数学建模实验总结范文

时间:2023-12-20 17:33:18

导语:如何才能写好一篇数学建模实验总结,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学建模实验总结

篇1

关键词:工科专业;数学建模实验教学;学科竞赛

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)19-0147-02

一、数学建模课程的意义与特点

所谓数学建模就是将特定现实问题,根据其内在规律,运用适当数学工具,来建立数学模型的过程。换言之,数学建模联系起现实问题和数学问题,在两者之间起到桥梁作用。因此,数学建模课程就是要教授学生如何搭建“桥梁”。作为工科院校,数学教师经常听到工科专业的同学抱怨数学课程难学,数学知识用处不大,进而致使学生对于数学课程的学习兴趣不高。然而,数学建模课程的学习,可以让工科专业学生看到数学是如何走向应用的,是如何应用数学知识来解决现实问题的,可以激发工科专业学生对于数学的学习兴趣。因此,对于工科专业,开设数学建模课程具有非常重要的实际意义。

对于工科数学建模课程而言,其教育教学过程相较于传统数学理论课程有着显著区别与不同,具有其独特的规律和特点。第一,数学建模课程涉及数学知识广泛,包括了初等问题、优化与规划、微分方程、离散以及随机等方面的问题。因此,课程对于教师和学生的数学知识储备都有一个较高的要求。第二,由于实际问题的多样性和复杂样,数学建模课程的学习不像其他数学课程一样教授给学生一些固定的方法和定律,更多的是通过“欣赏”别人如何搭建“桥梁”,从而不断培养自己数学建模的思维方式。因此,数学建模课程教学多以“案例教学”的方式展开。第三,工科专业数学建模课程大多以选修课形式开设。因此,在课程学习中容易出现选课的盲目性和随意性,以及学生的学习动力和压力不够等问题。

针对工科专业数学建模课程的上述特点,本文在专业特色与教学案例的融合、实验教学方法,以及依托学科竞赛等方面进行了改革与探索,能够较好增强学生学习的主动性,改善工科数学建模课程的教育教学效果。

二、强化教学案例的专业特色,增强学生学习主动性

传统数学建模的案例设置往往强调基础性,而缺乏工程性和实用性。因而,对于工科数学建模课程的教学,要注重强化教学案例的专业特色性,增强教学案例的工程性。此外,教学中还应努力突破传统“以教师为中心”的教学方式,避免对模型的直接讲解,而应该引导学生独立思考,培养学生的独立建模思维和创新能力,从而对教学计划和教学内容做出相应的调整。

例如,针对石油工程专业的数学建模课程,笔者将油气开发中的经典问题引入数学建模的课堂,结合油气多孔介质渗流问题,引导学生通过微元分析法和经典达西定律,讨论微元中油气质量的守恒和流动速度,从而建立描述“油气渗流过程的微分方程数学模型”,并讨论相应的求解方法。

通过选取这样一些贴近学生专业的数学模型,让学生看到如何应用数学知识来解决实际专业问题,可以极大激发学生学习热情。此外,通过分组大作业和讨论课的形式,增强学生之间和师生之间的知识互动,培养学生合作精神和创新意识。

三、关注数学实验训练与数学软件使用,强化学生实际动手能力

数学实验作为工科数学建模课程必不可少的组成部分,能够实现对模型快速有效的求解,并通过图形和列表的方式将结果直观展现给学生,能够强化学生对模型规律和基本数学原理的理解。因此,数学实验作为现代科学研究的一种重要手段,其相关实验课程的改革和建设越来越受到国内各高校的重视。

如前文所述,数学建模课程内容覆盖面广,模型多样,教师不仅要在课堂教学中注重培养学生分析问题、建立模型的能力,还要通过实验教学训练学生求解各种模型的能力。针对模型求解中常见的数学规划、概率统计、微分方程及数值计算等问题,若过多强调其算法原理与编程技巧,工科专业的学生在知识储备上就会稍显不足,从而感到枯燥和力不从心。因此,在模型求解过程中,更加实用且有效的方式是通过Matlab、Mathematica、Lingo和Spss等数学软件来完成。例如,对于数学规划模型,借助Lindo与Lingo只需要进行简单编程就可以实现方便而快捷的求解,而不需要对规划问题的数学原理做过多讨论。再如,对于微分方程模型,可以利用Matlab的PDE工具箱,进行可视化交互式求解,方便易用。因此,对于数学建模实验环节,要强化经典数学软件的训练,教师作为引导,更多地让学生自己动手去求解,在发现问题、解决问题的过程中,逐步提高和强化学生对经典数学软件的应用能力。

四、紧密结合数学建模竞赛,真正培养学生综合素质

紧密结合各级各类数学建模竞赛,注重课堂教学的拓展性,针对数学建模竞赛的相关必备知识,如数据搜集、文献检索、论文的撰写与排版以及制表与绘图工具的使用,在课堂教学中进行适当的补充和讲解。此外,借助分组大作业和课堂答辩的方式,实现数学建模竞赛的模拟训练,能够使学生在课程学习过程中,感受建模竞赛的形式和乐趣。

通过不断推进建模竞赛与课堂教学的紧密结合,不仅能够实现课堂教学的有效拓展,扩大学生知识领域,促进学生课堂学习兴趣,改善课堂教学效果。同时,能够使学生感受数学建模竞赛的形式和乐趣,从而引导学生积极参加数学建模竞赛,并在建模竞赛过程中注重强化学生建模分析能力、创新意识和团队合作精神等,实现学生综合素质的培养。

五、结论

本文针对工科数学建模课程的规律和特点,在专业特色与教学案例的融合、实验教学方法,以及依托学科竞赛等方面进行了改革与探索:(1)强化教学案例的专业特色,增强学生学习主动性;(2)重视数学实验教学环节与软件实训,强化学生实际动手能力;(3)紧密结合数学建模竞赛,注重课程教学拓展性,增强学生综合素质。

⒖嘉南祝

[1]姜启源.数学模型[M].北京:高等教育出版社,2003.

[2]刘薇.浅谈数学实验课程的作用与实践[J].科技信息,2008,(35).

[3]原璐.对工科数学教学手段的几点思考[J].科技信息,2008,(28).

[4]杨蕾,陈华.工科专业数学选修课程的教学特点和方法[J].科技信息,2011,(5).

Reform and Practice of Mathematical Modeling Course for Engineering Majors

YANG Lei1,LIN Hong2,CHEN Hua1,SANG Zhao-yang1

(1. College of Science,China University of Petroleum,Qingdao,Shandong 266580,China;

2. College of Pipeline and Civil Engineering,China University of Petroleum,Qingdao,Shandong 266580,China)

篇2

关键词:数学建模 数学实验 课程改革

1、引言

进入21世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对解决实际问题的要求越来越精确,这使得数学已经成为一种能够普遍实施的技术,正如伟大的哲学家与数学家笛卡尔所说:“一切问题都可以化成数学问题”,进而,培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。二十世纪70年代末至80年代初,英国剑桥大学为研究生开设了“数学建模(Pronblem Solving)”课程,牛津大学创设了与工业界的合作研究活动,欧洲和美国也开始将“数学建模”列入研究生和本科生的教学计划中。1985年美国70所大学联合举办了第一届数学建模竞赛,这一活动迅速引起美国以及国际大学生的广泛兴趣。在此期间,我国数学教育界的一些学者了解到西方数学教育的这一重要动向,于1992年成功举办第一届“全国大学生数学建模竞赛”,并逐步将“数学建模”课程引入我国大学本科教学计划。我校于2009年将“数学建模”课程设置为理工科必修课,笔者经过多年数学建模教学和数学建模竞赛指导,总结并探索得出数学建模的课程教学不同于传统的数学教学,传统的数学教学模式是以教师为中心、以课堂讲授为主,而数学建模教学则是突出以学生为中心、以实验室为基础、以问题为主线、以培养能力为目标。

2、数学建模课程的教学特点

数学建模是一门实践性很强的课程,与其它数学类课程的相比,最主要的区别是不能再沿用传统数学教学“课堂讲解—笔记—作业—考试”的教学模式。数学建模的教学形式灵活,在教学过程中强调尊重学生,尽可能把学习的主动权交给学生。课堂上,教师提出事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极展开讨论和辩论,充分发挥学生的主动性、积极性、创造性,教师从旁质疑指导,采取小组讨论,教学互动,学生上讲台做演讲等手段,提高学生的兴趣,调动学生参与的积极性、主动性和创造性,充分发挥学生的主体作用,从而锻炼学生解决问题的综合能力。当然,教师讲课在教学过程中还是占有很大部分比重,教师主要担当引路者的角色,把讲的机会让给学生,把做的过程放给学生,充分体现以学生“自主、探究、合作”为特征的教学方式。教学过程的重点是创造一个诱导学生的学习欲望、培养他们的自学能力,增强他们的应用意识和创新能力,提高他们的数学素质,强调的是获取新知识的能力,从而改变了传统的以教师为中心的课堂教学结构,由以教师为中心的教学结构转变为“以教师为主导—以学生为主体相结合”的教学结构。

“数学建模”课程的练习和考核方式也明显有别于传统数学课程。我们认为,“数学建模”适用多元化的考核方式,不宜简单采用闭卷考试,有标准解答的考试不符合“数学建模”问题的特点。所以,课堂多采用分组讨论,案例分析,上机计算和模拟,最后以论文形式提交作业;考试大多数采用组合考核,即平时练习、阶段论文、期末考试三部分综合评定成绩。学校一般不安排期末考试,而是通过模拟竞赛的论文来评定成绩。

3、数学建模与数学实验

数学实验是计算机技术和数学软件引入教学后出现的新生事物,是数学教学体系、内容和方法改革的一项创造性的尝试。“数学实验”是以计算机为工具,配以各种数学计算软件(如Matlab,Lindo\Lingo,Mathmatical,SAS,Maple,C,Excel等等)作为实验环境,用以加工处理各种数学资料信息,得到计算结论。而数学建模是在简化和假设的基础上,选择适当的数学工具来可挂描述各种量之间的关系,用表格、图形、公式等来确定数学结构。然而,建立模型的目的是为了解释自然现象,寻找规律,以便指导人们认识世界和改造世界,建立模型并不是目的。所以,模型建立后,要对模型进行求解、分析和检验,即用计算机技术和软件包求解数学模型,得到数量结果,并按照一定的数学规律,利用计算机程序语言来模拟实际运行的状态,并依据大量的模拟结果对系统或过程进行必要的定量分析,得到一些定量结果,这通常是解决实际问题的有效手段。

