继电保护的发展前景范文

时间:2023-12-20 17:32:16

导语:如何才能写好一篇继电保护的发展前景,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

继电保护的发展前景

篇1

关键词:电力系统;继电保护;现状与发展前景

中图分类号:TM77 文献标识码:A

1 概述

电力系统的运行情况是社会生活的正常进行的基础。因此电力系统需安全可靠,并且提供质量高、经济性好的电能供应。然而在某些情况下,比如自然环境、设备老化或故障以及人为因素的影响等等,都可能会导致电力系统发生故障,造成电力系统的运行不正常。故障和异常的出现会危害到整个电力系统的安全运行,这时系统的自动化措施会策略性的解决事故,保障电力系统的正常工作,这一系列自动化措施被称之为电力系统的继电保护。继电保护表现出了良好的电路保护功能,并且运行稳定,操作灵活,与电力相关的各个行业都离不开继电保护。

2 电力系统继电保护概述

2.1 电力系统继电保护的原理

电力系统故障中,各种形式的短路是最常见也是对系统危害最大的故障。因此继电系统通过使用带触点的继电器,对各种电机、变压器(特别是高压变压器)以及输变线等加以保护,以减少故障对电力系统的损害,保证电网的供电正常。

继电保护装置以计算机技术为基础,当电力系统中的电气元器件出现故障(短路等情况)时,保护装置能及时向管理者发出警示信号,并自动使断路器跳闸切断电路。

2.2 电力系统继电保护装置

电力系统中使用继电保护装置,可以实现两个方面的功能:一是管理者通过装置传送的数据及时掌握电力系统的运行状态,并实时监控运行状态不正常的电气元器件,当器件出现故障时可以及时处理,有效减少电力设备的损坏,避免安全事故的发生;二是利用保护装置本身的功能设计,装置可以通过触点有选择的将故障元件切除,以保障其他正常原件的运行。

继电系统装置的基本组成如图1所示,详细结构组成如图2。

3 电力系统继电保护现状

目前电力系统继电保护技术以已得到广泛的应用,其发展过程大致分为四个阶段:电磁型、晶体管、集成电路式和微机式继电保护技术。当前的继电保护技术处在微机继电保护阶段,并在快速发展。

微机继电保护不仅具有传统继电保护的功能,而且操作方便灵活,目前以发展实时显示设备参数、定位故障等功能。特别是信息技术、网络技术等新技术的引入,继电保护的发展更是迅速。

(1)通过引入IT技术,将计算机与电力系统连接起来,继电保护可以将故障测量、系统控制、系统保护整个过程融为一体。

(2)人工神经网络的应用,能够快速解决电力系统中的非线性问题,及时分析电网的各项参数,预判故障的发生位置,提前做好应对措施。

(3)引入新型的光学数字式电压、电流互感器替代传统的电感式测量仪器,测量结果精确度更高。

(4)电网系统入网,实现广域保护。

4 电力系统继电保护的发展前景分析

4.1 计算机化、网络化发展

计算机的普及和网络技术的快速发展,为各项工作的开展提供了强有力的通信手段。有关统计数据表明,目前我国电力系统中的数据量巨大,与之相比继电保护系统的数据通信手段则相对落后,难以满足当前电力系统发展的需要。因此继电保护的发展不应只满足于切除系统中的故障元件等技术层面,更应该立足于整个电力系统的安全性、可靠性,结合计算机技术,利用网络资源来进行现代化的继电保护。

首先整个电网系统的广域连接,要求继电保护具有强大的数据处理能力,并有足够大的存储空间以存储大量的故障信息;然后为了保障信息传输的及时性和有效性,电力继电保护系统还要具有强大的通信能力,实现整个系统的资源共享,数据和信息能够及时得到传输。

另外随着计算机局域网络技术的发展,光纤通信技术在大规模自动化系统中的应用,电力继电保护装置系统表现出了良好的抗电磁干扰能力,对数据的高速、准确、实时传输提供了保障

4.2 智能化发展

在传统的电力继电保护中,已实现了自动报警、自动调节、自动切除等智能化操作,并实现了系统事故的自动判别与处理、智能决策、在线自诊断等。为了提高继电保护系统智能化操作,自适应理论、人工神经网络、支持向量机、模糊逻辑、专家控制和蚁群算法等智能算法目前已广泛应用到系统中。因此将来继电保护智能化的系统具有目前已有的特点外,还会具有人机一体化、自组织能力、学习能力与自我维护能力;甚至会具有类人思维的能力等等。

4.3 数字化发展

随着社会经济的不断发展,数字化变电站的建设成为电网建设的主流。一方面,数字化变电站可以减少自动化设备数量和设备的检修次数和时间,提高系统的可靠性和设备的使用率。另一方面,数字化变电站可以减少占地面积和投资成本,还可以实现资源信息的共享。数字化技术是需要不断发展和完善的技术。它的研究和应用是一个持续、渐进的发展过程,相信在不久的将来它一定会成为继电保护的主流技术。

4.4 控制、保护、数据通信、图形显示一体化

在网络化、数字化和智能化的发展趋势下,电力系统的整个保护装置可以视为多功能、多操作的计算机。它能够从网上获取电力系统运行和故障的各种数据,并将它获得的及它自身的数据和信息发送出去。因此有必要将继电保护系统的控制端、保护方式、数据通信技术、测量监视、图像监控等集中于一体,未来的电力继电保护装置会具有继电保护功能,还具有监视整个系统实时运行、并对开关设备及过程控制设备操作进行控制的功能。

4.5 输电技术出现新突破

电力电子技术的不断发展和突破,直流输电技术也在日益成熟。在这样的情况下会促生多种新的发电方式,其产生的电能都会以直流电的方式输送,比如磁流体发电、电气体发电、燃料电池和太阳能电池等等。这意味着直流输电技术在电力系统中必将得到更多的应用。另外超高压输电也表现出了优越性,比如增加输送容量,增长了传输距离,降低了单位功率电力传输的工程造价,并且能够减少线路对能量的损耗,线路走廊所占地面积也大大缩减,这些都说明直流输电具有显著的综合经济效益和社会效益,在将来的继电保护中会得到发展和应用。

结语

综上所述,在我国经济和社会快速发展的时期里,各项生产活动的进行都需要大量的电力,高效可靠地的电力继电保护是电力系统正常、平稳运行的基础,也是我国经济稳步发展的要求。在先进IT技术、自动化控制技术等先进技术的支持下,继电保护必将会面临新的发展机遇和挑战,继电保护将不断向着计算机化、网络化、一体化、智能化和综合自动化的方向发展。因此思想上必须与时俱进,明确电力系统继电保护的基本任务和意义,及时掌握技术发展的方向,将新技术不断应用到继电保护中。

参考文献

篇2

>> 计算机网络管理系统应用现状及发展前景 陕北在线监测系统发展现状及对策 浅谈计算机管理信息系统的应用现状及发展前景 浅析输电系统现状及其发展前景 家用太阳能光伏发电系统的现状及发展前景 电气自动化控制系统的现状及发展前景分析 探究自动化仪表与控制系统的现状及发展前景 医疗系统计算机应用现状及发展前景展望 浅析电力系统自动化技术的现状及发展前景 油田集输系统的现状及发展前景 电力系统继电保护的现状及发展前景展望 电力系统继电保护现状及发展前景 电力系统自动化技术的现状及发展前景探析 水处理自动控制系统的应用现状及发展前景 浅述国内外VAV空调系统现状及发展前景 电力系统继电保护的现状及发展前景 电气自动化工程控制系统的现状及发展前景 钢结构住宅当今现状及发展前景 论IT行业的现状及发展前景 会展旅游的现状及发展前景 常见问题解答 当前所在位置:l,2010.

