数学建模的基本算法范文

时间:2023-12-20 17:31:45

导语:如何才能写好一篇数学建模的基本算法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学建模的基本算法

篇1

一、 写好数模答卷的重要性

1.评定参赛队的成绩好坏、高低,获奖级别, 数模答卷,是唯一依据。

2. 答卷是竞赛活动的成绩结晶的书面形式。

3. 写好答卷的训练,是科技写作的一种基本训练。

二、 答卷的基本内容,需要重视的问题

1 评阅原则:假设的合理性, 建模的创造性,结果的合理性,表述的清晰程度。三、 2 答卷的文章结构

0. 摘要

1. 问题的叙述,问题的分析,背景的分析等,略

2. 模型的假设,符号说明(表)

3. 模型的建立(问题分析,公式推导,

基本模型,最终或简化模型 等)

四、 4. 模型的求解

计算方法设计或选择;

算法设计或选择, 算法思想依据,步骤及实现,计算框图;

所采用的软件名称;

引用或建立必要的数学命题和定理;

求解方案及流程

5. 结果表示、分析与检验,误差分析,模型检验……

五、 6. 模型评价,特点,优缺点,改进方法,推广…….

7. 参考文献

8. 附录

计算框图

详细图表

……

3要重视的问题

0. 摘要。包括:

a. 模型的数学归类(在数学上属于什么类型)

b. 建模的思想(思路)

c . 算法思想(求解思路)

d. 建模特点(模型优点,建模思想或方法,

算法特点,结果检验,灵敏度分析,

模型检验…….)

e. 主要结果(数值结果,结论)(回答题目所问的全部“问题”) 表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;

打印最好,但要求符合文章格式。务必认真校对。

1. 问题重述。略

2. 模型假设

跟据全国组委会确定的评阅原则,基本假设的合理性很重要。

(1)根据题目中条件作出假设

(2)根据题目中要求作出假设

关键性假设不能缺;假设要切合题意

3. 模型的建立

(1) 基本模型:

1) 首先要有数学模型:数学公式、方案等

2) 基本模型,要求 完整,正确,简明

(2) 简化模型

1) 要明确说明:简化思想,依据

2) 简化后模型,尽可能完整给出

(3) 模型要实用,有效,以解决问题有效为原则。

数学建模面临的、要解决的是实际问题,

不追求数学上:高(级)、深(刻)、难(度大)。

u 能用初等方法解决的、就不用高级方法,

u 能用简单方法解决的,就不用复杂方法,

u 能用被更多人看懂、理解的方法,

就不用只能少数人看懂、理解的方法。

(4)鼓励创新,但要切实,不要离题搞标新立异

数模创新可出现在

建模中,模型本身,简化的好方法、好策略等,

模型求解中

结果表示、分析、检验,模型检验

推广部分

(5)在问题分析推导过程中,需要注意的问题:

u 分析:中肯、确切

u 术语:专业、内行;;

u 原理、依据:正确、明确,

u 表述:简明,关键步骤要列出

u 忌:外行话,专业术语不明确,表述混乱,冗长。

4. 模型求解

(1) 需要建立数学命题时:

命题叙述要符合数学命题的表述规范,

尽可能论证严密。

(2) 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称

(3) 计算过程,中间结果可要可不要的,不要列出。

(4) 设法算出合理的数值结果。

5. 结果分析、检验;模型检验及模型修正;结果表示

(1) 最终数值结果的正确性或合理性是第一位的 ;

(2) 对数值结果或模拟结果进行必要的检验。

结果不正确、不合理、或误差大时,分析原因,

对算法、计算方法、或模型进行修正、改进;

(3) 题目中要求回答的问题,数值结果,结论,须一一列出;

(4) 列数据问题:考虑是否需要列出多组数据,或额外数据 对数据进行比较、分析,为各种方案的提出提供依据;

(5) 结果表示:要集中,一目了然,直观,便于比较分析数值结果表示:精心设计表格;可能的话,用图形图表形式

求解方案,用图示更好

(6) 必要时对问题解答,作定性或规律性的讨论。

最后结论要明确。

6.模型评价

优点突出,缺点不回避。

改变原题要求,重新建模可在此做。

推广或改进方向时,不要玩弄新数学术语。

7.参考文献

8.附录

详细的结果,详细的数据表格,可在此列出。

但不要错,错的宁可不列。

主要结果数据,应在正文中列出,不怕重复。

检查答卷的主要三点,把三关:

n 模型的正确性、合理性、创新性

n 结果的正确性、合理性

n 文字表述清晰,分析精辟,摘要精彩

三、对分工执笔的同学的要求

四.关于写答卷前的思考和工作规划

答卷需要回答哪几个问题――建模需要解决哪几个问题问题以怎样的方式回答――结果以怎样的形式表示

每个问题要列出哪些关键数据――建模要计算哪些关键数据 每个量,列出一组还是多组数――要计算一组还是多组数……

五.答卷要求的原理

u 准确――科学性

u 条理――逻辑性

u 简洁――数学美

u 创新――研究、应用目标之一,人才培养需要

u 实用――建模。实际问题要求。

建模理念:

1. 应用意识:要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;

站在应用者的立场上想问题,处理问题。

2. 数学建模:用数学方法解决问题,要有数学模型;

问题模型的数学抽象,方法有普适性、科学性,

篇2

关键词:数学建模;计算方法;教学实践

中图分类号:G420 文献标志码:A 文章编号:1673-291X(2013)02-0232-01

一、《计算方法》课程的性质及改革的必要性

随着计算机的出现和迅速发展,在各种自然科学和工程、技术科学的发展中,“科学与工程计算”已经成为平行于理论分析和科学实验的第三种科学手段。不管是在高科技领域还是在一些传统的学科领域,数值计算都是一个不可少的环节。《计算方法》正是一门介绍科学计算的基础理论与基本方法的课程。与其他相关数学课程相比,该课程的理论和方法在其他专业课程中经常用到,而且也常常用来解决实际问题,它具有理论性、实用性和实践性都很强的特点。

(一)内容丰富、公式繁多

计算方法(又称数值分析)是数学的一个分支,它以数字计算机求解数学问题的方法与理论为研究对象,其内容包括:函数插值、函数积分与微分、线性方程组的解法、非线性方程组的解法、矩阵特征值与特征向量的解法,此外,还包括常微分与偏微分方程的数值解法等。它既有数学的高度概括性和严密的科学性,又具有实用性并具有高度的技巧性。公式繁多,不容易记忆。

(二)面向计算机

该课程重点研究数字计算机上使用的计算方法。注重实用性和计算效率,讲究算法的技巧性,保证算法的可靠性,重视方法的理论研究。因为算法上的区别可能会对误差的传播和计算结果的精度产生重要的影响。要求所提供的计算方法具有收敛的性质,相应的算法能够抑制舍入误差的干扰。

基于数值计算方法的上述特点,在学习此课程时,首先要掌握构造方法的原理、思想,注意算法的技巧并要与计算机的实际密切结合,也要重视有关计算方法基础知识和数学理论的学习。其次要重视实践,通过算例和动手计算,学会怎样使用数值方法在计算机上解决各类数学计算问题。

《计算方法》课程现已成为我国各类高等院校数学系和各类应用学科专业的一门必修课,但其教学并不尽如人意。很多学校都存在着学时少、内容多的问题,而数学专业的学生往往理论分析问题能力强,但理论联系实际和解决实际问题能力差。因此,对《计算方法》的教学实施改革显得尤为迫切。