数学建模课的性质决定了它需要做数学实验,一方面,做数学实验可以在数学建模教学过程中加强学生“用数学”的意识,培养学生应用数学知识解决实际问题的能力;另一方面,数学实验可以将数学教学与计算机应用结合起来,培养学生进行数值计算与数据处理的能力。所以绝大部分学校在“数学建模”教学中结合了数学实验。数学实验与物理实验、化学实验一样具有演示作用,更把课堂教学与实际操作结合起来,给学生实践机会,它能将某些抽象的思维过程具体化、形象化,它是对人类思维过程的一种模拟、验证和拓广。因此,数学建模与数学实验的结合是很有必要的。

数学实验课的开设首先要选择合适的数学软件。如Mathematical、Matlab、Lingo\Lindo等,这些软件都是功能强、效率高,便于进行数学计算的交互软件包。它们对于一般的数值计算、矩阵运算、方程求解、高等数学建模、优化设计等都能方便地实施,在这些软件的操作环境下所解问题的语言表述形式和其数学表达形式相同,不须按传统的方法编程。例如在经管类高等数学的教学中,线性规划问题很多,而规划问题的求解需花去大量的时间计算,如果借助Lingo\Lindo软件,则能编制简单的程序,迅速解决计算问题。我们可以布置练习题让学生熟悉软件包,培养学生利用软件包求解模型的能力,并培养学生软件编程的能力。通过这些软件的实验和学习,同学们的实践动手能力得到了极大提高,一方面巩固了数学理论知识,另一方面又掌握了使用数学工具的本领。另外,在数学实验过程中,注意精心安排学生的实验,保证学生上机的时间,确实能让学生自己动手操作。尽量从实际问题引入要讲述的数学实验内容,也可以安排建模中常用的方法,如作图的方法(mathematical),曲线拟合的技巧(matlab),优化工具箱的使用(matlab),整数规划的求解(Lingo)等作为实验的内容。最后要求学生以2—3人为一个小组,在教师的指导下,写出实验报告,实验报告包括问题提出、实验目的、实验内容及要求、实验过程及结果、结果分析、思考与练习,这相当于完成一个实际问题的数学建模论文。

参考文献:

[1] 周义仓,赫孝良,数学建模实验[M],西安,西安交通大学出版社,2007

篇3

【关键词】民办院校 数学建模 教学改革

【课题项目】此文系武汉学院2015年教学改革研究项目(编号JY201505 )的研究成果。

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2016)09-0133-02

在高校开设数学建模课程,不仅提升了大学生的理论素养,而且增强了学生的实验动手能力和实际操作技巧,对于学生的全面培养起到重要作用。因此,近年来随着每年一次的全国大学生数学建模竞赛的开展,各个高校参与竞赛的热情高涨,数学建模课程的开设已经引起各大院校的关注。作为民办普通高校,亦是陆续参与进来。数学建模课程在民办院校开设的时间不长,但是由于近年来每年都参加全国建模竞赛,并且多有斩获,导致其影响力逐年提升。

虽然建模竞赛为民办学院带来了荣誉,但是数学建模课程在民办院校开设依然存在诸多问题。目前,民办高等院校对于数学建模课程不够重视,课时安排较少,教师能够完成的教学内容非常有限,加上学生基础普遍较差、兴趣不高,使得这门课程的教学难以达到预期的效果。因而有必要对民办高校开设的数学建模课程进行教学改革,使之成为符合教学目的,适应社会需求,能激发学生兴趣并提升学生能力的一门实用性课程。

一、民办院校数学建模教学的现状及建议

(一)课程开设问题

数学建模是一门知识量非常丰富的综合性课程,对学生的数学基础知识要求较高。在学习数学建模之前,学生至少要熟练掌握微积分、线性代数和概率论与数理统计等数学基础课程。大多数民办院校的学生数学基础较差,数学思维欠缺,在学习建模课程的时候感觉十分困难,有的学生甚至认为在看天书。拿武汉学院来说,由于学校偏重文科专业,招生上多为文科生,理科生甚少,从而导致所招学生多数不爱数学,数学基础不好,从而拉低了全校学生的整体数学素质。多数学生非但数学成绩不理想,他们对数学的兴趣也不大,也不太重视。对于这样的学生群体,不管是哪个专业,数学建模课程都不太适用于必修课。如果硬是强迫他们学习数学建模这门课程,效果将会不尽人意。实际上,在多数公立院校,这门课程也只是作为选修课来开设。数学基础好,又对数学建模感兴趣的同学自然会选择这门课程来学习。目前,我们提倡全人教育,是以学生为主体,视学生为完全的个体,以充分激发学生潜能,培养完整个体为目标。基于此,教育要尊重个体的差异性,对于那些实在是没有基础缺乏兴趣的同学可以考虑放弃这门课程。

在民办院校,可以考虑采用选修课与第二课堂相结合的方式来开设数学建模课程。 数学建模的选修课可以采用启发式、研讨式的方法,充分发挥学生的主动性,引导学生积极主动地查阅相关资料,帮助学生完善他们的知识储备,鼓励学生通过讨论、合作,解决建模问题,培养他们的自学能力和自己解决问题的能力。

(二)课程安排问题

数学建模课程是一门操作性很强的课程,对学生的要求也很高。一方面,在学习数学建模之前,学生要了解并掌握至少一门数学软件,常用的数学软件有MATLAB、LINGO、SPSS、R等等。因此,在开始数学建模课程之前,最好是学生已经掌握了至少一门数学软件的操作。但是,实际上上建模课的学生基础参差不齐,有的数学成绩好,没有接触过数学软件,有的学过一点数学软件,但是数学知识贫乏。根据“就低不就高”的原则,只能假设他们都没有学过数学软件,必须先给学生补充一下数学软件的基本知识,这就要求数学建模课程从一开始就要安排上机课程,好让学生对所用的软件有一个学习熟悉的过程。

另一方面,对于数学建模的每一个章节的教学内容,都要给学生上机实验的机会,让学生自己解决数学建模中的实际问题。这样学生对所学的每一个章节的建模知识都能够得到充分的训练和吸收,从而达到教学目的。 目前,民办院校对于实验课的安排不太注重各门课程自身的特点,多数是为了便于管理,采用“一刀切”的原则。比如,武汉学院数学建模的上机课基本上都是集中安排在每学期的中间几周(第三周开始上机,中间连续八周上机课,之后没有安排上机实验课),导致后面的教学内容只有理论,没有实践,学生越发不感兴趣,教学效果不理想。

对于实验课的安排,可以考虑适当增加上机操作课时量,或采用单双周的上机模式,亦或者上机课由老师灵活处理,自行安排,根据课程内容需要来定,以便达到最佳的学习效果。

(三)教学方法

传统的“满堂灌”式教学方法仍在大部分高校占据主导地位,这种教学方式过于强调循序渐进,虽然有利于学生掌握知识,但同时也造成学生的惰性思维,不利于其独立性和创造性的发展,使学生的学习被动枯燥乏味。

数学建模课程可以借用建模竞赛的分组模式,在老师的引导下让学生分组讨论、自己思考探究,协作完成实验报告。教师也可以安排课堂时间让学生上台讲解自己的解题思路和方法,在课堂上展开讨论。此举不但可以发挥学生的主观能动性,还可以锻炼学生的解题能力和表达能力。

对于课堂教学,一方面教师给出的数学建模的题目应具有现实性和挑战性,学生看到题目后会激发他们的“挑战欲”,这时候他们会感觉数学很强大,激发他们对数学的求知欲,在分析问题、建立模型及改进的过程中,激发学生探究数学奥秘的主动性,在完成建模求解过程后还会激发学生的成就感,带给他们无穷的惊喜。 另一方面,自然得体、诙谐有趣的教学语言能启迪学生的智慧,调动学生的学习兴趣,开发学生的能力。数学课堂教学的语言艺术主要体现在教学语言的优美感。数学教师的有声语言除了要做到准确规范、严谨简约、形象有趣、通俗易懂之外,还要优美动听,这是增强教学吸引力和感染力的重要因素。教师的语言要清亮、明晰、舒缓、流畅而且富有节奏变化,这样才能把一般人认为枯燥的数学知识讲得生动鲜活,才能刺激学生听觉神经的兴奋,激起学生的学习兴趣。

另外,要充分重视《自然科学概论》对数学建模课程的促进作用。自然科学是人类科学知识的重要组成部分,它包括数学、物理、化学、生物、天文学和地学等基础科学,以及材料科学、空间科学,能源科学、生命科学和医学等应用性技术科学。《自然科学概论》作为一门通识课程针对所有的高等院校大一学生开设是非常有必要的。数学建模是一门知识量非常丰富的综合性课程,它要解决的问题覆盖自然科学的各个方面,现代社会生活的日益复杂化决定了对现实问题的研究和解决,仅仅依靠数学理论知识已经不能有效地担当起这一重任,他需要我们对自然科学的各个方面有一定程度的了解,要把各个专业的基本原理同数学模型和数学软件紧密结合,协同作战,方能解决现实问题。比如,2014年数学建模竞赛题“嫦娥三号软着陆轨道设计与控制策略”涉及物理和天文知识,2016年数学建模竞赛题A题“系泊系统的设计”涉及物理上的物体受力平衡和力矩平衡等知识点。

二、大学数学建模课程的意义和建议

数学建模课程的开设为学校参加每年一次的全国大学生数学建模竞赛打下了基础。全国大学生数学建模竞赛是对数学建模教学工作成果的一次检验,同时也是推进数学建模工作的一个平台。参加数学竞赛目的不在于获奖,重在参与,重在能力培养,综合素质的提高。三天三夜的竞赛对于任何一个参赛的学生来说都将是一次人生难忘的经历,他们的团队意识、合作精神、吃苦精神、创新精神都将成为他们人生的一笔宝贵财富。武汉学院自从2011年参赛以来,每年五到七支队伍近百名学生参加了全国大学生数学建模比赛,每年均获得了国家级省级大奖。数学建模竞赛及其相关活动表明,数学建模不仅培养了学生的观察力、想象力和逻辑思维能力,而且提高了学生分析问题、解决问题的能力。

数学建模可以扩宽教师的知识面。数学建模的题目融实用性与挑战性为一体,不仅需要数学知识,还要对其他专业知识有全面的了解,这就促进了任课教师不断学习新的知识,了解新的科技,进而提升教师的知识面与实际应用能力。

数学建模可以促进教学内容的改革,传统的数学课知识过于死板,学生不能很好地将其应用。数学建模的题目涉及知识面广,可以引入到数学其他课的教学内容中,也可以将一些习题结合实际改编成应用题。这样可以丰富教学内容,用生动有趣的生活实例导入新课,在教师启发诱导下,通过学生发现新问题,提出新假设,产生一种跃跃欲试和急于解决问题的心理需求,从而引入数学定理、公式等,体现数学知识的实际应用性,提高学生学习数学的兴趣。

参考文献:

[1]崔秀梅, 浅谈数学实验与数学建模[J].课程教育研究,2015(12):106-107.

