数学建模常用的算法范文

时间:2023-12-19 17:46:40

导语:如何才能写好一篇数学建模常用的算法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学建模常用的算法

篇1

全国大学生数学建模竞赛以辉煌的成绩即将迎来她的第17个年头,她已是当今培养大学生解决实际问题能力和创造精神的一种重要方法和途径,参加大学生数学建模竞赛已成为大学校园里的一个时尚。正因如此,为了进一步扩大竞赛活动的受益面,提高数学建模的水平,促进数学建模活动健康有序发展,笔者在认真研究大学生数学建模竞赛内容与形式的基础上,结合自己指导建模竞赛的经验及前参赛获奖选手的心得体会,对建模竞赛培训过程中的培训内容、方式方法等问题作了探索。

一、数学建模竞赛培训工作

(一)培训内容

1.建模基础知识、常用工具软件的使用。在培训过程中我们首先要使学生充分了解数学建模竞赛的意义及竞赛规则,学生只有在充分了解数学建模竞赛的意义及规则的前提下才能明确参加数学建模竞赛的目的;其次引导学生通过各种方法掌握建模必备的数学基础知识(如初等数学、高等数学等),向学生主要传授数学建模中常用的但学生尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。另外,在讲解计算机基本知识的基础上,针对建模特点,结合典型的建模题型,重点讲授一些实用数学软件(如Mathematica、Matlab、Lindo、Lingo、SPSS)的使用及一般性开发,尤其注意加强讲授同一数学模型可以用多个软件求解的问题。

2.建模的过程、方法。数学建模是一项非常具有创造性和挑战性的活动,不可能用一些条条框框规定出各种模型如何具体建立。但一般来说,建模主要涉及两个方面:第一,将实际问题转化为理论模型;第二,对理论模型进行计算和分析。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如下图1来表示。

为了使学生更快更好地了解建模过程、方法,我们可以借助图1所示对学生熟悉又感兴趣的一些模型(例如选取高等教育出版社2006年出版的《数学建模案例集》中的案例6:外语单词妙记法)进行剖析,让学生从中体验建模的过程、思想和方法。

3.常用算法的设计。建模与计算是数学模型的两大核心,当模型建立后,计算就成为解决问题的关键要素,而算法好坏将直接影响运算速度的快慢及答案的优劣。根据竞赛题型特点及前参赛获奖选手的心得体会,建议大家多用数学软件(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS等)设计算法,这里列举常用的几种数学建模算法。

(1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法,通常使用Mathematica、Matlab软件实现)。(2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)。(3)线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)。(4)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,通常使用Mathematica、Maple作为工具)。(5)动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中,通常使用Lingo软件实现)。(6)图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。

4.论文结构,写作特点和要求。答卷(论文)是竞赛活动成绩结晶的书面形式,是评定竞赛活动的成绩好坏、高低,获奖级别的惟一依据。因此,写好数学建模论文在竞赛活动中显得尤其重要,这也是参赛学生必须掌握的。为了使学生较好地掌握竞赛论文的撰写要领,我们的做法是:(1)要求同学们认真学习和掌握全国大学生数学建模竞赛组委会最新制定的论文格式要求且多阅读科技文献。(2)通过对历届建模竞赛的优秀论文(如以中国人民信息工程学院李开锋、赵玉磊、黄玉慧2004年获全国一等奖论文:奥运场馆周边的MS网络设计方案为范例)进行剖析,总结出建模论文的一般结构及写作要点,让学生去学习体会和摸索。(3)提供几个具有一定代表性的实际建模问题让学生进行论文撰写练习。

(二)培训方式、方法

1.尽可能让不同专业、能力、素质方面不同的三名学生组成小组,以利学科交叉、优势互补、充分磨合,达成默契,形成集体合力。

2.建模的基本概念和方法以及建模过程中常用的数学方法教师以案例教学为主;合适的数学软件的基本用法以及历届赛题的研讨以学生讨论、实践为主、教师指导为辅。

3.有目的有计划地安排学生走出课堂到现实生活中实地考察,丰富实际问题的背景知识,引导学生学会收集数据和处理数据的方法,培养学生建立数学模型解决实际问题的能力。

4.在培训班上,我们让学生以3人一组的形式针对建模案例就如何进行分析处理、如何提出合理假设、如何建模型及如何求解等进行研究与讨论,并安排读书报告。使同学们在经过“学模型”到“应用模型”再到“创造模型”的递进阶梯式训练后建模能力得到不断提高。

篇2

关键词:物流专业;数学建模;能力培养

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)41-0068-03

随着我国现代物流业的迅速发展,物流专业人才成为近年来社会的紧缺人才。2012年,教育部将物流工程及物流管理批准为一级学科,全国各工科院校几乎都增设了物流专业,也培养了大批的物流专业技术人员。由于物流专业涉及的领域广,涵盖了许多方向,如物流机械、物流管理、物流工程、物流金融、物流信息等。虽然都称为是物流专业,但各院校针对本校的特点培养的方向有所不同,各院校为不同方向的物流专业所设置的培养方案和课程内容也相差很大。有偏重物流系统规划设计类的,有偏重运输与仓储管理类的,有偏重企业供应链管理类的,有偏重物流信息技术及物联网软件开发类的,也有偏重物流机械设备设计与配置类等。但无论培养物流专业的何种方向的人才,各校都十分注重加强对学生的物流建模方法的培养和训练,提高其科学解决实际问题的能力和管理水平。

一、现代物流系统中常见的优化问题及求解方法

物流被称为是企业的第三利润源泉,通过规划建设现代物流系统和改变传统的物流运作模式,可大大降低制造企业的物流成本,提高物流作业效率,从而为企业创造更大的效益。物流专业人才之所以缺乏,是由于在物流系统规划和运营管理各个环节中,处处都是较难解决的优化决策问题,必须应用科学的理论和先进的技术方法才能得到好的结果。目前在这方面的研究成果有很多,以下列举一些现代物流系统规划与运营管理中常见的优化问题和解决方法。

1.物流需求预测。在物流系统规划中物流设施(仓库、设备、停车场、车辆数等)规模的确定,物流管理中的物流仓储控制等都需有科学准确的物流需求预测作为决策基础。然而由于受多种不确定因素的影响,如何准确预测物流需求是相当困难的问题。物流需求预测问题分为单品种货物与多品种货物的物流需求预测、单个节点与区域内总物流需求预测、近期与中远期物流需求预测等多类问题。目前各种中样的需求预测模型非常多,据不完全统计约有一百多种。除定性预测外,常见应用于物流需求的定量预测模型有增长系数法、趋势外推法、曲线拟合法、弹性系数法、回归分析法、时间序列法、原单位(生成率)法、类别生成法、生长曲线法等。目前较流行的还有应用一些启发式或亚启发式算法进行区域内的物流需求预测,如神经网络模型、灰色系统模型、动态预测模型等。在实际的物流需求预测时,经常同时应用以上多种模型构成组合模型进行预测。以上各类模型的理论基础是高等数学、数理统计学、数理逻辑学、计算机算法设计等。

