际问题转化为不等式组4X+5Y<22,6X+3Y>24。这样,既加深了同学们对课本知识的理解,也学会了如何用理论解决实际问题的方法。

2.数学建模的特点

初中数学建模教学的特点比较突出:一、它的起点比较低,且容易掌握。教师可以从生活中选取学生比较容易接受的素材。这样根据学生的认知水平而选取的事例,可以更容易让学生接受。二、它具有非常大的趣味性。玩是孩子的天性,孩子的这个特点决定了他们对于有趣味性的知识还是乐于接受的。教师可以利用数学建模教学来摒弃以往课堂中的那种枯燥的模式。用恰当、有趣的素材来构建生动、有趣的课堂。让学生在学到知识的同时,也得到快乐。三、教师在教授知识的同时,还应该教授方法。不仅让学生学到知识,更应该让他们掌握学习方法。教师应摒弃那种填鸭式的教学方式,让课堂充满活泼的氛围,让好的教学方法贯穿整个课堂。四、在数学教学过程中,教师应注重教学与其他学科的联系,让学生学会将各科知识之间相联系。以此,来提高学生的科学素养。

3.数学应用题解题建模方法分析

3.1以课本知识为基础,联系生活实际问题建立数学模型

教学离不开课本,教师要以课本知识为指导,并把数学融入到现实生活中去。比如给同学们列举投资买卖,银行存取,车程计费,商品批发等方面的生活常识。合理选材,建立模型解决应用问题。即创设问题情境,建立数学模型,导入学习课题,研究解决问题。

例题:某工厂将成本为八元的商品按每件十元批发出去,每天可批发出去二百件,现在改变批发策略,提高批发价格,降低批发量。已知这种商品每涨价0.5元,批发量就下降10件。问应将商品的批发价格定为多少元时,才能使工厂的利润最大?

解析:这道题利用方程解决实际问题,设提高了X元,则每件商品的利润为(2+X)元,而每天的批发量就变为(200-10X/0.5)件,所得利润为W=(2+X)(200-10X/0.5)=-20(X-4)(X-4)+720,此方程为一元二次方程,可以引入直角坐标系,画出图像。同学们可以直观的发现X=4时,工厂所得利润最大。

3.2联系社会热点,渗透建模方法

教师可以紧密联系社会,在课堂上引入同学们感兴趣的社会问题,比如成本、利润、股票、彩票、保险、投资、旅游等,这些都是建模很好的素材。教师可以适当选材,融入教学。教师要有意识的去给同学们灌输数学建模的思想,逐渐培养同学们的自主建模能力。

例如:八年级同学组织去划船,有甲乙两种方案,两种方案的票价一样,但是优惠政策不一样,甲方案为每五人中有一人可以免费,乙方案为所有人均按三分之二票价计算。问选择哪种方案更划算。

解析:这是一道和旅游十分接近的题目,同学们很容易接受,但是此题具有一定的难度,因为未知量较多,题目没有给出具体票价,也没有给出具体人数。这就需要同学们动脑筋了。教师最好让同学们进行分组讨论,假如以本班为例,试着做出划算的选择。然后,教师再进行理论分析。

4.数学建模的阻碍因素

(1)长期以来的应试教育决定了教学一直在使用“填鸭式”教学。这不仅降低了课堂效率,也限制了学生的思维创造力。培养学生的标准变成简单的升学率和分数。当学校、教师将升学率作为教学的成果时,学生便失去了很多创造能力。虽然现在情况有所改善,但实现数学建模教学还远远不够。

(2)对于一些年龄比较大的老师来说,建模教学将是一个不小的挑战。他们没有系统学过数学建模课程。一个非常令他们困惑的问题是:如何开展数学建模教学。这就要求教师不断再学习。以此来提高自身的知识面和教学理论。

(3)相对高中而言,初中的数学建模的经典课例不多,一节好的课例不仅包含了诸如趣味性,可操作性等,还能激发学生对学习的兴趣,从中学习到建模的思想,让学生学会用知识来解决生活中的问题。

