对数学建模的理解和认识范文
时间:2023-12-20 17:32:46
导语:如何才能写好一篇对数学建模的理解和认识,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:数学 建模 兴趣
数学是初中阶段的重要课程,在我们的生产实践中也很有广泛的应用。多数的学生的数学成绩不是很理想,一方面是由于数学本身有一定的难度,有些知识抽象不容易理解;另一方面学生们没有找到正确的学习方法,作为教师我们要引导学生找到正确的学习方式,才能在学习中事半功倍,取得较好的学习效果。在数学的学习中,应用数学建模是很好的一种学习方法,便于学生理解数学知识,养成良好的数学思维。
一、数学建模在初中数学教学中的重要性
(一)数学建模可以解决抽象的数学问题
数学是与实际联系比较紧密的一门学科,随着科学技术的不断发展,数学在专业技术方面有更广泛的应用,这也就对我们的数学教学提出了更高的要求。数学建模是一种很好的将数学理论知识与生活实际联系的方法,在教学的过程中,我们可以采用数学建模方式,一方面方面可以将抽象的数学知识具体化,便于学生理解;另一方面利用数学建模可以很轻松的将数学理论与实际生活联系起来,增强数学知识的实用性,让学生们了解数学在实际生活中的重要用途,便于以后的工作学习。
(二)增强数学学习的趣味性
在初中数学的教学中,学生们普遍认为数学有一定的难度,不容易掌握,对数学的学习兴趣不是很高。数学知识涉及的面也比较广,有函数、几何、概率等等,有些学生某方面的知识掌握的比较好,某一方面掌握的不是很好。在教学中应用数学建模,使抽象的知识更便于学生理解和掌握,对于数学也有了全新的认识,增强了学习数学的信心,从而也提高了学习的兴趣。几何知识一直是数学学习中的难点,需要学生发挥想象,将平面的图形立体化,给很多的学生造成困扰。运用数学建模就可以轻松的解决这一问题,将图形利用多媒体表现出来,既让学生感觉新鲜也提高学习的热情,对数学的学习也产生浓厚的兴趣。
(三)培养学生的创新意识
在以往的学习过程中,学生数学知识的掌握都是通过教师的讲授,教师将知识传授给学生,学生被动的接受,学生没有主动学习的积极性。在课堂上引入数学建模的教学方式,可以让学生积极的参与到课堂活动中来,增加学生的参与度。这样既增加了学生学习的兴趣,也促使学生对于数学知识有更深层次的理解,对于数学知识形成自己独特的见解,培养自己的创新意识。在这样的学习氛围中,可以促进学生掌握更多的数学知识,熟练运用数学理论,从而提高数学成绩。
二、数学建模在农村初中数学教学中存在的问题
数学建模对于初中数学教学有很好的促进作用,但是现阶段的教学中,大多数的教师还不能熟练的运用数学建模的教学方式,数学建模教学工作还存在着一些问题。
(一)教师对于数学建模的教学方式认识不够
现阶段的教学活动可以表明,多数教师对于数学建模的教学方式认识不够,不能熟练的掌握,因此不能很好的应用到课堂中,发挥数学建模的应有作用。有些教师甚至认为运用数学建模的方式会花费大量的时间和精力,不便于在教学到教学活动中。这充分说明教师对于数学建模的认识是片面的,没有真正的认识到数学建模的实际效果,归根结底还是由于教师对于数学建模教学方式的运用不够,教师没有认真的研究这种教学方式,没有看到其优越性。数学建模的教学方式是对传统数学教师方式的一种冲击,能否熟练的运用这种方式对于教师是一种很大的考验。因此教师对于数学建模的认识程度及运用情况关系着数学建模的教学效果。
(二)学生对于数学建模的教学方式不能很好的接受
学生的掌握情况是课堂效果的主要体现者,在教学活动中,教师对于数学建模方式的理解不够,在课堂上不能很好的表现出来,将会影响学生的理解。许多的教师在进行模型的建模论证时,论点不够充分,教师讲的含含糊糊,学生也听得迷迷糊糊,这样的课堂效果肯定不是理想的,也没有发挥数学建模教学方式的应用效果,反而起到相反的效果。因此在运用数学建模的教学方式时,教师首先要对其有正确的理解,让数学建模的教学理论熟练掌握,在构建数学模型时,要有据可依。在n前要进行精心的准备,合理的设计教学内容,这样才能将数学建模淋漓尽致的表现在课堂上,让学生们清楚的理解并掌握。
三、运用好农村初中数学建模教学的对策分析
在现阶段的农村初中数学教学中,数学建模是进行数学教学的很好的途径和方法。就目前的教学状况看,数学建模的运用情况还不是很理想,如何利用好数学建模,发挥其应有的效果是我们应该思考的问题。
首先,在教学活动中,教师要加强对数学建模方式的应用,明白其对数学教学的促进作用,可以很好的将抽象的数学知识具体化,将深奥的理论简单化,便于学生理解和掌握。针对数学教学,不同的数学问题应该采用不同的方法,数学建模对于数学图形等问题解决有很好的帮助。在实际工作中,一些教师对于数学建模的运用不够,这在一定程度上也表明教师的水平不够,因此教师要注意教师素质的培养,多给教师提供外出培训的机会,作为农村的教师更应该多增加培训的机会,这样才能帮助教师认识数学建模的意义,提升运用能力。
其次,要向学生们解释清楚数学建模对于数学学习的好处,让学生从心里接受这种教学方式。在教学活动中,在课堂上多运用数学建模的方式,并且与传统的教学方式进行对比,形成反差,让同学们认识到这种方式的好处,激起学生学习的热情。在课前,教师要合理的设计课堂情节,让学生们积极的参与进来,掌握课堂知识,并对知识深化摸索,让学生养成主动思考的好习惯。
总之,数学建模是一种很全新的教学模式,它对于数学的学习有很好的促进作用,但是现阶段多数教师对于其重视程度不够,没有很好的加以运用,在以后的教学中,我们要加大对数学建模的实际运用,发挥其应有的效果。
参考文献:
[1]马惠娟.数形结合在初中数学教学中的运用[J].赤子(下旬),2016,(06).