2.物流系统总体设计。物流系统设计方案的优劣直接影响物流的运营成本及运作效率。物流系统设计内容主要包括区域内系统物流节点的数量、规模和位置的确定;各物流节点的功能定位和功能设施(含停车场)的合理配置;物流节点内部设施布局;物流运输通道设计及能力分析等问题。其中区域内物流节点的数量和规模的确定主要依赖于对区域内物流总需求的预测结果。常见的模型有成本分析模型、随机报童模型、数据包络模型以及参数标定法等。物流节点的选址问题是物流系统规划中的关键技术问题,根据研究对象和研究方法可分为许多类型,如单一设施选址与多设施选址、连续区域选址与离散点选址、单纯位置选址与具有客户最优分配的选址、有能力约束选址与无能力约束选址等。本科生需掌握的典型物流选址模型和方法有:重心模型及不动点算法、交叉中值模型、线性规划模型、因素评分模型及层次分析法、多点解析模型及鲍摩・瓦乐夫启发式算法、奎汉・哈姆勃兹启发式算法、P-中值模型、集合覆盖模型、最大覆盖模型等。目前较常用的还有设计计算机算法进行仿真模拟计算,如遗传算法、蚁群算法、粒子算法、模拟退火算法、模糊群决策法等。这些算法的思路物流专业的本科生也应有所了解。物流节点内部设施布局是指在物流节点的规模与功能已确定的条件下,进一步设计节点内各设施间的位置关系,大多是引用工业工程法中的一些设计方法,常用的模型和算法有系统布局法、关系表布局法、CORELAP布局算法、ALDEP布局算法、CRAFT布局算法、MultiPLE布局算法、数据包络分析布局模型等。以上各类模型的理论基础是高等数学、概率论与数理统计、线性代数、系统工程学、工业工程学、运筹学和计算机算法设计等。

3.物流运输组织与运输管理。降低货物运输成本是减少物流总成本的重要手段,在货物运输组织中存在大量的优化管理问题,如运输方式(工具)、运输线路、运输链的优化选择;车辆与货物间的最优配载、配送计划及配装计划的优化编制;物流企业车辆的最佳拥有台数、运用与维护方案;车辆、船只及集装箱等的优化调度等问题。常见的模型有总费用分析法、综合性能评价法、公路货运交易优化配载模型、物资调运模型等。其中有关配送计划的优化编制问题是实际应用最广、理论上最为困难的问题之一。该问题根据研究对象和研究所考虑的因素分为了许多类型,如纯装问题、纯卸问题和装卸混合问题、对弧服务问题和对点服务问题、车辆满载与车辆非满载问题、单配送中心和多配送中心问题、运输车辆有距离上限约束和无距离约束问题、路网上线路距离无方向(对称)和有方向(非对称)问题、运输车辆是同类和异类问题、客户装卸点有时间窗约束和无时间窗约束问题等。由于每一类问题在理论上都属于NP-困难问题,在实际应用中常设计近似算法进行求解,求精确解的算法,可求解小型的配送问题,如分枝定界法、割平面法、网络流算法以及动态规划方法等。以上各类模型的理论基础是高等数学、线性代数、数学建模基础、图论、运筹学和计算机算法设计等。

4.物流仓储管理与库存控制。库存具有对不同部门间的需求进行调节的功能,库存物品过剩或者枯竭,是造成企业生产活动混乱的主要原因。由于货物供应及需求受大量因素的随机性和波动性影响,库存控制也是物流管理中较为困难的决策问题。库存控制包括单级库存与多级(供应链)库存、确定型库存与随机型库存、单品种与多品种库存等问题。物流仓储管理还包括仓位计划和拣货计划的编制、物流成本分析及风险分析等内容。物流库存管理的典型模型有经济批量订货模型、二次方策略模型、有数量折扣的EOQ模型、一次性进货报童模型、定期盘点库存模型、(s,S)型存储策略模型、鞭打效应分析模型、多级批量定货模型和直列系统多级库存模型、单级和多级概率库存模型、动态规划模型、最优匹配模型和网络最短路模型、成本分析模型等。以上模型主要用到的理论基础是运筹学、图论和算法设计等。

二、物流专业的数学基础要求

通过以上对物流系统规划设计及物流运营管理中的各类优化决策问题的介绍可知,要培养从事物流专业的高级管理人才必须具备扎实宽广的基础理论知识,尤其是数学和计算机的相关知识,具体来说,物流专业本科生应具备以下基础理论知识结构。

1.基础数学知识。包括高等数学、线性代数、概率论与数理统计等,目前国内外几乎所有的工科专业本科都会开设这些课程,而物流专业应特别加强统计分析方法的学习,包括时间序列分析、多变量解析、回归分析等内容。

2.建模及优化理论。主要包含数学建模方法和运筹学理论,我国大多数物流工程及物流管理专业都开设了这两门课,也有的学校还开设了“物流系统模型”或“物流运筹”等课程。其中运筹学是解决物流优化决策问题的重要方法,如规划论(线性规划、非线性规划、整数规划、动态规划)、存贮论、排队论、决策论、模拟模型法、图与网络理论、启发式方法、数值分析法、费用便利分析等方法。

3.计算机算法设计及仿真。计算机算法设计及计算机仿真是求解物流系统中各类优化模型的基本工具,要使所培养的物流管理人才具有独立解决实际问题的能力,必须具备较强的计算机动手能力。目前大多数院校的物流专业都开设了“计算机应用基础”、“程序设计”、“数据库原理及应用”、“管理信息系统”等课程,为求解物流系统中的优化决策问题,建议还应开设“数值计算与算法设计”、“系统仿真基础”等课程。

4.系统设计与分析理论。在物流系统规划与管理过程中,还要应用一些系统设计及系统分析理论,如系统分析(系统工程)、大系统理论、系统控制论、系统动力学、IE(工业工程)法等。虽然对物流专业本科生不能要求都掌握这些理论,但需对这些理论的研究内容应有所了解。

三、加强物流专业本科生建模能力的培养措施

由以上对物流专业本科生基础知识结构要求的分析可以看到,物流专业学生需具有扎实的基础理论知识,但学生在学习基础课时还未涉及专业内容,各项基础理论不知道如何应用,往往是学过了就忘。而在学习物流专业课时,较注重具体管理方法的使用,不知这些方法是如何得到的,使得学生当遇到没有学过的问题就不知如何解决。因此需有一门课程将基础理论与专业知识之间搭建一座桥梁,通过提出物流系统规划与管理中各类优化决策问题,帮助学生应用各种已学到的基础理论对这些问题进行分析和研究,建立这些问题的数学模型、设计求解这些模型的计算机算法、分析比较各种求解方法的优劣,我们将这门课程称之为“物流系统模型”或“物流运筹”。属于物流专业的专业基础课,它与基础课与专业课之间的关系如下图所示:

“物流系统模型”课程主要有以下三大教学内容。

1.常用物流系统模型的推导及介绍。提出以上物流规划与管理中所列举的优化决策问题,介绍解决这些问题的典型模型及求解思路。对相对简单的模型及算法,引导学生应用已学过的基础理论来推导解决该问题的模型和方法,使得学生在后面学习专业课时遇到这些问题和方法时有较深刻的印象。