二、数学建模思想对计算方法教学的影响

中科院院士李大潜教授告诉我们,数学作为一门重要的基础学科和一种精确的科学语言,是以一种极为抽象的形式出现的。这种极为抽象的形式有时会掩盖数学丰富的内涵,并可能对数学的实际应用形成障碍。要用数学方法解决一个实际问题,就必须设法在实际问题与数学之间架设一个桥梁。首先要将这个实际问题化为一个相应的数学问题,然后对这个问题进行分析和计算,最后将所求得的解答回归实际,看能不能有效地回答原先的实际问题。这个全过程,特别是其中的第一步,就称为数学建模,即为所考察的实际问题建立数学模型。

就《计算方法》课程而言,很多问题都是由现实问题而来的,这些问题的求解也必须要借助计算机才能进行,这就使得数学建模的思想较为方便地融入到《计算方法》课程当中。

三、教学中的实践

(一)选用适当的教材

针对上述在教学中遇到的学时少、内容多,选用一本合适的教材至关重要。根据专业性质的不同,需要强调的内容也不尽相同。对于数学类专业,算法的收敛性及稳定性应该得到关注。对于非数学类专业,就可以适当淡化抽象的理论,把重点放在算法思想的建立和实施过程上,以培养学生的学习兴趣,增强对方法的应用意识。

(二)采用“问题教学”的模式

为了提高学生的学习兴趣及动手能力,采用“问题教学”的授课方式,并付之实践。基本思路是:采用数学建模的思想和方法,从生产实践所要解决的实际问题出发,运用所学知识,通过归纳、分析、提炼等手段建立其相应的数学模型,从而提出相应的数学问题;然后,从理论上研究、讨论解决这个数学问题的基本思想、方法,分析该方法的优缺点及所能解决问题的类型,进而给出解决实际问题的数学思想、方法。这种教学模式不仅激发了学生学习数学,特别是计算数学的兴趣和欲望,还将教师扎实的理论知识与丰富的实践能力、解决实际问题的心得体会通过教师授课与学生实验这两个环节传授给学生。

(三)优化实验设计,提高动手能力

数学建模中不仅要求得到简化的模型,也要求对简化的模型有能够进行求解的计算方法。大多数模型手算是困难的,必须借助于计算机的处理。,将动手编程和软件运用相结合。《计算方法》课程中的算法可以由不同的软件进行实施,如Matlab、C 语言都是很好的,既能够体现算法在计算机上的精确实现得到的近似解,也符合课程的规范。让学生动手进行编程,可以提高使用计算机处理实际问题的兴趣、提高软件的运用能力及动手操作能力。但考虑到应该将计算结果用图像显示出来,以便于分析、检验和改进,且数学建模的很多问题是用Matlab 处理的,很多院校也使用Matlab 作为算法处理的软件。

综上,要用数学建模的思想引领计算方法课程的学习,应当采用循序渐进的方式,激发学生的学习计算方法课程的兴趣,增强他们的动手意识,提高他们用所学知识解决实际问题的能力,这才是我们要达到的目标。

参考文献:

[1] 李大潜.将数学建模思想融入到数学类主干课程[J].中国大学教学,2006,(1):9-11.

[2] 陈辉,李文宇,张传芳.数值计算方法[M].哈尔滨:哈尔滨工业大学出版社,2009.

[3] 关治,陈景良.数值计算方法[M].北京:清华大学出版社,2004.

篇3

关键词:小学数学;计算教学;有效策略

计算能力是小学生必须具备的基本技能,是学生今后学习数学的基础。数学中有些概念的引入需要通过计算来进行,数学中解决实际问题的解题思路、步骤、结果也通过计算来落实,几何知识的教学要涉及周长、面积、体积的求法,这些公式的推导与运用同样离不开计算,至于简易方程、比例和统计图表等知识也无不与计算密切相关。鉴于计算教学意义重大,我们在实践中进行了深入探索,总结出提高小学生计算能力的三个有效策略:

一、“循理”策略

“循理”策略就是遵循计算的道理和规律,具体是指通过学生的操作、思考和互动式学习,以及自主的探索交流来理解算理,再借助对算理的理解来总结算法。在实际教学中,如果教师对算理的指导不到位,就会导致学生在算理不明的情况下死记计算方法,从而严重影响了计算能力的形成。例如,34+25的教学,可先让学生自己用小棒摆一摆,3捆4根加上2捆5根,该怎样加?从“捆与捆加”“根与根加”过程中体会“相同单位的数才能相加”的道理,从而抽象出“34+25”的竖式写法。

教学中,我们要处理好算理和算法的关系,引导学生“循理入法”“以理驭法”,并通过动手操作,促进学生计算技能的形成。让学生在经历学具操作充分感知建立表象的基础上,抽象出竖式计算,不仅使学生领悟了算理,同时又为计算法则的概括打下了基础。

二、“语言参与”策略

“语言参与”策略是指学生在明确算理和算法之后的边说边练,“说”是指说算理与算法,“练”是指进行计算练习。语言参与练习分为三个步骤:第一步要在大声说出算理和算法的同时进行计算,语言要逻辑,能让同学和老师听明白;第二步是不出声,在心里说算理和算法,同时进行计算;第三步在练习的过程中不断简化心里的语言,最后达到只剩下数字和符号。

在实施该策略时应该注意:在实际操作中,老师根据计算教学的类型灵活应用语言参与策略,如果教学内容比较简单,那么计算能力较好的优秀学生可以直接进入语言练习的第二个环节,学习能力较差的学生在第一个语言练习环节中找一个学习好的学生做倾听的对象,当出现问题时要随时纠正,以达到最好的效果。

三、“建模”策略

所谓“数学建模”,就是建立数学模型的过程,包括从现实生活或具体情境中抽象出数学问题,再用数学符号表示数学问题中的数量关系和变化规律,以及求出结果并验证结果的过程。

篇4

关量词:数学建模;方法;研究;教学;兴趣

2l世纪是一个充满竞争地时代,竞争的关键是人才培养的竞争。因此.我国教育面临重大的机遇和严峻的挑战。传统高工专的数学教学在强调理论系统性的同时存在知识旧,内容单调和理论脱离实际的缺陷。迫切需要加以改革。飞速发展的现代科技与生产具有系统思维。实践能力和创造精神的高科技人才,掌握信息技术和善于解决实际问题是他们必备的素质。近几十年来。数学迅速向自然科学和社会科学的各个领域渗透,在工程技术、经济建设及金融管理等各个方面发挥着越来越重要的作用;数学与计算机技术相结合。形成了-种普遍的、可以实现的关键技术⋯ 一数学技术,并已成为当代高新技术的一个重要组成部分。而用数学解决各类问题和实施数学技术.数学实验均起这关键的作用。因此,为新世纪培养高质量、高层次人才,就不能不重视培养数学实验这一必备技能和素质,对理工、经济、管理学科,甚至一些人文、社会学科的大学生,都应该提出这方面的要求。我们深深感到必须对传统内容进行重新审视、加以扬弃、保留主要的基本内容、基本方法。开设数学建模选修课程,正式把数学建模纳入到课程常规教学中。使学生对数学知识与应用有整体的了解.从教学内容上扩大了学生的知识范围与应用能力。目的是让学生在初学数学阶段就接触一些实际问题.树赢理论练习实际的思想和具有初步的分析,解决实际问题的能力。