为此,在今后的教学工作开展过程中,应对以上几种阻碍因素进行认真考虑分析,以提出有针对性的应对措施,切实通过建立数学应用模型来提升学生的综合解题能力。

结语

总之,开展数学建模,既使学生的应用能力和创新能力得到提升,又使学生学会用知识来解决日常问题。数学建模会使课堂变得生动、有趣,使学生更易于接受。为此,教师应在顺应新课程标准要求的同时,加强对于建模方法的深入研究与分析,以更好的对其充分利用来提升初中数学教学实效。

参考文献

[1]王凯.在初中数学教学中培养学生的建模思想[J].广西教育,2013,(22):74.

篇5

【摘 要】 近年来,高速发展的生产力和日新月异的科技,不仅给数学的应用提供了广阔的市场,也日益凸显着数学建模的重要性。但数学应用意识以及社会实践能力的培养,一直是初中生在数学学习过程中比较薄弱的环节。为了给学生们创设一个好的自主学习的环境,提高其用数学这一工具解决实际问题的能力,中学数学建模教学的开展的至关重要,这对形成学生应用数学的意识,提高分析问题并解决问题的能力,培养其联想与想象的抽象思维能力,以及其敏锐的洞察力,还有团队协作的精神都有很大的帮助,对于全面促进中学数学素质教育有非常重要的意义。

关键词 数学应用;初中数学;兴趣;创新

一、对数学教学问题的看法和分析

一直以来,中学数学教学存在很多问题,新人教版教材也是如此:教学中重知识轻思想,重结论轻证明,重理论轻应用,教学内容远离实际。面对诸多问题的教学系统,学生是受影响最大的群体。很多中学生会说:数学就是虚无缥缈并且枯燥无味的,比如说求sin、cos、tan,求两三角形相似等等问题,为什么要求它呢?对于我今后的生活毫无意义,很多人没有学数学,但是照样生活幸福。因为在目前的体系中,数学确实给学生们的感觉就是脱离实际的,没能使学生真正认识到数学在归纳演绎、训练思维、科学应用等方面的乐趣,更不用谈充分发挥学生的创新能力。所以《新数学课程标准》提出:数学模型的建立,对于合理的描述社会和自然现象有良好效果。可以让学生在课程的学习中从问题情境出发,然后尝试建立模型,然后求解,最后对应用进行解释。经过这样的过程,增强学生对数学的理解,提高学生的观察力、想象力、实际操作与思维能力,随着学习的不断深入,创造性便由此酝酿并发挥巨大作用。

二、数学建模发展的背后意义

随着计算工具的发展,特别是因为计算机的产生而催生的信息时代,庞大的数据、各行各业激烈的竞争,对于定量分析、数据处理等等问题,都需要数学的参与。虽然数学的实际应用已经到达了空前的繁荣,但是数学建模在数学学习中的应用却没能体现出来,远远落后于现实世界的发展脚步。众所周知,数学建模在四、五十年前进入一些西方国家大学,不到20年时间,我国的几所大学对数学建模的引进也风生水起。数学建模的相关课程也在各类高校形成规模,一条为培养广大学子的数学分析、实践能力的道路开辟了出来。数学建模思想如雨后春笋,以欣欣向荣之势横扫西方和中国各大高校,但是数学建模作为一种特有的思考模式,它通过抽象、简化的方法,建立起能够近似刻画并解决实际问题,已然不仅仅是一种语言和方法,而更是一种有利的手段。虽然有在大学阶段进行强化和补充,但从其效果来看是远远不够的。于是,对于在初中时期就进行数学应用能力的培养成为了新的要求、重点。当前,学生作为教学环境的主体,是否能够将所学转化成所用就成为教学效果的重要评判标准。

