数学建模的重要性范文
时间:2023-12-20 17:33:14
导语:如何才能写好一篇数学建模的重要性,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
前言
科学技术的不断发展,为数学的广泛应用提供了广阔的前景。应用数学的上升趋势也日益明显,引导中学生在日常数学学习过程中如何进行数学建模,就成了当前数学和科学工作者所面临的重要课题。数学建模通常是运用数学思想、方法和知识解决实际问题的过程。在日常数学课堂教学中,数学教师结合数学课本知识,将未经简化抽象的现实问题带到课堂上,使中学生能运用理解、观察、比较、分析、综合、归纳、抽象、概括等基本的数学思维方法,最大限度地调动已获得的数学概念、公式、图形、基本关系,把实际问题中的非数学信息转换成抽象的数学信息,或把现实数学对象中赋予的信息转化成另一种数学对象的信息,建立相应的数学模型,然后中学生通过数学模型的建立和求解,来解决生活中的实际问题。
新一轮数学课程改革强调数学应贴近生活,注重加强数学教学的实用性性,重视数学与实际生活的联系,并能学以致用,用来解决生活中的实际问题。可见,合理引导中学生在数学学习过程中,学会建模,就成为当今数学教育基础改革的重点之一。由于基础等原因,中学生的数学建模能力很差,如何正确、有效地实施数学建模教学,已成为当前中学数学教师所面临的一大教改难题。为此,有必要先从理论上研究引导中学生进行数学建模的重要性。
1.利于激发中学生的学习兴趣
传统的数学教学模式,理论性比较强,知识的系统性比较严谨,再加上中学生的自身基础情况,数学对他们来说比较困难,一旦学生对数学失去情趣,就会产生厌学心理。通过组织数学建模活动,有利于激发学生学习方程的兴趣。中学生一旦对某一内容产生兴趣,就会持续地专心地研究它,进而提高数学学习的效率。因为学习兴趣既是学习的动力,又是学习的结果,心理研究也表明,人的一切活动都是由需要、动机、兴趣所支配的,中学生的学习活动亦是如此。因而,根据学生的心理特点及具体的教学内容,组织数学建模活动,激发中学生的学习兴趣是她们学好数学最关键的第一步。
2.提高元认知能力
通过数学建模,以加深中学生对学习过程的认识,激发学习动机、提高求知欲,从而提高元认知能力。专家指出,数学建模活动是一项指向性很强的思维训练活动,他面对的生活中实际问题,运用简洁、明晰的生活语言进行描述的,并不是单纯意义上数学计算问题。这些现实问题容易刺激读者的求知欲与探索欲,使中学生能主动对其产生兴趣,对问题容易形成积极的态度。建模的目标激励着中学生去研究问题背景,查阅资料获取新知识,获取对问题的深入了解,分析、处理问题自身所提供的关于已知要求与求解等参数信息。另一方面,数学建模处理的形成,往往也如其他学科具有交集,也可以说是一种学科的分野与跨学科的融合,建模活动本身是对中学生知识水平、能力等的一种评测,建模者在此过程中可以逐渐认识到个体的认知水平,发现认知上的差距,有利于自觉提高个人的学习积极性和自觉性。通过数学建模活动,可以帮助中学生建立起一种学习数学的良好心态;中学生通过学习一定的数学理论知识后,能发现在生活中具实用性,甚至可以解决身边的实际问题,“知是行之始”、“学而后知不足”。从而心中产生了学好数学的强大动力。
3.有利于激发中学生的创新思维
调研发现,日常数学教学实践中,少数数学教师依然还在采用传统的教学方法,注重理论的灌输,然后采用大量的题海战术,部分中学生学的苦,题做的累,不利于中学生数学素养的形成,同时也不利于数学教师的课堂教学效率的提高。众所周知,普通班中学生数学基础参差不齐,少数中学生数学基础相当薄弱,被动地学习,也非常吃力,长期下去这些中学生的学习思维会僵硬化、固定化。而运用数学建模进行学习数学,中学生可以发散思维,驰骋想象,不同的数学问题可以建立不同的模型,同一数学问题也可以建立不同的模型。针对不同的模型,可以运用不同的解题方案解同一问题,不仅够激发中学生的探究意识,同时也有利于摆脱传统思维束缚,提高中学生的创新思维能力。
4.提高分析和解决问题的能力
培养中学生运用数学建模的目的就是为提高他们解决实际问题的能力。引导把实际问题抽象为数学问题,就必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求中学生有一定的抽象能力,而且要有相当的观察、分析、综合、概括与类比的能力。中学生上述能力的获得,不是一朝一夕的就能完成的,数学教师需要把数学建模意识贯穿在教学的始终,不断地引导中学生用数学思维去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中,抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题的目的,使数学建模意识成为学生考量问题的思路与方法。
5.有利于对学生数学学习过程的评价
数学学习应该是一个过程,而不仅仅是一个结果,数学评价既要关注学生数学学习的结果,更要关注他们在学习过程中思维的变化和发展,过程评价与结果评价相结合,因为数学模块的应用实际上是中学生解决问题时思维过程的一个暴露,它为教师的过程性评价提供了可高的大量信息与参数,有利于帮助数学教师了解中学生对抽象的数学概念的理解程度,在一定程度上促进了数学教师改进教学方法,采用具体直观的数学模块解释抽象的数学概念,然后把具体直观的数学模块上升为抽象的数学概念,引导学生数学模块有条理地、清楚地表达所解决问题的过程,并运用数学模块解释推论的合理性,从而有利于数学教师下一步进行调整和改变教学思路,提高课堂教学的有效性。
【参考文献】
[1]刘春英.数学建模在中职数学课堂教学中的应用[J].探析长春教育学院学报,2015.5
篇2
关键词:数学建模;数学模型;建模思想;数学建模方法
一.数学建模在教学中的应用
数学建模能力的培养,让学生体验、理解和应用探究问题的方法。教师在教学中,应根据他们的年龄特征和认知规律设计出适应他们探究的问题,这样才能激发学生对学习的思考和探索,从而达到培养学生数学探究性学习的效果。
例:拆数问题。总长100米的篱笆靠墙围一个矩形羊圈。
(1)当x=20米时,面积S是多少?(2)当x分别为30米,40米,50米,60米呢?