改革教学手段.充分发挥计算机的作用。我们在数学建模教学及培训过程中,注意培养学生熟练使用软件包和进行数据处理及计算的编程能力。将一些数学软件“Mathematica”、“Matlab”等作为常备软件.结合各自选修课内容传授给学生。这极大的增强了学生面向信息时代应具有的现代科技的计算机应用能力。与此同时。我们还将计算机包纳入技术数学教学过程中,即将传统教学中花费大世精力的人工积分、微分、微分方程初等解法、级数判定与求和等运算用数学软件包来完成。改革“教师讲、学生听(记笔记)、做习题,改习题,考试”的方式.在教学中适当插入讨论课.教学效果会更好。使学生充分了解这门课程的意义及学习方法.教师主要扮演一个质疑的角色(当然答疑,讲解仍然是需要的)。这样做首先是学生要独立学习一些材料.可增强学生的独立学习能力,其次,通过自学和报告.学生能很具体地了解这项题目的具体要求是什么.特别是作为最后成果——论文——应怎么写。

以学生为丰展开讨论.学生大多通过自学.对题目巾将会涉及到的数学、非数学知识有一个大概的了解.为了在讨论课上报告.也要求学生自己独立查阅有关文献.也培养了能力。教师在讨论课上要竭力提倡学生讨论、争辩、勇于提出自己想法的风气。这实质上是培养学生互相交流、互相学习、互相妥协的能力,这些能力的培养对今后的工作是极为重要的。

数学建模是讲授了《高等数学》、《线性代数》与《概率论》等相应课程后开设的独立实验课程,既是理论教学的深化和补充.也是科学研究的导引和支持.充分利用计算机和软件.具有较强的实践性。数学建模的目的足使学生掌握数学的基本思想和方法。利用归纳的方法和实验的手段学习数学和研究数学。数学建模 把数学看成是先验的逻辑体系,而把它视为实验科学,从实际问题出发,借助计算机和软件,通过白己设计和动予,体验数学发现的欢乐和挫折,提出自己的猜测并找出支持论据,从实验中学习、探索和发现数学规律.数学建模教学有以下几个明显的教学效果

一、数学建模促进相美课程的学习

计算方法足计算机课程重要的组成部分。数值分析与计算方法通常使用C语言等描述算法,复杂的算法描述甚为哕嗦,采用数学软件(Matlab,Mathematica,Maple,MathCAD等)的命令描述算法。既简单又能易于上机实验。求特征根与特征向量、样条与插值、方程和 程组求解等,数学软件中使用参数调用标准的函数或过程就可实现问题求解。用于直接计算或验证用算法语言编写的计算方法结果的正确性.颇有裨益。概率统计、规划优化、线性代数、微积分、平面几何与立体几何等科目。数学建模提供了问题求解的极住手段.对这些课程的辅助学习帮助极大。

二、数学建横促进科学问题的探索

自然科学中的许多前沿研究问题不少最终可以归结为某些数学问题。数学建模将这些应用问题的静态特性和静态特性用数据和图形的方式多方面描述,有助于问题的解决。比如离子通道实验反映给药后钾离子浓度的变化过程,用随机微分方程来描述,利用数学吏验模拟和仿真,辅助前沿课题的研究。经济均衡模型的分析和仿真.描述了市场经济的“看不见的手”的强大魔力。我们在课程穿插r诸如此类的我们的研究课题中的应用实例.可知学生已经去感受前沿问题的研究

三、数学建横培彝数学课件创作人才

远程数学教学系统需要制作火 的数学课件.制作数学课件存在的主要困难是:如何获得大量的数学对象(数学符号、数学公式,数学表格、数学图形)。数学建模的特点是利用数学软件(Matlab.Mathematica,SAS等),完成复杂的数值计算和符号运算。并分析大量精确的数学图形擞学表格,得到实验结论。数学软件的HTML、TeX、图形输出格式,可以直接用于数学课件的创作。我们在讲授用于数值计算和符号运算、制作图表的数学软件的同时,讲授了呵方便得到高质萤的数学符号和公式的数学排版系统(LaTeX、ams'~X等),由于不少学生已经熟悉网页制作软件(Flash.Firework、Dreamweaver等)和图形处理软件。学生提交的电子版的数学实验报告.梢加润色,顷刻成为高水平的数学课件样本。

四、数学建模得到大量实用软件

在日常生活和工作中,需要不少设汁数学的实用软件,包括绘图、统计、解题等软件。当前。应用统计人员涉及的诸如正态分布表之类的常用表格不少于十余张,每次都要手工查袭,编制电子版本的统计表.如果配以图形和统计特征描述.实用价值则更高。数学建模涉及多个数学分支.与实际应用联系密切,在授课是将这些应用背景需要的小程序告诉学生,学生非常乐于编写,而且表现出较高的专业水半。绘图、积分、微分、统计、方程和方程组求解等高级计算器的功能.在学生的数学实验业余作品——实用小软件中实现.可谓利人利己.小软件大功劳。当师生在共同欣赏这些作品时,喜悦的心情油然而生。教学实践表明,要成功地讲授好数学建模.发挥数学建模的教学效应,以下的教学方式行之有效、事半功倍。

一、详细介绍社会经济生活和现代科技的实际例子作为数学建模

的背景,让学生白行设计实验方案,独立或合作完成实验,这是课堂成功的关键。经济,社会、生活、信息、生物、化学、医药等应用模型,学生表现出极大的兴趣。学生束源千不同的学科,与所在专业相结合.可谓“它山之石.可以击玉”,具有难以置信的强大威力。

二、使用多媒体技术的电子课章。数和形结合的交互式电子课件.

既可用于报告和演示,又可用于实验和应用。数列和级数、迭代和逼近、加密和解密,这些代数过程神奇而实用,正是计算机的拿手好戏,制作的交互式电子课件,实际功用一箭双雕 交互式电子课件使得数学对象的点、线、面、体生动形象地表现:角度视图、投影图、动态图等难以口头或书面表述以及表达枯燥乏味的图形,采用计算机的图形技术和模拟仿真技术,以多媒体形式表现.表达效果叹为观止.上课的高质量无可非议。

三、配合介绍相关的技术与问题解决方案。除拓宽学生的视野外,可让学生掌握更多的本领。数学建横开设时.可能不会想到,学习数学实验后可以胜任数学课件的制作;可能也不会想到。学习数学建模后可以独立完成高质量的数学文章排版。其实,在讲授数学软件工具时。十分钟的题外话和现场演示,足以实现上述效果。

四、引导学生的思考和实验。可能有知识创新的产品和成果。数学建模时.我们既强调独立完成.叉鼓励共同讨论。青年大学生的热情和刨造力蓄势待发,教师无意中道出的一个应用举例,抛出小小的一个主意,学生集思广益。实验再实验,一个实用型成果或许由此诞生。互联网环境使用的积分器、图形器、解题机、查表器等等,并不是重大发明.但非常实用。

五、与最新的计算机技术,特别是软件技术相结合。是数学建模能向纵深方向发展的有力保证。学生对JAVA技术与网络编程用于数学实验,以及数学实验的Internet/Intranet网络化处理方式,都有强烈的好奇心和探索欲望。适当的点拨和辅导,学生乐于动脑和动手。实践能力骤然增强.此时的数学建横已跃上一台阶

总之,数学建横内容具有实用价值.数学建模课程授课可以生动有趣.数学建模可能有知识刨新的产品和成果。特别是促进相关数学课程的教学。应该在学生学习了相关课程后或者学习相关课程中开设数学建模,至少应该在现有教学内容教中安排一定的数学实验。

参考文献

[1]r石孙、张祖贵.数学与教育.湖南教育出版社,1989.

篇5

关键词:图形可视化;数学建模; MATLAB

中图分类号:TP301文献标识码:A文章编号:1009-3044(2012)13-3124-03

Applications of Graph Visualization Technology in Mathematical Modeling

SONG Li-juan, FANG Zhi-wei, MA Na

(School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, China)

Abstract: The paper introduce the main functions and examples of visualization software. The visualization software provide the powerful functions to mathematical modeling, such as numerical calculation,programming and graphical presentation.