[2]林凌.数形结合在初中数学教学中的运用[J].教育现代化,2016,(39).
篇2
【关键词】:高考应用题数学建模
在江苏数学高考题中,应用题每年都会有,大多处于第17题的位置(也就是解答题的第三题的位置,但也有时也会适当调整其位置,例如2009年高考题中应用题为第19题,南京市2012届高三二模中调到第18题。大多数情况下,从多高考卷的构成看,本题具有承上启下的作用,在本题之前的题目属于简单题,而之后的题目属于较难题,而本题正处于中档题,难度适中。
一、 高考中应用题的意义和作用
高考题为什么要设定应用题,主要是因为体现教育部高中数学课程标准中对数学建模与数学应用能力的考查,数学课程标准中明确指出,要发展学生的数学应用意识。
数学应用的巨大发展,是数学发展的显著特征之一。当今知识经济时代,数学正在从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景。因此,高中数学在数学应用和联系实际方面需要大力加强。开展数学应用的教学活动符合社会需要,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。
而数学建模可以具体规范地展示数学的应用方法,体现数学在现实生产生活中的意义。
二、 解数学应用题目前存在的问题
在江苏目前的高考方案中,语文、数学和英语无疑处于非常重要的地位,一般而言,考生的语文和英语成绩会相对稳定一点,而数学成绩变化往往较大,当数学成绩的波动时,发挥较为平稳的学生往往能取得很好的成绩,而应用题在数学高考题的作用更是不可替代,如果失去应用题的分数,就会影响数学的成绩,从而影响整个高考的成绩。
而在高考中,主要存在的问题是学生解题能力不足,大题得分率不高,得分不多,解题不规范,缺少解题意识。究其原因,主要由以下几个方面:
1、考生对数学应用题有一种恐惧感;
2、考生没有掌握数学应用题求解的一般分析方法;
3、是考生的应试策略与表述方面还存在一些问题。
三、如何解决数学应用题教学的困扰
对于数学应用题的教学,很多教师在觉得比较麻烦,而对学生数学意识及数学思维方式的培养又比较困难。那么,在教学中,我们对于应用题与数学建模相关的内容应如何处理呢?
1、要重视数学模型及应用题的相关章节的教学
在数学教学中,有很多环节是和应用题相联系的,例如函数模型及应用,三角函数的应用,数列中的分期付款问题,不等式中基本不等式在实际生活中的运用,算法案例,统计与概率,导数的应用,等等,这些问题展示了数学的应用,在教学这些章节的时候,我们要注意认真仔细地教学,要引起重视,而在实际教学中往往不够重视,有时一带而过,有的教师甚至讲都不讲,但从最后高考的结果看,这其中就有很大的缺陷了,因此,我们不能等到高三的时候才对数学应用题加以重视,而是要在高一、高二时要对学生的数学应用意识打好基础,到高三时在进行相应的强化训练,这样就可以对数学应用题的整体教学有一个系统的安排,系统的做好数学应用题教学意识,强化背景知识的引入,使学生的成绩得到充分的提高。
2、重视用数学建模的方法来处理数学应用题
数学建模是一个比较规范科学的数学处理方式,解决数学应用题教学困扰突破口的重要方法就是要学会数学建模的数学思维方式。
一般来说,数学建模分析的步骤是:
1)读懂题目。应包括对题意的整体理解和局部理解,以及分析关系、领悟实质。 “整体理解”就是弄清题目所述的事件和研究对象; “局部理解”是指抓住题目中的关键字句,正确把握其含义; “分析关系”就是根据题意,弄清题中各有关量的数量关系; “领悟实质”是指抓住题目中的主要问题、正确识别其类型。
2)建立数学模型。将实际问题抽象为数学问题,建模的直接准备就是审题的最后阶段从各种关系中找出最关键的数量关系,将此关系用有关的量及数字、符号表示出来,即可得到解决问题的数学模型。
3)求解数学模型。根据所建立的数学模型,选择合适的数学方法,设计合理简捷的运算途径,求出数学问题的解,其别注意实际问题中对变量范围的限制及其他约束条件。
4)检验。既要检验所得结果是否适合数学模型,又要评判所得结果是否符合实际问题的要求,从而对原问题作出合乎实际意义的回答。
四、数学建模教学的实施步骤
数学建模的教学是一个系统的工程,不能一蹴而就,而我们数学建模的教学却需要一个长期的教学,对此,我们设想可以推广数学建模相关的校本课程开发,其中包括数学建模思维方式的培养和数学建模的相关步骤,可以与课本相关的章节联系到一起,也可以独立开设,一般可以这样安排:
第一阶段主要培养学生对数学模型的认识及对数学思维方式的培养。
我们主要以高一学生为研究对象,在课堂教学中给学生展示数学模型,重视此类课程的教学,如《函数模型及应用》。
第二阶段主要培养学生建模能力。
主要以高二学生为研究对象,教给学生数学建模的方法,例如在曲线方程的教学中,求曲线的轨迹,我们可以让学生建立直角坐标系,根据要求写成曲线满足的数学条件,再进行化简,得到曲线的方程,解答提出的问题。
第三阶段是综合提高的阶段。
我们以高三学生为研究对象,综合对学生的数学模型意识及建模能力的培养,以高考题及统测试题的应用题为模型,充分让学生建模解模,体会数学带给学生的能力的提高和用数学解决实际问题的快乐,让学生体会数学的价值。
参考文献
篇3