三、数学建模教育的重要作用

1.对应用数学的意识的培养。遇到实际生活中的问题,可以学以致用。以一个数学学习者以及实践者的立场来解决问题。

2.极大的提高数学学习的乐趣。能够在生活的诸多方面利用数学思维来解决问题,可以说成为生活中一个有力的助手。

3.提高对于数学学习的信心。传统教学中,数学以其抽象的思维以及各种看似脱离实际的问题,让学生晕头转向,逐渐让学生开始害怕数学学习。而数学建模让抽象的数学一下子变得贴近生活,更容易接受。凭借不断的学以致用,自信心便会慢慢树立。

中学生正处于人生的黄金时期,对于各种能力的培养都是关键时期,所以对于数学思想的灌输应该跟上来,这将让学生终身收益。教师可以在适当的时候研究哪些内容可以引入模型教学,通过一些生活实践来让学生建立模型来解决问题,结合教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。比如说:出租车作为现代日渐流行的代步方式,对其收费标准的探讨可以引入数学模型。某地的收费标准有两种,A方案的起步价是15元,5千米以上1.5元/km,B方案的起步价为10元,3千米以上1.2元/km,如果你要到达10km以外的某地,问选何种方案更经济,相比另外一种方案省了多少钱?虽然初中数学中出现的很多应用问题是一些比较简单的数学建模问题,但是麻雀虽小,五脏俱全,它包含了数学建模的全过程,我们可以把数学建模的思想方法渗透其中。

四、结语

宝剑锋从磨砺出,梅花香自苦寒来。这就需要在广大教育战线上辛勤耕耘的各位同仁在教学的始终,要把数学建模意识贯穿起来,也就需要对学生进行不断地引导,形成用数学思维的观点去分析、观察和表示各种事物的逻辑关系、空间关系和数学信息的习惯,从五花八门的实际问题中抽象概括出我们熟悉的数学模型,进而运用这一数学手段来解决问题,让数学建模意识成为学生思考问题的方法和习惯。所谓工欲善其事必先利其器,当数学建模思维已经成为学生自然而然的思维方式,用数学建模思想解决实际问题也运用自如,那么创新能力,对实际生活的驾驭能力的提升将可见一斑。量的不断积累,带来的将是质的飞跃,随着数学建模思想对学生的熏陶,对提高学生分析问题、解决问题的能力,提高其联想与想象的能力,培养其敏锐的洞察力,以及团队协作的精神都有很大的帮助,对于全面促进中学数学素质教育有非常重要的意义。

参考文献

[1]谭永山.建模思想在提高初中数学教学质量中的作用与教学策略[J].学子(理论版).2015.05:39

[2]庄红敏.初中数学教学中如何引导学生自主学习[J].中国校外教育.2015.01:35

篇6

关键词:数学建模;初中数学;应用

一、在初中数学应用题中建立数学模型的过程

建模能力是数学应用能力的核心,学生的应用题能力差,最根本原因还是建模能力不强。要提高学生的建模能力,就要求教师在平时教学中不能只重视结果,而应重视展示思维过程,引导学生分析探索问题,教会学生思考。初中数学应用题中建立数学模型的过程主要包括四个步骤:

1.认真审题

建立数学模型的前提是认真审题。由于初中应用题已经具有一定的篇幅和内容,涉及比较多的专有名词和数学概念。因此,在读题目的过程中应保持认真、仔细、耐心。对应用题的问题背景、主要已知事项有比较深刻的把握,尽可能掌握更多的建模信息,挖掘应用题所考查的数学知识与建模知识,还要弄清楚所求结论的限制条件等等。只有进行认真清楚的审题,才能建立合理科学的数学模型。

2.抽象分析

通过认真审题,学生对应用题已知条件与所求问题有所了解,就可建立适当的坐标系,把文字语言转化为数学语言,将题目信息用数学符号表示出来,将数量关系通过数学公式或者图形形象地表示出来。这一步是建立数学模型的主要步骤。