[2]吴伟萍, 浅析数学建模中创新意识培养,时代教育,2015(9):221-222.

[3]马庆东, 数学课堂教学之我见,课程教育研究,2015(12):107.

[4]李冬梅,毕卉,孙伟等. 数学建模教材建设的研究,高师理科学刊,2015(11): 67-69.

[5]李略,韩彩虹,肖飞雁,李英华. 浅谈大学数学建模课的积极作用,教育观察,2015(1):60-67.

[6]付翠,郭子鹏. 高职院校数学教学改革的趋势,时代教育,2016(1):237-238.

作者简介:

吴小霞(1979-),女,湖北武汉人,武汉学院信息系副教授,博士。研究方向:多重检验,数学建模。

篇4

关键词:数学建模;高职院校;发展趋势

中图分类号:G712 文献标志码:A 文章编号:1674-9324(2015)43-0224-02

数学家华罗庚曾说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。科研工作者通过实际调研,探索规律,用数学语言建立起反映实际问题的数量关系,然后利用数学方法和科学技术分析和解决问题,这就是数学建模的过程。数学建模应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,使得数学建模思想已成为当代高新技术的重要组成部分。

数学建模的广泛应用已经激起大学生的学习兴趣和研究积极性,各个高职院校纷纷将数学建模思想融入数学课的教学中,对学生数学素养和专业素养的提高取得积极的效果。

一、高职院校数学建模工作的意义

(一)现代职业教育人才培养需求

2014年6月,《国务院关于加快发展现代职业教育的决定》(国发〔2014〕19号)明确指出:提高人才培养质量,推进人才培养模式创新。现代职业教育的关于“实践能力强、具有良好职业道德的高技能人才”培养目标,要求学生既具备扎实理论基础知识和实践操作能力,又具备数学应用能力、创新能力、解决问题能力等职业核心能力。数学建模教育以其独特的学习内容和实践方法培养学生必需的应用能力和数学素养,契合高技能人才的培养要求。因此,推进数学建模教育,对改革人才培养模式影响深远、意义重大。

(二)职业核心能力提高的表现

数学建模是一个学数学、做数学、用数学的过程,注重获取新知能力和解决问题的过程,体现学和用的统一。作为一种创造性活动,数学建模教育活动可以培养学生敏锐的洞察力、严谨的抽象力、严密的逻辑思维、较强的创新意识,使学生在实践活动中能够发挥很好的作用。同时,数学建模又是一种量化手段,锻炼学生知识应用能力和实践能力。数学建模思想的学习过程,是学生积极探索、求真务实、不畏艰辛、努力进取的过程,他们在解决实际问题的同时,既可以学习科学研究的方法步骤,又能增强数学应用和创新能力,进而提高自身的全面素质。

(三)高职数学改革的必经之路

高职数学课程内容曾存在“重经典、轻现代,重连续、轻离散,重分析推导、轻数值计算,重运算技巧、轻数学思想方法”的“四重四轻”现象,这与高职培养的高技能人才目标不适应,所以,将数学建模思想融入数学课程是高职数学改革的必经之路,因为新的教学模式和教学内容能有效地将数学知识体系拓展到技能体系中,有效地增强学生综合应用数学知识的能力。

二、高职院校数学建模工作的特征

近年来,许多高职院校正在将数学建模工作与贯彻落实素质教育有机地结合起来,通过数学建模来提高学生的综合素质以及研究与实践能力。

(一)竞赛带动课程建设,活动锻炼学生技能

1994年,由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛。2004年前后,北京市高职院校纷纷开始参加这项竞赛。每年一届的竞赛活动在大学生中受到关注与喜爱,数学建模很快以选修课的形式应运而生。目前,北京市的几所国家示范校和骨干校每年每校都有大约100名学生报名参加数学建模选修课,每年大约有10支队伍参加全国大学生数学建模竞赛。开展数学建模课程教学和参加全国大学生数学建模竞赛,基于数学建模思想进行教学改革,能为探索数学建模教育和培养新型应用型人才相结合开辟一种新思路、新模式。

(二)课题加强跨学科合作,科研提升师生能力

2008年以来,北京市高职院校纷纷开始组织学院数学建模竞赛,赛题的设计把不同学科领域的专家和专业教师联系到一起,加强跨专业的合作,促进教学团队的建设。良效的研讨机制可以提高教师的整体素质,逐步形成一支结构合理、人员稳定、教学水平高、教学效果好的指导教师梯队,培养一支紧密围绕专业培养目标需求、锐意改革创新的教师队伍。

来自专业课或者生活实际的课题,可以引起学生浓厚的兴趣和参与的积极性,使得他们通过查找资料、调查研究、抽象本质、合理建模、软件求解、验证实际等一系列科研步骤,培养科学研究、谨慎全面的学习态度,锻炼合作创新、解决问题等职业核心能力。

(三)思想推动数学课改,实践优化教法设计

数学建模思想是“实际问题+实用方法+实验模拟+实时检验”的过程,其精髓在于用科学的方法解决实际问题,用合理的分析解释事实现象。这不仅会改变教师向学生单向传授的教学方式,还使教师的引导性、指导性与学生的积极性、主动性得到充分的结合,达到师生互动的良好效果。信息化的实验室授课,使得学生通过设计数学实验,运用数学技术操作计算机模拟,进而实现实际问题的解决,极大程度地调动学生主动学习数学的积极性,提升学生学习数学的成就感与信心。

三、高职院校数学建模工作的发展趋势

(一)与现代职业教育特色相符,不断优化数学类课程结构

开设微积分、数学建模、数学实验等数学类课程,多元化、多角度地培养学生的数学应用意识。根据学生基础和能力采用分层教学,按专业培养方案要求进行模块化教学,既符合学生的能力水平,又与不同专业有机结合。课程多元化,活动多样化,数学建模思想应成为贯穿数学类课程的应用主线,使高职数学类课程一体化。数学建模的目的不仅是为了解决一些具体问题,也不仅为了给学生扩充大量的数学知识,而应普及学生应用数学的意识,提高数学应用能力。对于传统数学教学模式,学生已经厌倦,大部分学生提出的改变教学模式与考试方法的多年来的实践显示,全国大学生数学建模竞赛是数学知识和应用能力共同提高的最佳结合点,是启迪创新意识和创新思维、锻炼创新能力、培养高层次人才的一条有效途径,是激发学生学习积极性,培养他们主动探索、努力构筑奋发进取良好学风及团结协作精神的有力措施。

(二)以学生为中心,充分发挥学生的学习能动性

微积分、数学建模、数学实验等数学类课程的教学内容可进行模块化,根据不同专业的实际需求进行选学,教学方法也可依据不同模块采用不同的方式,以满足学生的个体需求,激发学习积极性,帮助他们在自主探索和合作交流的亲身体验中真正理解和掌握数学的知识与技能、数学应用的思想与方法。教学设计可增加训练活动和实践操作内容,让学生边做边学,学以致用。贯彻“以能力为本位”、“以学生为中心”、“教学做一体”等高职教育理念,采用项目教学、案例教学、角色扮演等多种教学方法,使学生的综合素质在不断参与和体验中提高。

(三)以信息化教学为载体,提高互动教学质量

信息化教学的蓬勃发展为数学建模实践操作带来革新的变化,重视运用信息化教学,不断更新前沿的学习资源,把网络和计算机作为学生分析问题和解决问题的强有力工具,使学生融入实际数学活动中去,体现“学以致用”的教学理念。跨学科的教学内容和现代教学案例要求教师须不断学习新知识,更新教学理念,相互研讨交流,不断提升业务能力。利用信息化网络课程教学平台,教师共享不断更新的案例、图片、视频等教学资源,与学生实时互动。丰富的教学视频为学生提供补充学习的机会,充足的题库也给学生准备自我检验的资源,信息化使学生的学习不拘泥于时间和空间,极大地满足学习需求。

(四)以能力为本位,全面考评学生的“输出”能力

建立多元化的评价方法和以实践能力为核心的评价体制,全面了解学生的学习态度、实践能力和自我提高程度,既可以激励学生学习,更能满足学生探索和成功的需求,让他们在实践中给予重视。结合课堂中的应用,在对数学建模学习评价时要关注学生学习结果,重视学生学习过程,考查数学知识的掌握,也要体现数学建模思想的运用。

四、结束语

高职院校数学建模工作的开展正如火如荼地进行,将数学建模思想融入数学课程改革,在以学生为中心的教育理念的指导下,充分考虑学生的个体情况,运用互动教学软件、网络平台资源等信息化教学手段,采取案例教学、项目教学等多种方式,意在普及学生的数学应用意识,重在提高学生团队合作、自主探究等可持续发展的职业核心能力。在此基础上,开展学院数学建模竞赛,选拔选手进行集中训练,参加全国大学生数学建模竞赛,充分锻炼学生吃苦耐劳、自主创新、团结协作、勇于挑战的职业素养,为培养现代职业人才提供挑战与实践。

参考文献:

[1]李大潜.将数学建模思想融入数学类主干课程[J].中国大学教学,2006,(1):9-11.