关键词:数学模型;小学;模型思想;建模
《义务教育数学课程标准(2011年版)》中明确将“模型思想”确定为十大核心概念之一,指出:“应当注重发展学生的模型思想。”模型思想是人们体会和理解数学与现实生活联系的重要途径。将现实生活中的具体问题抽象成数学模型,用数学模型来解决现实生活中的问题。相较于其他核心概念而言,模型思想是小学数学教师比较陌生的一个概念,教师必须主动学习新知识,重视模型思想的培养,打造新时期新风象的数学课堂。
一、创设情景,感知建模价值
数学本是源于生活,又应用于生活的一门学科。因此,教师要学会将数学理论知识、方法、规律与现实生活结合起来,将与数学学习有关的素材引入课堂,以情景方式展示给学生看,描述数学问题的背景,激发学生的学习兴趣,创造轻松、活泼的数学课堂氛围。如:在平均数一课的学习中,按照班级位置的安排分成4-5个小组,小组的人数不尽相同,其中第一小组11人,其他小组都是10个人,布置20道题让学生做,5分钟后统计每组学生的总做题道数。结果第一小组做题18道,第二小组15道,后面三个小组都是17道。问:如何判定哪个小组的学生做题速度最快?这个时候,学生会提出疑议:第一小组虽然做题总道数多,但人也多一个,不公平,这个时候,教师就很顺理成章的将学生引入到平均数教学中。在这个例子中,学生结合自己日常生活经验,很快就能从具体的问题中抽象出平均数这个概念,这也就是一次建模的过程。
将数学知识与生活实际、社会热点、自然文化、大众文化等内容结合起来,激发学生的好奇心和兴趣,让学生感受到新奇、跳动、有趣的熟悉,通过恰当的引导激活学生的生活经验和常识,让学生学会用生活经验来感知现实生活中蕴含的数学问题,帮助学生将生活问题抽象成数学问题,感知数学模型的无处不在。
二、构建数学模型,直指问题关键
创设情景将学生带入到数学模型中,鼓励学生开展数学建模活动,而模型思想的培养则是在建模活动中进行的。教师在教学活动中追本溯源,让学生对数学模型有更直观的感知。如:古人在狩猎中要统计数量,于是出现了自然数,自然数就是在古人狩猎中产生的模型。学生在面对具体的数学问题和现实问题时,一旦建构正确的数学模型,那么就表示其抓住了问题的关键和根本,利用数学模型将问题简单化,让学生更容易认识原先的研究对象,帮助学生更好理解数学,潜移默化的培养学生的数学模型思想。
例如:在认识负数时,用温度计让学生找到正负分界点0的位置,标写出正负温度,得出“温度计越往上温度越高,数越大;温度计越往下温度越低,数越小”的结论,将温度计与数轴联系起来,建立数轴模型,引导学生感知正负数的性质和特点,拓展学生对“数”的认识范围。
首先,对数进行分类,巩固学生对正负数的认识。教师在黑板上随意写下若干个正负数,问学生如何对他们进行分类。然后在学生的积极讨论下,从最先的分成正数和负数两大类变成分为正数、负数和0三大类,在讨论中,学生对数的性质和特点的认识也有所加深。
其次,加强沟通,构建数轴模型,教师拿一个温度计横放着,问学生像什么,有的学生说像直尺,上面有刻度和数。然后教师将温度计横移到黑板上,沿着温度计画出一条线,并将温度计上的刻度简单画出来;接着再将温度计竖放着,画一条直线,数轴模型也就构建出来了。
再次,完善认知,拓展思维。引导学生思考,如何将数放到这个数轴模型中呢,从将1、2、3……自然数放到横轴右边,到将0放在横轴与竖轴的交叉处,再到将负数放到横轴左边,以及这些正负数的排列。这样,学生对数的认识也就更加全面而系统,一下子抓住数的核心。
三、有效渗透模型思想,发展学生模型思维
小学数学教学时刻离不开建模,模型思想渗透在我们的生活和学习中,教师要积极带领学生认识模型,构建模型,潜移默化的渗透模型思想,发展模型思维。渗透模型思想的过程中应注意概念的统一,小学中的数学模型是广义上的模型,它将数学上的概念、公式、定律、规律、法则等抽象成数学模型,使得数学教学就是在一个大的模型中进行的。在实际教学中,并不是说要将所有的数学知识都运用模型来教学,那样既不符合实际,也完全没有必要,甚至会适得其反、过犹不及。模型教学不要求教师抛弃传统的数学概念、公式、定律等的固有教学方法,它要求教师将数学知识与现实生活联系起来,适当运用建模思想开展教学活动。
从小学数学知识上来说,其建模的实际问题并不多,教师要学会抓住两条主线:一是利用文字和符号来表示较为复杂的数量关系,比如说,数学中常见的相遇问题,其中包含的“路程和”数学模型鲜明刻画出两个物体相向而行的运动规律,有助于帮助学生更好理解复杂的数量关系。二是用含有字母的式子来表示复杂的规律,如:探索规律,用火柴摆出如图1所示的六边形,要摆出25个六边形需要多少根火柴?191根火柴又能摆放出多少个六边形。用含字母的式子将规律表示出来,然后解答第二个问题。在大家的共同交流和讨论中,学生很快就能写出规律表达式:5n+1。
四、结束语
随着模型思想在小学教学中的渗透,小学教师要积极学习建模思想、方法,对小学知识进行汇总分析,挖掘建模重点。重视数学知识与现实生活知识的联系,逐步渗透建模思想,加深学生对数学模型的理解,使其主动运用数学模型来解决数学问题、现实生活问题,体现数学知识的应用价值。
参考文献:
[1]徐友新.合理定位有效渗透――小学数学教学中渗透模型思想的思考[J].河北教育(教学版),2013(10):15-17.