[3]A. Aarvik, I. Olsen, K. Vannes, K. Havre, E. Krogh, Design and Development of the Ormen Lange Flow Assurance Simulator[C]//13th International Conference on Multiphase Production Technology,2007.

[4]G.G.Lunde,K.Vannes,O.T.McClimans,Cathy Burns,Kristina Wittmeyer, Advanced Flow Assurance System for the Ormen Lange Subsea Gas Development[C]//Offshore Technology Conference,2009.

篇3

【关键词】农村电网;继电保护;配置;可靠性

1 继电保护技术发展的历史概况

电力系统技术的发展对继电保护提出了新的要求,电子技术、计算机技术与通信技术的发展又为继电保护技术的发展注入了新的动力,继电保护技术的发展,也是科技实力的发展。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。20世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。在引进消化了当时国外先进的继电器制造技术后,建立了我国自己的继电器制造业。在60年代中期我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

20世纪50年代末,晶体管继电保护已开始研究。60年代中期到80年代中期是晶体管继电保护蓬勃发展和广泛采用的时代。我国研制的500kV晶体管方向高频保护和晶体管高频闭锁距离保护的成功运行,结束了500kV线路保护依靠进口的时代。从70年代中期,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。

20世纪70年代末开始计算机继电保护的研究,高等院校和科研院所起着先导的作用。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机变压器组保护也相继于l989年、l994年通过鉴定并投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于l993年、l996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。从90年代开始我国继电保护技术已进入了微机保护的时代,开始走上高科技的发展时代。

2 继电保护技术的发展前景

智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络(ANN)和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。随着计算机技术的飞速发展以及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,其未来趋势向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。微计算机硬件的更新和网络化发展在计算机领域,发展速度最快的当属计算机硬件,按照著名的摩尔定律,芯片上的集成度每隔18~24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机与DSP芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。硬件技术的不断更新,使微机保护对技术升级的开放性有了迫切要求。未来的继电保护技术、变电所综合自动化技术现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。实现继电保护和综合自动化的紧密结合,它表现在集成与资源共享、远方控制与信息共享。以远方终端单元(RTu)、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变。

自适应继电保护的概念始于20世纪80年代,它可定义为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。这种新型保护原理的出现引起了人们的极大关注和兴趣,是微机保护具有生命力和不断发展的重要内容。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,由数字时代跨入信息化时代,发展到一个新的水平。未来中国电力系统继电保护技术的发展前景,会以崭新的姿态走在世界前列。

3 10KV线路保护中容易被忽视的问题及解决方法

(1)10kV线路如装有大量的配电变压器,在线路投入时,这些配电变压器是挂在线路上,在合闸瞬间,各变压器所产生的励磁涌流在线路上相互迭加、来回反射,产生了一个复杂的电磁暂态过程,在系统阻抗较小时,会出现较大的涌流,时间常数也较大。二段式电流保护中的电流速断保护由于要兼顾灵敏度,动作电流值往往取得较小,特别在长线路或系统阻抗大时更明显。励磁涌流值可能会大于装置整定值,使保护误动。这种情况在线路变压器个数少、容量小以及系统阻抗大时并不突出,因此容易被忽视,但当线路变压器个数及容量增大后,就可能出现。

励磁涌流的特征,就是它含有大量的二次谐波,另一特征就是它的大小随时间而衰减,一开始涌流很大,一段时间后涌流衰减为零,流过保护装置的电流为线路负荷电流,利用涌流这个特点,在电流速断保护加入一短时间延时,一般为0.15~0.2s的时限,就可以防止励磁涌流引起的误动作,这样虽然会增加故障时间,但在对稳定运行影响较小的地方还是适用的。

(2)10kV线路出口处短路电流一般都较小,特别是农网中的变电所,它们往往远离电源,系统阻抗较大。对于同一线路,出口处短路电流大小会随着系统规模及运行方式改变而改变。随着系统规模的不断扩大,10kV系统短路电流会随着变大,可以达到TA一次额定电流的几百倍,系统中原有一些能正常运行的变比小的TA就可能饱和;另一方面,短路电流中含大量非周期分量,又会进一步加速TA饱和。在10kV线路短路时,由于TA饱和,感应到二次侧的电流会很小或接近于零,使保护装置拒动,影响供电可靠性,而且严重威胁运行设备的安全。

避免TA饱和一是在选择TA时,变比不能选得太小,要考虑线路短路时TA饱和问题,一般10kV线路保护TA变比最好大于300/5。另一方面要尽量减少TA二次负载阻抗,尽量避免保护和计量共用TA,缩短TA二次电缆长度及加大二次电缆截面等,就能很好的防止TA饱和现象。

篇4

关键词:继电保护发展趋势测试智能电网

1 继电保护基本概念及其发展趋势

1.1 继电保护装置基本组成

一般而言,整套继电保护装置由三个部分组成的,即测量部分、逻辑部分和执行部分,其原理结构如图1-1所示。

①测量部分 测量被保护元件工作状态(正常工作、故障状态)的电气参数,并与整定值进行比较,从而判断保护装置是否应该启动。

②逻辑部分 根据测量部分输出逻辑信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障类型和范围,确定保护装置如何动作。

③执行部分 根据逻辑部分送的信号,完成保护装置所担负的任务。如发出信号,跳闸或不动作等。

1.2 继电保护的基本要求

①可靠性――指继电保护装置在保护范围内该动作时应可靠动作,不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。

②选择性――指只有当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护来切除故障。

③速动性――指保护装置应尽快切除短路故障,减轻故障设备和线路的损坏程度,缩小故障波及范围。

④速动性――指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数。

1.3 继电保护的发展趋势

1.3.1 计算机化

在微机保护发展初期,曾设想过用一台小型计算机做成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机做成继电保护的时机已经成熟。继电保护的计算机化是不可逆转的发展趋势,但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