Key words: graph visualization; mathematic modeling; MATLAB

图形可视化技术一直是数学及应用数学专业人员在科学计算时一直追求和喜爱的技术,为了使数值实验中的结果更加完美、更加准确,把人们从大量的数学符号、数学公式中解脱出来,人们既希望感受数据或函数的具体含义,也希望能将计算结果显示成具体的、直观的图形。因此,对于任何从事数学、应用数学和计算数学的人来说,掌握一些可视化方法和技术是非常必要的[1]。

本文从常用的图形可视化入手,介绍了可视化软件在数学建模中的主要功能,并且介绍了使用MATLAB软件完成的数学建模中的几个实验。

1图形可视化技术

对大多数用户来说,传统的图形图像制作软件,如3DS max,AutoCAD,Photoshop等,用户操作时简单方便、快捷,然而这些软件都是固化了一种或多种数学建模算法,这些应用软件的算法本身都存在着不同程度的缺陷或漏洞,这就直接影响了使用者的二次开发。对于一些需要在自身专业基础上的高级用户,如果希望在使用这些软件工程中能进行二次研发,将面临如软件版本过低影响工作效率、软件自身数学公式代码封装,缺乏灵活性等问题,例如:3DS max中的NURBS样条曲线函数,它是依赖于数学建模公式搭建的,虽然用户可以快速创建并且可以设置、调整或修改一系列参数,但是数学公式已经是3DSmax的封装代码,软件使用时只能按照对应的数学公式进行设计制作,并不能采用这些数学公式进行任意建模;又比如AutoCAD中的Spline命令,调用它可以快速绘制出光滑的样条曲线,用户也可以通过参数来控制曲线是封闭的还是拟合的,但是它在AutoCAD软件中的公式也是封装的。

2可视化软件应用于数学建模的主要功能

可视化软件在数学建模中主要具有数值计算、编程和图形演示功能。

数值计算是求数学问题近似解的方法与过程,大量的数值计算需要促使计算机的体系结构及性能不断提高和更新,而数值计算的研究内容也随着计算机的发展和应用范围的扩大而不断扩大;利用图形可视化软件中提供的标准的丰富的函数库,用户只需要了解函数功能,而不需要编写复杂的程序代码,甚至不需要考虑函数具体的实现算法,这样可以为用户或者更高级的数学科研人员节省了编程时间、提高了编程效率,为用户能解决更复杂的更特殊的数学问题提供了有效处理手段和编程环境;第二个主要功能是图形演示,图形演示是指利用数学可视化软件,可以在不同坐标系下绘制绘制二维、三维甚至更高维的图形,而且还可以实现动画设计等功能。

MATLAB简称矩阵实验室,是一种数学可视化软件,在1984年由美国的MathWorks公司出品的主要面对科学计算、可视化的商业数学软件[2],是一种数值计算编程环境。它在数学类科技应用软件中的数值计算方面的能力首屈一指,它的基本单位是矩阵,它的指令和数学、工程中的表达形式相似,所以在数值分析、符号计算、工程绘图、控制系统仿真、数字图像处理、数字信号处理以及通讯系统设计与仿真方面已经成为首选工具,同时也是从事数学方面的科研人员进行科学研究的有效工具[3]。MATLAB的图形工具箱可以对简单的点、线、面进行处理,也可以对二维图形、三维图形、四维表现图等进行着色、消隐、平滑、光照以及渲染等操作,所以MATLAB是一种开放的、集计算、可视化、仿真于一身的强大功能包。

3可视化软件在数学建模中的应用实验

3.1二维绘图

二维图形的绘制是MATLAB语言图形处理的基础,也是绝大多数数值计算中广泛应用的图形方式之一。最基本的二维图形指令是plot(y)。

例:多条曲线绘制

x1=0:0.1:10; y1=sin(x1);

x2=0:0.1:10;y2=cos(x2);

x3=0:0.1:10;y3=sin(x3)+cos(x3);

plot(x1,y1,x2,y2,x3,y3);

图1二维图形

3.2三维曲面绘图

在某一区间内绘制完整的曲面,而不是单根曲线,三维曲面绘图函数是surf。

例:被光照射带阴影的曲面图,[X,Y,Z]=peaks(30);surfl(X,Y,Z);

图2三维曲面

3.3四维表现图

对于三维图形,通常可以利用z=f(x,y)的确定或不确定的函数关系来绘制可视化图形,此时自变量是二维的。而在高等物理、力学等的研究当中经常会遇到v=v(x,y,z)的函数。为了表现四维图像,引入了三维实体的四维切片色图,它由函数slice来实现,其调用格式是Slice(X,Y,Z,V,Sx,Sy,Sz)。

例:可视化函数f=xe-x2-y2-z2,自变量的变化范围分别为-2<x<2,-2<y<2,-2<z<2。

4结束语

在计算机技术高速发展的今天,采用计算机将社会服务、机械制造、科学计算、商业活动等多方面的信息模拟出相对应的图像和图形,将有效的提高数学建模过程的效率,节省资源和成本,将是技术实践和理论的有机结合。利用可视化软件的绘图和数据可视化功能,在图形控制窗口上快速地、准确地绘制出各种曲线、曲面和表现图,可视化软件的使用使得抽象思维过程可视化,用户可以通过图形直接感觉到信息,为数学理论的升华作出了准确、完整、合理的感性准备,为用户在数学建模过程中培养了直觉思维能力[4,5]。所以,无论是对基础数学的教学研究,还是对应用数学或计算数学来解决实际问题,掌握一门数学可视化软件都是必不可少且意义重大的。

图3四维表现图

参考文献:

[1]钟启泉.信息教育展望[M].上海:华东师范大学出版社,2002.

[2]梁浩云.Mathematica软件与数学教学[M].广州:华南理工大学出版社,2001.

[3]阳明盛.MATLAB基础及数学软件[M].大连:大连理工大学出版社,2003.

篇6

关键词:最优化理论 数学 建模 探究

中图分类号:G642 文献标识码:A 文章编号:1672-3791(2015)09(a)-0236-02

1 建模与最优化

1.1 建模的含义与意义

数学中所说的建模就是运用数学的表达方式将客观存在的问题描述出来的整个过程。在这个描述的过程中,最重要的就是“建”,应该让学生的创造性思维在这一过程中被激发出来。建模不仅仅只是停留在数学知识上,而且它还在现实世界上更具有重要意义。

从传统来看在普通的工程技术方面,数学建模已然拥着有很重要的地位。但是,随着社会科技的发展,一些新技术的出现,例如:军事、医院、经济、生物等,这些新技术的出现往往伴随着新的问题产生。普通的数学模型显然已经不能解决这些新出现的新问题,如果能够将数学模型和计算机模拟相结合产生的CAD技术广泛应用起来便可以轻松的解开这些问题。由于其速度快、方便、实用等特点已经广泛的替代了传统手段。在高新技术方面,数学建模是不能被其他方式方法所替代的。

1.2 建模的基本方法

在数学建模的过程中可以运用的方式很多,如,类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数学规划、机理分析、排队方法、对策方法等等,在这里只简单介绍三种常见方法。

(1)机理分析法:从认识每件事物本质的不同开始,找到能够反应事物内部机理的规律。值得注意的一点是,机理分析并没有固定的模式的,是需要结合实际案例来进行科学的研究。

(2)测试分析法:经过多次反复的试验和分析,从中找到与提供的数据最为符合的模型。

(3)二者结合:选择机理分析建立模型结构,选择测试分析找到模型参数。

1.3 数学建模的步骤

确定一个数学模型的办法不只一个,根据问题的不同,就要学会选择建模的方式。即便是相同的问题也要从多个角度考虑,能够建立出多个不相同的数学模型,具体建模的方法和步骤如下。