篇4
【关键词】数学建模;多样化;层次性
【中图分类号】G633.6 【文献标识码】A 【文章编号】1009-5071(2012)06-0069-01
1 高中数学建模的教学现状
美国、德国、日本等发达国家都普遍重视数学建模教学,把数学建模活动从大学生向中学生转移已成为国际数学教育发展的一种趋势。
数学建模既是数学教学的一项重要内容和一种重要的数学学习方式,同时也是培养学生应用数学意识和数学素养的一种形式。在高中数学教学中,积极有效地、科学地开展数学建模活动,对高中学生掌握数学知识,形成应用数学的意识,提高应用数学能力有很好的作用。然而传统的数学课程标准还缺乏对数学建模的课时和内容进行科学的安排,也缺乏有效的教材和规定,这让许多一线教师在具体教学的实施过程中缺乏有效的标准和依据,从而影响规范化的教学过程。因此如何进行建模教学就成为了高中数学教学研究引以关注的热点问题之一。
2 数学建模的基本含义
数学建模是从实际情境中抽象出数学问题,求解数学模型,再回到现实中进行检验,必要时修改模型使之更切合实际的过程。数学建模是运用数学思想、方法和知识解决实际问题的过程,强调与社会、自然和实际生活的联系,推动学生关心现实、了解社会、解读自然、体验人生。数学建模能培养学生进行应用数学的分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献及自学的能力,组织、协调、管理的能力;创造、想象、联想和洞察的能力。
3 关于高中数学建模教学的几点建议
数学建模作为新课程标准规定的一种数学教学和学习方式,它的有效实施和应用,有赖于学校、数学教师和其他有识之士的共同努力。笔者结合自己在高中数学建模教学中的实践,从建模教学的形式、内容、层次和学生的合作能力培养四个方面提出如下建议:
3.1 数学建模的教学形式要多样化。目前比较常见的形式主要有三种:一是结合正常的课堂教学,在部分环节上切入数学模型的内容。例如在高中数学教学中讲解关于椭圆的内容时,教师就可以在这个部分切入数学建模的内容,在太阳系中有的行星围绕太阳的运行轨道就是一个椭圆,并且太阳恰好在其中的一个焦点的位置上,引导学生查阅相关资料,并建立行星轨道的椭圆方程。二是开展以数学建模为主题的单独的教学环节,可以引导学生从生活中发现问题,并通过建立数学模型,解决问题。三是在有条件的情况下开设数学建模的选修课。这三种形式在实际数学教学中都可结合实际有效使用。
3.2 数学建模的教学要选择合适的建模问题。进行建模教学活动的内容和方法要符合学生的年龄特征、智力发展水平和心理特征,适合学生的认知水平,既要让学生理解内容、接受方法,又要使学生通过参加活动后,认知水平达到一定程度的新的飞跃。不切实际的问题,不适合学生的认知水平的建模活动,不但达不到目的,而且也会导致学生的兴趣和爱好受到很大挫伤。
篇5
关键词:数学建模 误区 解决方案
数学模型法是数学的一种重要方法,是应用数学解决其他学科问题的主要方法。针对当代数学教材,数学中的数、式、方程、函数、统计量等都可视为数学模型,它是实际问题的数学化。数学建模作为一种新型教学方式,主要是通过展现数学的具体运算过程,让学生可以更清楚地了解其中的数学知识。数学建模是学生解决问题过程中的重要一环,是要解问题通向问题解决的桥梁。不少人认为建模并不适合学生使用,走出了一个数学建模的误区。
一、数学建模存在的误区
在我国现阶段的数学教学工作中,如何将枯燥的理论知识系统化、形象化的展现出来,是广大教师共同面临的教学课题之一。目前,在国内的数学教学中,建模作为一种新型的教学方式等到了广泛的应用。认识数学建模,不是一时半会能完成的事情,许多人由于了解不足,往往在数学建模中走出误区。
1.对数学建模的认识不足
学生认为实行数学建模仅仅只是增加了一门课程,实际上它与专业课程有区别也有联系。数学建模课程是以能力培养为主,培养学生的综合应用和分析能力,培养想象力和创新精神,提升观察力和洞察力,培养主观自学能力。
2.教学目标有误
许多老师认为建模只是一个次要的学习内容,这个想法是有误的。老师应该树立正确的教学目标,合理应用教学建模,培养学生自主解决问题的能力,让学生充分调动和挖掘自己的潜力,充分提高学生的综合能力。
3.教学方法有误
根据传统的教学方案,不少老师对学生灌输课本上的专业知识,从定义定理到方法技巧和应用,学生的动手能力较低,主要是通过老师的讲解得到书本上的知识。面对建模的广泛应用,老师应该在应用后增加拓展和创新的模块,培养学生对数学的兴趣。向学生传授观察、分析和解决问题的方法,培养学生创新精神和实际操作能力,注意对学生创新思维的训练,不能墨守成规。
4.教学组织上的误区
许多数学建模使抽象的,只有通过数学实验,才能迅速进行数值求和作出定量分析。在学习的过程中,要为学生提供一个有利的学习环境,让学生动手、动眼、动脑,更有效、更主动地提高用数学的能力,把所学的知识能恰到好处地应用到合适的地方。
5.教学模式上的误区
目前的数学教学方案较为单一,只是单独开立数学建模的必修课,这会影响数学建模教学的效率和质量,不利于探究能力和创新能力的培养。数学内容体系要协调发展,极力体现数学建模与其他学科、课程互相参透,交叉进行的教学模式。面临着数学建模存在着诸多误区,解决这些问题成为当前教育的重要任务。
二、如何走出数学建模误区
1.对已建的数学模型进行“意义赋予”,让学生感受建模作用