2.介绍一些新的优化理论和相关算法知识。如系统分析理论、系统控制论、系统动力学、IE(工业工程)法等,让学生了解相关理论的研究内容和研究方法,开扩学生的视野和解决实际问题的思路。

篇3

[关键词]高职学生 数学建模

[作者简介]郑丽(1974- ),女,河北邯郸人,邯郸职业技术学院,副教授,研究方向为数学教育。(河北 邯郸 056001)

[课题项目]本文系2012年河北省教育厅人文社会科学研究项目“基于数学建模的高职学生创新能力的培养”的部分研究成果。(课题编号:SZ123022)

[中图分类号]G647 [文献标识码]A [文章编号]1004-3985(2014)12-0187-02

数学建模是在20世纪六七十年代进入一些西方国家大学的,我国几所大学也在80年代初将数学建模引入课堂。1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校参加了本次联赛。教育部及时发现,并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,每年有几万名来自各个专业的大学生参加竞赛,有效激励了学生学习数学的积极性,提高了学生运用数学解决问题的能力,为培养学生利用数学方法分析、解决实际问题开辟了一条有效途径。

从1999年起,全国大学生数学建模竞赛设立了专科组,高职院校作为高等教育的重要组成部分,在开展数学建模活动中投入了极大的热情,数学建模也成为高职院校数学教学改革的一个热点。作为高职院校的数学教师,笔者自2001年以来一直担负着学校的数学建模培训工作,每年学生们都积极参加数学建模竞赛,也取得了国家级、省级的奖励。结合高职院校的学生特点,以及十年间高职数学教学和数学建模活动的实践,笔者对高职院校开展数学建模活动的意义进行了探讨,并总结了高职院校实行数学建模培训的思路与方法。

一、在高职院校开展数学建模活动的意义

(一)数学建模活动能够满足部分学生的学习需求

高职院校的学生大多是基础知识相对薄弱的,但是也有不少学生基础扎实,善于思考。高职院校目的是培养既有理论基础,又有实践能力和创新精神的复合型人才,这就要求我们既要进行大众化的人才培养,又要满足部分学生对知识、能力更高层次的需求。数学建模活动为这些学生带来了新的挑战和机会,为他们展示创新思维与实践能力提供了舞台。

(二)数学建模活动可以培养学生的创新精神,提高学生的综合素质

通过数学建模训练,可以扩充学生的知识面,培养学生利用数学知识解决实际问题的能力,增强学生的知识拓展能力、综合运用能力;还可以丰富学生的想象力,提高抽象思维的简化能力和创新精神,既有洞察能力和联想能力,又有开拓能力和创造能力,以及团结协作的攻关能力。

(三)数学建模活动可以促进数学教师的教学能力和科研能力,推动高职数学教学的改革与创新

通过在高职院校中开展数学建模活动,对数学教师本身也是机会和挑战。教师必须重新组织教学内容,补充自身知识的缺陷与不足,促使教师自身综合素质的不断提高。通过数学建模训练,教师在数学教学中必然会改进教学方法,转变教学观念和教学方式,教学水平和科研能力都会逐步提高。通过数学建模训练,教师也能够学会一定的科学研究方法,增强实践教学意识,对于在数学教学中培养学生的创新能力和抽象思维有了明确的认识。通过数学建模训练,教师更善于在教学过程中激发学生学习的主动性,调动学生学习的积极性,重视教学方法与教学手段的改革,推动教学质量不断提高。

二、在高职院校实行数学建模培训的思想与方法

(一)高职院校实行数学建模培训的必要性

数学教育本质上是一种素质教育。通过数学训练,可以使学生树立明确的数量观念,提高逻辑思维能力,有助于培养认真细致、一丝不苟的作风,形成精益求精的风格,提高运用数学知识处理现实世界中各种复杂问题的意识、信念和能力。高职院校中,作为基础课程的数学课,不仅要为学生学习专业课提供必要的数学知识,同时还要培养学生的数学思维,培养他们勇于创新、团结协作解决问题的能力。而开设数学实验课,进行数学建模活动有助于提高学生在数学学习中的兴趣与主动性,提高学生利用所学知识解决实际问题的能力,为培养高质量、高层次复合型人才提供有力的帮助。

(二)突出高职特色,渗透数学建模教学思想

高职学生的学习基础总体比较薄弱,但实践能力和动手能力又相对较强。这就要求教师在教授数学知识的时候,必须把握“以应用为目的、必需够用”的原则,扬长避短,体现精简数学理论,弱化系统性,突出数学应用,强调实用性。在开展数学建模活动中,要从开设数学实验课入手,普及数学建模思想,强化数学建模在实际当中的应用。

从目前课程设置及课时的统计上,可以看出作为基础课程的数学课总课时整体呈缩减趋势。面对这种现状,我们需要在保证学生够用的前提下,突出数学的应用性,这就需要我们进行教学内容和教学方法上的改革。开设数学实验课,引导学生进行数学建模活动,给数学教学改革带来了新的启示,使数学教学改革在迷茫中找到了突破口。通过组织学生参加全国大学生数学建模竞赛,以及对数学建模和数学实验的进一步研究,我们提出了在高职院校中开设数学实验课的构想,利用现有课时使学生尽可能多地了解数学的思想方法,掌握应用软件解决数学问题的技能。数学实验课建设的指导思想是以实验为基础,以学生为主体,以问题为导向,以培养能力为目标。在数学教学改革中,要坚持贯彻指导思想,努力构建数学实验课程教学的模式。

(三)数学建模培训的方法探索

在高职院校的实际数学教学中,可以采取在大一第二个学期,由各系推荐,学生自愿的方式开设数学实验选修课。这一阶段主要给学生补充一些必要的数学知识及软件应用方法,介绍一些最常用的解决实际问题的数学方法,比如数值计算、最优化方法、数理统计中最基本的原理和算法,同时选择合适的数学软件平台,熟练计算机的操作,掌握工具软件的使用,基本上能够实现所讲内容的主要计算。组织兴趣小组,集体讨论,相互促进,共同提高,培养团队精神。在教授过程中尽量引入实际问题,并落实于解决这些问题,引导学生自己动手操作,通过协作讨论,写出从问题的提出和简化到解决方案和数学模型的实验报告,并尽可能给出算法和计算机的实现,得出计算结果。

在期末选出部分比较出色的学生,为参加全国大学生数学建模竞赛进行培训,时间主要集中在暑假期间。这一阶段安排学生熟悉数学建模所涉及的各种方法,诸如几何理论、微积分、组合概率、统计(回归)分析、优化方法(规划)、图论与网络优化、综合评价、插值与拟合、差分计算、微分方程、排队论等方法。学生也要在尽量岔开专业的前提下,依照教师建议及学生自己选择进行分组,利用历年一些典型的竞赛题目模拟训练,对于每道题目要求各组按比赛要求给出模型论文。教师引导学生及时总结题目中所用的方法,找出各自的长处与不足,为后面的训练与比赛积累知识与经验。