3.简化问题

对应用题的主要问题进行简化,抓住题目的主要事项,对题目的要求有所把握,明了问题所求内容,结合已有的数学知识,根据题目的数量关系,用精准的语言将问题简化。

4.大胆假设

在符合实际的基础上,对应用题的解题步骤与解题进行大胆的假设,这种假设并非凭空想象,而是必须符合一定规律和现实基础。

二、初中数学应用题中数学建模的类型

在日常教学中,我们尽量采用“问题情境―建立模型―解释―应用”的基本教学方式,让学生在熟悉问题的情境中掌握重要的现代数学思想方法。那么,在应用题中常建立的数学建模有如下几种:

1.建立几何模型

建立几何模型在应用题的解答中具有重要作用。研究发现,近几年的应用题中概念较多、字母符号较多,文字叙述较繁琐,这就增加了应用题的难度,通过建立直观的几何图像有利于将复杂的关系清楚地表示出来,从而更顺畅地解题。几何模型使用范围较广,诸如测量、取料、剪裁、方案设计、美化设计等等均适用。解答此类问题的一般方法是认真分析题意,把实际问题进行抽象转化为几何图形再进行求解。

2.建立函数模型

函数应用问题由于涉及的知识层面丰富,与生活的联系紧密,解法灵活多变,因而受到数学出题者的青睐。要建立函数模型,解答函数问题,首先要根据题目条件建立函数关系,将实际问题模型化或结合函数图象来挖掘解题思路。

3.建立统计模型

当题目涉及的数据比较多,内容比较杂,则宜建立统计模型,以便对数据进行收集、整理、分析,从而提高解题效率。

4.建立方程模型

由于现实世界的许多问题都可以用方程应用题的形式来展现,因而方程模型也是中国数学阶段应用最普遍的数学模型。在建立方程模型时,教师应重点培养学生根据题旨寻找题目中的已知量、未知量之间的等量关系。近年来,出现了一些主要以对话、图案、图表、污损文字等形式来呈现题干内容的新颖题目,要求学生能阅读、理解给出的材料并用相关知识解决实际问题。要建立方程模型解答应用题,关键是要对试题的信息进行观察、比较、识别、筛选,从而找出最佳的解题方案。

三、数学建模在初中数学应用题中的应用

本文以建立函数模型为例,浅谈如何在数学应用题中应用数学建模。

例,为迎接新世纪的到来,某市制作了一种烟花,已知这种烟花高0.55米,燃放时需把烟花安放在为它特制的高0.7米的支架上,烟火从烟花的顶部喷出,各个方向沿形状相同的抛物线落下,根据设计,要求喷出的烟火在距离烟花1米处达到最大高度2.25米。

(1)按图(乙)建立的平面直角坐标系,求烟花的烟火划出的一条抛物线的解析式(其中x轴为地面所在直线,y轴为烟花所在直线,OA表示烟花与支架的高,B为烟火的最高点,C为烟火落地点)。

(2)若观看者环绕在烟花的四周,在不考虑其他因素的情况下,问至少要离开燃放点多远?

解:(1)由题意得,A(0,1.25),顶点B(1,2.25)。

设抛物线解析式为

y=a(x-1)2+2.25

把A点坐标代入,解得a=-1。

y=-(x-1)2+2.25

(2)由题意知,点C为抛物线与x轴的交点,当y=0时,由-(x-1)2+2.25=0,解得x1=2.5,x2=-0.5(不合题意,舍去)。

观看者至少要离开燃放点2.5米远。

总之,数学模型是联系数学与现实世界的桥梁,在教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学的乐趣,还能使学生感觉到数学与生活的联系,进而对数学产生更大的兴趣。

参考文献:

篇7

【关键词】数学教学;数学思想;应用

【中图分类号】G633.6 【文献标识码】A 【文章编号】1009-5071(2012)06-0176-01

《数学课程标准》在对第三学段(七-九年级)的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。

1 渗透数学思想,首要培养自主学习的目标

由于数学思想的存在,使得数学知识不是孤立的学术知识点,不能用刻板的套路解决各种不同的数学问题,只有充分理解掌握数学思想在各种问题上的运用,才能更有效地把知识运用得灵活。由此可见,要培养学生的数学能力,就必须重视数学思想和方法的训练培养自主学习的能力,使得学生更容易理解和更容易记忆数学知识,让学生领会特定的事物本质属性,借助于基本的数学思想和方法理解可能遇到的其他类似问题,有效促进学生数学思维能力的发展。