在教学过程中,应当把多数的数学问题与实际结合,应用到生活当中,久而久之,学生会觉得生活都在有意无意地利用数学,数学存在于生活,使学生更容易地提高自己的自主学习能力以及建模能力。
2.应用题要应用,在实际问题解决中训练学生建模
应用题的编制要真正反映实际问题情景,成为未经抽象和转化的原胚型问题。这类应用题以其丰富的背景材料所蕴含的刺激因素,能对学生构成认识上的冲突和挑战,激起问题解决的动机与驱动力。长期的训练,学生逐渐认识数学的知识、原理都来自生活,从而树立了从生活中学数学,自觉地解决生活中的实际问题的意识。在此过程中学生的建模能力也相应地得到了提高。
3.提高学生的元认知水平
建构数学模型的过程需要学生从纷繁芜杂的自然现象和社会行为中,舍弃与数学问题无关的东西,抓住问题实质,进而联想、探索、猜测方案、验证方案,这一系列的思维活动都要受元认知的支配。锻炼思维过程不应一味展示给学生畅通的思维过程,必须适当体现一些错误思维的暴露和纠正过程,因为学生解题一开始的分析思路可能是不对的,这时如何进行思维的“转舵”,如何选择有效的思维方向就显得非常重要。学生的思维能力就在这种结合实际的最佳思维过程和最佳解题方案的不断探索和回顾反思中产生出新颖性、独特性和巩固性,从而使学生的元认知能力在自我反省中得到了很好的培养和开发。
4.实行探究性学习,促进学生主动建模
探究性学习是指学生在教师指导下,用类似科学研究的方式去获取知识、应用知识、解决问题的学习方式。它提倡学生自由探究,满足学生对周围事物的好奇心,为学生提供更多的活动空间和表现机会。教育的主旨在于让学生学习数学地思考问题,获得将实际问题转化为数学模型,最终解决问题的能力。探究性学习把对知识的认识过程转化为对问题的探索过程,把对知识的认知掌握转化为对问题的探究解决。学生置身于这样的学习过程中,就逐渐学会了科学家们研究自然界的方法,理解了数学意义,提高了通过建构数学模型解决问题的能力。
三、总论
数学建模在数学学习和应用中占据着重要的地位,培养学生的建模能力必将有助于提高他们发现数学、“创造”数学、运用数学的能力和数学素养。因此研究建模又将有助于数学教学的深化改革。教育者应当根据当前学生的实际情况,对数学建模进行详细分析,同时制定出有效地方案。
参考文献:
[1]周家全.论数学建模教学活动与数学素质的培养[J].中山大学,2002,(4).
[2]叶其孝.大学生数学建模竞赛辅导材料[M].湖南教育,1993,(6).
[3]吴晓层.案例教学是培养学生数学素质的好方法[J].广西大学,2003,(10).
篇6
关键词:数学建模;教学改革;素质教育
成人教育中,数学专业的学生大多数是中学教师,授课的方式也主要以函授与面授相结合的方式进行。而高中数学课程标准将数学建模作为贯穿于整个高中数学课程的重要内容,并渗透在每个模块或专题中,并明确指出,高中阶段至少应安排一次较为完整的数学建模活动,这一要求也反映在最新编写的高中数学教材中。这就要求我们的数学教师必须树立“数学具有广泛应用性”的信念和数学应用意识,并且具备一定的数学建模能力。作为中学数学教师也应具有这样的信念、意识和能力。
数学建模就是建立数学模型来解决实际问题,通过对实际问题进行合理的抽象、假设以及简化,从而利用其中“规律”建立变量、参数之间的数学模型,并求解模型,最后用所求的结果去解释、检验以及指导实际问题。数学建模的本质决定了它不仅是一种创造性的活动,而且是一种解决实际问题的量化手段。由此,开设数学建模课程有助于学生创新能力、自学能力和综合知识应用能办的培养;有助于学生洞察力和抽象能力的培养。同时,我们提出了“以培养学生的创新意识与创新能力为重点,以渗透数学建模思想加强数学建模课程建设为突破口”的教学模式,形成了“学生创新意识与创新能力培养的探索与实践的教学改革总体设想及实施方案”,这都将要求我们对数学建模课程的教学进行改革,以适应学科发展和社会发展的要求。
一、数学建模与数学实验课程的教学思路
数学建模课具有难度大、涉及面广、形式灵活,对教师、学生要求高等特点。在数学建模课程的教学过程中,指导思想是:以学生为主体,以问题为主线,以培养能力为目的来组织教学工作。通过教学使学生了解如何利用数学知识和方法去分析、解决问题的全过程,提高他们分析、解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们能在今后的工作中经常性地想到用数学去解决问题。所以,教学过程的重点是创造一个环境去诱导学生的学习欲望,培养他们的自学能力,增强其应用意识和创新能力,提高其数学素质,强调的是分析、解决问题的思
结合成人教育的特点,在教学中,我们采用探索讨论与作业相结合的方法。这种模式通过创造一种环境、提出一些问题、学生自学、师生共同研讨等步骤来实现。采用这种模式应注意的是提出的问题必须适当,既不能使学生无从下手,又不能太简单。学生为了参加讨论就必须查阅有关的参考文献,这样也就培养了学生自学的能力。学生共同讨论的方式也有助于培养学生的团结协作的精神,也能够充分发挥成人学生理解能力强的作用。课外作业是将学生分成几个小组,指定一些有一定意义和难度适当的实际问题,让学生通过查阅相关的资料,相互反复讨论,最后形成解决问题的方案,通过计算给出结果,并写成完整的小论文。这样不仅能充分发挥小组中的每一个成员的特长,而且还能使他们养成一种团结协作的良好习惯。数学建模教学已突破了纯粹由教师讲、学生听、做习题的教学模式,学生的主动性增强了,师生间、学生间的交流讨论与合作更加灵活多样。