(3)当x为多少时,所围矩形面积最大?
本例中,学生原有知识为:矩形面积=长×宽;总长100米,一边为x,则另一边为100-x。例中的问题(1)(2)简单计算就可得出,但却是问题(3)的辅垫,学生在训练中容易比较发现,当把100分成50米和50米时,所围成的矩形面积最大。
例:函数图像的交点坐标。在一次函数教学时,可设计以下渐进式问题:
(1)直线y=x+3与X轴,Y轴分别交于点A、B,求点A、B的坐标。
(2)直线y=x+3与直线y=-2相交于点P,求点P的坐标。
(3)直线y=x+3与直线Y=3x-5相交于点M,
求点M的坐标。
结合(1)的方法容易解出问题(2),但问题(3)具有一定的挑战性。教学时问题(1)可总结为解方程组的形式,求出与X轴的交点坐标;同理对问题(2)可总结为解方程组的形式,求出点P的坐标。这样学生容易想到问题(3)的解答方法了。
数学建模能力的培养不在于某堂课或某几堂课,而应贯穿于学生的整个学习过程,并激发学生潜能,使他们能在学习数学的过程中自觉地去寻找解决问题的一般方法,真正提高数学能力与学习数学的能力。
二.数学建模教学的基本过程
培养学生运用数学建模解决实际问题的能力,关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断地引导学生用数学思维去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题的目的,使数学建模意识成为学生思考问题的方法和习惯。
三.数学建模教学的重要性
二十一世纪课程改革的一个重要目标就是要加强综合性、应用性内容,重视联系生活实际和社会实践,逐步实现应试教育向素质教育转轨。纵观近几年高考不难推断,数学应用题的数量和分值在高考中将逐步增加,题型也将逐步齐全。而以解决实际问题为目的的数学建模正是数学素质的最好体现。
目前中学数学教学现状令人担忧,相当一部分教师认为数学主要是培养学生运算能力和逻辑推理能力,应用问题得不到应有的重视;至于如何从数学的角度出发,分析和处理学生周围的生活及生产实际问题更是无暇顾及;为应付高考,只在高三阶段对学生进行强化训练,因学生平时很少涉及实际建模问题的解决,其结果是可想而知的,所以在中学加强学生建模教学已刻不容缓。
四.数学建模教学的意义
在学校开展数学建模教学,可激发学生的学习积极性,学会团结协作的工作能力;培养学生的应用意识和解决日常生活中有关数学问题的能力;能使学生加强数学与其它各学科的融合,体会数学的实用价值;通过数学建模思想的渗透和训练,能使学生适应对人才的选拔要求,为深造打下坚实的基础,同时也是素质教育的重要体现。
参考文献:
[1] 数学思想与数学教育[J],数学教育学报.1995
[2] 丁石孙、张祖贵.数学与教育[M],湖南教育出版社.1998
[3] 孙亚玲.现代课程与教学研究新视野文库--课堂教学有效性标准研究、教育科学出版社.2008
篇3
一、对数学建模的认识
1.数学建模就是综合运用数学知识和计算机工具解决实际问题的过程,其是用数学的语言、方法去表述实际问题的过程。当一个数学模型表达出来后,还需要运用推理、证明、计算等技术手段来求解,用实践来验证。数学建模过程也是接受实践并修订完善的过程。如果给数学建模定义的话,可以归纳为:数学建模是对现实的现象,通过心智活动构造出能抓住重要且有用的特征,用数学的语言和方法来表示,并用来解决实际问题的一种数学工具。它的建立过程是:根据实际情况抽象、简化、假设并确定变量、参数建立数学模型并求解用实际问题的实例数据等来检验该数学模型若符合实际则交付使用,从而可产生经济效益、社会效益;若不符合实际,则要反复建模,直到产生符合实际的模型。
2.数学建模是在非数学的领域应用现有的数学方法来解决实际问题,以此得到更高的经济效益和社会效益。过去之所以很少提到它,是因为很多人对数学科学重要性的认识并不那么完整。在理论上对数学科学重要性的认识是比较容易清楚的,那么在现实生活实践中对数学方法的应用是否也有用呢?我们可以举出很多的例子来说明数学是必不可少的,但是学起数学来,无论是小学生、中学生、大学生、研究生,还是数学教师,对数学科学在实践中的有用性问题上,往往不是那么清楚,更谈不上行动的自觉性了。19世纪著名的德国数学家高斯说过:“数学除了锻炼敏锐的理解力,发现真理外,它还有另一个训练全面考虑科学系统的头脑的开发功能。”“数学的思维方式具有根本的重要性。数学为组织和构造知识提供方式,以至当用于技术时就能使科学家和工程师们生产出系统的,能复制的,并且是可以传播的知识,分析、设计、建模、模拟以其具体实施就可能变成高效加结构良好的活动。”“在经济竞争中数学科学是必不可少的,数学科学是一种关键性的,普遍的,能够实行的技术。”在全世界进入以计算机革命为特征的信息时代的当代,在我国已驶入社会主义现代化建设快车道的今天,重温高斯的这些话,无疑会使人们对数学科学和数学建模重要性的理解和认识更进一步。
二、数学建模对创新教育的作用
数学建模就是综合运用数学知识和计算机工具解决实际问题的过程,它是联系数学和实际问题的桥梁,是各种应用问题严密化、精确化、科学化的途径,是发现问题、解决问题的有力工具,是培养高素质创新人才的一个重要渠道,它的重要性体现在以下几个方面:
1.数学建模课程能培养学生的创新意识、拼搏精神和应变能力,从而树立解决复杂问题的信念;培养学生想象、估计、猜测、预测的能力;培养学生精益求精、一丝不苟的工作作风;培养学生的协作精神及主动探索和发现新知识的能力,使学生在探索过程中受到科学研究和发明创造的初步训练。
2.数学建模课程真正意义上体现了数学来源于实践又应用于实践,达到了理论与实践的有机结合,克服了以往中学数学教育的严重缺陷。学生学习数学不知道数学理论是怎么来的,学完以后又不知道往哪儿用(也不会用),以致学生认为学习数学没用。正如我国著名数学家华罗庚曾指出的:“人们对数学产生枯燥无味、神秘难懂的印象,原因之一就是脱离实际。”这句话不仅指出了数学教育脱离实际的危害性,还指出了数学教育改革的方向――密切联系实际。数学建模课程正是理论与实践相结合的课程,其内容都是来自于日常生活、工程技术及经济管理等领域的研究课题,而且其教学过程是师生共同参与的,学生可以在不断的探索过程中体会到“发现问题”、“发明问题”及“获得成功”的喜悦,这必然会提高他们学习数学的浓厚兴趣和积极性。从这个意义上讲,数学建模活动的开展,必将使中学数学课程改革有突破性的进展。
3.数学建模活动的开展也必将对数学教师业务水平和教学水平的提高产生积极的促进作用。其一,它在一定程度上弥补了数学教师不懂工程问题和经济问题的缺陷,使其在教学过程中能把工程问题及经济问题有机地结合起来,激发学生的学习兴趣,提高教学效果。其二,由于数学建模问题通常是很复杂的实际问题,没有现成的方法,也没有最好的结果,对教师来说,这是难题,必然会促进教师不断学习,提高水平。同时,数学建模活动的开展也拓宽了教师的科研领域。
因此,开设数学建模课程,对于培养高素质的创新人才具有重要的作用,对中学数学课程改革研究也具有重要的指导和促进作用。
参考文献:
[1]董臻圃主编.数学建模方法与实践.国防工业出版社,2006.