三、如何在高职院校中开展数学建模培训

(一)高职院校数学建模培训的总体规划

确定对于高职学生实行数学建模培训的思想与方法后,重点就是要组织教学内容。目前关于数学建模的书籍及参考资料多种多样,其中大多是面向本科学生的,近几年也有不少针对专科学生的数学建模材料。前期数学实验课的选修过程中,建议高职院校不要局限于某一本教材,而是参考各种资料,选择一些比较典型又易于上手的数学模型,让学生既在学中做,又在做中学。而在针对全国大学生数学建模竞赛的集中训练中,要优化数学建模竞赛队员的组合,强调三人各有专长,有的数学建模能力较强,有的计算机软件应用能力较强,还有的擅长文字表达。这一阶段要扩展学生知识面,打牢基础,强调“广、浅、新”。强化训练历年竞赛真题,使学生多接触实际问题的简化与抽象方法,应用数学知识解决实际问题。同时要对一些比赛常用的基本技能进行强化训练,如数学软件的应用、数学公式编辑器的使用,以及论文格式的编排等。

(二)高职院校数学建模培训的基础内容

初期的数学实验课,应先从初等模型入手,引导学生应用中学所学的数学知识解决一些实际问题。教师有意识引导学生发散思维,让他们沿着问题分析―建立模型―求解模型―模型分析与检验的过程解决问题。由于初等模型不需要补充多少知识,学生用原有的知识能够解决模型问题,使得学生对数学实验与数学建模充满了兴趣与信心。

接着可以引入一元函数及多元函数的微分模型,以求最值问题为主。高职院校各专业学生基本都在第一学期学过了一元函数的导数及应用,对于这类模型也比较容易接受。在此期间应穿插数学软件的学习与练习,重点是Mathematica和Matlab的使用,利用数学软件帮助求解模型。

再来就是微分方程模型,这时由于不同专业学生学习情况不同,所以要先适当补充微分方程的基本知识,才能由易到难,由简单到复杂地带领学生建立微分方程模型,然后借助数学软件求解模型。在第二学期,有些专业的学生会开设线性代数或概率论与数理统计,所以后半学期会在线性代数基础上讲解规划模型,以及概率统计的模型。

这样通过一个学期的数学实验与数学建模课程,多数参加数学建模培训的学生分析问题、解决问题的能力都能显著改善,还可以扩充知识面,学习新理论和新方法,自身的能力、水平和综合素质都有很大的提高。

(三)高职院校数学建模培训的强化内容

暑假期间,筛选部分优秀的学生进入数学建模竞赛培训阶段,学习时间可以比较集中。这一时期应利用典型模型,结合实际问题,穿插讲解数据拟合及综合评价等数学建模中常用到的方法,让学生在具体模型中体会学习机理分析、数据处理、综合评价、微分方程、差分方程、概率统计、插值与拟合及优化等方法。同时深入学习Mathematica和Matlab等数学软件,掌握它的强大功能,还要求部分擅长计算机软件的学生能够熟练使用Lingo软件,这几种软件的应用为求解数学模型提供了方便快捷的手段和方法。最后,在历年的数学建模竞赛题目中选取部分题目,分别涉及不同的建模方法,让学生做赛前的强化练习,模拟比赛环境与要求,各组在规定时间内拿出符合比赛要求的建模论文。

在高职院校开展数学建模活动,有助于促进教师知识结构的更新与扩展,为数学教学的改革与创新提供了切入点和发展方向。同时,高职院校的学生通过参加数学建模竞赛,可以用事实来证明自己的实力和价值,更有利于自身综合能力和素质的提高,增强了未来的就业竞争力。

[参考文献]

[1]陈艳.数学建模对实现高职高专数学素质教育之分析[J].学理论,2011(12).

[2]姜启源,谢金星,叶俊.数学模型[M].3版.北京:高等教育出版社,2003.

篇4

关键词:软测量;神经网络;软件设计

中图分类号:TP18文献标识码:A文章编号:1009-3044(2011)04-0753-04

The Development and Design of the Modeling Software for Soft Sensor

HOU Yan-song, XIE Gang, ZHANG Min, LIU Ya-ru

(Automation Research Institute of Lanzhou Petrochemical Company Petrochina, Lanzhou 730060, China)

Abstract: This paper designs a soft-sensing modeling software for chemical production process, Considering the complexity in the practical industry process, the software applies the linear regression modeling approach and the nonlinear neural network modeling approach to design the measurement software. Practice have been carried on the production process of Ethyl benzene and Starch content prediction, and the results show that the software can fulfill the function of trend prediction.

Key words: soft-sensor; neural network; software development

在工业实际中,产品质量控制是所有工业过程控制的核心。要对产品质量进行实时有效的控制,就必须及时准确的了解产品的质量参数,从而及时调整工艺参数和控制参数,以期获得良好的产品质量监测和控制。然而实际中,过程的质量参数通常是无法直接测量的,即使能够利用分析仪表测量,也存在较大的分析滞后[1],无法完全满足过程控制的需要。总的来说,我国石油化工行业现有的仪表设备很难实时的提供过程控制所需的质量参数信息。基于这种现实,更高一层的先进控制技术,过程优化技术,产品质量的监测管理等上层应用就受到了测量信息不足这一瓶颈问题的极大限制。在这种背景下,工业过程对过程检测的内容和时效性均提出了新的要求。一方面,仅获取流量、温度、压力、液位等常规过程参数的测量信息已不能满足工艺操作指导和质量控制的要求,迫切需要获取诸如成分、物性等与过程工艺操作和质量控制密切相关的检测参数的测量信息。另一方面,测量从静态或稳态向动态测量发展,在许多应用场合还需要综合运用所获得的各种过程测量信息,才能实现有效的过程控制、对生产过程或测量系统进行故障诊断、状态监测。近年来,作为以计算机技术为基础的软测量技术成为了解决上述工业控制瓶颈问题的有效途径之一,越来越受到关注[2-5]。

就苯乙烯、丙烯腈、乙烯及丁二烯抽提等化工装置而言,产品质量数据主要是产品的纯度。针对这一特点,本软件采用基于数据驱动的建模方法,并考虑到实际的工业过程对象复杂多变,软件采用了线性回归建模和非线性神经网络建模两种方法来设计软测量软件。最后,根据工艺机理,我们通过建立苯乙烯装置乙苯塔塔顶乙苯含量软测量数学模型,完成了对塔顶乙苯含量的准确预测。

1 乙苯含量软测量模型的建立

1.1 软测量

软测量的工作原理(见图1),就是在常规检测的基础上,利用辅助变量与主导变量的关系,通过软件计算 ,得到主导变量的测量值。软测量技术的核心是建立用来预测主导变量的可靠的软测量模型。初始软测量模型是对过程变量的历史数据进行辨识而来的。在应用过程中,软测量模型的参数和结构并不是一成不变的,随时间迁移工况和操作点可能发生改变,需要对它进行在线或离线修正,以得到更适合当前状况的软测量模型,提高模型的适合范围。因此,软测量结构可分为历史数据处理、离线建模、在线运行(包括校正)三大模块。

1.2 辅助变量的选择

通过对苯乙烯装置乙苯塔工艺机理研究,我们选择通过DCS收集的1000组过程参数作为建模样本集,300组过程数据作为校验样本集,运用统计学方法将样本数据中隐含的对象信息进行浓缩和提取,通过工程师的经验以及多元回归分析方法,寻找最优变量来建模,从而建立主导变量和辅助变量之间的数学模型,见表1。