1.3.2 网络化

网络保护是计算机技术、网络技术和通信技术相互结合的产物,它可以实现对变压器、高低压线路和母线的相关保护等功能。资源共享是网络保护的最显著特性,还可以结合高频保护和光纤保护来实现纵联保护。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理,即将传统的集中式母线保护分散成若干个保护单元,各保护单元接收本回路的输入量后,经量化处理,通过网络传送给其它回路的保护单元,然后各保护单元进行母线差动保护的计算,如果计算结果证明是母线内部故障则跳开本回路断路器,隔离故障母线,其它情况时各保护单元均不动作。这种用计算机网络实现的分布式母线保护,显然比传统的集中式母线保护有更高的可靠性。

1.3.3 保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。即实现了保护、控制、测量、数据通信的一体化。如果将保护装置就地安装在室外变电站的被保护设备旁,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。

1.3.4 智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统保护领域内的一些研究工作也转向人工智能的研究,专家系统、人工神经网络和模糊控制理论逐步应用于电力系统继电保护中,为继电保护解决许多常规问题提供了新的方法。人工智能技术给电力系统继电保护的发展注入了新的活力,具有非常美好的发展前景。

2 继电保护测试内容和测试方法的发展

目前国内继电保护产品检测主要依据IEC 60255系列标准和GB/T 14047国家标准进行。

2.1 继电保护测试内容

传统的继电保护测试包括基本性能试验、功率消耗试验、温度试验、电源影响试验、机械试验、绝缘实验、过载试验、触点试验和电磁兼容试验。

在原有继电保护测试项目的基础上,根据继电保护装置发展的新特点,新增加的测试内容包括基于61850 技术的继电保护产品检测,时间同步能力检测,产品通信协议检测,软件测试,以及装置可靠性检测和安全性检测。

2.2 微机保护测试自动化

测试自动化是指测试系统可以按照事先编制的测试计划,自动、连续的完成继电保护装置的电气性能、可靠性、通信协议、信息安全的测试。完整的测试体系由以下几部分组成:①电气性能在静态模拟中的自动测试系统;②电气性能在动态模拟中的自动测试系统;③监控系统的自动测试系统;④通信协议的测试系统;⑤信息安全的测试系统;⑥继电保护测试专家系统。

3 智能电网对继电保护的影响

随着国家电网公司智能电网建设的开展,智能电网的特征带来的网络重构、分布式电源接入、微网运行等技术,对继电保护提出了新的要求。

未来智能电网中,电网的自愈特征将会对继电保护的选择性、可靠性、速动性、灵敏性提出更高的要求,对常规继电保护的配置方法提出新的要求。分布式电源的灵活接入、多变压器的运行方式带来的后备保护配合、双向潮流、系统阻抗的变化等问题均会给继电保护定值整定带来困难。

同时,智能电网将给继电保护的发展带来新的契机,智能电网中所采用的新型传感器技术,数据同步技术、时钟同步技术、通信技术、计算机技术以及IEC 61850 标准的应用,可以提供区域范围内数据采集的高精度同步,满足数据采集传输的实时性,保障数据传输过程的冗余和可靠性。

4 结语

随着智能电网建设的推进,继电保护要适应电网需求向计算机化、网络化、智能化、功能一体化方向发展,同时继电保护测试内容和测试方法也应不断补充和完善,为智能电网提供技术支持。

参考文献:

[1]智能电网中广域继电保护的应用,IT专家网,2011.

[2]韩士杰,胥岱遐,施玉祥等.继电保护测试的发展方向(A),电工电气,2011(12).

[3]黄宝民,张晶.电力系统的现状与发展(A),科技资讯,2006(14).

[4]李世荣.继电保护发展的历史及其趋势(B),甘肃冶金,(4):30,

2008.

[5]钱雪峰.电力系统继电保护发展趋势探究(A),科技论坛,2010(12).

[6]邵宝珠,王优胤,宋丹.智能电网对继电保护发展的影响(B),东北电力技术,2010(2).

[7]姚致清.继电保护测试发展方向的思考(B),继电器,(11):36,

2008.

篇5

【关健词】继电保护;整定计算;微机继电保护

某矿洗煤厂第一套重介选煤系统自2001年改造投产,供配电系统安全稳定运行,其相应的继电保护装置也已工作十年之久,考虑到线路老化,元器件可靠性降低等,以及继电保护技术的日新月异、飞速发展,继电保护系统优化升级已迫在眉睫,下面就其运行过程中的相关问题进行分析。

1.洗煤厂继电保护的现状分析

洗煤厂I回路由矿变电所27#柜送出,主要负责重介主厂房设备以及一台高压电机的供电。其供电系统图如下:

图1 供电系统图

继电保护回路采用GL-20型感应式电流继电器,当主设备或输配电系统出现过负荷及短路故障时,该继电器能按预定的时限可靠动作或发出信号,切除故障部分,保证主设备及输配电系统安全运行。此继电器为早期的过流保护装置,其可靠性及速断性与上级保护即矿变电所的微机型继电保护相比相差很多,很容易造成误动作,甚至有可能造成电网上其他配电线路的掉闸事故,并且洗煤厂新建重介系统供配电继电保护III回路也已全部采用微机继电保护装置,为了维护方便、备件统一,在继电保护系统升级改造时应考虑到全部更新为新型的继电保护装置。

2.继电保护的要求

根据继电保护所担负的主要任务,基本要求如下:

(1)选择性:

当供配电系统发生短路故障时,继电保护装置动作,应只切除故障元件,使停电范围最小,以减小故障停电造成的损失。保护装置的这种能选择故障元件的能力称为保护的选择性。

(2)速动性:

为了减小由于故障引起的损失,减少用户在故障时低电压下的工作时间,以及提高供配电系统运行的稳定性,要求继电保护在发生故障时应能尽快动作,切除故障。快速地切除故障部分可以防止故障扩大,减轻故障电流对电气设备的损坏,加快配电系统电压的恢复,提高供配电系统运行的可靠性。

由于既要满足选择性,又要满足速动性,所以工厂供配电系统的继电保护允许带一定时限,以满足保护的选择性而牺牲一点速动性。对工厂供配电系统,允许延时切除故障的时间一般为0.5-20s。

(3)灵敏性:

灵敏性是指在保护范围内发生故障或不正常工作状态时,保护装置的反应能力。即在保护范围内故障时,不论短路点的位置以及短路的类型如何,保护装置都应当能敏锐且正确地做出反应。继电保护的灵敏性是用.灵敏度来衡量的。不同作用的保护装置和被保护设备,所要求的灵敏度是不同的。

(4)可靠性:

可靠性是指继电保护装置在其所规定的保护范围内发生故障或不正常工作时,一定要准确动作,即不能拒动;而不属其保护范围的故障或不正常工作时,一定不要动作,即不能误动。在考虑继电保护方案时,要正确处理它们之间的关系,使继电保护方案在技术上安全可靠,在经济上合理。

3.继电保护装置的整定

供电系统继电保护装置的可靠运行涉及到继电保护装置的配置设计、安装制造、正定计算、运行维护等诸多方面,其中合理的保护配置和正确的进行整定计算对保证继电保护装置的可靠运行具有十分重要的作用。因此在整定计算时要注意:

①要对常见的电网故障进行全面的分析,故障包括三相短路、单相接地、两相接地、两相短路、单项断线、两相断线等故障。

②整定结果要精确。对反应到被保护元件单侧电气量的继电保护如零序电流保护、距离保护等,其整定的关键在于计算最大和最小分支系数,以及计算最大零序电流系数时运行方式和短路点位置选择的原则都极为重要。

4.系统运行管理

继电保护装置的不正确动作,人员误操作、误整定、误接线等造成的事故也占了较大的比例,因此在技术管理、人员管理上应做进一步改进。

(1)加强技术培训和岗位练兵工作。

由于继电保护及安全自动装置的技术含量高,且发展更新快,因此,一定要努力提高各级技术人员的专业素质,以便为安全生产打下坚实的基础。争取各种培训机会提高专业技术水平,提高分析问题、解决问题和实际动手的能力。同时,现代社会具有资讯发达、信息交流快的特点,要利用这个优势,在需要的时候向能够提供帮助的部门如调度所、厂家、设计人员等寻求技术支援。

(2)抓好二次图纸资料的管理工作。

由于电气工种的特殊性,在现场工作时应按图纸进行,严禁凭记忆作为工作的依据。如果图纸资料与现场实际接线不一致,就会给维护工作带来较大的麻烦和安全上的隐患。所以必须重视图纸资料的管理,若发现图纸与接线不符时,应查线核对,确认接线正确后,在原图纸上 改正,如改动较大,在原图纸上修改已不清晰,须尽快绘制新图以符合实际情况,同时,班组留用资料及档案资料也须作相应修改。

(3)建立继电保护校验备忘录。

工作时间越长、保护校验次数越多、缺陷处理范围越广,工作经验就越丰富,快速增加工作经验,建立继电保护校验备忘是一个有效的途径。技术人员将每一次校验、缺陷处理和发生的事故障碍的经过、原因、处理过程、注意事项、经验教训详细记录并及时组织讨论学习,这样技术素质就会逐步提高。

5.继电保护新技术的发展

当今继电保护技术.己经开始逐步实现网络化和保护、测量、控制、数据通信一体化。计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,其与继电保护的结合是实现现代电力系统安全、稳定运行的重要保证。现代电力系统继电保护要求每个保护单元都能共享全系统的运行和故障信息的数据,使得各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现这种系统保护的基本条件是将全系统各主要电气设备的保护装置用计算机网络连接起来,实现微机保护装置的网络化。

人工智能、自适应算法等技术的引入。人工智能技术(如专家系统、人工神经网络等等)被广泛地应用与求解非线性问题,较之传统的方法有着不可替代的优势。

6.结束语

继电保护是保障电网安全稳定运行的第一道防线。随着电力系统的高速发展,对线路继电保护的要求也就更高。因此,如何在今后确保继电保护的更可靠运行,实施继电保护全过程管理,是牵涉继电保护可持续发展的重要课题,也是安全生产的重要保证。

参考文献

[1]张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000.

[2]高亮.电力系统继电保护[M].北京:中国电力出版社,2007.

篇6

关键词:电力系统继电保护 发展现状趋势

前言:

继电保护技术是随着电力系统的发展而发展起来的,20世纪初随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。这个时期可认为是继电保护技术发展的开端。电力系统决定着电力能源的产生、传输和配送。而系统中的任何一个环节出现问题都会导致设备的损坏,甚至更严重的后果,随着我国电力系统规模和容量的日益增大,电力系统面临的故障日益严重。一旦电力系统出现故障,那么将会造成严重的经济损失和人身伤亡。继电保护就是一种电路故障时实现瞬间切断的自动装置,是电力系统中不可或缺的一部分。

1.电力系统继电保护简介

继电保护是电力系统不可分割的一部分,在电力系统的正常运行中起着至关重要的作用。继电保护的基本任务是在被保护的电力系统元件发生故障的瞬间断开电路,使故障元件及时从电力系统中断开,最大限度地减少对电力系统元件本身的损坏。在电力系统运行中,外界因素内部因素及操作等,都可能引起各种故障及不正常运行的状态出现。常见的故障有:单相接地、两相接地、相间短路、短路等。另外一种情况,当电气设备出现不正常工作时,可发出警报信号,以便操作人员进行处理,此时的继电保护装置允许有一定的延时动作。

继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求。这四个要求之间紧密联系,既矛盾又统一。

2.我国电力系统继电保护现状

由于继电保护的安全性直接关系到电力系统的安全稳定运行,因此对继电保护装置有着很高的要求。电力系统继电保护技术经历了漫长的发展历程,我国电力系统继电保护技术经历了四个发展阶段,继电保护装置经历了机电式、整流式、晶体管式、集成电路式、微处理机式等不同的发展阶段。各个阶段的特点和结构如表1.

时期 硬件结构 特点 发展阶段

20世纪50年代 机电式保护装置 体积大、功耗大、动作慢 机电保护

20世纪60-80年代 晶体管式保护装置 体积小、功耗小、动作快 晶体管保护

20世纪80年代 集成电路式 体积更小、性能较好 集成电路保护

20世纪90年代 微机保护 性能完善、可靠性高 微机保护

表1 继电保护发展历程及特点

3.继电保护技术的发展趋势

经过近20年的研究、应用和发展,微机保护在电力系统中取得了巨大的成功。不仅积累了丰富的运行经验,产生了显著的经济效益,还大大提高了电力系统运行管理水平。电力系统继电保护技术未来将会向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

3.1继电保护计算机化

随着科技的飞速发展,计算机的硬件制造水平在不断提高,微机保护硬件水平也在不断提高电力系统对微机保护的要求水平与日俱增,除了进行继电保护的基本功能外,还应具有以下更多功能:大容量的故障信息和数据的长期存放功能;快速的数据处理功控制装置和调度联网来共享全系统的数据;具有信息和网络资源的管理功能;高级语言编程功能等。

按照摩尔定律来计算,芯片上的集成度每隔一年半到两年的时间翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强。片内硬件资源得到很大扩充,单片机与DSP芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。我国在2003年底, 220KV以上系统的微机保护已占到70.29%,线路的微机化率达到97.6%。实际运行中微机保护的正确动作率要明显高于其他保护,一般比平均正常动作率高0.2-0.3个百分点。继电保护装置的计算机化是不可逆转的发展趋势。电力系统对微机保护的要求不断提高,除了保护基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信功能,与其他保护、控制装置和调度联网以供享全系统数据、信息和网络资源的能力、高级语言编程等。