[2]陈绍刚.大学数学教学过程中数学建模意识与方法的培养[J].中国大学教学,2010,(12):44-46.

[3]安建业.以数学建模竞赛为切入点,强化学生创新能力培养[J].数学建模及其应用,2014,3(4):27-30.

[4]庞坤.大学数学建模方法的有效教学策略[J].求实,2010,(11):251-252.

篇5

关键词:数学实验 课程体系 教学改革

中图分类号:G624.4 文献标识码:A 文章编号:1674-098X(2012)12(b)-0-02

在大学理工科课程中,数学课程占有较大的比重,而传统的数学课堂教学的展开,通常以教师为主,遵循引例、概念、定理、公式、举例的模式进行理论教学。这种教学方式注重逻辑的严密性,书本知识的系统性,优点是可以在短时间内向学生传授更多的知识,但是从学生角度看,大部分学生是被动的接受知识的输入,学生探求知识的主动性欠缺,当学生在面临后继专业课中实际问题时,却无从下手,不知如何使用所学知识去解决实际问题。为了激励学生积极主动的自己获取知识的兴趣,培养自主学习能力,数学实验课程的开设将极大地改变这种情况[1]。

最近几年已有不少高校开设了数学实验,但在课程设置、教学内容、教学方法和组织方式等各个方面,都在试验和讨论之中。虽然我校在数学实验方面起步较晚,但通过各级精品课程的建设和数学建模竞赛活动的开展,已积累了丰富的经验和教学资源,为构建数学实验课程体系提供了良好的基础。

1 目前数学实验课程体系存在的主要问题分析

1.1 数学实验课程定位认识不足

我国的大学教育模式一直存在着重理论轻实践的问题,特别在数学课程方面,往往强调学生在理论基础方面打下扎实基础,对数学实践和应用能力的培养没有和理论教学环节处于同等重要的地位。导致学生学习了数学课程后往往不知道如何应用于专业课程,理论与实际严重脱节。根据数学学科的特点,大量的事实说明,开设数学实验课,是弥补上述缺陷的有效途径。开设数学实验课,不单纯是一门具体的课的问题,而是教育教学理念的转变和教学方式的改革的重大问题。

1.2 课程模式缺乏一致性

开设数学实验课,从起步到现在,已经有了10年以上时间,如中国石油大学在2000年前后就已经尝试在大学数学教学中融入数学实验的内容,并编写出版了教材[2],也取得了一定的效果,但是,由于教育观念和管理层的认识局限,没有很好的坚持下来。当前,虽然不少高校已经编写了一些适用于不同层次大学教学使用的数学实验教材,对课程的内容和形式进行了有益的探索。但总体来说,在数学实验课的性质和准确定位、各种不同开课模式,数学实验课的任务和教学基本要求、教学内容和教学方法、课程考核,以及数学实验与数学建模课程之间的关系等方面,目前还没有完全形成共识[3]。

2 分层次构建数学实验课程体系

2.1 构建数学实验课程体系

根据我校实际情况,对于公共数学课程和数学专业课程分别构建数学实验课程体系。为了涵盖不同的专业特点和不同的年级需求,数学实验的内容分层次进行组织教学。数学实验课程体系主要由三大模块构成:一是与数学专业理论课相配套的数学实验课;二是与公共数学专业理论课相配套的数学实验课;三是面向全校各类学生专门开设的综合性数学实验课,三大模块分为三个层次实施。这三类实验课所针对的学生、专业、实验目的有较大的不同,因此,实验内容、实验课开设方法、成绩考核都有一定的差异性。 这种针对大学数学课程群设计不同模块和层次的数学实验,使实验内容更加优化,所构建的数学实验课程体系如图1所示。

2.2 实验课程模块

(1)数学专业类实验模块。通过计算机认识实习、数值实验实习和软件综合实习夯实基础,在数值计算方法、微分方程数值解、最优化方法和算法设计与分析等课程内中进行验证性实验和探索性学习,提高学生理论指导应用的能力。(2)公共数学实验模块。根据高等数学、线性代数和概率论与数理统计课程的实际情况,在一年级和二年级上学期开设与理论课程配套的独立数学实验,即高等数学实验(I)、高等数学实验(II)、线性代数实验、概率论与数理统计实验,其学分均为0.5学分。通过这些实验使学生基本掌握Mathematica,Matlab,Excel以及SAS等功能强大的数学软件。具体培养方案如表1。(3)综合创新实验模块。与数学建模课程相配套的数学建模实验,应设置为综合性数学实验,一般在第四学期开设。该课程采用问题驱动组织实验教学活动,主要以各类数学建模题目为内容,以教师讲授和学生讨论相结合为形式,同时注重数学软件与计算机编程的应用,全面熟悉和掌握数学建模的各个环节,培养学生在实际问题中的数学应用意识、训练学生把科技、社会等领域中的实际问题按照既定的目标归结为数学形式,以便于用数学方法求解,认识更深刻的规律和属性,提高学生数学建模和分析问题解决问题的能力,充分调动学生学习数学和应用数学的积极性。

表1 公共数学实验培养方案

实验课程 高等数学实验(I) 高等数学实验(II) 线性代数实验 概率论与数理统计实验

学期 第一

学期 第二

学期 第二、三学期 第二、三学期

形式 独立

开设 独立

开设 独立开设 独立开设

课程性质 必修 必修 选修 选修

课程类型 公共基础课 公共基础课 公共基础课 公共基础课

全国大学生数学建模竞赛是对大学生数学基本理论的掌握和应用能力以及各数学实验课程的一次综合性检验,竞赛题目都来自社会、经济、工程等领域的热点问题,并要求参赛者结合实际问题灵活运用数学、计算机技术及其他学科的知识,能充分发挥聪明才智和创新能力[4]。因此,许多参加过竞赛的学生反映:“一次参赛,终生受益”,他们在后继专业课学习和课题研究中的综合能力明显提高。国家大学生创新性实验计划项目是本科学生个人或创新团队,在导师的指导下,自主选题设计、独立组织实施并进行信息分析处理和撰写总结报告等工作,以培养学生提出问题、分析和解决问题的兴趣和能力的项目。由于数学建模竞赛只有3 d,所考虑的问题难以有效展开,因此该项目是对数学建模竞赛的有益补充,能有充分的时间思考问题,给出切实可行的解决方案。

毕业设计是教学过程的最后阶段采用的一种总结性的实践教学环节。通过毕业设计,能使学生综合应用所学的各种理论知识和技能,进行全面、系统、严格的技术及基本能力的练习。

由于全国大学生数学建模竞赛和国家大学生创新性实验计划项目只是针对少数学有余力的学生,主要培优与示范,不具有普遍性。而毕业设计是针对全体学生的实践教学活动,通过综合运用已有知识独立解决实际问题,提高学生对社会工作的适应能力和驾驭能力。

2.3 各类实验所占比例

各类课程的实验模式有所不同,大体上,帮助学习和理解数学概念的基础性试验占30%左右;自主设计、综合性及创新实验占40%;数学建模实验、大学生创新实验占30%。

3 数学实验课程教学模式

数学实验的教学模式应以学生为主体,将问题作为载体,学习方法作为手段,计算机及其软件作为工具,在教师指导下通过学生自己动手完成指定的实验课程,使学生于模拟的科学研究环境中了解和掌握解决实际问题的全过程[7]。采用“1+1+1”教学模式组织教学,即理论讲授、实际问题应用和上机实现三个步骤,时间安排大体相同。

(1)理论讲授:由教师讲解实验中所涉及相关的数学原理及其相应的数值计算方法。

(2)实际问题应用:由教师讲解该数学原理在实际问题中的具体应用,组织学生分组讨论对该问题的数学模型,利用所学的数学理论和方法逐步建立与实际问题相匹配的模型,并设计求解方案和算法。

(3)上机实验:在教师的指导下,利用数学软件或通过C++编程求出模型的解析解或数值解,并对所求解进行分析验证,最后写出实验报告。

4 结语

通过数学实验课程体系建设,对于帮助学生理解数学理论,激发学生的好奇心和学生学习数学兴趣,培养学生自觉主动学习的习惯和独立思维创新能力,培养学生综合应用数学解决实际问题的意识和能力,掌握常用的数学软件及软件的使用能力起到了极大促进作用。由于数学实验是个新事物,在数学实验课程体系建立和改革上,还有很长的路。

今后要鼓励教师把科研中的部分内容简化,转化为综合性数学实验锻炼学生,加大在社会中具体应用。

参考文献

[1] 张序萍,韩晓峰,吕亚男.煤炭院校大学数学实验教学体系研究[J].煤炭技术,2011,30(11).

[2] 费祥历,同小军,白占兵,等.高等数学实验[M].东营:石油大学出版社,2000.