2 软测量建模软件的实现

2.1 软件框架

选用微软VC++6.0开发环境[6],软件的整体设计采用面向对象的程序设计方法,考虑到软测量仪表本身侧重于数值计算和参数的频繁传递,因此选用基于对话框的应用程序框架。该软件框架结构简单,易于人机参数传递。从程序的角度来说,软件总共分四个主要模块:主对话框模块、算法模块、矩阵运算模块、图形编辑模块。如图2所示。

1)主对话框模块:即人机界面UI,提供基本的人机交流界面,以及数据文件操作。

2)算法模块:是整个软件的核心,包括了软件中所有的算法程序,并且留有扩充借口,可随时根据软件的升级增加新的算法。软件在调用算法时需要用户传递的参数和算法结果的返回利用子对话框来传递。该模块分为三个子模块:① 数据归一化模块:主要功能是对原始样本数据进行归一化处理;② 样本数据分析模块:主要功能是对辅助变量进行相关性分析和主元分析;③ 建模算法模块:偏最小二乘法建模、神经网络建模。

3)矩阵运算模块:主要功能是为算法模块提供必需的矩阵运算支持。软件中数据归一化、样本分析、建模的大多数算法在数学上表现为大量的矩阵运算,微软MFC基础类库并没有提供可以直接使用的矩阵运算类。为了使得建模算法代码更为简洁,易于修改。矩阵运算模块将常用的矩阵运算操作写成一个类――矩阵类,供算法程序调用。

4)图形编辑模块:主要功能是按照需要对工作空间中的数据进行曲线图形显示。作用是当离线建模完成后,需要对所建立的模型进行拟合试验,将试验结果以曲线的形式表现出来,软件允许用户自己设定坐标范围和图形标题。

2.2 偏最小二乘回归法

偏最小二乘回归是建立在主元分析原理上的化学计量学方法。它通过多元投影变换的方法,分析两个不同矩阵间的相互关系。在主元分析中,提取主元的过程只是强调了主元对辅助变量信息的最大综合能力,并没有考虑主导变量。偏最小二乘法不仅利用对系统中的数据进行分析和筛选的方式辨识系统中的信息和噪声,从而克服变量的多重线性相关性对建模的影响,而且在提取主元时还考虑主元和因变量的相关性,即主元对主导变量的解释作用。因此,偏最小二乘回归可以集多元线性回归,主元分析,典型相关分析的基本功能为一体。

该算法原理如下:

假设有两个数据矩阵X和Y,其中X∈Rn×m,Y∈Rn×1,X和Y之间的关系表示如下:

Y=Xβ+e (1)

式中:e表示残差;β表示自适应因子。

自适应因子β的估计值可以用最小二乘法得到,即:

(2)

如果数据矩阵X具有较强的相关性,则式(2)中存在病态矩阵的求逆,结果误差较大,而部分最小二乘法可以避免对病态矩阵求逆。其基本原理是将式(1)中的X和Y的关系分解为两个内部关系和一个外部关系:式(3)、(4)和(5)。

(3)

(4)

其中,矩阵T=[t1 t2 … tα],U=[u1 u2 …uα];分别称为X和Y的得分矩阵,而th和uh分别称为矩阵X和Y的第h主元。P=[p1 p2 … pα]和Q=[Q1 Q2 … Qα]称为荷载矩阵,U和T之间的关系表示如下:

(5)

式中:E、F、R为残差矩阵。

该算法将高维空间信息投影到由几个隐含变量组成的低维信息空间中,隐含变量包含了原始数据的重要信息,且隐含变量间是互相独立的。

2.3 神经网络法

基于人工神经网络(Artificial Neural Network,ANN)的软测量建模方法是近年来研究最多、发展很快和应用范围很广泛的一种软测量建模方法[7-8]。能适用于高度非线性和严重不确定性系统,因此它为解决复杂系统过程参数的软测量问题提供了一条有效途径。

化工装置产品含量预测建模通常处理的是非线性建模问题,而多层前向网络已被证明具有以任意精确度进行复杂非线性函数的拟合能力[7],因此选择前向网络结构。网络层数方面,除了网络必须包含的输入输出层外,对于化工装置产品含量预测这类软测量建模,问题的复杂程度一般要求隐层数目为1。因此,软件中采用包含一个隐含层的三层结构前馈网络。

确定好网络结构后,神经网络用于软测量建模实际上就是利用产品的历史数据经过一定的算法来确定网络的连接权值和阈值。BP算法是应用较早的学习算法,它充分利用了前向网络的结构优势,在正反传播过程中的每一层计算都是并行的。但BP算法存在两个缺点,即训练时间长和容易陷入局部最小。针对此缺陷,本软件在设计时采用了带动量因子的改进方法来加快网络训练速度。改进的BP神经网络的网络设置和参数设置如图3所示。

神经网络建模算法采用BP算法,算法不再是简单的矩阵操作。根据前馈神经网络的结构将神经网络用两个类来描述,即神经网络类和神经网络层类。经过处理后,主程序算法简洁,可读性强。如果要改进BP算法,代码的修改只需在类的方法中修改即可,不必修改主程序。神经网络类的设计和神经网络层类的设计主要代码如下:

神经网络类

属性:

输入层:CNeuralNetworkLayerInputLayer;

隐层: CNeuralNetworkLayerHiddenLayer;

输出层:CNeuralNetworkLayer OutputLayer;

方法:

void Initialize(int nNodesInput, int nNodesHidden, int nNodesOutput); // 初始化函数确定了三层网络的层次关系,有点类似构造函数

void SetInput(int i, double value); // 网络输入函数

double GetOutput(int i); // 网络输出函数

void SetDesiredOutput(int i, double value); // 设置网络期望输出函数

void LoadWeight(const CMatrix& I_H, const CMatrix& H_O, const CMatrix& H, const CMatrix& O); // 给网络加载权值和阈值

void FeedForward(void); // 前向计算函数

void BackPropagate(void);// 反向权值调整函数(标准的最速梯度下降法)

void Levenberg_Marquardt(void);// 反向权值调整函数(Levenberg_Marquardt法)

double CalculateError(void); // 计算网络全局误差函数

void SetLearningRate(double rate1,double rate2); // 设置学习效率

void SetLinearOutput(bool useLinear); // 是否线性输出

void SetMomentum(bool useMomentum, double factor); // 设置动量因素

神经网络层类

属性:

int NumberOfNodes; // 层中神经元数目

int NumberOfChildNodes; // 子层神经元数目

int NumberOfParentNodes; // 父层神经元数目

double**Weights; // 网络权值数组

double**WeightChanges; // 权值改变数组

double* NeuronValues; // 神经元值

double* DesiredValues; // 导师信号

double* Errors; // 局部误差

double* BiasWeights; // 偏差权值

double* BiasValues; // 偏差值

doubleLearningRate; // 学习效率

boolLinearOutput; // 是否线性输出

boolUseMomentum; // 是否有动量因素

doubleMomentumFactor; // 动力因素大小值

CNeuralNetworkLayer* ParentLayer; // 父层

CNeuralNetworkLayer* ChildLayer; // 子层

方法:

void Initialize(int NumberOfNodes, CNeuralNetworkLayer* parent, CNeuralNetworkLayer* child); // 初始化(分配存储空间)

void RandomizeWeights(void); // 权值初始化函数

void OrderWeights(const CMatrix& WeightsMatrix,const CMatrix& BiasWeightsMatrix); // 权值给定函数

void CalculateErrors(void); // 计算局部误差函数

void AdjustWeights(void); // 调整权值函数

void CalculateNeuronValues(void); // 计算神经元值函数

void CleanUp(void); // 清除网络层(有析构函数的作用)