第一,模型准备。如果要对一个问题建立数学模型,必须要提前了解该次建模所要达到的目的,然后要尽可能多的收集与之相关的问题进行分析,深入细致的调查与研究,尽量避免可能会发生的错误。

第二,模型假设。一般情况下一个实际问题会涉及到很多因素,但是要想转变为实际数学问题,不需要各个方面都考虑到,只需要抓住其中的主要因素,对其进行与实际想吻合的假设即可。

第三,模型建立。要以实际问题的特征为依据,用数学工具根据已有的知识和搜集的信息进行建立正确的数学结构,要明确决定使用的数学结构、数学工具的类型。只要能够达到最终所要的目的,选择的数学方法越简单越有利于构建数学模型。

第四,模型求解根据前几步所得到的资料,可以利用各种数学上的方式方法进行求解。在这个过程中,可以充分使用现代计算机等辅助工具。

第五,模型分析、检验。在得出结论后,要将结论与事实进行比对,避免造成过大误差,以确保模型的合理性、准确性以及适用性。如果与事实一样,就可以进行实际运用。反之,则修改,重新建模。

事实上,现实生活中的问题是复杂多样的,甚者有时千差万别,有时必然事件和偶然事件会共同存在其中。在探索某件事情的过程中,因为其不断地变化,所以一般不能轻易的求得变量之间存在的关系,建立方程。所以,在错综复杂的变量中,一定要要能够从这些变量中选择主因,确定变量,找出其中真正存在的隐含联系。

1.4 最优化的含义

最优化技术是近期发展的一个重要学科分支,它可以用在多种不同的领域,例如:经济管理、运输、机械设计等等。最优化的目标是要从这些多种办法中选出最简便的办法,将这个可以最简便达到目标的办法就叫做最优方案,寻找的这个最佳方法叫做最优化方法,关于这个方法的数学理论就叫做最优化论。在这个过程中必须要有两个方面:第一,是可行的方法;第二,是所要达到的目标。第二点是第一点的函数,如果可行的方法不存在时间问题,就叫做静态最优化问题,如果与时间相关,称之为动态最优化问题。

在日常生活和学习中,能用到最优化的有两个方面:一是在实际生活中所遇到的生产和科技问题,需要建立一个数学模型。二是在数学学习中所遇到的数学问题。如果我们单纯要解决第二类问题的话,资料已经足够的完善了。但是生活中多数属于第一类问题,是没有资料能够依靠的。而能够找到最优化解是实际问题中最重要的一步,否则技术的发展将十分困难。

2 建模最优化的应用

想要在实际中应用最优化方法,总共有两个基本步骤:第一,要把实际问题用数学模型建立出来,也就是用数学建模的方法建立解决问题的优化模型。第二,优化模型建设之后,要利用数学方法和工具解开模型。优化建模方法与一般数学建模有一定的相同之处,但是优化模型更有其特殊之处,所以,优化建模必须要将其特殊性和专业性相结合。同时,在解释问题的过程中也一定要注意将客观实际与数学知识结合起来。

同一个问题要通过不同的数学建模进行解决,得到更多的“最优解”,从而从其中挑选出最大价值的答案。所以说,只有建立独特的模型才能得到最大的创新价值。

典型的最优化模型可以描述成如下形式:

Min{f(X)|X∈D}

其中,X=(x1,x2,…xn)T为一组决策变量,xi(i=1,…,n)通常在实数域R内取值,称决策变量的函数f(X)为该最优化模型的目标函数;为n维欧式空间Rn的某个子集,通常由一组关于决策变量的等式或不等式描述,比如:

Minf(X)

s.t.Ci(X)≥0(i=1,2,…m1)

Ci(X)=0(I=m1+1,…m)

这时,称模型中关于决策变量的等式或不等式Ci(X)≥0(i=1,2,…m1)、Ci(X)=0(I=m1+1,…m)为约束条件,而称满足全部约束条件的空间Rn中的点X为该?

模型的可行解,称

即由所有可行解构成的集合为该模型的可行域。

称X∈D为最优化模型Min{f(X)|X∈D}的(全局)最优解,若满足:对X∈D。

均有f(X*)≤f(X),这时称X*∈D处的目标函数值f(X*)为最优化模型。

Min{f(X)|X∈D}的(全局)最优值;称X*∈D为最优化模型Min{f(X)|X∈D}的局部最优解,若存在δ>0,对X∈D∩{X∈Rn| }。

均有f(X*)≤f(X)。(全局)最优解一定是局部最优解,但反之不然。

数学建模以“建”字为中心,最重要的一点还在于如何将建立起来的数学模型利用数学工具求解,现实生活的数学模型往往涉及的无非是一个最优化问题,在原有现实给予的条件中,怎样得到最优解实际中最优化问题表现形式如下。

minf(X)

s. t.AX≥b.

以目标函数和约束函数存在的特征,这些问题可以分成各种类型,例如:线性规划、非线性规划等。但是,不管问题怎样变化,除去简单的数学基础理论解决办法和微分方程理论的话,最终只能选择最优化理论方式来解决这个问题。

在平时的生活中,最优化理论通常只会出现在管理科学和生活实践中的应用,而线性规划问题是因为各个方面都已经成熟,所以被人们广泛接受。因此,目前对非线性规划理论和其它优化问题探索较多。还记得高中的时候解决非线性的函数都是通过局部线性化来使问题简单化,现在解决非线性规划问题也是一样的,尽量将非线性规划问题局部线性化来解决。

下面求解指派问题最优化的例子。

例:分别让小红、小兰、小新、小刚4人完成A、B、C、D4项工作,各自完成各项工作所需要的时间如表1所示,现在应该如何安排他们4人完成各项工作,使得消耗的时间最短?

这类问题显而易见的就是指派问题 ,而经过建立模型后我们也会很清楚的意识到匈牙利算法是解决指派问题最简单的算法。如果用一般的方法求解,在这个过程中很可能遇到求解整数规划的分枝定界法或是求解0-1规划的隐枚举法,这个求解方式将会非常复杂。所以,可见所建立的数学模型非常关键。

下面采用匈牙利方式求解。

如此得到的最优指派方式是:小红D、小兰B、小新A、小刚C。

通过求解上面这个最优指派问题,让我们了解了运用数学模型的简单方式。模型求解成为数学建模之后最重要的一步,并且也是到了考验是否能对最优化理论知识完整求解的时候。同时,也通过上面的例子,解释了数学建模在解决最优化的实际问题中的广泛应用。该文所分析的例子只是数学建模中的一个代表性的应用,数学建模与平时生活所遇到的一些事物之间的联系是息息相关的,随着现代科学技术的飞速发展,相信数学建模思想越来越得到广泛的应用。

综上所述,在数学建模和最优化理论之间,二者是相辅相成、密不可分的关系,数学建模的过程不能离开最优化理论,最优化理论也需要建模的支持。数学模型在产生于生活和实践中,模型也会随着事物的改变而越来越复杂。因此,最优化理论也会根据模型建立的不断发展越来越完善。从另一方面看,最优化理论的不断完善也会影响着数学模型不断地提高与优化,为解决客观问题提供最为重要的一步。但是,距离目标还是有一定的距离,同时也显现出了这其中所包含的一些问题,比如说数学建模被其他专业接受的力度不够,受益面小等。要想解决这些问题,就必须对优化建模进行深一步的改革与探索。

参考文献

[1] 姜启源,谢金星,叶俊.数学模型[M].3版.北京:高等教育出版社,2003.