篇6

关键词:数学建模组织与培训;数学基础课程教学改革;教育模式

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)29-0278-03

全国大学生数学建模竞赛是由教育部高教司与中国工业与应用数学学会联合举办的一项全国性的基础学科竞赛,目的在于培养学生运用数学知识和方法来分析问题、解决问题进而处理实际问题的能力。特别是培养学生从实际问题中抽象出数学模型的能力、计算机编程能力、团队协作和科技论文写作能力,同时推动大学数学基础课的教学改革。这项赛事从1992年开始,全国各高校师生积极参与,竞赛的规模不断扩大,参赛学校从1992年的79所增加到2013年的1326所,参赛队数从1992年的314队增加到2013年的23339队。重庆理工大学从1995年开始组织学生参加全国大学生数学建模竞赛,取得优异成绩,到2013年累计获得全国一等奖13项,二等奖59项,重庆赛区组织奖4项,重庆赛区优秀指导教师23人次,竞赛成绩名列重庆赛区前列。本文根据我校多年的参赛经验,就数学建模竞赛的组织和培训做一总结和探讨。

一、数学建模竞赛组织

1.领导重视,经费落实。正如数学建模竞赛的宗旨是团队精神一样,我校从1995年开始参加数学建模竞赛起,历年来十分重视竞赛的组织工作;由教务处牵头成立了包括各二级学院副院长、教务处长的学科竞赛领导小组,负责竞赛的学生组织、培训和竞赛场地的协调及相关经费的落实等工作。由数学与统计学院为主成立数学建模竞赛教练组,承担竞赛的具体组织工作。学校主管教学的校长多次就数学建模竞赛有关工作做批示,指示要全力以赴做好数学建模竞赛各项工作,从经费上支持数学建模竞赛的开展,并询问各项工作的进展落实情况。竞赛和培训期间,校领导和教务处经常到培训和竞赛场地指导工作,听取参赛师生的意见,解决具体的困难和问题,同时各二级学院和相关单位也对竞赛的各方面如假期学生培训场地和学生住宿落实,图书资料借阅等方面提供支持,共同搞好竞赛组织与协调工作。

2.全面动员,广泛参与。数学建模竞赛的目的是培养学生创新思维和解决实际问题能力,提高人才素质,吸收更多的同学参加,让更多的同学受益。为了扩大数模竞赛在学生中的影响,最大范围地吸引学生参与该项赛事,我们主要开展了以下三方面的工作:①组建数学建模协会。从大一开始高等数学课教师就会在课程中向学生介绍全国大学生数学建模竞赛,同时在课程教学过程中引入数学建模的案例,使学生对数学建模竞赛有一个初步的认识。每年十一月通过数学建模协会大力宣传我校在历年竞赛中所取得的成绩,发展新会员,到目前为止,该协会已有600多位会员。派数模教练对协会工作进行指导。②组织全校性的报告会。邀请国内数学建模的专家进行有关数学建模的讲座。③采取各种手段和渠道宣传数学建模。为促进我校大学生数学建模竞赛的深入开展,学校制定了《重庆理工大学关于开展全国大学生数学建模竞赛活动的实施办法》、《校级数学建模竞赛章程》,对数学建模竞赛规则、组织形式和学生奖和组织奖的评奖方式等方面做出了具体的规定和要求,进行政策激励。通过以上活动的开展,吸引了许多优秀学生参加数学建模竞赛。

二、数学建模竞赛培训

由教务处和学校数学建模竞赛教练组负责竞赛的培训工作。具体流程如下:第一阶段:每年3~5月由教练组教练开设全院选修课《数学建模技巧》。讲解数学建模基础知识,激发学生对数学建模的兴趣。5月上旬举行重庆理工大学校级数学建模竞赛,通过竞赛选拔优秀学生参加第二阶段的培训。第二阶段:5月中旬~6月下旬,进行数学建模提高培训。完善学生的建模知识体系,增强学生数学修养,增强问题分析、建模和求解的综合能力。第三阶段:8月中旬~赛前,组织参加全国大学生数学建模竞赛的队员暑假强化培训。主要强化学生以下几方面的能力。

1.强化计算机编程和相关数学软件使用的能力。

2.强化学生从互联网获取资料的能力。

3.强化学生科技论文写作的能力,进行专门的培训和指导。

4.强化学生的团队协作能力。实践证明,队员之间配合的默契程度直接关系到竞赛的成功与否,通过模拟竞赛及答辩对三名参赛队员进行团队合作训练。

三、数学建模竞赛组织和培训的体会

1.数学建模竞赛提高了学生的创新精神和综合素质。数学建模竞赛的赛题工程技术、管理科学和社会热点问题简化而成,参加数学建模竞赛需要学生掌握数学建模的基础知识如微分方程模型、数学规划模型、概率模型、统计回归模型等,具备计算机编程能力和科研论文写作能力,因此数学建模竞赛本身就是学生综合能力提高的过程。数学建模竞赛由于它的竞赛赛题、组织形式和评判标准,适合培养有创新精神和综合素质人才的需要,收到广大学生的欢迎。学生们普遍反映,通过参加数学建模竞赛,提高了知识分析和解决实际问题的能力,培养学生的合作意识和团队精神。

2.推动了大学数学基础课程的教学改革。①教学思想和教学内容的改革。数学建模竞赛为大学数学基础课程教学改革找到了突破口。从大学数学教学思想上说,培养大学生的综合素质有两个方面:一是通过分析、逻辑推理或计算能够正确地求解数学问题,即对已有的数学模型用所学的数学知识进行求解;二是对所研究的实际问题,根据研究对象的特征,做必要、合理的简化假设,用数学语言描述研究对象的内在规律,建立实际问题的数学模型。将数学建模思想融入到大学数学基础课程的教学过程中是对加强对各方面能力培训的很好方法。因此在数学课程的教学过程中我们强调了数学建模思想的突出作用,注重从实际应用背景中引入数学的基本概念和基本定理,并强调用如何所授数学知识解决实际问题。②教学方法和手段的改革。教学方法上引入案例教学。具体的做法是给出实际问题的相关背景资料、带着所要解决的问题,讲解相关的数学理论和方法,再用此方法解决实际问题。选择案例的思路是:要有鲜明的教学目的性、趣味性、高度的拟真性、代表性,求解不太复杂。使学生从解决这些问题入手,从中体会应用数学知识解决实际问题的技巧和乐趣。教学手段上可采用多媒体教学。多媒体技术的运用,加大了信息量的传授,尤其是在案例教学方面。同时为了直观体验数学实验的过程与技巧,采用实验软件演示教学方法,形式直观、生动、易理解,提高了教学效果。③教师队伍建设。数学建模竞赛培训是一项涉及面广,劳动量庞大的工作,建设一支高水平、高素质的教师队伍是做好数学建模竞赛培训的保证,也是取得全国数学建模竞赛优异成绩的基础。我校从1995年组织学生参加全国大学生数学建模竞赛开始,先后有30多位教师参加了学校的数学建模竞赛教练组。通过组织学生参加数学建模竞赛,对学生进行赛前培训和赛后总结,使教练的学术水平、教学水平和科研能力得到了提高。建设了一支以中青年教师为骨干的优秀数学建模教练团队,为我校参加数学建模竞赛取得优异成绩做出了贡献。近年来,校数学建模竞赛教练组承担国家级和市级教改项目6项,发表教研论文30余篇,获得校级教学成果一等奖两项。

四、进一步的思考

1.如何使学生在后继课程的学习中,以及参加工作后在工作中继续发扬参加数学建模竞赛中所培养到的团结协作和创新精神,并开花结果?

2.如何构建一套适合普通工科院校教育特点数学建模教育模式,加大数学建模活动的受益面?

3.如何在不额外增加数学基础课程总学时的基础上,将数学建模的思想和方法有机地融入到大学数学基础课程的教学中去?

4.如何对参加全国竞赛的学生进行英语论文写作及建模水平的再培训,使学生在美国大学生数学建模竞赛中取得好成绩?

参考文献:

[1]李苏北.以学科竞赛为载体,推动课程建设与学生创新能力培养[J].大学数数学,2009,25(5):8-11.

[2]李大潜.中国大学生数学建模竞赛[M].北京:高等教育出版社,2007.

[3]王义康,王航平.数学建模竞赛培训策略研究[J].重庆科技学院学报,2010,(3):196-198.

篇7

关键词: 数学模型;经济学;高校教学;应用

现如今的高校教学当中可以说数学建模与经济学之间有着密切的关系,任何一项经济学的研究和计算都离不开数学模型的建立,采用数学模型来辅助经济学的发展可以更加直观的让人们从中看出经济的发展形势。例如在经济学的宏观控制和价格控制中,都有数学建模的融入,利用数学建模可以有助于经济学实验的宏观经济分析,在一些实验和价格控制当中,都经常会涉及到数学问题在微观经济中数理统计的实验设计,这时候就体现出了数学建模对于经济学的促进性作用。下面笔者将会针对数学建模对于经济学的重要作用进行具体的分析。

1.数学经济模型对于经济学研究的重要性:

一般情况下,单独的依靠数学模型是不够解决所有的经济学问题,很多经济领域中的问题是需要从微观角度进行细致的分析才能够总结出其中的规律。要想利用数学知识来解决经济学中所出现的问题,就一定要建立适当的经济学模型。运用数学建模来解决经济学中的问题并不是没有道理的,很多时候从经济学的角度仅仅能够知道问题的方向和目的,至于其中的过程并不能有着详细的分析,而利用数学模型就可以彻底的解决这一问题。数学建模可以通过自身在数字、图像以及框图等形式来更加真实地反映出现有经济的实际状况。

2.构建经济数学模型的一般步骤:

要想利用数学模型来更好的解决现有的经济学问题,主要分为两个步骤,第一先要分清楚问题发生的背景并且熟悉问题,然后要通过假设的形式来完善现有的经济学问题,通过抽象以及形象化的方式来构建一些合理的数学模型。运用数学知识和技巧来描述问题中变量参数之间的关系。这样可以得出一些有关经济类的数据,进而将建模中得到的数据与实际情况进行对比和分析,最终得出结果。

3.应用实例:

商品提价问题的数学模型:

3.1问题:

现如今经济学在很多的商场中都有所运用,例如同样的商品要想获得最大的经济效益,既要考虑到规定的售价,又要考虑到销售的数量,如果定价过低,则销售数量较多,如果定价较高,利润是大了,但是却影响了销售数量。怎样定价才能够缺乏经济效益的最大化成为了现如今需要考虑的重要问题。这其中就涉及到了数学建模与经济效益之间的关系,通过绘图来找出如何定价才能够使得商品的边际效应最大化。

3.2实例分析:

例如某商场在销售某种商品的时候,设为单品价格为30元,每年平均可销售2万件,如果商品每提价1元,则销售量就减少了0.2万,要想使得总的销售收入不少于70万,则该商品的最高应该如何定价。针对于这样的问题就可以利用数学的思维来计算,假设提价为x元,提价后的商品单价就是30+x元,则提价后的销售总量就是(20000-2000x/1)件,则可以得出(30+x)(30000-2000x/1)大于等于700000,这样就可以准确的计算出最高定价应该如何制定。

4.数学在经济学中应用的局限性:

4.1经济学不是数学概念和模型的简单汇集:

数学在经济中的运用是有着一定的局限性,利用数学知识和数学模型来解决一些经济学中的现象,这种情况并不是数学的一种延伸和探索,而是利用数学来更加方便的去解释经济学中的一些现象。经济学作为社会科学的分支学科,已经成为了人类社会发展和科学进步的重要学科,而人类受活动和道德的影响也逐渐的对经济学产生了依赖,经济学的发展不可能成为一种抽象的,可以用公式直接计算出的一种科学,只有融入数学知识和数学模型,才会更好的辅助经济学的发展。