通过数学建模活动,可以培养学生理论联系实际、解决实际问题的能力,充分认识到数学的重要作用,提高对数学学习的兴趣,在课堂中做到积极学习,同时使得他们在以后的工作学习中,自觉主动地利用数学工具解决实际问题。通过数学建模学生能够学会如何利用所学知识构造模型,从而加深对数学知识的理解。通过数学建模能够培养学生的团结协作精神和动手能力,也能够训练学生的写作能力。
由于数学建模必然要涉及到数值计算问题,而成人学生大多数未系统学习数学软件课程,利用算法语言编程也存在着一定的困难。因此,我们在数学实验中强调以实验室为基础,以学生为中心,以问题为主线,以培养能力为目标来组织教学工作。首先是根据数学建模的问题所涉及的数值计算问题,介绍一些相应的软件,包括它有哪些功能、怎样使用以及如何进行编程等,引导学生利用计算机去完成数值计算、数据处理、计算机模拟等。其次是针对一些简单的实际问题,引导学生利用编程或软件来得到结果。最后是根据成人学生以后教学工作的需要,介绍一些与中学数学联系密切的实际问题作为学生的思考题。数学模型与数学实验课程,不仅使学生积累了许多数学模型实例,而且也能够加深学生对知识的理解和掌握,有助于广大教师改进教学方法和教学思想。因此,通过这种渗透使得传统数学的基础知识为数学建模提供了广泛的理论依据,反过来,数学模型与数学实验又促进了传统知识的学习与拓展。
二、进行数学建模教学改革的方法和途径
1 改革数学建模与数学实验课程的内容和体系
现在许多大学数学教学内容单一,重理论轻应用,缺乏整体的现代数学思想和方法;教材编写上也很少体现数学发展的过程,缺少趣味性。这一切会使学生思维方式僵化,只会做纯粹的数学题目而不会解决实际问题,当然无法适应数学建模的需要。所以应积极改革数学建模课程的内容和结构体系。随着数学建模活动的影响日益扩大和参与的教师不断增加,越来越多的教师在自己原有的教学内容中引入了数学建模,加强了学生综合能力的训练。数学实验课程中计算机和数学软件的引入,丰富了原来教学的形式和方法;在课堂讨论和上机训练中计算机和数学软件的使用,在相当程度上提高了成人学生运用计算机的能力。
2 考核方式改革
数学建模课程不同于传统数学课程,因而不宜采用闭卷考试的方式,我们对该课程采用开卷形式,由教师指定问题,学生选择,以论文作为答卷。评分采用优秀、良好、及格、不及格四个等级,评判论文的成绩主要是看论文的思想方法好不好,论述是否清晰。
3 加强实践环节,提高动手能力
过去,学习数学只要有纸和笔就行,如今随着计算机的广泛应用和互联网的飞速发展,学生对于数学学习有了更高的要求。数学建模是一门利用数学软件解决实际问题的综合性课程。数学实验是其中不可或缺的一个重要组成部分。笔者在教学中反复强调数学实验的重要性,要求学生熟练掌握计算机及网上资源,并且熟练掌握一些数学软件的使用,如:Mathematics,Matlab,Spss等。
4 拥有一支高素质的数学建模师资队伍
篇7
关键词:小学数学;数学建模;教学方法
一、小学数学建模教学的运用
1.模型准备
所谓数学建模方法,实际是教师运用生活中常见的一些案例来对数学知识进行有效的讲解,让小学生能够更加真实地了解数学知识。既然数学建模教学方式的运用需要充分运用生活中的实际情景,这就要求小学教师在案例设计前认真了解本节课所要讲解的知识,同时考虑所采用的生活场景能否帮助学生更加清晰地理解自己所要讲解的知识。教师只有保证设计的模型案例能够被学生所理解,才能实现将数学有效传授给学生的目的[1]。
2.模型假设
数学模型的构建是根据实际问题的性质以及特征,对现实生活中的问题进行简化,并且在这个过程中用简洁的话语对问题进行描述。小学生刚开始进行数学知识的学习,思维想象能力还不完善。这就使教师对模型的简化以及运用精确简练的语言表述成为模型构建时的重点。同时,教师在建模过程中也要积极参与到学生对知识的讨论中去,适当地对学生进行引导,帮助学生精确地分析和理解问题。
3.模型构建
数学模型构建的本质是教导学生运用数学知识来解决现实生活中的问题,这样既能够让学生更好地认识到数学知识的重要性,又能够培养学生的学习兴趣。而数学模型在建设过程中需要由一组特定的数值或者是特定的关系式来表示,这一过程也培养了学生的思维能力,为学生初中、高中和大学数学知识的学习打下了牢固的基础。
4.模型运用与检验
小学教师运用“数学模型”来对小学数学知识进行讲解,最终的目的就是让学生更加深刻地理解数学知识,保证小学生运用数学知识对生活中出现的一些实际问题进行解决[2]。为此,教师在数学模型构建完成后需要及时对模型的教学作用进行检验,保证数学模型的构建对学生的学习起到促进作用。
二、小学数学的数学建模教学方法
1.考虑小学生的认知能力
小学生对外界的认知能力以及理解能力都不完善,这样就会导致其在知识的掌握上存在局限性。因此,数学教师在数学模型的构建上既要保证模型能够真实有效地体现数学知识,也要保证所构建的数学模型符合小学生的认知范围,只有这样,才能够发挥出数学模型的教学作用。
2.准确理解数学建模教学定位
教师在小学数学知识讲解的过程中不应当将数学模型构建的目标与自己的教学目标相等同,而是应当将培养学生的思维能力,提升学生的学习质量作为模型构建的主要目标,否则就有可能影响模型教学作用的发挥。
篇8
在开始教学活动之前,我们首先要关心的是通过教学活动能使学生的发展达到什么样的目标.