篇7

论文摘 要:介绍了应用型本科院校运筹学课程体系中存在的问题,给出了改革方法,简述了改革成效。对运筹学课程教学发展,培养创新型、复合型人才具有一定的意义。

1引言

《运筹学》是应用的重要分支,理论内容丰富,实践背景和应用范围涉及到、、军事、科学、科学等领域,具有鲜明的实践性和经济性。对于应用型本科院校来说,开设本课程的目的是让学生熟悉一些运筹学的基本模型、求解原理与方法技巧等,使学生能正确应用各类模型分析和解决实际问题。到目前为止,很多院校在运筹学课程的教学过程中存在以下问题:

1.1培养目标不明确

目前大多数应用型院校的数学系一般开基础数学与信息与计算科学两个专业,对于信息与计算科学专业并没有细分专业方向,因此培养目标中涉及工程计算、精算、分析、优化控制等能力的培养。但是,对于高年级的同学,如何根据其兴趣和能力进行合理分流、如何适应就业方向、如何适应考研方向,运筹学课程如何根据上述要求培养该专业学生的什么能力、如何培养等都没有明确的界定。

1.2课程设置不成体系

大多数应用型本科院校的信息与计算科学专业都会开设运筹学这门专业课,同时还会开设图与网络分析、组合优化、离散数学、数学建模等课程。但是,运筹学课程与上述课程都有重叠的内容,如图与网络分析、组合优化、离散数学与运筹学课程中的图论一章有重叠内内容,数学建模中有线性、非线性、等模型与之相关,应当如何设置这些课程,在教学过程中应当如何处理这些内容,目前都没有定论。

1.3教学方法太单一

大多数学学校该课程目前的教学方法比较单一,理论课虽然应用多媒体教学,但是只是带领大家“读ppt”、而且ppt内容完全是课本内容的化,很难提起学生的兴趣;实验部分完全是为了实验而实验,试验内容简单,没有新意,完全是验证性的,难以培养学生解决综合问题的能力与创新能力。

鉴于以上因素,有必要对运筹学课程教学体系进行改革,以适应培养创新型、复合型人才的需要。

2改革建议

2.1明确培养目标

在信息与计算科学专业培养目标的基础上,细化人才培养方案,对于高年级的学生,根据其能力与兴趣、就业期望、考研等目标,可以设置运筹学专业方向,主要培养学生应用运筹、优化、控制等知识去解决实际问题的能力,尤其是建立数学模型解决实际问题的能力,能够在、企事业、科研机构等部门从事系统分析、规划、设计、建模、评估、控制和决策等工作,或者考运筹学与控制论方向的研究生。

2.2设置运筹学课程体系群

鉴于运筹学与图与网络分析、组合优化、离散数学、数学建模等课程的密切联系,可以考虑在教学计划里设置运筹学课程体系群,将这些课程综合考虑,召集这方面的相关教学骨干讨论这些课程教学内容设置方面的问题,使运筹学的教学能有的放矢,既要满足这些课程知识面方面广度的要求,又能明确相关知识教授的深度方面的需求,更好的为这些课程服务。例如,鉴于学时的限制,在运筹学图论章节里面可以涉及图与网络分析、组合优化等课程的知识面,但是对于具体的公式、定理理论的详细证明可以在图与网络分析课程中重点介绍,对于一些优化算法的实现、算法的研究现状、算法的改进等可以在组合优化课程中详细介绍。鉴于运筹学课程实践性的特殊性,注意加强其与数学建模、数学应用软件(Mathematic)课程的联系,三个课程相互结合,培养学生利用运筹学优化理论、优化方法建立数学模型并用Mathematic编程解决实际问题的能力。

2.3创新教学方法

在教学方法方面,推广启发式教学,如信息接受法、复现法、问题叙述法、局部探求法、PBL教学法等,提高学生的学习兴趣。首先,理论课的多媒体教学要结合板书,充分认识到多媒体只是辅助教学,很多理论公式的推导仍然需要板书才能表达的淋漓尽致;对于多媒体课件一定要避免照本宣科,避免原版教材的电子话,要根据教学的需要合理选择内容,课件还要能富裕变化,能吸引学生的兴趣。其次,对于实验教学,一定要增加综合性试验的比例,让学生在用软件编程解决基本优化模型(如线性规划、灵敏的分析、运输问题等)的基础上,能够尝试创新改进算法,提高求解精度。最后,增加案例教学,以实际生活中的案例为课题,引导学生建立运筹优化的数学模型,并能编程求解,从而提高学生综合能力以及创新能力。

3改革的成效

近年来我院尝试对运筹学课程体系改革,09年获得徐州工程学院教研课题立项一项;09年运筹学精品课程也顺利通过验收;在徐州工程学院09版人才培养方案中明确将信息与计算科学专业分为三个专业方向,运筹学控制论方向便是其一;近年来院学生在美国大学生数学建模竞赛、全国大学生数学建模竞赛、苏北数学建模竞赛中屡获佳绩。

4小结

篇8

关键词:系统建模与仿真;Petri网;课程教学方法

作者简介:刘飞(1976-),男,山东平度人,哈尔滨工业大学控制与仿真中心,副教授,博士生导师。(黑龙江 哈尔滨 150080)

基金项目:本文系国家自然科学基金项目(项目编号:61273226)的研究成果。

中图分类号:G643.2 文献标识码:A 文章编号:1007-0079(2014)05-0099-02

Petri网是由德国科学家C. A. Petri于1962年在其博士学位论文“自动机通信”[1]中首次提出的,后来,Petri网为众多计算机科学家所认识和重视,成为计算机、自动化等学界的热门研究课题。Petri网已经广泛应用于计算机网络、通信协议、软件工程、柔性制造系统、离散事件动态系统、生物系统等众多领域。[2,3]目前,许多高校都开设了Petri网相关课程,但是他们通常只关注Petri网的理论和应用。与之不同的是,本课程“基于Petri网的系统建模与仿真”不仅讲授Petri网的基本理论和方法,而且重点讲授如何利用Petri网实现系统建模与仿真,目的是让研究生学习和掌握一种可视化的数学建模语言和方法,培养学生良好的思维习惯和逻辑能力。本文将对基于Petri网的系统建模与仿真课程的教学从教学目的、内容、方法等多个方面进行探讨和研究。

一、基于Petri网的系统建模与仿真课程的教学目的

Petri网是一种重要的离散事件建模方法,已广泛应用于各个领域的建模与仿真中,因此,笔者在教授本课程时,要教给学生一种强大的可视化建模与仿真方法,为学生开展建模与仿真研究奠定坚实的基础。

第一,通过课程学习让学生全面了解该领域研究现状、前沿、采用的主流研究方法,以及研究资料收集的一般途径和整理研究资料的常用工具。

第二,通过课堂讲授、文献讲解培养学生掌握Petri网的理论和方法;学习并掌握Petri网的仿真算法设计和实现;最终掌握基于Petri网的系统建模、仿真和分析方法;让学生熟悉这些方法的主要应用过程和应用范围,提高研究生对科学研究工作的系统认知。

第三,结合实验利用各种实例使学生能够在各自的领域内实际运用Petri网。Petri网是控制、计算机等多个学科中的重要工具,在多个领域具有重要的应用价值,掌握其应用能够为学生学习和今后工作打下基础。

二、教学内容的创新

本课程主要是讲授如何利用Petri网来实现系统的建模与仿真。由于教学目的与其它已有Petri网课程的教学目的不同,因此需要对教学内容进行创新。针对上述教学目的,本课程的讲授主要分为以下两个部分。

第一部分讲授Petri网的基本知识,包括概念、结构属性、行为属性和分析方法等,从而使学生首先了解和掌握Petri网的基本理论,为下一部分的讲授和Petri网的实际应用打下基础。