4.2经济理论的发展需从自身独有的研究视角出发:

在经济理论的发展当中,很多时候需要从自身独有的研究视角出发去观察去发现,利用数学模型来辅助经济学的分析和研究是具有重要的影响,但是数学建模的应用并不是无条件的适用于任何的场所,而是具有一定的条件,在经济学的领域当中数学建模的运用是有着特定的领域,并不是无节制的可以运用到任何的领域当中。

4.3数学计量分析只是辅助经济理论工具之一:

利用数学建模来解决现有的经济类问题是一种常用的方式,但是这种方法并不是万能的。因为很多经济类的问题当中并不是可以完全依靠数学建模来解决的,很多时候还是需要高校中的教师利用经济学的思维方式进行解决。所以为了更好的促进经济学的教育和发展,就一定要适当的与数学建模进行融合,这样才会有利于经济学的发展。

4.4数学经济建模应用十分广泛:

利用数学建模在经济学中起到了很大的作用,例如现如今已经有很多的企业或者是部门为了节省自己的开支,通过计算经济效益和成本之间的关系来确定如何制定规章制度才是合理的。预计在未来的几年当中,经济学的发展必将会有着很好的前景,而数学建模在经济学中的运用也必将会得到更好的发展。合理的使用数学建模可以为经济学的研究和发展带来很大的促进性作用,这既是今后我国应该努力的方向,也是我国需要继续深入研究和发展的方向。

结束语:

综上所述,笔者简单的论述了数学建模在经济学中的应用,通过分析可以发现,现如今我国的经济学发展已经得到了一定的延伸,无论站在宏观的经济效益上来看,还是站在微观的经济效益上来看,经济学的发展都需要采用适当的数学建模来辅助,近些年使用数学建模已经为我国的经济腾飞和经济发展做出了很大的贡献。 (作者单位:陕西交通职业技术学院)

参考文献:

[1] 崔宜兰.导数在经济领域中的最优化问题的应用.安庆师范学院学报,1997(2)

篇8

摘要:数学建模即为解决现实生活中的实际问题而建立的数学模型,它是数学与现实世界的纽带。结合教学案例,利用认知心理学知识,提出促进学生建立良好数学认知结构以及数学学习观的原则和方法,帮助学生由知识型向能力型转变,推进素质教育发展。

关键词:认知心理学;思想;数学建模;认知结构;学习观

认知心理学(CognitivePsychology)兴起于20世纪60年代,是以信息加工理论为核心,研究人的心智活动为机制的心理学,又被称为信息加工心理学。它是认知科学和心理学的一个重要分支,它对一切认知或认知过程进行研究,包括感知觉、注意、记忆、思维和言语等[1]。当代认知心理学主要用来探究新知识的识记、保持、再认或再现的信息加工过程中关于学习的认识观。而这一认识观在学习中体现较突出的即为数学建模,它是通过信息加工理论对现实问题运用数学思想加以简化和假设而得到的数学结构。本文通过构建数学模型将“认知心理学”的思想融入现实问题的处理,结合教学案例,并提出建立良好数学认知结构以及数学学习观的原则和方法,进一步证实认知心理学思想在数学建模中的重要性。

一、案例分析

2011年微软公司在招聘毕业大学生时,给面试人员出了这样一道题:假如有800个形状、大小相同的球,其中有一个球比其他球重,给你一个天平,请问你可以至少用几次就可以保证找出这个较重的球?面试者中不乏名牌大学的本科、硕士甚至博士,可竟无一人能在有限的时间内回答上来。其实,后来他们知道这只是一道小学六年级“找次品”题目的变形。

(一)问题转化,认知策略

我们知道,要从800个球中找到较重的一个球这一问题如果直接运用推理思想应该会很困难,如果我们运用“使复杂问题简单化”这一认知策略,问题就会变得具体可行。于是,提出如下分解问题。问题1.对3个球进行实验操作[2]。问题2.对5个球进行实验操作。问题3.对9个球进行实验操作。问题4.对4、6、7、8个球进行实验操作。问题5.如何得到最佳分配方法。

(二)模型分析,优化策略

通过问题1和问题2,我们知道从3个球和5个球中找次品,最少并且保证找到次品的分配方法是将球分成3份。但这一结论只是我们对实验操作的感知策略。为了寻找策略,我们设计了问题3,对于9个球的最佳分配方法也是分为3份。因此我们得到结论:在“找次品”过程中,结合天平每次只能比较2份这一特点,重球只可能在天平一端或者第3份中,同时,为了保证最少找到,9个球均分3份是最好的方法。能被3除尽的球我们得到均分这一优化策略,对于不能均分的球怎么分配?于是我们设计了问题4,通过问题4我们得到结论:找次品时,尽量均分为3份,若不能均分要求每份尽量一样,可以多1个或少1个。通过问题解决,我们建立新的认知结构:2~3个球,1次;3+1~32个球,2次;32+1~33个球,3次;……

(三)模型转化,归纳策略

通过将新的认知结构运用到生活实践,我们知道800在36~37之间,所以我们得到800个球若要保证最少分配次数是7次。在认知心理学中,信息的具体表征和加工过程即为编码。编码并不被人们所觉察,它往往以“刺激”的形式表现为知觉以及思想。在信息加工过程中,固有的知识经验、严密的逻辑思维能力以及抽象概况能力将为数学建模中能力的提高产生重要的意义。

二、数学建模中认知心理学思想融入

知识结构和认知结构是认知心理学的两个基本概念[3]。数学是人类在认识社会实践中积累的经验成果,它起源于现实生活,以数字化的形式呈现并用来解决现实问题。它要求人们具有严密的逻辑思维以及空间思维能力,并通过感知、记忆、理解数形关系的过程中形成一种认知模型或者思维模式。这种认知模型通常以“图式”的形式存在于客体的头脑,并且可以根据需要随时提取支配。

(一)我国数学建模的现状

《课程标准(2011年版)》将模型思想这一核心概念的引入成为数学学习的主要方向。其实,数学建模方面的文章最早出自1982年张景中教授论文“洗衣服的数学”以及“垒砖问题”。虽然数学建模思想遍布国内外,但是真正将数学建模融入教学,从生活事件中抽取数学素材却很难。数学建模思想注重知识应用,通过提取已有“图式”加工信息形成新的认知结构的方式内化形成客体自身的“事物结构”,其不仅具有解释、判断、预见功能,而且能够提高学生学习数学的兴趣和应用意识[4]。

(二)结合认知心理学思想,如何形成有效的数学认知结构

知识结构与智力活动相结合,形成有效认知结构。我们知道,数学的知识结构是前人在总结的基础上,通过教学大纲、教材的形式呈现,并通过语言、数字、符号等形式详细记述的。学生在学习时,通过将教材中的知识简约化为特定的语言文字符号的过程叫作客体的认知结构,这一过程中,智力活动起了重要作用。复杂的知识结构体系、内心体验以及有限的信息加工容量让我们不得不针对内外部的有效信息进行筛选。这一过程中,“注意”起到重要作用,我们在进行信息加工时,只有将知识结构与智力活动相结合,增加“有意注意”和“有意后注意”,才能够形成有效的数学认知结构。根据不同构造方式,形成有利认知结构。数学的知识结构遵循循序渐进规律,并具有严密的逻辑性和准确性,它是形成不同认知结构的基础。学生头脑中的认知结构则是通过积累和加工而来,即使数学的知识结构一样,不同的人仍然会形成不同的认知结构。这一特点取决于客体的智力水平、学习能力。因此若要形成有利认知结构,必须遵循知识发展一般规律,注重知识的连贯性和顺序性,考虑知识的积累,注重逻辑思维能力的提高。

三、认知心理学思想下的数学学习观

学习是学习者已知的、所碰到的信息和他们在学习时所做的之间相互作用的结果[5]。如何将数学知识变为个体的知识,从认知心理学角度分析,即如何将数学的认知结构吸收为个体的认知结构,即建立良好的数学学习观,这一课题成为许多研究者关注的对象。那么怎样学习才能够提高解决数学问题的能力?或者怎样才能构建有效的数学模型,接下来我们将根据认知心理学知识,提出数学学习观的构建原则和方法。

(一)良好数学学习观应该是“双向产生式”的信息

加工过程学习是新旧知识相互作用的结果,是人们在信息加工过程中,通过提取已有“图式”将新输入的信息与头脑中已存储的信息进行有效联系而形成新的认知结构的过程[6]。可是,当客体对于已有“图式”不知如何使用,或者当遇到可以利用“图式”去解决的问题时不知道去提取相应的知识,学习过程便变得僵化、不知变通。譬如,案例中,即使大部分学生都学习了“找次品”这部分内容,却只能用来解决比较明确的教材性问题,对于实际生活问题却很难解决。学习应该是“双向产生式”的信息加工过程,数学的灵活性在这方面得到了较好的体现。学习时应遵循有效记忆策略,将所学知识与该知识有联系的其他知识结合记忆,形成“流动”的知识结构。例如在案例中,求800个球中较重球的最少次数,可以先从简单问题出发,对3个球和5个球进行分析,猜测并验证出一般分配方法。这一过程需要有效提取已有知识经验,通过拟合构造,不仅可以提高学生学习兴趣,而且能够增强知识认识水平和思维能力。

(二)良好数学学习观应该具有层次化、条理化的认知结构

如果头脑中仅有“双向产生式”的认知结构,当遇到问题时,很难快速找到解决问题的有效条件。头脑中数以万计“知识组块”必须形成一个系统,一个可以大大提高检索、提取效率的层次结构网络。如案例,在寻找最佳分配方案时,我们可以把8个球中找次品的所有分配情况都罗列出来。这样做,打破了“定势”的限制,而以最少称量次数为线索来重新构造知识,有助于提高学生发散思维水平,使知识结构更加具有层次化、条理化。在学习过程中,随着头脑中信息量的增多,层次结构网络也会越来越复杂。因此,必须加强记忆的有效保持,巩固抽象知识与具体知识之间的联系,能够使思维在抽象和现实之间灵活转化。而这一过程的优化策略是有效练习。