高中数学课程标准中对数学建模这部分内容的要求如下:
(1)在数学建模中,问题是关键.数学建模的问题应是多样的,应来源于学生的日常生活、现实世界、其他学科等多方面.同时,解决问题所涉及的知识、思想、方法应与高中数学课程内容有联系.
(2)通过数学建模,学生将了解和经历解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力.
(3)每一个学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识.
(4)学生在发现和解决问题的过程中,应学会通过查询资料等手段获取信息.
(5)学生在数学建模中应采用各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验.
(6)高中阶段至少应为学生安排 1 次数学建模活动.还应将课内与课外有机的结合起来,把数学建模活动与综合实践活动有机地结合起来.
笔者不对数学建模的课时和内容提出具体建议.学校和教师可根据各自的实际情况,统筹安排数学建模活动的内容和时间.
根据课程标准的要求和数学建模教学的三个阶段,教学目标可以如下设计:
1.第一阶段:简单建模
这是数学建模教学打基础的重要阶段,虽然叫做简单建模,但是它并不简单.这一阶段的核心就是要学生理解什么是数学建模,为什么要做数学建模,如何进行数学建模活动以及培养学生的建模意识.因此教学目标可以如下制定:
知识与技能:了解数学建模的概念,初步掌握五步建模法,能用五步建模法解决简单的数学建模问题.
过程与方法:让学生初步感受数学建模的过程,理解用数学工具解决实际问题的方法.
情感态度与价值观:初步培养学生运用数学建模方法解决实际问题的意识,培养学生的数学建模思想.
2.第二阶段:典型案例建模
这是学生数学建模能力提高的关键阶段,也是积累的阶段.这时可以安排与教材内容相关的典型案例,让学生掌握建模的常用方法.
知识与技能:掌握一些典型的数学建模案例,对于类似的问题可按照典型案例的方法来解决.
过程与方法:通过典型案例建模的过程,使学生更进一步认识数学建模的过程.
情感态度与价值观:进一步培养学生用数学建模方法解决实际问题的意识,培养学生的数学建模思想.
3.第三阶段:综合建模
在典型案例建模的阶段学生积累的大量的典型案例,此时可以以建模为核心,以小组为单位开展数学建模的课外活动.要很好地完成这一阶段,需要学生进行大量的课外活动与实践.
知识与技能:灵活运用五步建模法提出问题并解决问题,能用计算机进行运算编程解决数学问题.
过程与方法:经历数学建模的完整过程,在过程中学会学习,在过程中提高能力.
情感态度与价值观:通过数学建模的过程培养学生的科学思维方法,提高创新能力,培养学生的数学建模思想,培养学生的合作精神.
从高中数学课程标准的要求来看,我们不难看出,并非所有的班级和学生都需要经历这样的三个阶段.在实际教学中,笔者认为可根据学情的不同来制定目标,确定是否进行下一阶段的教学.可以只进行简单建模的教学,也可以适当地进行典型案例建模的教学,当然如果在时间和精力允许的情况下,可以尝试进行综合建模活动.
二、教学目标的实现
1.教学内容的选择
数学建模活动的教学内容就是根据“问题”和它的数学背景来确定的.
古典概型是一种特殊的数学模型,也是一种概率模型,用古典概型的理论和方法可以揭示生活中的一些问题.因此,根据我们已经编制的教学目标,可以把数学建模教学的切入点放在古典概型上.也就是说,数学建模的问题是以古典概型为数学背景的.其教学内容主要包括:
(1) 古典概型的含义.
(2) 古典概型的概率计算公式.
(3) 数学建模的概念及五步建模法.
(4) 随机数的概念及用计算机产生随机数的方法.
(5) 次品检验问题.
(6) 彩票中奖问题.
2.教学方式的选择
(1)第一课时
这在数学建模的教学中属于简单建模阶段,简单建模阶段一般可以选择的教学方式有讲授式、讲练式、探练式等.同时这一课时还有古典概型的教学任务,因此,可以用讲练式与探练式相结合的教学方式来进行这堂课的教学.
(2)第二课时
篇9
数学建模就是建立数学模型来解决问题的方法。它是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。《数学课程标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四块学习领域,强调学生的数学活动,发展学生的数感、符号感、空间观念、以及应用意识与推理的能力。这些内容中最重要的部分,就是数学建模。数学建模不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在中学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。在教学中如何渗透数学建模思想呢?