3.2继电保护网络化

近年来,计算机网络逐渐开始在电力传输与配电系统中得到应用和发展。与此同时,随着电力科技的进步,电力系统对计算机保护的要求也提升到了新的层次。因此大容量的长期存放空间、高速处理数据、高效的通信与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力、高级语言编程等均为继电保护发展指明了方向。国内在自适应保护领域中的研究取得了可喜的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,也就是实现整体网络化,因此整体网络化是电力系统继电保护一个重要方向。

3.3继电保护智能化

在电力系统继电保护中,计算机技术得到了广泛的应用。相关的研究方法也层出不穷,近些年来人工智能技术在电力系统领域取得了广泛的应用,引起了人们的广泛关注。人工智能技术主要包括人工神经网络、小波理论、遗传算法等相关内容,下面我们对人工神经网络做简要的阐述。在电力系统继电保护方面,人工神经网络主要用来实现故障类型判别、方向保护和主设备保护等。人工神经网络主要主要研究信息处理、自动控制和非线性优化等相关问题。例如,在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一个非线性问题,这时距离保护很难正确做出故障位置的判别,从而造成系统误动或拒动。我们如果采用人工神经网络技术来进行处理,只需要经过大量故障样本的训练和充分考虑各种情况,那么我们就可以在电力系统发生任何故障时进行正确的判别。人工智能技术给电力系统继电保护的发展注入了新的活力,具有非常美好的发展前景。

3.4保护、控制、测量、数据通信一体化

保护装置从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能。而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。比如为了测量、保护和控制的需要,室外变电站的所有设备,如果将保护、测量、数据通信集成为一体,设计一个集合的计算机装置,安装在室外变电站的被保护设备附近将其电流等模拟量在此装置转换成数字量后,通过网络传输到主控室,就可减少大量电缆。

3.5继电保护技术改善方向

在今后技术的创新中,对继电保护进行重新选型配置时,首先考虑的是可靠性、选择性、灵敏性及快速性,其次考虑运行维护调试方便,便于统一管理。优选经运行考验且可靠的保护,个别新保护可少量试行,在取得经验后再推广运用。

4.变电所综合自动化技术

现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。实现继电保护和综合自动化的紧密结合,它表现在集成与资源共享远方控制与信息共享。以远方终端单元、微机保护装置为

核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变电所的占地面积和设备投资,提高二次系统的可靠性。综合自动化技术相对于常规变电所二次系统,主要有以下特点:

(1). 设备、操作、监视微机化

(2). 通信局域网络化、光缆化

(3). 运行管理智能化

结语:

电力系统中继电保护要保证全系统的安全稳定运行。当前,随着电力系统的高速发展和计算机技术、网路技术及人工智能技术的进步,继电保护技术面临着更大的挑战。未来的继电保护技术是以计算机和微处理器为核心技术,以计算机、网络、系统、通信、自动控制理论为关键技术,其发展将出现原理突破和应用革命。

参考文献

1.许建安.电力系统继电保护[M].北京:中国水力电力出版社,2005

2.张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000

3.严兴畴.继电保护技术及其应用.科技资讯,2007

篇7

关键词:电力系统;继电保护自动化;应用

中图分类号:TM7文献标识码: A

引言

随着科学技术的发展,自动化技术被应用到电力系统的继电保护装置当中,使继电保护的功能得到了强化的同时,也给电力系统的安全运营提供了必要的保障。在电力系统中,继电保护所发挥的作用是不容忽视的,采用自动化策略提升继电保护的功能,适应了社会发展的需要。

一、电力系统继电保护的发展历史及现状

1、继电保护的装置在20世纪50年代到现在经历了50多年的时间,最初的形态是熔断器,继电保护的技术经过了很多年代的发展和不断完善,出现了四个比较重要的阶段:现在的继电保护的是计算机辅助装置,依次往前推,继电保护的形态分别是集成电路的继电保护的装置、晶体管式的继电保护装置、电磁式的保护装置。

2、目前,电力系统自动化是世界高科技领域的主要科技工程之一,它是当下专业研究领域的科研热点。其中电力系统自动化成功之处主要是指计算机系统的发明和创造,促进人类文明更快的进入了信息时代。计算机时代的发展改变了社会的发展模式,更改变了人们的生活方式。因此,在一定程度上来说,电力系统的自动化的发展程度彰显了国家的科技重视度和科技发展水平。电力系统自动化工程是电力工程的一个分支,电力系统自动化在各个行业都有非常广泛的应用,小到家电电路的设计,大到航空航天事业的发展,都有它的存在,都离不开它的支持。电力系统自动化技术的发展可以改善人们的生活,同时也实现了国家和民族的振兴,因此我们应该对电力系统自动化在继电保护中的应用给予足够的重视。

3、随着我国经济突飞猛进的发展,科学技术方面也不断实现了新的突破,同时由于国家也引进了一些新的高科技,我国的电力系统在自动化发展程度上实现了飞跃,这对于处于一线的工人来说既是机遇也是挑战,一线的工人在繁琐的工作程序中解脱了出来,但是首先要掌握先进的技术。伴随着电力系统工程自动化程度的提升,其在继电保护中发挥着越来越重要的作用,目前我们应该积极的探索电力系统的设计原则和发展前景,不断的提升电力系统的自动化水平,以便更方便更系统的将电力系统运用到继电保护中。

4、电力系统在各个行业中的应用越来越广泛,发展也越来越快,却给电力系统自身的发展带来不良的影响,持续增容和扩容,不同地区不同的地理环境下,环境的复杂化和不断变化使得电力系统的发展越来越滞后,电力系统自动化出现的问题也越来越多,继电保护的发展仍然存在停滞不前的状态,继电保护电力系统处于落后的局面中。

二、继电保护自动化技术在电网系统中的运用分析

1、继电保护自动化技术的运用

继电保护自动化技术的运用可分为几大模块,提出问题、分析探讨、安装调试、验收投运、运行维护和检修技改等。这几大模块的结合,是对继电保护自动化技术在电网系统中的运用调试和分析,以使继电保护自动化技术能够使得电网稳定的运行,下面具体分析几大模块的作用和运用。

(1)其实提出问题就是要体现它的优势所在,要求它能满足现代化电网的发展需要。这中间要安装很多现代化技术,尤其表现在全球定位技术和计算机远程遥控技术,这两者是保证继电自动化技术的必要条件。

(2)分析探讨是指在运用继电保护自动化技术时,要有着全局观,选择合适的造型,并且能够全方位的监控控制电网系统,还能够对电网缺陷分级处理,这就会使得电网运行的安全稳定。