现代数学教育理论认为,数学不是教出来的,更不是简单地模仿出来的,而是靠学生自主探索研究出来的。要让学生掌握数学思想和方法,应将数学思想和方法的训练视作教学内容的一个有机组成部分,而且不能脱离内容形式去进行孤立地传授。在数学课上要充分发挥学生的主体作用,让学生自己主动地去建构数学知识。初中数学教学的目的不仅要求学生掌握数学的基础知识和基本技能,更重要的是发展学生的能力,使学生形成优良思维素质。这对激发学生的创造思维,形成数学思想,掌握数学方法的作用是不可低估的。

2 函数思想的应用

古典函数概念的定义由德国数学家迪里赫勒1873 年提出。函数就是一门研究两个变量之间相互依赖、相互制约的规律。在初中数学教学中,函数的思想是数学中处理常量与变量的最常见也是最重要的思想之一,可以说是一项极为重要的内容。

对一个较为复杂的问题,常常只需寻找等量关系,列出一个或几个函数关系式,就能很好地得到解决。例如,当矩形周长为20cm 时,长和宽可以如何取值?面积各是多少?其中哪个面积最大?可以设矩形的长为x,宽为y。面积为S,然后慢慢寻找规律。得出矩形周长一定时,矩形的长是宽的一次函数,面积是长的二次函数,当长与宽相等时矩形就变成了正方形,而此时面积最大为16cm2。

3 数形结合思想的应用

数形结合不仅使几何问题获得了有力的代数工具,同时也使许多代数问题具有了显明的直观性。把代数式的精确刻画与几何图形的直观描述相结合,使代数与几何问题相互转化,使抽象思维和形象思维有机结合,是初中数学中十分重要的思想。应用数形结合思想,就是将数量关系和空间形式巧妙结合在数学问题的解决中,具有数学独特的策略指导与调节作用。数是形的抽象概括,形是数的几何表现,两者其实紧密结合,以此来寻找解题思路,可以使问题得到更完善的解决。

例如,二元一次方程组的图像解法,把数量关系问题转化为图形性质:A,B两地之间修建一条l千米长的公路,C处是以C点为中心,方圆50千米的自然保护区,A在C西南方向,B在C的南偏东30度方向,问公路AB是否会经过自然保护区?

数形结合思想的渗透不能简单的通过解题来实现和灌输,应该落实在课堂教学的学习探索过程中,如在《相反数》这节课,先从互为相反数的两数在数轴上的特征,即它们分别位于原点的两旁,且与原点距离相等的实例出发,揭示这两数的几何形象。充分利用数轴帮助思考,把一个抽象的数的概念,化为直观的几何形象。在这种情况下给出互为相反数的定义:只有符号不同的两个数称互为相反数。特别地规定:零的相反数是零。显得自然亲切,水到渠成。同时也让学生在数形结合的思想方法的引领下感受到了成功,初步领略和尝试了它的功用,是一个非常好的渗透背景。

4 化归转换思想的应用

所谓化归,即转化与归结的意思,就是把面临的待解决或未解决的问题归结为熟悉的规范性问题,或简单易解决的问题,或已解决了的问题。人们解决问题都自觉不自觉地用到化归的思想,这是一种知识的迁移。在整个初中数学中,化归思想一直贯穿其中。从这个意义上讲,人类知识向前演进的过程中,也都是化新知识为旧知识,化未知为已知的过程。因此,化归是一种具有广泛的、普遍性的、深刻的数学思想,也是解决数学问题的有效策略,它在数学教学中也显示了巨大的作用。