篇4
数学建模可以激发学生学习数学的兴趣,理论性强,具有较高的抽象性。学生在学习过程中感到枯燥无味,很多学生认识不到学习数学的重要性。由于数学建模是社会生产实践、经济领域、医学领域、生活当中的实际问题经过适当的简化、抽象而形成数学公式、方程、函数式或几何问题等,它体现了数学应用的广泛性,所以学生通过参与数学建模,感受到了数学的生机与活力,感受到数学的无处不在,数学思想方法的无所不能,同时也体会到学习数学的重要性。在建模过程中充分调动了学生应用数学知识分析和解决实际问题的积极性和主动性,学生充满了把数学知识和方法应用到实际问题之中去的渴望,把以往教学中常见的“要我学”真正的变成了“我要学”,从而激发了学生学习数学的兴趣和热情。
二、职业学校数学教学中渗透数学建模思想的实践
1.在教学中传授学生初步的数学建模知识。掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不太复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
2.培养学生的数学应用意识,增强数学建模意识。首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变量间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象,让学生养成运用数学语言进行交流的习惯,要不断的引导学生用数学思维从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。
篇5
现代化信息技术的发展,促进了高等数学和计算机通信技术的紧密关联,但是目前的大学高等数学教育中,学生对高等数学与实际应用的关联性没有正确认知,甚至对高等数学的学习提不起兴趣。在高等数学教学中融合数学建模思想,是大学数学教育中的重要环节,能够激起学生对高等数学知识与运用的探索兴趣,提高学生数学和应用相结合的能力,提升现代大学生高等数学学科的综合素养。
1高等数学教学改革中培养学生数学建模思想的重要性
1.1提高学生对数学知识的学习兴趣
在大学数学教学中融合数学建模思想的教育,能够充分激发学生对数学知识的学习兴趣,受到数学建模思想的影响,学生对数学知识中的各个思想产生深刻认知,包括微分思想、积分思想、极限思想和排列组合思想等,实际的数学建模应用实践过程中,将抽象的数学知识具体化、具体的问题形象化,培养大学生敏锐的数学灵感,加强学生解决实际问题的能力[1]。
1.2丰富高等数学课堂的教学手段
数学建模思想教育作为一种教学手段,丰富了教学过程,高等数学的教学过程中,教师一般采取使用案例讲解高等数学理论知识的方式,由此随着教学进程的发展,学生的学习兴趣降低。而采取数学建模思想和数学教学相融合的教学手段,能够将具体应用结合到课堂教学内,强化学生对高等数学知识的认知,提高数学知识运用的能力,增强数学学科的综合素质。
2将数学建模思想渗透到高等数学教学改革中的方法策略
2.1系统培养大学生高等数学的建模思想
大学生对于数学建模思想其实已经有了基础认知,比如很多的物理应用和数学建模有着直接的紧密关联,但是认知程度仅仅局限于较为浅层的表面,对于很多数学建模思想的概念模糊,不理解到底什么是建模、怎样建模等。高等数学学科教师要在数学课堂学习之初,首先向学生明确数学建模的思想和方法定义,让学生深刻了解数学建模思想的含义,再借助具体的教学案例,对学生进行数学建模训练,促进学生数学建模的技能水平,解决实际学习和生活中的问题。有些问题是无法通过简单思考直接解决的,通过对问题的分析和观察,问题被细化分解,再通过已有知识收集数据,针对问题中无法直接解决的难点提出假设,问题被简化之后,找到硬性因素并根据其中的关系建立起数学描述模型,计算模型参数实施对模型准确性和实用性的验证,最后建立起应用模型[2]。
2.2高等数学课程中融入数学建模方法教学
高等数学和实际物理问题之间契合度较高,高等数学来自于实际具体的应用场景,教师在讲解数学知识的过程中将具体的物理案例结合到课程中来,改变传统的抽象化数学知识讲授的模式。例如,讲解实用性较强的数学工具时,如微分、积分等,讲解完毕之后针对其中的具体应用问题,引导学生根据合理运用数学工具,建立起模型以达到解决问题的目的,培养和加强学生数学工具的运用能力。教学课程中融合数学建模思想和方法的教育,提升了数学教学的趣味性,消除数学知识的枯燥感,让学生将建模思想和演示工具结合在一起,产生更完整的认知。
2.3营造活跃的课堂教学气氛,激发学生的学习热情
传统的教学模式中,常常是采取“教师讲课、学生听课、课下完成作业”的刻板方式,课堂气氛低沉,教学过程枯燥,学生缺少数学学习的热情。在高等数学教育课堂上融入数学建模思想教育,首先要求教师采取全新的作业练习方式,让作业内容突破课程内容的限制,运用群体思维来进行作业练习,针对学生的实际情况,创设合理的数学建模训练内容,不为学生提供现成的答案,也不限定方法,为学生提供广阔的创造发展空间。学生针对教师提出的具体训练要求,可以个人完成、也可以采取小组单位合作的方式,完成书面报告或论文,加强师生之间的互动交流,在讨论中互相学习、启发彼此,完成高等数学技能的共同提高[3]。
2.4加强数学实验课程的实践考察力度
高等数学教师要在数学课堂上加强对学生实践的引导,让学生在课堂上进行数学建模实验,要求学生完成数据获取,通过不同的参数得到所需要的数据之后,由教师进行审核检验,完成实验报告,加强数学实验课程的实践考察力度。教师在实验过程中,要充分发挥自身技能,深入为学生讲解实验中涉及到的数学原理,并且剖析原理和实践相结合的深入内涵,让学生真正地理解数学知识原理,利用自身所掌握的数学知识,加强数学建模实验的实践应用。另外,数学教师要根据实际教学情况,在学期中和学期末完成对学生数学建模的考试考核,加强学生对数学建模思想教育的重视,深刻知道数学建模的重要性,在数学教学课程中,加强实践应用,完善数学建模思维,提高高等数学的学习能力,强化自身数学学科的综合素养。
篇6
Abstract:This paper discusses the mathematical modeling in teaching reform in Colleges and universities the necessity, summed up the practical experience.