2.4 软测量模型的在线校正

由于软测量对象的时变性、非线性及模型的不完整性等因素,必须经过模型的在线校正才能适应新工况。根据被估计变量的离线测量值与软测量估计值的误差,对软测量模型进行在线修正,使软测量仪表能跟踪系统特性的缓慢变化,提高静态自适应能力。一般采用在线校正算法为常数项修正法,即通过化验值或分析值计算新的偏差,并把新的偏差写入软测量仪表,修正偏差。即:

新偏差=(采样时刻计算值-化验值)×偏差权重+旧偏差×(1-偏差权重)

3 工业应用

乙苯含量是乙苯精馏塔塔釜采出产品中一个十分重要的质量控制指标[9],通过辅助变量塔顶压力、塔顶温度、塔灵敏板温度、回流量及塔釜温度来预测乙苯含量变化趋势。通过本软件进行仿真,乙苯含量软测量偏最小二乘建模数据拟合图如图4所示。其中,红线为实际值,绿线为拟合值。误差平方和:0.765762856683714,均方误差:0.0033294037247118。

针对某装置淀粉含量预测问题选择神经网络方法进行仿真研究,均方误差:9.14971253690028e-009;拟合曲线:红线为化验值,绿线为拟合值。淀粉含量软测量神经网络建模数据拟合图如图5所示。

4 结束语

本文采用了微软基础类库(MFC)提供的基于对话框的应用程序框架实现了软测量建模软件的开发。软件主要是从数学的角度分别研究了线性和非线性软测量建模算法,重点强调了建模算法对给定历史数据的拟合和泛化能力。在具体的应用中,根据工艺知识对软测量问题进行初步数学抽象,然后以本软件作为一种工具建模,辅以必要的工艺机理分析检验模型的合理性。通过对实际中两个化工过程进行的仿真表明,该软件基本具备了软测量建模预测产品含量变化趋势的能力,可以得到较好的效果。

参考文献:

[1] 王树青.先进控制技术及应用[M].北京:化学工业出版社,2005.

[2] Morris A J,Montague G A,Tham M T.Soft-sensors in industrial process control[C].London,UK:Applied developments in process control,1989.

[3] 王跃宣.先进控制策略与软件实现及应用研究[D].杭州:浙江大学,2003.

[4] 俞金寿.软测量技术及其在石油化工中的应用[M].北京:化学工业出版社,2000.

[5] 马勇,黄德先,金以慧.动态软测量建模方法初探[J].化工学报,2005,56(8):1516-1519.

[6] 侯俊杰.深入浅出MFC[M].2版.武汉:华中科技大学出版社,2001.

[7] 薄翠梅,张,李俊,等.基于神经网络的软测量技术在精馏塔上的应用[J].过程工程学报,2003,3(4):371-375.

篇5

关键词 数学建模;慕课;自主学习;MATLAB;SPSS;

中图分类号:G642.0 文献标识码:B

文章编号:1671-489X(2016)20-0097-02

Abstract In this paper, the problems existing in the mathematical modeling course are expounded in medical college.Aiming at theseproblems, the method of solving the teaching quality of mathematicalmodeling course is put forward.

Key words mathematical modeling; MOOC; autonomous learning; MATLAB; SPSS

1 前言

目前,医学院校学生普遍对高等数学课程重视程度不够,很多高校也减少了高等数学课程的学时。但医学生一旦走入社会,认识不到利用数学问题解决实际应用问题,在科研方面利用数学的方法进行各种统计分析,会影响自己的工作。数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程[1]。对学生进行数学建模课程的培养,可以使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。因此,在医学院校开展数学建模课程是十分必要的。

2 医学院校开展数学建模课程存在的问题与重要性

自1993年国家开展第一届大学生数学建模竞赛,现在已经日益发展起来,受到更多的高校和学生的欢迎。通过数学建模竞赛,学生对实际应用的数学问题通过建立模型的方法得以解决,以提高实际应用能力、创新能力和团队协作能力。但由于医学院校学生本身对数学课程学习较少,而且对计算机软件也是最基础的学习,因此,对医学院校学生来说,数学建模竞赛基础比较薄弱。

学生重视程度不够 医学院校的学生,大部分是临床、护理、药学等医学相关专业,他们对医学专业课学习的热情较高,认为这些才是以后工作学习相关的重要课程,而对于那些其他的基础课程学习热情不高,认为只要考试及格即可,在学习态度上不够重视,导致对很多关于数学的基础算法、建模需要的模型设计在脑海中完全没有概念,因此一旦进行数学建模竞赛,就相对显示出其与一般综合性大学学生素质的差距。

医学高等数学内容教学浅显 现阶段数学建模课程并没有相对应的教材,而且并没有开设相应的课程,而所学的高等数学课程一般为32~60学时,只涉及一些基础的数学知识,对于统计课程的开设也只是学习到医学阳性分析、卡方检验之类的可以应用到医学论文应用的内容。一个数学建模过程会涉及的全面的数学知识,如果没有对数学内容理解透彻,就难以将数学建模做出来。医学生数学功底难以应对复杂的数学建模过程。

自学能力有待提高 目前大学生的学习状态从高中转换到大学,很多学习习惯仍然没有形成,仍旧延续高中时被动学习的习惯,没有掌握主动学习的方法和习惯。而数学建模的过程是需要学生自主学习,数学建模没有正确答案,只是考查学生谁的算法更好,更加准确地验证实际问题。建模过程是多学科知识、技能和能力的高度综合,因此,自学能力要求学生在数学建模中对未知的题目、陌生的领域自己去学习、去掌握。

检索创新能力、团队协作能力不够 数学建模是以小组为单位,组建成团队,团队中的成员要发挥各自的特长,擅长对数学问题的解读,擅长检索文献,擅长计算机软件编程以及擅长对论文的演讲解释。医学生初入大学,对文件检索课程学习较少,而医学院校基本上以医学文献检索介绍为主,对于综合性的数据库介绍较少,因此,学生还无法准确掌握检索的方法而找到合适的参考文献。要想建立成功的模型,不仅要求团队中的每一位成员都有一定的能力,更重要的是都要有协作精神,要相互配合、团结一心、共同努力,但目前学生都比较有个性,而且自我意识较强,相互配合及协作能力有待于进一步加强。

学校教学软件和教学场地受限 很多高校对于数学建模并没有专门的场地,基本上是临竞赛前借用计算机教室或是图书馆机房,无固定的教学场地或供学生平时学习探讨的场所。由于场地不固定,一些建模必备的软件并没有安装,如MATLAB、C++、LINGO及SPSS等,只在竞赛前临时学习培训和安装使用,因此,学生对各种软件使用起来较为生疏,需要平时的积累和练习。