例如,对于整式方程(如一元一次方程、一元二次方程),人们已经掌握了等式的基本性质、求根公式等理论。因此,求解整式方程的问题就是规范问题,而把有关分式方程去分母转化为整式方程的过程,就是问题的规范化,实现了“化归”。

5 渗透方程思想,培养学生数学建模能力

篇8

关键词 初中数学;应用题教学;解题思路;质疑精神

一、绪言

无论是哪个阶段的数学学习,其最终目的都是为了利用所学到的数学知识来解决现实生活中所遇到的实际问题,在这其中,数学的应用题就是数学学科知识与现实生活进行有效连接的最明显不过的例证,数学应用题能够非常生动的反映我们日常生活,和日常生活有着紧密的联系,我们运用数学知识来解决日常生活中出现的一系列问题,能够使数学的魅力在具体的运用过程中得到很好地体现,从另外一个角度来讲,学生在解答自己面对的数学应用题的过程里,也在很大程度上培养了自己独立解决问题的能力,而且,由于数学应用题比较贴近我们的日常生活,学生独立解题获得成功之后也会在无形之中增加他们学习数学知识的兴趣,从而培养自己的逻辑思维能力,使他们能够很好的分析与解决问题。

近年来,我国的基础教育课程的改革不断的深入发展,国家正在大力的推崇素质教育,劝导各个学校尽快的摒弃应试教育的教学模式,使学生全面发展,从当前的情势来看,激发学生积极主动地各参与课堂教学,就是为了从根本上来提高课堂的教学效率,从而培养学生的学习能力以及创造能力,这个实践的内容与我们所提倡的培养创造型人才为目的的素质教育几乎可以说是不谋而合的。初中数学应用题是初中生了解数学应用的一个主要的窗口,当然也是初中生数学应用意识的培养以及领会相关的数学建模思想的一个主要的方式,是现在数学教学过程中能够有效提高解决实际问题能力的最为直接和普遍的载体。

二、初中数学应用题的主要表现方式

从某种角度来讲,数学应用题可能是包括初中高中在内的能够体现数学应用性的最为典型的内容,也是学生了解数学应用的一个主要的途径,更是目前检测学生应用意识和能力的一个非常重要的方面。数学应用题来源于社会现实,是我们日常生活反映在数学教学过程里的一个缩影,通过应用题的解答,我们可以培养学生告别以往那种被动的知识接受,而是从教学的思维和眼光来考虑所面对的问题,从而顺利的解决它,也能使学生非常清晰的感受到数学与现实生活的一个紧密联系,感受到数学的无处不在,激发他们的学习兴趣,帮助他们树立起学习的决心。通过对应用题的解答,也可以培养学生应用数学的意识以及能力,甚至是领会数学建模的相关思想方法,从而渗透建模意识从而提高自己的分析解决问题能力。

初中数学的应用题主要由以下几种具体的表现方式:和倍、差倍、形状体积变化问题、两车相遇问题、追及问题、各种劳动力的分配问题、工程建设问题、利润利率问题、液体浓度问题等等。如果单从相等关系来对其进行判断,可以分为三个主要的类型:首先是题目中已经指明了的相等关系,其次是不同类型问题之间的基本数量关系,比如说速度与时间的相乘得出具体的路程,涉及到工程问题的时候,总工作量就基本等于工作效率与时间的乘积,而涉及到利润率的问题,商品的利润就等同于利润率与进价的乘积,而浓度问题则可以认为是浓度与溶液的量的乘积得出溶质。

三、初中数学应用题教学现状与问题

1.学生数学应用题解决能力与基础较弱

很长一段时间以来,我们所遵守的传统的教育模式使学生太过于注重对课本知识的挖掘与学习,相应的轻视这些问题与实际生活的具体联系,所以很大一部分学生的生活阅历都非常的有限,对应用题所涉及到的背景和具体的情境都不够熟悉。我们也经常听到数学教师抱怨学生对应用题的阅读能力太差。实际上,大多数情况并不是因为学生的能力差,而是由于他们阅历不足所造成的。很多学生自身的语文阅读能力比较差,遇到背景较为复杂、陈述句、转折句过多的题目不知道怎么去理解,也不知道怎么样降体重涉及到的实际问题转化成课堂上所学得到的数学理论知识,从而建立起一个数学模型。