关键词:数学建模 教学改革
Key words: mathematical modeling teaching reform
作者简介:林冬梅(1967.11-)山东临朐人,淄博职业学院 讲师 硕士,数学应用专业。
数学建模教学改革是适应、推动社会发展的必须,是数学教学改革不可阻挡的潮流。
(一)、过去我们的高等教育传统数学教学模式,割裂了理论与实践的联系,只注重理论和计算,而忽略了实际问题的深层次研究和应用。目标不明确、内容枯燥,使学生即认识不到数学无所不能的作用,也提不起学习的兴趣。认识不到位、缺乏兴趣必然导致学生的数学基础松垮不牢固,继而踏入社会后就无法用精确的数学思维和严谨的计算解决实际问题,更无法促进科技成果在实践中的应用。数学建模,从定义上,我们可以知道,是利用数学方法解决实际问题的一种实践,它最大的特点就是解决实际问题,是一种实践。数学建模要求学生能够自如的融会不同的数学知识、计算机知识、运筹学、汉语言等,使学生在解决实际问题的同时,培养其分析综合能力、抽象概括能力、想象洞察能力、运用数学工具能力,为学生在日后的工作中点燃技术应用的热情,插上促科技应用的翅膀。其次,数学建模通常采用多人组队、明确时间、完成规定任务的形式。完成一项数学建模任务依靠的是成员之间的讨论、分工、合作。如果把数学建模看成是企业中的一项工程任务,团队中任何一个人工作滞后都可能影响任务的进程,最终可能会导致企业被淘汰出局。
(二)、从实践层面:随着人类社会的发展,数学的应用以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,数学技术已经成为当代高新技术的重要组成部分。很多教育先进的国家已经深刻认识到通过有效方式将数学与实践密切结合起来的重要性。经过探索,1985年美国首度推出了一种叫做MCM的一年一度大大学生数学模型竞赛,旨在通过完成问题的阐述分析,模型的假设和建立,计算结果及讨论的方式,提高学生的创新联想能力。随即我国自1989年开始参加这一竞赛。数年的教学、参赛实践证明数学建模大幅度提高了学生用数学方法解决实际问题的意识和能力,对提高学生科研能力及综合素质的培养起到了巨大的作用。现在,全国大学生数学建模竞赛已发展成为我国最大的学生课外科技创新活动。基于这个现实,我国的许多高校加入了进行数学建模教学的行列,而且取得了不俗的成绩。比如浙大开出了面向不同对象的各种数学建模课程 6门,形成了一定的规模,每年听课学生都达到上千人。
当然,任何一项革新或制度的实施都需要具体的措施来有力保障。
首先,制定一个数学建模教学改革的规划。“凡事预则立,不预则废”,只有在充分调研的基础上,对数学建模拟定一个长远教学实施规划,才能确保数学建模教学课程的有序开设及逐步完善。该项规划应该包含以下内容:
(一)、教学队伍力量的评估和确立。
因数学建模较传统教学而言,还是一种新兴事物,为确保其在教学实践中能够取得预期效果,起到以点带面的作用,并为日后数学建模积累丰富的经验,必须把认真负责、有强烈敬业精神,综合素质高、教学效果好的教师选。然后对这支教学队伍的教学经历、知识结构、年龄结构、业务专长、师资配置情况进行综合评估,确保教学队伍年龄、知识、专业的合理性。
(二)、明确数学建模课程内容体系结构,教学内容组织方式与目的。
数学建模课程教学内容可分为:(1)、建模概论,介绍什么是数学模型,建模的一般步骤与一些注意点。(2)、初等模型,介绍如何用微积分方法来研究生活中经常遇到的一些问题。(3)、微分方程模型,在介绍人口模型、服药治疗等问题的同时,介绍集中参数法与分布参数法、工程师原则、房室系统方法、参数识别等常用的建模技巧。(4)、状态转移模型,介绍线性代数中向量、矩阵的灵活应用,线性空间、线性相关与独立概念的应用、特征值在矩阵迭代中的作用等。(5)、优化模型。(6)、计算复杂性简介,通过实例让学生认识到计算量大小的重要性。(7)、离散模型,介绍由于计算机科学的最新发展而产生的一些新问题和新模型。(8)、决策与对策,介绍一些常见的决策与对策问题及最新发展。(9)、逻辑模型,介绍逻辑推理在建模中的应用,逻辑推理方法在信息论建立上的应用等。
(三)、教学条件的创造,包含教材使用与建设;为促进学生主动学习提供扩充性资料;创造实践性教学环境和网络教学环境。
1、精心比较挑选较大影响的数学建模教材,并在教改实践中不断积累丰富的教学经验和教案,在此基础上,在规划时间内出版适合本校特点的实验性教材,并广泛推广使用。
2、建立了全校性数据中心,高性能大容量的网络课件服务器和磁盘存贮系统,建立数学建模板块,对优秀学生实践论文、获奖论文进行汇编、提供最新建模参考文献集、国内外大学生数学建模竞赛题汇编等。
3、与当地企业密切联系,建立适合本校教学特点的数学建模实践基地,使学生有良好的实践性教学环境。
篇7
关键词: 独立学院 数学建模竞赛 实验室
1.开展数学建模竞赛活动的重要性和必要性
21世纪是人才的天下,高等院校必须以培养素质高、应用能力和实践能力强、富有创新精神和时代特色的复合型人才为己任。[1]独立学院的目标是培育有实践技能和动手能力,能较快地适应岗位的要求,解决实际问题的应用型人才。那么,如何达到培养应用型人才的目标呢?开展数学建模活动是一个重要的途径,因为数学建模能够将不同学科知识串联起来;数学建模课程的学习,能够实实在在地体验数学与日常生活、生产和科学研究的关系是多么的密切,激发学习数学的兴趣;数学建模课程学习能培养独立思维想象能力、创新意识、拼搏精神和应变能力;数学建模课程学习过程中充满挑战性和创造性,启发刻苦钻研和探索创新的精神,能培养综合运用各种知识和工具解决实际问题的能力。这样“尖子”人才在学习过程中才能够脱颖而出。