一、创设情境,感知数学建模思想。
数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。情景的创设要与社会生活实际、时代热点问题、自然、社会文化等数学问题相结合,让学生感到真实、新奇、有趣、可操作,满足学生好奇好动的心理要求。这样很容易激发学生的兴趣,并在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,从而促使学生将生活问题抽象成数学问题,感悟数学真谛,感知数学建模的存在。
二、参与探究,主动建构数学建模。
数学家华罗庚通过多年的学习、研究经历总结出:对书本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
三、解决问题,拓展应用数学建模。
用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学知识解决问题的能力,让学生体验实际应用带来的快乐。解决问题具体表现在两个方面:一是布置数学题作业,如基本题、变式题、拓展题等;二是生活题作业,让学生在实际生活中应用数学。通过应用真正让数学走入生活,让数学走近学生。用数学知识去解决实际问题的同时拓展数学问题,培养学生的数学意识,提高学生的数学认知水平,又可以促进学生的探索意识、发现问题意识、创新意识和实践意识的形成,使学生在实际应用过程中认识新问题,同化新知识,并构建自己的智力系统。
四、注重活动,发展建模应用意识。
篇10
关键词:数学建模; 小学数学教学; 渗入
【分类号】G623.5
一、前言
按照小学数学教学的实际需要,在小学数学教学过程中,数学建模思想的渗入关系到小学生数学意识的培养,对小学数学课堂教学质量的提高有着重要的现实意义,从这一点来看,在小学数学教学中,应当做好数学建模思想的渗入,具体应当从创设情境,感知数学建模思想,参与探究,主动建构数学模型,解决问题,拓展应用数学模型这些方面入手,保证小学数学建模思想的渗入能够取得积极效果。
二、小学数学教学中建模思想的渗入,应创设情境,感知数学建模思想
1、小学数学应在课堂中做好情境创设,为建模思想的引入打下基础
结合小学数学课堂教学实际,在建模思想的渗入过程中,首先应当做好情境创设,通过创设良好的数学情境,为建模思想的引入打下坚实的基础,考虑到小学生的思维特点及数学基础,在数学建模思想引入之前,一定要做好情境的创设,通过课堂情景的创设和构建,营造良好的数学教学氛围,为建模思想的引入做好铺垫。
2、小学数学应鼓励学生感知数学建模思想
在做好了前期的铺垫之后,就是应当根据小学数学课堂教学内容和相应的教学案例,鼓励学生感知数学建模思想,从数学思想的角度向学生介绍数学建模的内涵及意义,并且向学生剖析数学建模思想的重要性,以及数学建模思想对日后数学学习的重要意义,让学生对数学思想有全新的认知,做到在后续的学习过程中,能够根据学习需要提高数学建模思想的渗入效果。
3、小学数学教师应做好数学建模思想教学的指导
由于小学生年龄较小,在刚接触数学建模思想的时候,对数学建模思想的内涵和意义认识还不够全面,在此过程中,小学数学教师应当做好数学建模思想教学的指导,通过对学生学习兴趣的引导以及数学建模思想内涵的解读,让学生对数学建模思想有全面正确的认识,减轻在后续教学过程中的压力,避免由于学生认知不足而造成数学建模思想渗入效果不理想的问题。
三、小学数学教学中建模思想的渗入,应参与探究,主动建构数学模型
1、小学数学应在课堂教学中鼓励学生参与问题探究
按照小学数学课堂教学的实际需要,在数学教学过程中,建模思想的渗入应当与课堂教学融合在一起,其中可以通过鼓励学生参与问题探究的方式,以问题探究教学为切入点向学生介绍数学模型建构的意义和作用,并鼓励学生参与到问题探究中来,通过学生自己的问题设定和问题探究,一步一步地引导学生进行数学模型的建构,进而达到提高数学建模思想渗入效果的目的。
2、通过问题探究的方式引导学生主动建构数学模型
在课堂教学中,做好了前期的铺垫之后,就可以通过问题探究的方式引导学生主动建构数学模型,并且利用学生建构的数学模型,解决相应的问题,使学生能够树立信心,并且对数学模型的建构有正面积极的认识,从这一点来看,通过问题探究的方式引导学生主动建构数学模型,是做好数学建模思想渗入的重要措施,也是提高数学建模实践渗入效果的重要手段。
3、教师应当及时的做好指导,解决学生在数学模型建构中存在的问题
由于小学生年纪较小,虽然可以主动参与到数学模型的建构过程当中,但是由于小学生的数学基础相对薄弱,在数学模型建构中还存在较多的问题,在这一过程中,教师应当及时的做好指导,解决学生在数学模型建构中存在的问题,达到有效的指导数学模型的建构,鼓励学生通过数学模型建构的方式解决存在的数学问题,为学生的问题探究提供有力的方式方法。
四、小学数学教学中建模思想的渗入,应解决问题,拓展应用数学模型
1、鼓励学生利用数学模型建构,解决数学问题
从数学建模思想的渗入来看,其目的是教会学生利用数学模型建构的方式解决相应的数学问题,基于这一目的,在做好了前期的铺垫之后,学生从数学模型建构中也积累了一定的经验,在这一过程中,就应当鼓励学生利用数学模型建构解决目前遇到的数学问题,达到拓展应用数学模型的目的,使学生能够获得更多的解决数学问题的手段。
2、引导学生在其他领域有效运用数学模型
从小学数学教学过程来看,建模思想的渗入对小学数学教学人员具有重要作用,做好建模思想的渗入不但能够提高学生的解题能力,同时也有助于拓展学生的解题思路,因此,在建模思想的渗入过程中,应当引导学生在其它领域有效运用数学模型,特别是在生活领域中,应当鼓励学生运用数学模型解决相应的生活问题,使数学模型的应用范围能够得到不断的拓展。
3、培养学生正确的数学建模思维
结合小学数学教学实际,在数学建模思想的渗入过程中,培养学生正确的数学建模思维是十分重要的,同时,培养学生正确的数学建模思维也是解决问题和拓展应用数学模型的基础和关键,为此我们应当认识到小学阶段数学建模思想渗入的重要性,并且重点做好数学建模思维的渗入,为小学数学课堂教学提供更多的教学支持。
五、结论
通过本文的分析可知,在小学数学教学过程中,建模思想的渗入十分重要。要想做好数学建模思想的渗入,就应当根据小学数学教学的实际需要,从创设情境,感知数学建模思想,参与探究,主动建构数学模型和解决问题,拓展应用数学模型等方面入手,保证数学建模思想的渗入能够达到预期目标。为小学数学课堂教学提供数学建模思想,使小学数学教学能够在数学建模思想的渗入方面更加成熟有效。以此达到提高数学建模思想渗入效果的目的,为小学数学教学提供更多的支持。
参考文献:
[1] 蔡新镇;;浅谈小学生建立数学模型活动[J];中国教育技术装备;2011年22期
[2] 刘永文;;在小学数学教学中渗透数学建模思想[J];山东教育;2010年28期
[3] 伍仁刚;;课堂教学有效渗透数学建模思想例谈[J];小学教学参考;2009年23期
[4] 章颖;;在解决实际问题的过程中培养学生的建模能力[J];小学教学参考;2009年32期
- 上一篇:经济建设新常态
- 下一篇:高血压康复运动的运动方式