(三)良好数学学习观应该具有有效的思维策略

要想形成有效的数学学习观,提高解决实际问题的能力,头脑中还必须要形成有层次的思维策略,以便大脑在学习和信息加工过程中,策略性思维能够有效加以引导和把控。通过调节高层策略知识与底层描述性及程序性知识之间的转换,不断反思头脑思维策略是否恰当进而做出调整和优化。譬如,在案例中,思维经过转化策略、寻找策略、优化策略、归纳总结四个过程,由一般特殊一般问题的求解也是思维由高层向底层再向高层转换的层次性的体现。

在思维策略训练时,我们应重视与学科知识之间的联系度。底层思维策略主要以学科知识的形式存在于头脑,它的迁移性较强,能够与各种同学科问题紧密结合。因此可以通过训练学生如何审题,如何利用已有条件和问题明确思维方向,提取并调用相关知识来解决现实问题。

篇9

本文介绍了高职院校数学教学中引入数学实验课的必要性,并对数学实验课程的教学目的、内容以及教学方式、评估方法等方面对数学实验课程的结构进行了探索。对高职院校数学教学改课有一定的借鉴意义。

关键词:

数学实验;高职学校;实践能力

一、引言

职业教育要把学生职业技能以及创新思维的发展作为教育的重点,而学生的逻辑和抽象思维能力在数学课堂中可以得到很好的锻炼,因此,高职数学教学模式改革势在必行。在当今高职院校的数学课堂中引入数学实验,有助于学生更加深刻、直观地掌握数学知识,为职业技能的培养以及创新思维的发展打下充足的理论基础。

二、在高职院校数学教学中引入数学实验课的必要性

瑞士著名的数学家欧拉就曾表示:数学是一门科学,既需要观察,也离不开实验。想要学好这门科学,最有效的方式是自己去发现。而“数学实验”就是为了解决现实中面临的问题或者完成具体的项目建设,借助于现代计算机技术以及数学软件、模型、基础知识等等而进行的实验。即借助数学实验帮助学生更好地学习知识、理解知识的教学方式。就目前高职学校学生的实际状况而言,普遍存在数学基础薄弱的现象,因此采用传统地数学教学模式很难使他们真正理解基础知识,加之他们对数学知识的作用认识不足,因此对数学这门学科就没有足够的重视,最终导致其思维能力薄弱,创新思维缺乏,也就阻碍了其职业技能的培养。为了有效地解决高职院校中数学教育存在的问题,将数学实验引入教学课堂。数学实验教学是以学生在数学领域面临的问题为导向,借助于现代计算机技术把解决问题的过程直观、表象地向学生们演示出来,把数学知识的实用性与现实性统一起来。在数学实验中,由于是以实践中遇到的问题为导向的,因此能够从根本上调动学生学习的积极性与主动性。在数学实验教学,学生以一个研究者的身份参与到教学过程中,是对传统地“听数学”学习模式的颠覆,自身的参与使学生对这门学科产生浓厚地兴趣,并逐步培养了自身的逻辑思维能力与创新能力。

三、高职数学实验课程的教学结构初探

在高职学院校,数学实验课是以数学理论知识与内容的初步探索为导向,借助于实验使数学中比较抽象、复杂的知识变得简单易懂,学习理解起来更加直观,使学生在亲身体验和直观感受中培养自己的逻辑思维能力与创新思想。目前,我国数学实验课程尚处于初步探索阶段,还未形成比较固定、成熟的体系供大家享用。本文结合高职院校学生的基本特征,探索了数学实验课的基本结构,主要包括教学目的、内容以及教学方式、评估方法等几部分。

1、教学目的

使学生对数学知识有着更加直观、深入地了解。教师要教授学生借助于计算机、数学软件等工具对数据进行分析,积极指导学生进行数学实验,在这个过程中仔细观察,主动去发现实验中呈现出来的数学规律,并对此进行总结。

2、教学内容

数学实验课的开展是为了解决实践当中遇到的问题。因此在内容的选择上要做到实用、易操作且具有一定的趣味性,能够起到理论教学的辅助作用,让学生在实验中训练自主分析问题、解决问题的能力,使实践能力得以提高,培养创造性思维。在具体的教学内容上这里设计了三个部分:首先,教师演示。即由教师来亲自对比较抽象或者比较复杂的知识点进行案例演示,让学生更直观地感受到。之后老师会对案例进行总结与归纳,为学生培养独立的分析和归纳能力做充足的准备。其次,基础计算。教师教授学生基础软件的学习,让学生能够借助于计算机软件轻松地解决数学中的计算问题,从而有更多的时间和精力进行探索,更加深刻地理解基础理论知识以及基本的公式、定理等等。最后,建模提升板块。此部分对学生的建模能力有一定的要求,一般是用于选择建模选修课的学生,在这里老师要教授学生一些计算机编程的知识,另外对于分析问题、解决问题的能力也有一定的要求。

3、教学过程

实验教学法有着独特的特征,在教学过程中遵循直觉想象—猜想—结论验证的过程,需要多方面信息的综合交流。教学实施过程是按照教学结构来进行的。在教师演示环节,至少要教会学生学会一种数学软件,能够独立操作和使用此软件,对必要参数进行设置。这是后续实验的基础,老师通常会在理论教学中讲授软件的使用。在之后的基础计算实验环节中,学生自己动手亲自实验,以第一阶段所学到的软件使用方法为基础,对所学知识进行验证,最后对实验过程进行总结并书写成报告的形式。在最后的数学模型实验阶段,主要是挑选出数学建模比较突出的学生作为学校代表去参加建模比赛。这个阶段的实验通常都会设置一个具体的实验背景,让学生带着问题进入实验,在过程中分析问题,利用所学的数学知识和计算方法来构建数学模型,借助于数学模型来解决问题。

4、评估方法

对于数学实验的评估应从多方面入手,在实验课堂上及时对实验过程进行评估,并与学生提交的实验报告相结合给出公平的评价。主要是考察学生的学习态度与创新实践能力,同时也要充分地考虑学生的平时成绩与课堂表现,因此对于数学这门学科的综合评价可以采用如下方式:即把平时成绩、期末考试成绩、实验成绩按照3:5:2的比例进行所得分数即为该学科的综合成绩。

四、结语

现代计算机技术的发展使得计算机的应用范围不断扩大,同时数学的应用不管在地位以及范围上都有所提升,高职院校的数学教育对此要有充分地认识,多方面培养学生的数学逻辑思维能力,积极引导学生借助于现代计算机技术来分析问题,搭建数学模型,从而更加准确、快速地解决数学问题。在高职教学过程中,大范围地开展数学实验,让学生更加直观深刻地掌握数学知识,为职业技能的提升与创新思维的培养奠定坚实的基础

参考文献:

[1]张耘.高职数学中引入数学实验的方法初探.教育与职业.2015.

[2]刘明辉.数学实验在高职数学教学中的应用.中国成人教育.2015.

篇10

一、前言

自党的“十”以及十八届三中全会召开以来,我国经济、教育等各项事业的发展迈入了一个崭新的历史时期。面对经济体制转轨、政治体制改革、国际国内形势复杂多变等环境,大学生作为社会新技术、新思想的前沿群体、国家培养的高级专业人才,在一定层面上代表着国家未来的发展与创新潜力,这就要求大学生在参加社会主义建设之前需要具备自我决策能力、适应社会能力、创新与实践能力、社交与团队协作能力等。尤其是随着互联网技术的快速发展,社会各领域极需具有逻辑思维能力强、演绎能力突出以及能够将数学方法与计算机技术相结合的创新性人才。众所周知,任何来自于自然科学与工程实践的问题都可以归结为数学问题,而数学建模就是通过计算得到的结果来解释实际问题,并接受检验,来建立数学模型的全过程,这也是利用数学方法解决实际问题的一种实践。因此,培养与提高大学生的数学建模能力,对于提高大学生的抽象思维能力、分析与解决实际问题能力、创新与实践能力以及计算机应用能力等方面具有十分重要的意义。根据当前大学生数学建模教学的发展趋势,结合笔者自身指导大学生参加数学建模竞赛的经历,本文提出了大学生数学建模能力差异化培养以及开展模块化教学实践的探索。

二、数学建模的特点与作用

1.数学建模的特点。为了激发大学生对数学建模的兴趣以及培养与提高大学生的数学建模能力,必须要大学生首先认识数学建模的特点。数学建模就是通过抽象、简化、假设、引入变量等方式将实际问题用一定的数学方式进行表达,从而建立一定的数学模型,并用优化后的数学方法及计算机技术进行求解的全过程。因此,从数学模型建立的实践中,我们可以归纳出数学模型主要存在以下特点:(1)目的性。数学建模的目的是利用数学模型来分析特定对象的有关现象及其规律,对事物的运行与发展趋势进行一定的预测与分析判断,然后做出控制与决策。(2)多样性。对于相同的实际问题,出于不同目的,使用不同的方法与假设,可以建立出不同的数学模型。因此,判断数学模型好坏的唯一标准是看其能否解决实际问题。(3)逼真性与可行性。数学模型的建立需要尽可能与实际问题接近,也就是数学模型的逼真性。而一个逼真的模型往往达不到预期的建模目的,即不可行。因此,数学建模只要达到预期的应用目的,可行就够了,不必追求完全逼真。(4)渐近性与强健性。对于较为复杂的实际问题,往往需要多次由简到繁、由繁到简的反复迭代才能建立可行的数学模型。同时,随着科技的发展与人们实践能力的提高,数学建模也是一个不断完善与更新的过程。另外,模型的结构与参数随着观测数据的微小改变也会表现出微小的变化,从而表现出数学建模的强健性。(5)可移性。数学模型是在原型的基础上进行理想化、简化与抽象化处理之后的结果,它也可以从一个研究对象转移到另一个其他的研究对象。(6)局限性。①数学建模过程中常常会忽略一些次要因素,因此数学模型得出结论的精确性是近似的,通用性也是相对的。②由于人们认识与技术的局限性以及数学发展本身的限制,导致大量实际问题很难得到有实用价值的数学模型。③还存在一些特殊领域的实际问题至今未能建立有效的数学模型进行解决。