2.数学建模竞赛人员选拔和培训的内容与方法
我院从2008年开始参加全国大学生数学建模竞赛,在这项赛事中取得了丰硕的成果,获得省三等奖2项。
2.1人员选拔。考虑到学院学生的数学基础较为薄弱,我院在非数学专业开设数学建模选修课,建模选修课分为理论课和实验课。理论课以拓宽学生对数学知识的综合了解,实验课以提高学生分析问题、解决问题、设计算法、实现算法的能力为目标。开设数学建模课程,为我院竞赛储备充足人员。我院选拔人员采取自愿报名的方式,人员主要由数学建模协会会员及院建模大赛中优秀学生构成。
数学建模协会是数学系团总支领导下的独立的学生学术研究机构,主要负责数学建模工作(如协助院数学建模教练组为全国竞赛选拔队员)。协会会员大多数对数学建模有一定兴趣,他们有一定的数学基础和计算机编程能力。
选拔优秀学生参加竞赛采取自愿方式。自愿报名参加的成员能积极、主动地去学习,能积极地思考问题,能将他们的能量最大限度地发挥出来。
在培训过程中,教师通过设计实际问题,要求学生用数学建模思想分析问题,找出解决问题的方法,让学生以文字形式写出解题的步骤和方法。在此过程中,教师可以了解学生分析问题的思路是否清晰有效,还可看出学生文字表达能力的功底。数学建模竞赛要求参赛人员有较深的数学功底,同时还要具有对实际问题分析、提取信息的能力,具备一定的计算机编程能力和写作能力,参赛人员最好来自不同的专业,形成知识互补。竞赛人员组成一个团队共同完成一项任务,团队成员之间的磨合需要时间,把参加竞赛人员集中在暑期集中培训较适宜。
我院在暑期(8月中下旬)对前期选拔人员进行集中再培训,为学生讲解数学基本知识、数学软件编程、数学基本模型、历年真题等。培训结束后对学生进行实战演练,在此过程中选拔那些应变能力、分析问题和应用数学知识、计算机技术等实践能力更为突出的人员,组织其参加9月份的全国大学生数学建模竞赛。
2.2培训内容和方法。数学建模课程有理论有实验:(1)理论课主要介绍数学建模基本思想、常用建模方法,以及较为经典的建模案例。针对我院学生数学基础相对薄弱等特点,在理论教学中,引导学生研究趣味性较强的简单案例,激发学习数学兴趣,努力促使学生更好的接受理论知识;在教学方法上,采用启发式教学,让学生参与到建模的全过程(分析问题、提出合理假设、建立模型、进行算法设计、实际操作实现、结果检验、撰写论文),从中领悟建模的精髓,激发学习兴趣。(2)实验课主要是介绍数学软件(Matlab与Mathematic)及其软件包,要求学生直接利用软件编程求解一些简单的数学模型。实验课教学通过大量有趣的实例激发学生的兴趣,以培养学生分析、发现、解决问题的能力为目的,在解决问题的学习过程中引导学生不断思考,使用新方法和新技术,在实践活动中尽力培养学生的创新意识和创造能力。
3.建模实验室建设
3.1实验室基础建设。数学建模实验室主要服务于数学系教学工作,承担我院本科生的上机、课程设计、毕业设计和教师制作多媒体软件以及“全国大学生数学建模竞赛”的培训和竞赛工作。实验室利用率达到95%,设备运行情况良好,设备完好率为98%以上。现有3台交换机,投影仪1台,54想计算机,主要配置为Intel奔腾双核E5300CPU,2G内存,160G硬盘,17寸彩显。以Matlab、Mathematic、lingo、Lindo、Spss等专业数学软件为平台,开展数学建模等课程的教学实验;使用数学软件,让学生摆脱了繁重的数值计算,使学生有足够的时间去学习更多、更广泛的内容,去做更多的创造性工作。
数学建模实验室除承担教学实验任务、提高教师教学水平,还能为我院培养优秀数学建模队伍。实验室通过高效的网络传输,给教师和学生提供了大量与数学建模相关的服务,做到资源共享。良好的实验环境为我院培养基础理论扎实、实践能力强、综合素质高的数学人才提供了保障。
3.2实验技术人员综合素质的提高。实验技术人员是高等学校教学、科研队伍的重要组成部分,实验队伍是实验教学的主要力量,其素质直接关系到实验教学的质量。独立学院创新、应用型人才的培养需要有高水平、高质量的实验技术队伍作保障;实验室设备的作用和功能要得到充分开发也需要一支高水平、高质量的技术人员队伍;因此独立学院应重视对他们的培养。
我在此对建立一支素质高、稳定性强的实验技术人员队伍提出几点建议。
3.2.1强化服务意识[2]。实验管理人员要发挥主观能动性,实事求是,为提高学生的实践能力服务,提出科学的实验教学规划。
3.2.2加强培训学习。独立学院实验技术人员需加强自我培训意识,业务知识和实践能力要随着科技的发展而不断提高。提高自身的素质不仅能更好地胜任这项工作,还可以潜移默化地陶冶学生的情操、激励创新思维的产生。
3.2.3建立激励机制。设置实验系列的高级岗位,不仅可以给实验技术人员一定物质激励,而且能够使其享受实现自我价值的自豪感,得到社会承认和尊重的荣誉感,从而极大地提高其自我心理定位;另外还需增强实验技术人员提高自身综合素质的意识,促使自己向更高目标前进[3]。
参考文献:
[1]焦树锋.在高职院校中开展数学建模教学的重要性和必要性[J].滨州职业学院学报,2006,3(3):20-21.