(3)安装调试,这个环节是整个运用的关键,也是让继电保护自动化技术能发挥作用的最重要的一步,直接关系到电网的安全。由于现在是建设综合性很强的变电站,所以继电保护涉及到了直流系统、后台监控、测量表计、远动、五防等等设备,在调试中要做好对电网质点的控制和电阻电流参数的设置,将风险压制到最低点。

(4)验收投运,是指继电保护自动化技术运用的基本完成,只需通过对遥控和自动控制加强,对完成对数据的验收管理,为以后维护系统做好准备。

2、继电保护自动化技术在电力系统中对各个关键环节的运用分析

(1)研究对线路接地的保护运用,对于接地电流的性质不同,采取不同的应对措施,比如说小电流接地型只是自动预警,而对于大电流的则会切断电网系统,并及时处理,从而有效地保护电力系统。

(2)对发电机组的保护,这重保护决定着电网的供电稳定,所以对其保护也划分成两类,一是备用保护,这是对机组本身小部件的维护,一旦出现问题,继电保护自动化装置便会采取措施,预警的同时隔离故障,避免发电机组受到更大的伤害;另外一种是重点保护,这种保护模式是对发电机组全面的保护,一旦出现问题甚至会切断电源,保证机组的安全。

(3)对变压器的保护装置,主要涉及接地保护、短路保护和瓦斯保护,一旦电流电阻参数不正常,便会切断电源,保护变压器,以保证供电的稳定性和电网安全。

(4)继电保护电力系统中的母线,系统母线的作用是不言而喻的,其保护措施所采取的也是与上面不同的三相保护,并分为差动保护和相位对比保护两种方式,从而保证整个系统的供电正常。

三、电力系统继电保护的自动化安全管理

1、选型设计上要具有安全性

电力系统的继电保护装置采用自动化管理的模式,就需要在设计上根据实际的需要不断地完善。在实践管理当中,为了能够维持电力体统的高效率运行,就需要在设计阶段选择性能可靠的继电保护产品,质量优良的硬件设备可以确保电力系统能够稳定地在安全状态的运行。在设计观念上,还要将设计建立在统筹规划的思想基础上,通过对于包括信号的传输、计量控制等等环节的合理配置,使电力系统不但在可靠的状态下运行,而且还留有变电站改造扩容的空间。实施继电保护的自动化管理策略,要按照有关的技术要求,应用具有耐腐蚀性的、电导率较高的接地网,以避免由于继电保护的举动或者是误动而产生安全故障,导致设备被烧坏。监控设备的作用是保证所传输的数据信号可以在后台的显示器上显示出来,以供操作管理人员查看,并据此作出快速而准确的判断。

2、做好设备的安装调试工作

继电保护信息管理系统中包括有多个环节,每一个环节的设备要协调配合,包括直流系统、后台的监控系统以及测量表计等等,不但要在设计上根据实际需要有所完善,而且还要做好安装调试工作。对于新安装的继电保护装置要进行模拟实验,将80%的额定电压加入进行校验,分析可能发生的故障,特别是逻辑回路的正确性,一定要严格校验。由于计算机系统抗干扰的性能较低,这就容易受到环境的干扰。因此,对于工作环境的要求要相对较高,可以适当地采用电缆屏蔽措施,或者是在网线中合理地使用避雷器,以提升网络抵抗外力的破坏能力。

结束语

电力系统继电保护的自动化创新和发展是社会发展的必然需求,人民的生活质量水平在不断地提高,人们对电力系统继电保护的自动化也有了越来越高的要求,电力系统继电保护的自动化能够帮助人民安全用电,能够促进社会的全面的可持续发展。

参考文献

[1]王嵩,李昊.继电保护技术在电力系统中的应用与发展[J].科技致富向导,2012,(35).

[2]张敬.电子信息技术在电力自动化系统中的应用研究[J].中国电力教育,2010,(9).

篇8

关键词:电动机阀门 继电器保护 机电一体化技术总结

1 机电一体化技术发展历程及其趋向

机电一体化是机械、微电子、控制、计算机、信息处理等多学科的交叉融合,其发展和进步有赖于相关技术的进步与发展,其主要发展方向有数字化、智能化、模块化、网络化、人性化、微型化、集成化、带源化和绿色化。

1.1 机电一体化技术发展历程

1.数控机床的问世,写下了"机电一体化"历史的第一页;

2.微电子技术为"机电一体化''带来勃勃生气;

3.可编程序控制器、"电力电子"等的发展为"机电一体化"提供了坚强基础;

4.激光技术、模糊技术、信息技术等新技术使"机电一体化"跃上新台阶.

1.2 机电一体化发展趋向

1 数字化

微控制器及其发展奠定了机电产品数字化的基础,如不断发展的数控机床和机器人;而计算机网络的迅速崛起,为数字化设计与制造铺平了道路,如虚拟设计、计算机集成制造等。数字化要求机电一体化产品的软件具有高可靠性、易操作性、可维护性、自诊断能力以及友好人机界面。数字化的实现将便于远程操作、诊断和修复。

2智能化

即要求机电产品有一定的智能,使它具有类似人的逻辑思考、判断推理、自主决策等能力。例如在CNC数控机床上增加人机对话功能,设置智能I/O接口和智能工艺数据库,会给使用、操作和维护带来极大的方便。随着模糊控制、神经网络、灰色理论、小波理论、混沌与分岔等人工智能技术的进步与发展,为机电一体化技术发展开辟了广阔天地。

3 模块化

由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、动力接口、环境接口的机电一体化产品单元模块是一项复杂而有前途的工作。如研制具有集减速、变频调速电机一体的动力驱动单元;具有视觉、图像处理、识别和测距等功能的电机一体控制单元等。这样,在产品开发设计时,可以利用这些标准模块化单元迅速开发出新的产品。

2、机电一体化技术的主要应用领域

2.1数控机床

数控机床及相应的数控技术经过40年的发展,在结构、功能、操作和控制精度上都有迅速提高,具体表现在:总线式、模块化、紧凑型的结构,即采用多CPU、多主总线的体系结构。 开放性设计,即硬件体系结构和功能模块具有层次性、兼容性、符合接口标准,能最大限度地提高用户的使用效益。

WOP技术和智能化。系统能提供面向车间的编程技术和实现二、三维加工过程的动态仿真,并引入在线诊断、模糊控制等智能机制。

大容量存储器的应用和软件的模块化设计,不仅丰富了数控功能,同时也加强了CNC系统的控制功能。

能实现多过程、多通道控制,即具有一台机床同时完成多个独立加工任务或控制多台和多种机床的能力,并将刀具破损检测、物料搬运、机械手等控制都集成到系统中去。系统的多级网络功能,加强了系统组合及构成复杂加工系统的能力。以单板、单片机作为控制机,加上专用芯片及模板组成结构紧凑的数控装置。