2.受教材和教学方式影响而导致的能力低下

事实上,学生对应用题的理解能力较弱,和初中数学老师的教学也有着非常密切的关系。较长一段时间以来,数学教师都比较重视对知识的传授以及通过大量的习题来提高学生的数学能力,根本不重视实践性活动的开展与教学,初中教学一直以来沿用的教材也根本没有突出实践教学的内容,有的教材甚至从未涉及,而且应用素材极为贫乏,和当今的社会现实产生了非常严重的脱节,学生读来会觉得非常的乏味,教师又不懂得积极的引导,从而在很大程度上影响了应用题的教学成果,从长远看来,这对于整个数学学科的教学也会产生非常重要的消极影响。

3.训练机会的缺乏

虽然素质教育的理念已经在多年以前就被大力提倡,但是应试教育的思想依然存在很大一部分数学教师心目中,很大一部分教师认为应用题的文字叙述部分太过冗长,不但是学生,就算自己去进行解读,也是非常的繁琐,课堂的效率也非常的低下,应用题的解题能力又无法单纯的依靠课堂的理论知识的讲授来取得,在以往的考试过程中,它所占的比重也不是最大,很多教师在分析的过程中往往就一笔带过,更不可能将它作为一个专题来进行分析,学生接受训练的机会很少,其解题能力处于低下水平也在情理之中。

四、初中数学教学应该遵守的几个原则

篇9

一、问题提出

很多学生对数学的认识是繁、难,在生活中应用太少,这是走入纯数学误区的表现,末能把数学真正学活.其实数学的发展与生产、生活发展同步的,学习数学的目的就是为了更好的提高生产效率和生活质量.随着“数学应用意识”教育的不断深入,提高数学应用性的教育迫在眉睫。

数学应用性包括两个层次:一是数学的精神、思想和方法;二是数学建模.所谓“数学建模”,就是对遇到的实际问题进行抽象和假设之后,运用数学工具(包括数学符号、语言、几何图形等)得到一个数学结构(数学模型).通过数学建模能力的培养,使学生可以从熟悉的环境中引入数学问题,增加与生活、生产的联系,培养学生的数学应用意识、巩固学生的数学方法、培养学生的创新意识以及分析和解决实际问题的能力,这正是素质教育和数学教育的目的。

二、如何培养初中生的数学建模能力

数学建模能力的培养和形成不是也不可能短期完成,必须结合具体教学内容,有系统、有针对性、循序渐进地进行.在初中阶段笔者认为可分以下几个阶段进行:

1.立足教材,扎实基础

教师首先要根据教学大纲和教材,注重学生数学基础的系统教学.一般地,数学体系可分为纯数学和应用数学两个范畴,我们要正确认识两者之间的关系,纯数学是应用数学的基础,应用数学是纯数学的发展与深化.没有广泛而扎实的数学基础,数学应用意识就很难形成,培养数学建模能力就成为一句空话。

2.教学中注意建模思想的渗透

数学建模能力的培养是一个循序渐进的过程.因此,从初一开始,就应有意识地逐步渗透建模思想.在教学中渗透建模思想不是简单把实际问题引入,而是根据所学数学知识与实际问题的联系,在教学中适时地进行渗透.

(1)以具体实例引入概念

概念课着重于学生对概念的认知,而大多数概念往往由实例引入,因此可引入生活中的相关例子,将概念具体化,培养学生对实际问题的分析、抽象、概括能力.

例如,在水塘中投进一块石头,水面上产生圈圈荡漾的水波,便是一个个圆的形象,然后使学生抽象出圆的概念以及圆心、半径等.