篇8
1.1提高学生的语言和文字表达能力
当今的学生特别是高校理工科的学生,语言和文字表达能力相对较差,通过数学建模竞赛等活动,能锻炼他们语言能力的精确性、简洁性和逻辑性.学生通过参与数学建模的过程感受到学习数学的重要性,认识到自己能力的不足,更进一步意识到只有丰富的知识积累,才能在实践中有所创新.因而,让他们更加积极地参与到数学建模中来,可提高学生的语言和文字表达能力,学习数学的兴趣更浓.
1.2提高学生发现问题和应用计算机的能力
数学建模是运用数学知识和现实世界的实际问题建立数学模型的过程,是一种主动的活动,培养的是学生发现问题和解决实际问题的能力.在建模过程中,学生所面临的最重要的问题是在杂乱无章的现象中如何抽取出数学问题,进而确定所抽取问题的答案.所以要求学生要有发现问题本质的能力、抓住问题要点的洞察能力.针对发现的问题进行数学建模,一般都需要通过计算机来编程进行分析,使用相关的数学软件主要有Mat-lab、Mathematica、Maple和Mathcad等,用这些软件来绘制函数的图形,对数据进行计算,支持符号运算、精确计算和任意精度的近似计算.这样在学生解决数学问题的同时,也提高了应用计算机的能力.
1.3培养学生自主团结协作的团队精神
数学建模活动要让学生熟悉问题、建立模型、数据分析、推理和验证结果,工作量非常大,而且还要具备构造、软件应用以及计算机的编程等很多方面的知识,模型单靠某一个学生很难完成.数学建模为学生提供了相互配合才能完成任务的机会.数学建模的小组一般是至少3人一队参与活动.在组队之后,他们就要相互磨合、相互学习,这样,在整个过程中,他们必须相互尊重和信任,共同讨论,学会倾听别人意见,取长补短.在讨论过程中,会时时涌现出新的想法,所以说,数学建模活动有利于发挥每个人的聪明才智,有利于培养他们的合作精神.
1.4培养学生的创新能力
数学建模不同于传统的数学课程,它的问题一般是选取社会热点和实际问题,大多都没有标准答案.这就给大学生供了非常广阔的空间,让他们发挥自己的想象力、创造力,培养大学生的创新意识、创新能力,让学生在从未遇到的问题面前尽可能地开动脑筋、拓展思路,对于同一个问题,学生可以从不同角度去思考,构建不同的数学模型.因此,重视、搞好数学建模可以有效地培养学生的创新能力.
2学生数学建模能力的培养措施
2.1在教学中注重渗透数学建模思想
学生数学建模能力的培养是个长期过程,教师应在平时的高等数学课程教学过程中注重渗透数学建模思想.由于现实世界的很多社会和生活中的实际问题中都有数学建模的影子,所以应把实际问题和教学内容联系在一起,用适当的方式让学生感受到“数学无所不在,数学思想无所不能”.通过数学建模让学生真正感受到数学和实际的联系,知道学习数学建模可以解决现实生活中的很多实际问题.根据各专业的特点,让学生选择与所学专业相关的数学建模模型,采用这种方式进行学习能培养学生的数学建模能力,激发学生学习数学的兴趣,调动学生解决问题的激情.
2.2开设数学建模公选课
开设完高等数学、线性代数、概率论与数理统计等数学课程之后,可以开设数学建模公选课,学生通过数学建模选修课中的具体实例,掌握数学建模的基本思想、方法和类型,学会进行科学研究的一般过程和步骤,熟练地运用计算机,从而进一步地提高学生应用数学知识解决实际问题的能力.
2.3利用课外实践活动提升数学建模影响力
篇9
算法改进数学建模改进意见一、数学建模发展现状分析
1.数学建模概述
数学模型是反应客观世界的一个假设对象,通过系统分析客观事物的发生规律、变化规律,测算出客观事物的变化范围和发展方向,找出客观事物发生演变的内在规律。因为任何事物都可以通过数学建模进行研究,所以数学建模在人们生产和生活的各个领域应用非常广泛。通常情况下,在对事物进行数学建模之前,应提出一个建模假设,这个假设构想是建立数学模型的重要依据,研究人员应深入研究建模对象的分析、测算、控制、选择的各参数变量,将参数变量引入数学模型中,可以通过测算精准的计算出客观事物发展的规律性参数,翻译这些参数,可以让研究者知道客观事物发生变化的具体规律。
2.在教学中应用数学建模的重要性
随着计算机网络技术的发展和改革,数学建模技术的发展速度飞快,在教学中引入数学建模思想,不仅可以提升学生的解题思维能力,还能有效地增加学生的辩证思维能力。据相关数据统计,2012年我国各高校开展的数学建模研讨会多达135场,学生通过数学建模思想的学习,将数学建模思想和所学的专业知识有机的结合在一起,深化数学建模理论在实际应用中的能力。由此可见,数学建模理论不仅对教学具有重要发展意义,还能够提升我国各领域产业的发展效果。因为数学建模理论涉及到辩证思维和数学计算,所以要想让数学建模理论在实际应用中更好的实施,必须完善其数学建模理论,制定合理的数学建模步骤,改善数学建模算法,这种才能充分体现出数学建模理论的综合应用性能。
二、数学建模方法
通过对数学建模理论进行系统分析可知,常用的数学建模种类有很多,其应用性能也存在很大的差异性,具体分类情况如下。
1.初等教学法
初等教学法是最基础的数学建模方法,这种建模方法构建出的数学模型的等级结构很简单,一般为静态、线性、确定性的数学模型结构,这种数学模型的测算方法相对简单,其测量值的范围也很小,一般应用在学生成绩比较、材料质量对比等单一比较的模型中。
2.数据分析法
对数据信息庞大的数据进行测算时,经常会应用到数据分析法,这种数学模型建立在统计学的基础上,通过对数据进行测算分析和对比,可以精准地计算出数据的变化规律和变化特征,常用的测算方法有时序和回归分析法。
3.仿真模拟法