2.2计算机集成制造系统(CIMS)

CIMS的实现不是现有各分散系统的简单组合,而是全局动态最优综合。它打破原有部门之间的界线,以制造为基干来控制“物流”和“信息流”,实现从经营决策、产品开发、生产准备、生产实验到生产经营管理的有机结合。企业集成度的提高可以使各种生产要素之间的配置得到更好的优化,各种生产要素的潜力可以得到更大的发挥。

3 机电一体化中继电器保护的现状与发展

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

机电一体化的发展历程见证了人类走向了高科技的时代,机电一体化化的发展趋势见证了人类对于高智能化的向往。

4 结语

机电一体化不是孤立的,它是许多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求。在走向高智能化的时代步伐下,机电一体化技术的广阔发展前景也将越来越光明。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。发展机电一体化,开发和生产有关的机电一体化产品。机电一体化产品功能强、性能好、质量高、成本低,且具有柔性,可根据市场需要和用户反映时产品结构和生产过程做必要的调整、改革,而无须改换设备。同时,可为传统的机械工业注入新鲜血液,带来新的活力,把机械生产从繁重的体力劳动中解脱出来,实现文明生产。

参考文献:

[1]李建勇.机电一体化技术[M].北京:科学出版社,2004;

[2]李运华.机电控制[M].北京航空航天大学出版社,2003;

[3]芮延年.机电一体化系统设计[M].北京机械工业出版社,2004;

[4]王中杰,余章雄,柴天佑.智能控制综述[J].基础自动化,2006;

篇9

关键词:电力系统;继电保护;分区域;系统结构;故障识别

中图分类号:TM77 文献标识码:A 文章编号:1009-2374(2012)32-0110-03

继电保护作为电网安全稳定运行的保障,其工作的关键是怎样能够迅速高效地对故障进行识别、隔离,使其能够最大限度地减少扩展,使故障的影响区域尽可能减小、损失尽可能降低。现在大部分电网系统都是由于继电保护的错误操作引发的扰动,这种情况在现在电网广域和线路高负荷运行的情况下尤其明显。电流在潮湿的环境下移动、继电保护错误操作很容易造成整个系统连环跳闸和系统扰动故障。

随着近年来广域电网的不断扩展,尤其是高压电网的不断扩大,广域电网的继电保护面临着诸多的问题。研究广域电网信息、改进和提高广域网继电保护的功能成为当下的一个重大议题。本文结合传统广域继电保护的功能和特征,从电力系统安全稳定地保障继电保护的需求和特点着手,在分析关于保护的基础上研究分区域继电保护的系统结构、功能特征和故障识别等问题。

1 广域电网的分区域继电保护

广域电网继电保护的主要原理是利用广域电网的同步测量信息,将这些信息进行整合计算,以此来识别系统中的故障部件,并且采用逻辑整合来有效地清除故障。广域电网的分区域继电保护常见的结构有三种形式:分布式、集中式、分布集中式。至于前两种形式的优势和不足在此不再一一赘述,本文主要分析分布集中式的系统结构及其

优点。

1.1 继电保护的系统结构

广域电网的分区域继电保护就是在整个电网范围内通过分区管理来实现整个网络电流的顺畅流通和整个电路的稳定、安全。分区域继电保护的结构类似蜂窝,它将整个电网划分为信息相互独立的部分,各部分分别受到应有的保护并且各部分间能够进行信息的交互,但信息的交互量仅是一小部分。这种结构不仅实现了各部分的独立保护,减少了系统信息的传输量,而且通过少量必要信息的交互实现了整体的控制,保证了整个电网从部分到整体的安全高效稳定运行。在构建广域电网分区域继电保护结构时,主要考虑了下面几个方面:

1.1.1 各区域的决策中心。分区域继电保护需要在每个小的区域内选定一个信息中心,该中心主要是进行区域信息的收集、分析以及进行决策,以保证本部分安全高效稳定的运行。在进行信息中心的选择时要综合考虑各方面的因素,包括输电系统间的连接关系、输电线路间的连接关系、通电系统所处的地理位置、气候条件等因素。分布集中式继电保护的决策中心一般会选在电网拓扑结构线路密集、节点较多的位置。

1.1.2 分区域的监控和保护范围。分区域继电保护不仅要实现本区域的近程保护功能,而且还要能通过少量的信息交互实现远程的保护功能。在进行继电保护设计时应尽最大可能使各部分能够解决掉自己部分的故障和问题,减少各部分的信息交互量,这样就要求各部分保护范围的设定能够覆盖整个电网范围。所以,在设定保护范围时,应以决策中心为起点,达到下一个线路的终点为宜。同时为了在后面电网的扩展中方便加入新的变电站,保护的范围可以适当大一些。

1.1.3 区域间的交互保护范围。我们知道分区域继电保护间要通过少量的信息传输来实现区域间的远程保护,虽然我们为了整个系统的效率要尽量减少这种信息传输量,但是为了保证整个电网系统的安全,这种信息的传输和远程的保护是十分必要的。在区域间为了确保信息的传输至少要有一条通信线路,这样才能够保证电流传输在通过区域边界发生故障时能够及时有效地得到解决。为了能够很好地解决边界故障问题,分区域间的远程保护范围应该尽量把所有进程保护范围的边界包含在内。同时还要结合各个电网系统的整体规划、运行方式、安全控制方式进行调整,以实现整体

最优。

1.2 继电保护的功能优势

分布集中式继电保护集合了分布式和集中式两种继电保护的功能优势于一体,能够更好地实现广域电网的稳定控制和安全保护。其各部分的功能优势我们可以从以下几个方面进行分析和研究:

1.2.1 智能电子设备。分区域继电保护所采用的智能电子保护设备主要的功能是对本区域的电流互感器、电压互感器以及短路器的运行状态和操作进行信息的采集、功能的分析、故障的检测和安全的控制。在分布集中式结构中,这种智能设备不仅能实现本区域的检测和保护,同时能够在互联网络中的其他区域实现整体的保护。这一功能是对分布式和集中式两种结构功能优势的结合。

1.2.2 区域集中决策功能。分布式继电保护只能够进行单一区域的信息收集、分析和决策,集中式的继电保护需要将整个网络的信息加以收集、分析然后决定这个故障部分应采取什么样的措施,这使系统的信息传输量大、效率低。而分布集中式继电保护集合了两者的优点,在各个区域能够针对部分采取高效的解决故障的措施,同时能够通过区域集中决策功能实现整个区域的信息互联,对整体层面的问题进行集中决策管理。