数学建模对学生信息素质培养的重要性 学习数学建模相关课程和相关软件,对培养学生信息素养是十分必要的,而对于医学生来说也尤为重要。很多医学问题是由数学问题解决的,如目前常用的显著性检验、回归分析、方差分析、最大似然模型、决策树及基于二维雷当变换创建CT成像理论等,因此,数学建模对培养医学生的科研能力、处理实际应用能力、创新意识、团队协作能力、文献检索能力等是十分必要的。21世纪的大学生必备的能力就是要具备一定的信息素养,因此,数学建模对培养学生信息素养也是十分必要的。

3 解决对策

吉林医药学院根据以往的建模情况,近几年逐渐摸索出解决数学建模竞赛薄弱,培养学生数学意识,加强学生数学素养的对策,并取得一些成效。

提高学生兴趣,建立社团组织 首先,学校和团委组织学生社团,定期举办一些趣味数学的讲座。组织学生建立数学建模社团,通过社团,建立趣味数学竞赛,介绍数学和医学的联系和发展。让参加过建模竞赛的选手介绍成功的经验,从学生的角度出发,让学生对数学建模的兴趣增加,利用社团学分制度、竞赛奖励等措施培养学生对数学建模的爱好。在团队中采用新老队员结合,从简单的初等模型、计算机编程,通过简单的图书摆放方案、银行存款方案、汽车刹车距离模型、划艇比赛成绩模型等问题,引导新生对数学建模有概念,继而对数学建模有浓厚兴趣。

建立数学建模选修课 鉴于学生对数学建模知识涉猎较浅,学校增加数学建模选修课程,多位教师小班授课,将SPSS、MATLAB、运筹学、图论、微分方程、概率论与数理统计等内容结合。从数学模型引入、简单生活实例入手,逐渐增加学习难度,循序渐进,通过上机指导、模拟练习、小组讨论等多种授课方式,增加学生上机练习机会,以便在实际竞赛过程中克服紧张情绪、增加熟练程度。目前,数学建模选修课已经得到学生的热烈欢迎,选修人数每次都是爆满,而且授课中听课效果非常好。

联合计算机软件课程,多教研室辅助教学 在平时教学过程中,发现有许多学生对基础的计算机软件程序使用有困难。因此,联合计算机教研室教师,在选修课中增加对计算机软件的介绍,如C++等,这是专门的一门选修课。选修数学建模的学生可优先选修计算机课程,这种设置方式也便于学生自由选择。对于计算机基础薄弱的学生,在选修数学建模的同时也可以选修计算机基础,而对于编程较好的学生则可以省略计算机的学习过程。在组建的数学建模社团中定期聘请计算机教师给学生进行讲座,请流行病学的教授介绍疾病模型,增加学术氛围,多部门联合增强师生之间的交流。

建立慕课平台,促进学生自主学习 目前的教学模式倡导自主学习,增强学生的信息素养,培养学生的应用能力。慕课教学也是比较完善的教学形式,利用碎片化的时间,利用点滴课余时间,学生可以学习到更多高校名师授课内容。吉林医药学院引进慕课教学平台,借助慕课的教学方式,让学生利用业余时间学习,并且对学习过程中无法掌握的内容可多次重复学习,掌握所学内容。

保证教学设备,从硬件设施上保证教学质量 吉林医药学院建立数学建模小机房,内设10台电脑,可供3个建模小组同时上机操作。可以在平时让学生练习建模设计、模拟竞赛、小组讨论,让教师分组教学使用。而对于省赛和国赛,另设立专门机房,以便多人多组进行竞赛。

4 结语

通过以上措施,吉林医药学院数学建模取得良好成绩,每年均有小组获取省或国家奖项,并且学生参与积极性较高。当然,对于数学建模这门新兴的学科而言,仍然需要更多关注,如增加数学建模教材的编制,完善数学建模效果的评价体系,提高教师教学水平等。只有处理好各环节,才能提高学生的应用能力、实际操作能力及处理实际问题的能力,提高信息素养。

篇6

关键词:海图制图;综合研究;历史;现状;发展趋势

海图制图综合,采纳精准的文字、抽象符号等来描画区段内的地理环境。构建制图模型,应能识别综合研究特有的进展历程、现有进展状态、未来制图趋势。伴随技术进展,多样学科彼此渗透,产生新颖技术,这就冲击着惯用的制图机理。构建起来的海图数据库、各类信息体系都应不断被更替,适应新的需要。探析综合研究,是应被重视的进展走向。

1探析制图历史

1.1制图变更的历程

制图综合概念,在制图学范畴的延展历程并不很长。1921年,制图综合被艾克而特创设出来。艾克而特觉得,制图综合提炼出了精准的制图对象。它侧重地图的价值,强调深入调研。但这一时段的调研,仍停留于初始的表层,没能明辨规律。到了20世纪60年代,前苏联的海图学家摸索了全面构架下的综合制图。这个时段著作,含有制图原理、小比例尺特有的制图机理、地图编制机理。在这类著作中,归结得来细化的规则,注重标准量化。

1962年,Topfer创设了筛选地物必备的方根公式。到了十年以后,制图综合被出版,全面解析了这一公式的平常运用。这个时期的我国学者侧重归结了数理统计、图解运算步骤。对于选出来的居民地,拟定适当指标。到20世纪80年代后,图论及模糊状态下的集合论被创设,它密切关系着筛选制图物体、筛选量化结构。

1.2摸索进展规律

在地图学科中,海图学被归类为分支。海图制图依照的综合机理,构成核心方式,创设了成套架构内的制图原理。制图综合范畴的调研与地图学关系紧密,从地图诞生起,制图就被运用。在制图的早期,即便没能明晰制图综合的内涵,但也整合了必备的多样要素,选取目的要素。

在20世纪80年代,微机快速发展,并被广泛采纳。这种新的进展,拓展了制图综合原有的路径。在微机辅助下,海图制图飞速进步,增添了必备的综合运算。微机辅助路径下的制图,逐渐引起重视。在这种趋向下,制图综合从早期的主观探析,变为客观描绘;从原有的定性识别,变为定量描绘。原有手工作业渐渐被替换为自动流程下的制图。伴随制图进展,采纳了新颖的数学手段,推动着海图制图调研进步。

2现存的制图综合缺陷

制图综合概念,历经70年这样的进展。对比初始时段,它经历了很大变更。在制图实践之中,原理渐渐完善,构建完备整体。在常规制图中,这类体系体现了明晰的指引价值。制图趋于现代化,渗透数学技术。这类综合方式应被注重。常见自动应用,含有地图制作、创设海图数据库。伴随实践进展,制图综合增添了原有的自动要素,提升进展层次。但从现状看,制图综合仍有许多尚未完善的区域。

第一,制图综合范畴内的建模流程,缺失完备的体系。现有模型选取,包含定额选取,例如数理统计、创设方根模型、运算图解模型、构建回归模型。这类建模侧重化解的难题是筛选的样本数目。然而,怎么去筛选模型还没能被探究。设定结构模型,考量了固有的物体自身、物体布设密度。它查验了资质,考量各类疑难。对比定额选取,这类途径表现出了更优的倾向。但真正操作中也暗藏弊病。