在数学建模中引用计算机网络技术,不仅可以提高数学模型的准确度和合理性,还能通过计算机模拟技术更直观、更客观地体现出数学模型的实验方法。统计估计法和等效抽样法是仿真模拟数学模型最常应用的测算方法,通过连续和离散系统的虚拟模型,制定出合理的试验步骤,并测算出试验结果。
4.层次分析法
层次分析法可以对整体事物进行层级分离,并逐一层级的对数学模型结构进行测算,这种分析方法可以体现数学模型的公平性、理论性和分级性,所以被广泛地应用在经济计划和企业管理、能源分配领域。
三、数学建模算法的改进意见
1.数学建模算法
目前常用的数学建模算法主要有6类,其具体算法如下:①模拟算法,通过计算机仿真模拟技术,将数据引入模型构架,并通过虚拟模型的测算结果来验证数学模型的准确性和合理性;②数据处理算法,数据是数学建模算法的重要测算依据,通过数据拟合、参数变量测算、参数插值计算等,可以增强数据的规律性和规范性,Matlab工具是进行数据处理的主要应用软件;③规划算法,规划不仅可以优化数学模型结构,还能增加数学建模结构的规范性,常用的规划方法有线性、整数、多元、二次规划,通过数学规划测算方法可以精准的描述出数学模型的结构变化特征;⑤图论算法,图论可以直观的反映出数学模型的结构构架,包括短路算法、网络工程算法、二分图算法;⑥分治算法,分治算法应用在层级分析数学模型中,通过数据分析对模型的动态变化进行系统的规划,对模型的原始状态进行还原处理,对模型各层级数据进行分治处理。
2.数学建模算法的改进意见
通过上文对数学模型算法进行系统分析可知,数学建模算法的计算准确度虽然很高,但其算法对工作人员的专业计算要求很高,同时由于不同类型的模型算法不同,在对数学模型进行测算时经常会出现“混合测算”现象,这种测算方法在一定程度上会大大降低数学模型测算结果的准确度,本文针对数学建模算法出现的问题,提出以下几点合理性改进意见:①建立“共通性”的测算方法,使不同类型的数学模型的测算方法大同小异;②深化数学建模的系统化、规范化、统一化,在数学建模之初,严格按照建模规范设计数学模型,这样不仅可以提高数学模型的规范性,还能提高数学模型的测算效率;③大力推进计算机网络工程技术在数学建模中的应用,因为计算机网络应用程度具有很好的测算性能,计算机软件工程人员可以针对固定数学模型,建立测算系统,通过计算机应用软件,就可以精准的计算出数学模型的测算值。
四、结论
通过上文对数学模型的算法改进和分类进行深入研究分析可知,数学建模理论虽然可以在一定程度上优化客观事物的模型系统,但是其测算理论依据和测算方法仍存在很多问题没有解决,要想实现数学模型的综合应用性能,提高测算效率,必须建立完善的数学建模算法理论,合理应用相关测算方法。
参考文献:
\[1\]韦程东,钟兴智,陈志强.改进数学建模教学方法促进大学生创新能力形成\[J\].教育与职业,2010,14(12):101-113.
\[2\]袁媛.独立学院数学建模类课程教学的探索与研究\[J\].中国现代药物应用,2013,15(04):101-142.
\[3\]王春.专家呼吁:将数学建模思想融入数学类主干课程\[R\].科技日报,2011,15(09):108-113.
篇10
关键词:高等数学;数学建模;改革与探索
1引言
高等数学在高等教育培养中占有相当重要的地位,是大学数学教育的核心课程。在自然现象与社会现象中的应用十分广泛,是学生学习后继课程的基本工具之一,对培养学生抽象思维能力、空间想象能力和数学素养有着重要的意义。目前的高等数学教学中,教师普遍仍以传授学生单纯的数学知识为主,使学生得到一系列从定义、公理到定理的完美体系。这种对数学知识的严密性、系统性、抽象性的过分追求,导致出现了诸如内容多、负担重、枯燥乏味、学生缺乏良好学习愿望的一些现象,从而进一步影响到了教学效果。在高等数学教学中,如何与本专业相结合体现高等数学的应用价值;如何针对专业进行数学教育,使学生形成正确的学习态度,以此为切入点来加强学生的数学知识应用能力和创新精神的培养,就显得尤为重要了。数学建模是指对现实世界的一些特定问题,进行抽象、简化和假设,借助于信息技术通过学生亲自设计和动手,体验解决问题的过程。简而言之,数学建模就是将课堂或书本上的抽象理论知识应用于实践当中,解决现实问题的一门学科。解决实际问题中最关键的一步,就是应用数学知识建立数学模型来解决实际问题。只要是要用数学解决的实际问题,就必须运用数学建模的思想和方法来解决。可见,通过适当的方式,尝试将数学建模的思想和方法融入到高等数学教学课堂中,让学生参与、感受通过所学数学知识解决实际问题的喜悦,极大地促进了高等数学教学改革的发展。
2高等数学教学改革的重要性和基于数学建模思想的高等数学教学的必要性
2.1高等数学课程改革的重要性
高等数学作为一门基础学科,其教学模式和教学方法虽然也进行了一系列的改革,但还有一些问题需要进一步探讨。主要表现为以下几方面:
2.1.1教师没有使高等数学与所学专业较好地相结合,教学内容缺乏针对性与应用性
传统教学中,高等数学课程教师普遍单一地讲授高等数学的理论和计算,并没有把后续支撑专业课程学习的内容讲解透彻,容易使学生觉得学习数学是枯燥的,学习的自我效能感也不高。造成如此现象的出现,原因是多方面的。就教师而言,也与教师的知识结构不良有关,俗话说“隔行如隔山”,一般教师对学生后继课程中需要用到的高等数学相关知识不是很了解。所以,教师应使学生直观地认识到高等数学的应用价值,激发学生学习数学的热情;使学生逐步培养运用数学知识解决实际问题的意识,发展学生应用数学能力。通过高等数学教学内容与学生所学专业课程的相互结合,在知识点上为专业课程的学习提供了一定的支撑。