(2)几何课注意操作与分析结合

数学是研究空间形式和数量关系的一门科学.生活中的几何问题随处可见,教材中,每章开头的引入和部分例题、练习中都有数学应用的例子,教师可充分利用这些例子对学生进行建模训练。

例如:“解直角三角形”的引入部分:修建扬水站时,要沿着斜坡铺设水管,水管AB的长度可以直接量出,斜坡与水平面夹角∠A可以通过测角器测出,如何求出点到水平面的距离?

建立模型:RtABC,已知∠A,AB,求BC的长.

还有同一章中6.4应用举例中出现的:屋顶人字架、燕尾槽、大坝、山坡等实际问题.令教师在教学时有较大发展空间.

(3)复习课要注重知识的系统运用

复习课由于学习知识已较为系统完整,可考虑适当引入综合运用本章节知识的有关问题,适当提高学生建模能力,强化学生应用数学的意识.

在解决实际问题时,应鼓励学生大胆提出自己的建模方法,然后再补充.当学生自己找到建模方法后,就会获得成功的满足,产生愉快的学习情绪。

3.引导学生从数学的角度看生活

在数学教学中,应注意引导学生自觉地应用数学思维来分析生活实践中的现象,学会将问题的本质进行概括、归纳,抽象为数学语言,并用相关数学知识来分析解决问题。

例如:在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲向A点时,乙已跟随冲到B点,此时甲是自己直接射门好,还是迅速将球回传给乙让乙射门好?

分析:在真正的足球比赛中,情况会很复杂,这里仅用数学方法从静止的两点加以考虑,如果两个点到球门距离相差不大,要确定较好的射门位置,关键是看这两个点各自对球门MN的张角大小,当张角较小时,则球容易被对方守门员拦截。

篇10

一、方程思想

新课标要求能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界中的一个有效的数学模型。这即是方程思想在初中数学中的应用,它要求我们能够从问题的数量关系入手,运用数学语言将问题中的条件转化为方程(组),然后通过解方程(组)使问题获解。例:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染给了几个人?它考察了同学们在现实生活的背景中理解基本数量关系的能力。显然,方程的思想就是把未知量用字母表示和已知量一起参与建立等式,构造方程的方法来解决问题,体现了未知和已知的统一。所以,建立方程模型时,应着重朋友学生如何学会寻找问题的已知、未知量的关系建立方程。

二、不等式(组)的思想

同样的,数学建模思想用于不等式(组),新课标提出了类似的要求。不等式(组)的思想即从问题的数量关系出发,运用条件将问题中的数量关系转化为不等式(组)来解决。例:把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一名同学就分不到3本。这些书有多少本?共有多少人?解题时,设有x人,则有(3x+8)本书。此题可以通过构建不等式关系得以解答。

三、函数思想

新课标提出,能用适当的函数表示法刻画某些实际问题中变量之间的关系变化,结合对函数关系的分析,尝试对变量的变化规律进行初步预测,能用一次函数等来解决简单的实际问题。在学习了正、反比例函数、一次函数和二次函数后,学生的头脑中已经有了这些函数的模型,因此,一些实际问题就可以通过建立函数模型来解决。

例:红十字会将全面为四川雅安灾区捐赠的物资打包成件。其中帐篷和食品共320件,帐篷比食品多80件。(1)求打包成件的帐篷和食品各多少件?(2)现在计划租用甲、乙两种货车共8辆,一次性将这些帐篷和食品全部运往灾区,已知甲种货车最多可装帐篷和食品各20件。则红十字会安排甲、乙两种货车由几种方案请设计出来。(3)在(2)的条件下,如果甲种货车每辆需付运费4000元,乙种货车每辆需付运费3600元,红十字会应选择哪种方案,可使运输费最少?

方案设计题是基础知识于基本技能结合比较紧密的一类应用题。此题不仅运用了函数思想,又用到分类讨论思想。其形式上表述捐款、运输、规划等问题十分贴近生活,是近年的中考热点问题。

四、统计思想