2.数学建模的作用。大学生对需要解决的实际问题的认识与理解,可以直接通过大学生的数学模型能力来加以体现。因此,大学生需要有很强的数学逻辑思维力、数学观念以及对数学模型的把控与构建能力,才能运用可行的数学语言表达客观事物或需要解决问题的本质特征。所以,数学建模在很大程度上反映了大学生的数学观念、意识和能力。

随着互联网、云计算以及智能制造等技术的快速发展,提出了许多需要用数学方法解决的新问题,同时也使过去一些即便有了数学模型也无法求解的课题(如天气预报、大型水坝应力计算等问题)迎刃而解;建立在数学模型和计算机模拟基础上的计算机辅助设计技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。尤其是将数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中。因此,数学建模在许多高新技术领域,如电子与信息技术、生物工程与新医药技术、先进制造技术、空间科学与航空航天技术、海洋工程技术等领域具有十分广阔的应用前景。

此外,随着数学向其他学科领域的逐渐渗透,尤其是用数学方法研究这些学科领域中的各种定量关系时,数学建模就成为首要的、关键的步骤以及这些学科发展与应用的动力。因此,一些交叉学科,如计量经济学、人口控制论、数学生态学、数学地质学等得了快速发展,在经济社会发展的各个领域正发挥着越来越重要的作用,同时也为数学建模的发展及应用提供了无限的空间。因此,数学建模必将与其他学科相互渗透与融合,迎来快速发展的新时期。

目前,大学工科教学中普遍存在内容多、学时少的情况,导致教学中重理论轻应用,使学生对数学的重要性认识不够,使得很多学生在进入到专业课学习阶段时,不能有效地理解与学习专业课程里的基本原理与数学推导过程,以致其看到繁杂的数学公式而望而生畏,造成其理论水平停滞不前,为其以后的进一步学习、知识更新与创新能力的突破留下了极大隐患。而指导大学生参加数学建模竞赛就是使大学生亲自参加与体会社会、经济与生产实践中经过适当简化的实际数学问题,不仅体现了数学应用的广泛性,而且也使大学生感受到数学的魅力与力量,激发了他们学习数学的兴趣,同时也提高了他们运用数学方法进行分析、推演与计算的能力,为其后续的进一步学习打下了夯实的基础。

三、大?W生数学建模能力差异化培养

《国家中长期教育改革和发展规划纲要(2010―2020)》对高校人才培养工作明确指出:关心每个学生,促进每个学生主动地、生动活泼地发展,尊重教育规律和学生身心发展规律,为每个学生提供适合的教育。所以,在大学生培养过程中,必须牢固树立“以人为本与以学生为中心”的意识。实际上,人的思维与认识世界的方式是多元的,人类至少拥有包括语言、数学、音乐、绘画、运动等多种天赋秉性,每个人都有自己的优势潜能。大学如果能根据学生的个性差异及能力差异,遵循教育规律,根据大学生的学习需求及学习效果,设计出多元化的培养方案与教育模式,发掘出每个大学生的优势潜能,将极大地提高教育效率与人才培养质量,真正做到人尽其才。大学生数学建模能力差异化培养就是结合数学建模的特点,根据大学生个体的优势潜能,有针对性地对其开展多样化的教育教学工作的一种教育模式,势必打破千人一面的标准化、规模化教育模式,其最终目的是发掘大学生的学习潜能,培养大学生的数学逻辑思维能力,提高大学生分析问题与解决实际问题的能力以及实践动手能力与科技创新能力。那么,该如何实现大学生数学建模能力差异化培养呢?下面笔者主要从两个方面展开论述。

1.以学生为中心,为其选择合适的数学建模课程与授课教师,实现课程与教师的差异化。数学建模课程的差异化,就是以学生自身的素质与能力等为基础,根据学生的个性差异及能力差异设计数学建模课程教学方案与评价标准的一种教学模式。该模式的优点如下:在数学建模教学过程中,能够最大限度地进行因材施教,提高数学建模的教学效率与教学质量,最终促进数学建模人才培养质量及学校办学水平的整体提高。此外,教师是各种教育理念与培养方案的直接执行者。执行者的学术能力与个人素养决定了目标实现的质量差异。根据大学生差异化的专业背景与数学基础,设定差异化的培养目标与课程,并选择与之相配套的教师队伍。根据差异化教学的需要,就是把有意愿、有能力的教师组织起来,引导学生自发地从事数学建模的学习及开展创新实践活动,以达到个性化、多元化数学建模的目的。

2.在数学建模教学过程中,教师应根据学生自身的学习基础、学习能力以及学生的创新能力等方面的差异,制定出不同层次的教学任务,使大学生的潜力得到最大程度地提高,笔者主要是从以下几方面着手:(1)学生分层。教师要对学生的学习情况十分了解,这样教师就可以把学生进行一定的分层。例如,将班里的学生以4人为一组,每组要包括学习能力好、中、差的学生,或者由学生个人进行自行分组。之所以采取将学生分组进行数学建模教学,主要是因为学习的过程是一个对话交流、相互帮助与相互竞争的过程,采取分组教学的形式能更快、更好地激发大学生对数学建模的学习兴趣和学习积极性。同时,这个分层是动态的,教师可以根据学生平时完成数学建模的任务情况进行实时调整。(2)任务分层。教师在实际的教学过程中,应考虑到学生的个体差异,兼顾整体和弱、优势群体的发展。针对不同层次的学生,教师可以设置不同难度的任务,如基础类、提高类和创新类,由学生个人根据其自身的能力与水平,自主选择相应的数学建模任务。(3)学生反馈。每次数学建模课结束前,教师要求学生提交一份数学建模报告。提交数学建模报告是教学过程中非常重要的一个环节,数学建模报告显示了学生对任务的完成情况、对知识点和方法的学习情况等。教师要求学生下课之前提交数学建模报告,一方面提高了学生学习数学建模的积极性,保证了数学建模报告的质量;另一方面提高了学生课余时间参与数学建模课的热情,没有完成数学建模报告的学生,可以利用自习课等课余时间到实验室继续进行数学建模的学习。(4)教师分层解答。教师根据辅导过程中遇到的问题和学生在数学建模报告中提出的问题,进行分类归纳总结。对出现同样或相似知识点疑问的学生,单独召集学生进行讲解;对有不同疑问的学生,教师要分别给他们进行讲解。

四、数学建模模块化教学实践

数学建模需要依靠功能强大的Matlab与SAS等软件来实现,因此学习自己设计程序与熟练应用这些软件对于提高大学生的数学建模能力具有十分重要的意义。传统数学建模软件的教学,都是教学基本菜单和常用工具的使用,这种方法和使用环境相脱节,导致学生在具体实践中,面对大量的菜单和工具,不知如何下手、如何运用,教学效果并不理想。如果追求大而全,要求学生掌握数学建模软件所有的基本菜单和常用工具的使用方法,是不可能做到的。那么怎样把这样一个功能强大的数学建模软件教给学生,并让学生灵活应用呢?笔者结合自己多年的教学实践,提出了数学建模方法的模块化与典型案例相结合的教学方法。

1.数学建模方法的模块化。数学建模方法总体而言可以分为六大模块:综合评价、预测与预报、分类与判别、关联与因果分析、优化与控制、实验设计。其中,综合评价又可以分为三个小模块:方案选择、类别分析、排序。预测可分为三个小模块:灰色系统、ARIMA时间序列分析、回归预测;预报可分为三个小模块:按样本关联性分类、按距离分类、按动态聚类分类。分类与判别可分为两个小模块:模糊识别与贝叶斯判别。关联与因果分析可以分为三个小模块:两个变量的关联性、一个对多个变量的关联性、多个对多个变量的关联性。优化与控制则可以分为四个小模块:线性规划、非线性规划、目标规划、网络优化。实验设计在方法方面则可以分为三个小模块:方差分析、LOGISTIC回归、正交设计。数学建模方法众多,通过对数学建模方法的模块化进行分类,有助于学生面对具体实际问题时,做到脑中有法、心中不乱,快捷地建立出数学模型并解决实际问题。

2.典型案例教学。科学实践中的数学问题形形、无以穷尽。如何让大学生在有限的学习时间内,学好数学建模,为他们今后在科研实践中用数学建模解决实际问题打下良好的基础,这就对教师的数学建模教学方法提出了更高的要求。例如:假设某校基金得到了一笔数额为M=5000万元的基金,打算将其存入银行,校基金会计划在5年内每年用部分本息奖励优秀学生,要求每年的奖金额相同,且在5年末仍保留原基金数额,其中,收益比a=(本金+利息)/本金,银行存款税后年利息与各存款年限对应的最优收益比如表1与表2所示。

若??M分成5+1份,xi表示每年的份额,S表示每年用于奖励优秀学生的奖金额,ai表示第i年的最优收益比,建立数学模型的过程如下:

max S,

s.t.a■x■=S,i=1,2,…,5■x■=Ma■x■=M

运用LINGO编程如下:

?MAX=S;

?1.018*x1=S;

?1.0432*x2=S;

?1.07776*x3=S;

?1.07776*1.018*x4=S;

?1.144*x5=S;

?1.144*x6=M;

?M=5000;

?x1+x2+x3+x4+x5+x6=M.

程序运行结果如下:

该例子充分体现了数学建模的三大步骤:第一步,把实际问题通过一定的方法处理成数学问题;第二步,学习数学软件,用计算机语言来解释数学问题;第三步,结果分析,把整个数学建模的过程用实验报告的形式阐述出来,即写作过程。通过这个典型案例(基金的使用)的教学,有助于学生了解与认识数学建模的基本步骤,为其后续数学建模的学习打下了夯实的基础。古人云:“授人以鱼,不如授人以渔”。在数学建模的教学过程中,针对某一个具体数学建模的案例,结合实际问题由现象的直观描述到数学的抽象提炼,教师除了要讲解数学概念和求解方法这些基本知识之外,还需要组织学生就该案例中使用的数学思想展开讨论。同时,教师自身也需要有扎实的科研能力以及丰富的科研实践,真正做到结合案例讲基础,依托基础讲应用,使学生在实践中认识到数学建模的强大功能与魅力,在实践中培养大学生学习数学建模的兴趣,充分调动学生与教师的主观能动性,变满堂灌为主动学,真正做到“教学相长”。