2.1.2教师在教学中不能很好地体现数学的应用性
数学的本质和特征决定了数学具有两方面的价值,其中之一即为它的应用价值,数学必须为社会实践服务。高等数学是其他专业教学的主要支撑学科,而这个支撑作用主要体现在应用当中。由于高等数学课程内容多、课时也多,并且教师多采用传统方法教学,从而忽视了数学思想和背景的教育。事实表明,学习过高等数学的学生,在工作和生活中一般很少应用高等数学的知识去理解、处理实际问题。因此,高等数学教学的导向主要遵循基础为先、应用为目的,让学生把所学到的高等数学知识与本专业发展紧密结合起来。
2.1.3教师不能很好地引导学生理解数学与数学建模的重要关系
自从有了数学,人们需要用数学的知识和方法去解决实际问题,数学建模就没有停止过。但是,在实际数学教学中,数学教师受一些教学制度的约束,往往过于重视理论知识的传授和背诵来应付传统的考试制度。在课时约束的情况下,若侧重于讲解和分析数学思想方法和实际应用,则对典型例题和技巧方法的总结和讲解就会减少。进而,教师就不能很好地引导学生理解数学与数学建模的重要关系了。
2.2基于数学建模思想的高等数学教学是改革高等数学教学方法的有力措施之一
随着数学建模的流行,传统的数学教学模式受到了一定的冲击。许多专家指出,数学建模是将高等数学知识应用于现实中、解决实际问题的有效途径。将数学建模思想渗透到高等数学课程教学中,会使学生感到数学无处不在,数学思想与方法无所不能。因而,基于数学建模思想的高等数学教学改革,不仅符合当前素质教育对高等数学教学提出的要求,同时也确实是一个重要方法。
2.2.1当前高等数学教学中的弊端
在高等数学的教学过程中,缺乏一些实际问题的引入,学生只能为学数学而学数学,完全是被动学习数学。教学内容的安排上缺少新意,缺乏数学实验和相关计算机演示,学生较难理解一些抽象的数学概念。另外,高等数学课堂教学中,大多数是粉笔加黑板的传统教学手段,老师讲解,学生听讲,理论性知识多,应用性知识少,使得学生产生厌烦情绪,教学效果欠佳。
2.2.2数学建模是培养学生专业素质和提高学习兴趣的有效途径
数学建模是联系数学知识与实际问题的桥梁,是激发学生学习数学的有力措施。与传统的数学课程不同,它的问题一般是合适的社会热点和兴趣问题,大多都没有标准答案。在建模过程上往往要求学生充分发挥想象力和创造力,尽可能地开动脑筋、拓展思路,构造不同的数学模型。学生通过数学建模过程的参与,激发了学习数学的兴趣,提高了学生应用数学知识解决实际问题的能力。
3基于数学建模思想的高等数学教学的改革与探索
数学建模的价值在于让学生更好地理解数学知识,把握数学在解决实际问题中的应用能力。所以,高等数学教学改革的落脚点就是让学生领悟并掌握数学的应用,随时将数学建模思想方法渗透于高等数学教学中。
3.1在高等数学课程教学内容和方式中逐步融入数学建模思想
在高等数学的教学中,教学内容要紧扣学生的专业特点,建立联系实际、联系专业、融合多媒体信息技术的高等数学教学内容体系。在教学方式上,可以以数学知识为主线,插入具体问题和实践背景资料,也可以以应用和问题为中心,逐步体现数学知识和概念。数学教师应将专业知识背景融入数学教学中,联合高等数学原理进行讲解,有助于培养学生运用数学知识分析处理实际专业问题的能力。从而,使高等数学教学变得更有活力、教学效果更有保证。
3.2在高等数学教学目标上应侧重于学生对数学的应用能力、创新意识和能力的培养
数学的发展过程可以概括为“问题—抽象—模型建立—应用”的循环出现,使其产生的成果用于实际。因此,高等数学在教学目标上应当强调学生解决问题的方法,培养学生把知识用于实际的能力。通过用数学知识解决实际问题,让学生在利用数学知识解决问题的过程中发现学习数学的自我潜力,使学生真切感受到学以致用和数学课程对本专业的支撑作用,大大有助于培养学生的应用数学能力和创新能力。
3.3在高等数学教学方法和手段上利用数学建模特有优势进行改革
在教学方法上,部分内容可选用与学生的专业学习紧密结合的数学模型进行案例教学和数学实验教学,使学生的高等数学与专业课学习紧密联系,相互促进。这样不但能够提高课堂教学效率,还可丰富课堂教学内容。在教学手段上,尽量应用多媒体教学动态演示三维空间图像以及随机动态模拟等内容,增强了教学的直观性,使枯燥的数学概念变得生动灵活起来。这种更有利于突出数学建模思想的高等数学教学方法,实现了教学效率的最优化,同时也使学生体验到了数学的应用价值。
3.4引导学生参加各级各类数学建模竞赛活动
数学建模竞赛活动影响着高校数学课程的设置和教学改革,为学生专业素质的提高、创新能力的培养搭建了一个训练检测平台。为了培养创新意识,提高创造性解决问题的能力,参加各级各类数学建模竞赛是一种行之有效的方式。通过在课后习题中布置一些实用性的开放性问题,或者学生自己结合专业等选择与所学数学知识相关的题目,可以分小组以小论文的形式递交作业。这样不仅培养了学生将数学知识应用于实际的能力,也能从中挖掘学生的潜力,为选拔学生参加数学建模竞赛提供了参考。
4结语
基于数学建模的思想的高等数学教学,既注重培养学生运用数学知识解决实际问题的能力,也是数学教育改革的发展方向。数学学习的目的在于数学的应用,通过数学建模的力量极大地推动高等数学教学的改革,让每一个学生都积极投入数学的学习活动,使不同的学生获得对己有用的数学知识,实现为社会输送优秀人才的终极目标。
参考文献
[1]同济大学数学系.高等数学[M].北京:高等教育出版社,2014.
[2]姜启源.数学模型[M].北京:高等教育出版社,2003.
- 上一篇:复合树脂修复的技术要点
- 下一篇:企业核心竞争力的内涵