第二部分主要从系统建模与仿真的角度来讲授Petri网。首先讲授包含Petri网的各种扩展的建模框架,然后对随机、连续、有色等各种不同类型的Petri网分别进行讲授。讲授过程中重点关注如何利用各种不同类型的Petri网来建模不同应用领域的实际系统,如何设计不同的仿真算法来实现系统的仿真和分析等,最终使学生掌握基于Petri网的系统建模、仿真和分析方法。本课程的主要内容可以概括为图1。

本课程由哈尔滨工业大学控制与仿真中心开设,该课程的讲授将密切联系实际的工程项目,因此需要学生进行大量的计算机建模与仿真实验。

三、提高教学效果的措施

结合本课程的理论与工程密切结合的特点,笔者建议从以下几个方面开展教学活动。

第一,案例式课堂教学:根据本课程的具体教学内容,尽量多设计一些典型的案例,利用案例进行课堂讲授或者进行小组课堂讨论。例如,在讲授随机Petri网时,可以设计排队系统、Lotka-Voltera系统等多个案例来讲授随机Petri网的基本概念以及如何设计随机仿真算法。这样学生就会容易理解为什么会应用随机Petri网,如何设计和实现一个随机仿真算法等问题。

第二,研讨式文献阅读:针对课程的相关内容,给学生提供与之密切相关的典型学术论文,要求学生分组阅读和讨论,并递交简短研究报告,培养学生的科学研究能力。例如,针对文献,[3]让学生阅读并理解如何使用不同类型的Petri网来建模与分析同一个生物系统,从而使学生加深理解不同类型Petri网的建模能力。

第三,工具软件应用:Petri网是一种图形化建模软件,离不开工具的支持。因此,从课程的开始,就要求学生学习自己开发的工具软件Snoopy[3]的应用。利用Snoopy可以建立和分析该课程中所有类型的Petri网。不仅如此,与Snoopy配套的相关软件工具还可以对Petri网从行为属性、结构属性、模型检查等多个方面提供自动化的分析功能。针对课堂的每个知识点,要求学生能够自己应用工具软件去建立和分析Petri网模型。这不仅锻炼了学生使用工具软件的能力,更重要的是加深了学生对知识点的理解。

第四,计算机实验:本课程需要进行多个计算机实验,如连续仿真算法设计与实现、随机仿真算法设计与实现、利用Petri网建立相关系统的概念模型等。针对每个实验,需要为学生提供足够的上机时间,让学生去自己编程实现相关的仿真算法或者建立相关的模型进行仿真和分析等。不仅安排学生在实验室统一进行计算机实验,而且通过将实验进行分割要求学生平时自己安排时间完成相应的模块。此外,对于每个实验,都让学生分组完成,但是同一小组的学生需要分工明确。

第五,结合科研项目教学:目前,Petri网已经大量应用于现在正在进行的科研项目中,如复杂仿真系统概念建模与分析、仿真剧情校核与分析等。为了让学生深刻理解理论与实践的结合,有必要从科研项目中提取相关的研究内容,让学生去讨论和实践。例如,针对该课程的需要,对相关科研项目中的模型进行模块划分,然后让学生充分了解课题的背景,完成相应的模块。最后还要求学生对此做出总结,并汇报各自的心得。

第六,论文指导:让学生阅读典型的学术论文,引导他们提出研究问题,然后书写科研论文,从而培养他们科学研究的习惯和能力,这也可以作为课程的考核结果。如果有必要,可以鼓励学生发表与课程学习相关的学术论文。

第七,积极指导学生查询Petri网相关的期刊和会议等,扩展学生的知识面,引导他们早日进入科学研究的殿堂。

四、理论和实践相结合的考核方式

考虑到本课程理论与实践密切结合的特点,采用以下考核方式:

课程考试成绩:开卷考试,该成绩占课程总成绩的40%。

课堂讨论成绩:根据学生在课堂参与讨论的具体情况给定成绩,评分标准为积极参与次数、表达能力、分析能力等方面,该成绩占总成绩的20%。

Petri网课程论文成绩:根据学生提交的Petri网课程论文的原创性、文献综述的全面性、撰写论文的规范性、研究内容的系统性情况给定成绩,该成绩占总成绩的20%。

实验成绩:本课程是一门工程实践课程,需要进行多个计算机实验,因此实验成绩在最终考核中应该占有一席之地,如20%。

五、面向应用自编讲义

“基于Petri网的系统建模与仿真”是航天学院控制科学与工程学科的一门研究生课程,是硕士阶段研究生重要的理论与应用密切结合的课程,在培养高素质应用型、综合型人才方面起着重要的作用。但是目前,还没有任何一本教材能够完全覆盖所有的教学内容,因此笔者结合相关的文献编写了自己的讲义。

教材不仅分析了Petri网课程的主要知识点,还把知识传授和能力培养有机地结合起来,由从前的“知识型”讲授模式转向“知识能力型”,从而培养学生发现问题、解决问题的能力,提高学生的学习兴趣和创新思维,使学生能扎实地掌握和灵活运用所学知识。

教材是以服务教学为目的,在整体上形成知识网络或知识链,一方面保持自身的系统性,另一方面与直接关联的实际操作内容上相衔接,结合实验利用各种实例使学生能够在各自的领域内实际运用Petri网,使教材在内容组织上形成有机整体,并具有强大的可操作性。其中,Petri网的基本理论部分参考文献;[2,4-6]随机Petri网部分参考文献;[7-9]连续Petri网部分参考;[6,9]有色Petri网部分参考;[9,10]针对每种网类还加入如何利用Petri网实现系统建模与仿真。

六、德国的Petri网课程教学

Petri网为德国人所提出,并且德国在很多高校都开设了该门课程。根据笔者在德国的学习和工作经历,认识到德国大学的Petri网教学主要存在以下几个特点:课堂上老师与学生充分互动,使得学生通常能够在课堂上深入透彻地掌握所讲授的内容;充分利用Petri网工具来辅助课堂教学,认真细致地讲解如何用Petri网建立和分析每一个实例;将学生进行分组,合作完成课程作业和实践项目,并在课堂上进行讨论,分享心得。

这些好的教学手段都是应该借鉴的。在教学过程中,笔者将充分利用上述这些宝贵的经验来提高教学效果。

七、总结

本文对研究生课程“基于Petri网的系统建模与仿真”的教学进行了一些探讨,希望与同行进行交流或对同行提供一定的参考。由于该门课程具有较强工程背景,因此在讲授时不能完全采用传统的教学习惯,必须充分考虑理论与实践的密切结合。在以后的教学工作中,笔者还要根据学生的反应继续探索适合的教学手段和方法,为培养具有创新能力和研究能力的学生做出贡献。

参考文献:

[1]C.A.Petri.Kommunikation mit Automaten [D].Institut fu?r instrumentelle Mathematik,Bonn,1962.

[2]T.Murata.Petri Nets:Properties,Analysis and Applications[J].Proc.of the IEEE,1989,77(4):541-580.

[3]Chen Ming,Hofest? dt, Ralf (Eds.).Approaches in Integrative Bioinformatics-Towards Virtual Cell[M].Berlin:Springer,2013.

[4]M.Heiner,M.Herajy,F.Liu,等.Snoopy - a unifying Petri net tool [A].Proc.of PETRI NETS 2012,LNCS 7347[C].Berlin:Springer,2012:398–407.

[5]吴哲辉.Petri网导论[M].北京:机械工业出版社,2006.

[6]袁崇义.Petri网原理与应用[M].北京:电子工业出版社,2005.