采用分区域分布集中式的继电管理,有效地解决了其他两种方式所面临的问题,实现了近程的准确高效的控制和远程的互联整体控制。使部分和整体的问题都能够得到高效精确的解决,使得今后范围更广、系统结构更加复杂的问题能够得到很好的解决。鉴于分布集中式继电保护的诸多功能优势,相信今后的电网会有更广阔的发展前景。

2 分区域继电保护的故障识别

分区域继电保护对于广域电网系统的问题故障识别主要的方式是各区域比较识别、综合识别、继电保护设备状态自检自评。

2.1 各区域比较识别

各个区域收集本区域当期的数据,并将这些数据与以往各期和给定的参考数据进行比较。如果本期的数据和以往各期及参考数据吻合说明系统的运行正常,继电保护只需对运行进行后续的检测而不用采取任何措施。如果数据出现了较大的误差说明该区域出现了故障,首先分析是区域内的故障还是整体的故障,针对区域内的故障保护器分析决定采取的措施,对于整个系统的故障保护器将信息传给集中决策中心。

2.2 综合识别

集中决策中心在整个层面上控制系统的运行,收集各区域中心传输过来的信息,通过分析收集的信息在整体层面上观测系统的故障从而制定整体决策。综合识别主要是确保各区域的远程保护能够得到高效的运行,确保整个系统的安全稳定。

2.3 继电保护设备状态自检自评

继电保护器在进行电网系统运行状况的检测控制时,还要通过自我运行状态的控制检测来评估系统自身的效率和功能,以确保其功能的发挥。

3 结语

分区域继电保护是广域电网保护系统的一大突破,在其控制保护下,相信更广更复杂的电网系统能够很好地运行,未来的电网将会是输送更快、功率更高的系统。

参考文献

篇10

根据不同的标准,继电器可以被分为以下几种类型:一是根据结构形式分类,继电器可以分为电磁型、静态型、感应型及整流型等几种类型。二是根据继电器的作用分类,继电器包括测量和辅助等两种类型的继电器。其中,测量继电器的作用是反映出电气量的变化情况,而依据测量继电器所反映出的电气量,测量继电器又可以分为电压、电流、频率及功率等几种类型的继电器。辅助继电器的作用是对为电力系统提供更好地保护,而根据继电器的不同作用,辅助继电器包括中间、事件及信号等三种类型的继电器。

2.电力系统中继电保护自动化技术的作用

随着经济发展速度的不断加快,社会对电力的需求量也在逐渐增加,而电力系统运行的安全性也显得更为重要。继电保护自动化技术作为一种较为常用的电力系统维护技术,其的应用对维护电力系统的正常运行有很大帮助。在电力系统中,继电保护自动化技术可以在电力系统出现故障时,及时、准确的摘除电力系统中出现故障的电力元件,这不仅保证电力系统无故障部分可以正常使用,也能够有效的避免电力系统因故障元件而出现更大的损失,还能够缩小因故障而停电的范围,并且能够及时发出故障警报,从而确保相关人员能够实施有针对性的解决措施。另外,在电力系统中,继电保护装置还具备监控功能,其可以及时、准确的反映出电力系统运行电压和电流的实际情况,也方便工作人员对电力系统中设备的运行状态作出准确的判断。利用继电保护装置对电力系统中的元件进行保护的时候,如果电力元件出现故障,则继电保护装置可以依据原定方案,及时发出跳闸或减少等正确的指令,这可以更好地提高电力系统运行的安全性。综合而言,电力系统中继电保护装置所起到的作用主要有三点:第一,在电力系统运行过程中,如果接受继电保护装置保护的电力元件出现问题,则继电保护装置可以及时向故障元件周围的元件继电器发出跳闸、减少等正确的指令,并将故障电力元件与电力系统进行分离,这不仅能够降低故障元件所造成的损害,减少电力元件所收到的伤害,也能够保证没有出现故障的电力元件可以正常工作。第二,在电力系统运行出现问题后,继电保护装置能够及时发出警报。同时,针对电力系统所出现异常情况的不同,继电保护装置也能发出不同信号,这可以方便维修人员及时作出处理,而且对于一些小故障,继电保护装置可以实现自行调整。另外,在电力系统发生故障的时候,继电保护装置可以及时将故障元件和电力系统进行分离,并缩小事故影响分为,确保电力系统中没有故障的元件可以正常工作,从而达到降低经济损失的目的。第三,电力系统中,继电保护装置所起到的监控作用,可以及时反映出电力设备的运行情况,也能够对电力设备的运行状态作出准确判断。

3.电力系统中继电保护自动化技术的应用

在电力系统中,继电保护自动化技术往往被用于对系统接地和变电设备的保护。电力系统线路的接地方式主要有两种,即小电流型和大电流型。假如电力系统线路接地保护是小电流型,则在发生故障的时候,继电保护装置能够及时发出警报,而电力系统还可以持续运行一段时间;反之,假如线路接地保护方式是大电流型,则在发生故障的时候,继电保护装置可以及时断开电源,从而对电力系统进行更好地保护。继电保护自动化技术在变电器保护中的应用主要体现在三个方面,分别是接地保护、短路保护和瓦斯保护。第一,接地保护。假如变电器的接地保护方式是直接接地,则必须要在变电器两侧设置零序保护动作;而假如变电器不是采用直接接地保护方式,则应采用零序电压保护对电力系统的运行进行防护。第二,瓦斯保护。变电器的瓦斯保护是指对油箱因故障而产生有害气体的保护,这需要依靠继电保护自动化技术来实现。在变电器油箱出现异常的时候,继电保护装置可以及时切断电源,并发出警报信息,从而方便维修人员及时作出处理。第三,短路保护。变电器的短路保护主要分为两种,即阻抗保护和过流保护。其中,阻抗保护是指在变压器内安装阻抗元件,在此基础上如果变压器出现异常,继电保护装置就能够及时作出跳闸处理,从而保护变电器。过流保护则是指在变电器电源两侧安装时间元件,以便当变压器电流过大的时候,继电保护装置能够及时切断电源。在电力系统中,发电器是最为重要的元件,也是重点保护对象。对发电机进行继电保护可以分为两个部分,即重点保护和备用保护。针对发电机的继电自动化保护主要体现在下述几个方面:一是解决发电机存在的失磁问题。二是利用纵联差动方式对发电机进行保护,而这种保护方式的应用是将发电机中性点和相位进行结合。三是安装接地保护装置,当发电机接地电流值超过一定范围的时候,继电保护装置可以及时采取保护措施。四是在定子绕组内安装继电保护装置,在此基础上如果发电机出现短路故障,则继电保护装置能够及时对其进行保护。发电机的备用保护措施主要分为两种,即短路故障保护和定子绕组负荷低保护。利用备用保护对发电机进行继电保护,可以有效避免发电机出现绝缘击穿等问题,而这对保证发电机和电力系统的正常运行有很大帮助。

4.结束语