[7]M.Heiner,D.Gilbert,R.Donaldson.Petri Nets for Systems and Synthetic Biology [A].LNCS 5016[C].Berlin:Springer,2008:215-264.

[8]林闯.随机Petri Nets和系统性能评价[M].北京:清华大学出版社,2005.

篇9

数学是研究现实世界中数量关系和空间形式的科学。

数学以抽象的形式,追求高度精确、可靠的知识。抽象并非数学独有的特性,但数学的抽象却是最为典型的。数学的抽象舍弃了事物的其他一切方面而仅仅保留某种关系或结构,同时,数学的概念和方法也是抽象的。

数学是在对宇宙世界和人类社会的探索中追求最大限度的一般性模式,特别是一般性算法的倾向。这种追求使数学具有广泛的适用性。同一组偏微分程,在流体力学中用来描写流体动态,在弹性科学实验中用来描写振动方程,在声学中用来描写声音传播等等。

数学作为一种创造性活动,具有艺术的特征,具有幽美性。英国数学家和哲学家罗素对数学的幽美性有过一段精僻的话:“数学不仅拥有真理,而且拥有至高无尚的美――一种冷峻严肃的美,就像是一种雕塑……这种美没有绘画或音乐那样华丽的装饰,它可以纯洁到崇高的程度,能够达到严格的只有最伟大的艺术才能显示的完美境界。”

最近几十年来,由于计算机技术的高速发展,数学的地位更是发生了巨大的变化。科学的本质是数学,现代科学的一个重要特征就是数学化,高技术从本质上就是数学技术,现代数学已不再仅仅是其他科学的基础,而是直接发挥着第一生产力的作用。

当前工科的高等数学教学的现状

工科数学的教学,尤其是高等数学教学,就其内容而言是比较完备与定型的。高等数学是以讨论函数微积分为主要内容的一门学科,主要内容是函数、极限、连续、导数、微分、积分、向量代数与空间解析几何、微分方程等。这些内容不仅是工科各专业课的理论基础及数学表达语言和工具,也是学生从基础教育思想向高等教育思想过渡,从有限的、形象的思维形式向无限的思维形式过渡的一门承上启下的基础理论课程。但是,过分强调这一点,导致在数学计划中加入越来越多和越来越细的内容。通常是,老的内容不减,新的内容又必须插入,学生的负担越来越重。然而却有不少学生带着数学到底有什么用的困惑,在沉重的学习负担下感到数学难懂又枯燥,学习兴趣日下。一部分学生上课不听,作业抄抄,考试临时抱佛脚。考试抑或没通过,即使挠幸通过,也是学得快忘得更快。虽然有的学生严格按照老师的要求好好学习了,考试也许得个满分,但一旦碰到以数学为工具解决各种实际问题时,也会束手无策,不知从哪儿下手。

数学建模和数学建模竞赛

鉴于以上现状,我校从1998年开始尝试搞数学建摸。其实刚开始时,不是为了参赛,而是想提高学生学习的积极性。1999年开始了数学建模选修课,2000年领导要我们组队参加建模。当时,抱着摸石头过河的心态组织5个队参加,获得1个省一等奖,1个省二等奖,2个省三等奖,1个成功参赛奖。2001年,9个队参加并全部得奖:1个国家一等奖,2个国家二等奖,3个省一等奖,另外均为省二等奖。2002年,我们组织了10个队参加,又一次全部得奖:1个国家一等奖,3个国家二等奖。2003年组织13个队参赛,又是满堂红:4个队获国家大专组二等奖,6个浙江省一等奖,3个省二等奖。通过这几年的组队比赛,我们摸索出了这样一条比较适合高职高专的方法。

(1)讲高等数学时渗透建模思想

我校根据专业特点,采用了两套教材:

理科:《高等数学》(上、下)主编:盛祥耀

高等教育出版社

《概率论与数理统计》第二版常柏林等编

高等教育出版社

《线性代数》彭玉芳等编高等教育出版社

三本书总学时:130课时。

文科:财经类专科试用教材

《微积分》李志照等编高等教育出版社

《线性代数》张政修等编高等教育出版社

《概率论与数理统计》何蕴理等编高等教育出版社

三本书总学时:110课时。

抱着专科学校会用为主的目的,1998年我们在全校的文理科班中,尝试在上课时放弃一些繁琐的证明,见缝插针的插入一些简单的小型建模案例。在讲完函数这一节时,怎样建立函数关系式即俗称的应用题多讲多练;在讲述完连续函数的性质后,向同学们介绍了“椅子能在不平的地面上放稳吗?”等小模型;导数的定义、导数的思想方法在建模时经常用到,插入“如何预报人口的增长” 模型,介绍Malthus模型及Logistic模型;导数的最值讲完后,插入“不允许缺货的存贮模型和允许缺货的存贮模型”“森林救火模型”;定积分的概念,讲完书上的引例后,以我们学生的参赛论文“飞越北极”“横渡长江”为例子,讲解定积分的分割、近似、求和、极限思想在建模中的应用。结合“报童的诀窍”讲授积分上限函数。而微分方程这一章,更是渗透建模思想的好地方:“正规战与游击战”、食饵――捕食者模型等均可以在此处介绍。提高学习兴趣的同时,对学有余力的同学则起到了抛砖引玉的作用。在讲授《线性代数》、《概率论与数理统计》时,我们也作了同等的尝试。让学生从小问题入手去体会,学习应用数学的技巧。一年下来,不管是我们上课的教师还是学生,明显觉得数学有趣了,学习积极性提高了。

篇10

关键词:除法计算;数学;思想方法

计算能力指不仅能正确计算,掌握基本的技能,而且能理解算理,能根据条件寻求合理的计算途径以及通过计算发展学生的思维,并能将在计算中领悟到的思想方法迁移到其他问题中解决。本文结合计算教学,对如何挖掘学生的思维,如何熔炼思想方法进行初步的研究与思考,现从“除法”这种运算谈谈自己的做法:

一、渗透数形结合思想,将直观图形和抽象算理相融合

小学生的思维以具体形象为主,尤其是低年级的学生,他们的抽象思维水平依赖于形象或表象的支撑。而“除法”这种运算是很抽象的,教学时需遵循其认知规律,通过数形结合的方法,在画中学,学中明理,借助直观的图形帮助学生理解算理,形成算法。这其实是将抽象的数学语言与直观的图形结合起来,使画图成为解决问题的一种策略,那么,数形结合思想就成为他们解决问题、认识未知的有力武器。

二、渗透转化思想,实现算法多样化

转化是除法计算中常见的策略和思想,小数除法转化为整数除法,分数除法转化为分数乘法。在问题转化时又要从需不需要转化、转化成什么、怎样来转化这三个步骤引导学生适时运用此策略。因此,在计算教学中适时渗透转化思想,使计算成为发展学生思考、培养学生解决问题能力的载体。

三、渗透归纳思想,整体把握除法计算教学的本质

数学学科的严谨性和系统性要求数学教学必须从整体上把握教学的内容,引导学生逐步归纳,培养学生的概括能力,渗透从局部到整体的归纳思想。在计算教学中交流算法,优化算法后要引导概括,将算理抽象为算法,归纳、建模,在建模的过程中促进知识的优化。同时让学生进行比较,学会联想,学会迁移,积累经验,在反思中寻找解决问题的共同点,感悟知识背后的思想方法,获得对知识的整体性认识。

计算教学是小学教学内容的一个重要组成部分,如果只注重技能就弱化了教育的意义,应注重超越技能之外的更有价值的东西――知识背后熔炼的思想。而数学思想方法的渗透有利于把握数学学科的基本结构,也有利于学生从数学活动中提炼出数学的规律,并在经历中形成这样的思维习惯。