第二,制图综合被归类为某一进程,现存很多疑难并没能被抽象为模型,很难被模型化。制图综合之中,定量制图特有的体系并不很缜密。制图综合质量,关系着累积的经验、制图主体技能。

第三,构建出来的综合模型,平日内的运用还是偏少的。例如:识别某区段内的水深,要考量方根规律,符合选取公式。在选取河流时,也应符合规律。这类公式涵盖着的真实运用,仍旧不够完整。数据库支撑下,自动制图关联着的若干算法,也有待于完善。

从主观视角看,制图数学自带的复杂特性,关系着数值结果。制图模型有着偏复杂的倾向,在后续调研中,没能供应最为简易的、可被直接采纳的这类模型。调研得来的结果,不可被广泛采纳。在局部区段内,筛选统计样本以便识别原理,探析它的可行性。制图综合依托的根本机理,没能吻合进展着的新颖技术差异趋势。创设数学模型、摸索新颖算法,协助了机械架构下的海图制作。然而,制图关联着多层级的复杂要点,含有制图经验、认知及技能。现存探析视角、思路及推理等,很难依照数学的思路来描画。由此可以得知:数学制图表现出必要价值,但制图综合范畴内的自动化路径应能变得多样,拓展新的思路。

3识别进展趋势

海图资料综合、创设数据库等,都应侧重化解若干的构图难题。对这样的数据库,应能自动构建,辨别出自动化架构下的调研机理、海图制图流程。由此可见,综合制图的调研走向尤其应被注重。现有进展趋向,涵盖如下的层级。

3.1接纳新颖理念

在不同时段中,这个范畴的认知都在变更。在现有时期内常用数字海图,传统路径下的制图遇到冲击。在数字环境下,人们变更了偏旧的视角,探析新的难题。例如:ICA特有的协会,把这一内涵设定成选取碎部、简化表示海图。调整固有的比例尺,以便缩减海图信息,强化整体感受。克讷夫里觉得,传输理论密切关系着海图制图。对于传输数据,设定了极小化;读者接纳的信息,被设定成最大化。从信息结构看,识别了地图感受,探究制图问题。

在我国范畴内,学者常常倾向于辨识数据库的编辑性、查验检索的属性。运用制图性能,识别了机械制图路径下的综合问题。

3.2创设模型及算法

在海图制图中,制图综合应能显示出模型化、融汇各类算法。制图综合方式,含有深层级的本源内涵,应当摸索规律。这类具体表征,包含海图作用、设定好的比例尺、选取制图区段。考量综合约束,辨别出明晰的逻辑架构。各类制图步骤,在细分出来的区段内都应被考量。探析规律制图,要侧重创设最适宜的算法及模块。现存这类大纲,描画了多样的要素。然而这种描绘仍被局限于偏窄的定性层次,缺失量化指标。描绘海岸形状、描画河流状态,都应设定各地段的精准密度。为此,应当创设常用的指标,识别密度对比。

制图关联着的综合要素,含有分布特性。依照这类特性来构建可用的数学模型。要识别的要素,含有海岸线布设的弯曲状态、某一河流长度。依照正态分布来辨识区段的地貌、解析高程分布。要素选取模型,含有回归模型、等比数列特有的模型、常用方根模型。这类模型增添了制图流程内的科学特性,促进微机制图,具有独特价值。

3.3自动技术支持

在数据库特有的支撑下,便利自动制图。在很长时段内,自动制图阻碍到了海图描绘,属于制约要素。现有制图技术,增添了制图范畴内的微机协助,拓展海图内涵。微机协助的海图制作,供应了足够的数值参照。它搭配着完备的查验及检索,可以编辑图形,创设制图条件。在这一层面内,已经收获了成果。

现有的数据库,多被归类为单一比例尺的数据库。若替换了原有的比例尺,或者输出图形,则会受到约束。应被探究的侧重点,包含图形的载负、图像表示程度、各类要素处理。这些应被设定得更为适当。探析自动制图,以便提快原有的自动进程,构建数据支持。在信息时段内,GIS路径下的技术被拓展。海图制作关联着的机理,包含分形分维、常用小波原理、神经元的网络。在未来调研中,GIS特有的自动绘图,还应增添客户机,以及服务器等。增加检索软件,加快制图综合的进展速率。

篇7

【关键词】混合建模;支持向量机;双酚A催化剂活性;软测量

1.引言

随着工业过程对象的日益复杂,在很多应用中,仅仅靠控制常规的测量参数很难达到让人满意的控制效果,而且很多重要的指标都很难在线获得,所以促使软测量技术产生并得以发展。比如双酚A催化剂活性,双酚A的生产工艺主要采用阳离子交换树脂法[1],以酸性阳离子交换树脂为催化剂,阳离子树脂催化剂随着时间的变化,其活性不断降低,其下降的程度直接影响缩合反应的程度,所以它是直接影响生产双酚A的重要因素,因此,研究双酚A催化剂活性的变化是既有理论价值,又有重要的工程意义。看过多篇文献,知道催化剂活性建模方法可以采用常规的时间序列建模方法比如支持向量机,但是这是完全基于历史数据的黑箱模型,缺乏物理化学基础,其模型估计结果不具有可解释性,往往难以反应对象的特性,有可能难以把握催化剂活性的变化趋势。本文提出了将机理与支持向量机相结合的一种建模方法,即混合建模[2],又被称为“灰箱建模”,它在反应过程的机理和噪声影响的同时,能够较为实际地反应过程的真实情况,在现实中得到了广泛的应用。

2.软测量理论

软测量的基本思想[3]是把自动控制理论与生产工艺过程知识有机结合起来,应用计算机技术对于一些难于测量或暂时不能测量的重要变量(主导变量),选择另外一些容易测量的变量(辅助变量或二次变量),通过构成某种数学关系来推断和估计,用软件来代替硬件功能。

软测量技术主要由4个相关要素组成:(1)中间辅助变量的选择;(2)数据处理;(3)软测量模型建立;(4)软测量模型的在线校正。其中(3)是软测量技术最重要的组成部分。

2.1 中间辅助变量的选择

它是建立软测量模型的第一步,它包括变量类型,变量数量和监测点的选择。三者互相关联,互相影响。常用的选择方法有两种:一种是通过机理分析的方法,找到那些对被测变量影响大的相关变量;另一种是采用主元分析,部分最小二乘法等统计方法进行数据相关性分析,剔除冗余的变量,降低系统的维数。需要注意的是,辅助变量的个数不能少于被估计的变量数。

2.2 数据处理

软测量是根据过程测量数据经过数值计算而实现的,其性能在很大程度上依赖于所获过程测量数据的准确性和有效性。为了保证这一点,一方面,我们要均匀分配采样点,减少信息重叠。另一方面,对采集来的数据进行适当的处理,因为现场采集的数据会受到不同程度环境噪声的影响而存在误差。一般数据处理包括数据预处理和二次处理。

2.3 数学模型的建立

软测量模型是软测量技术的核心。它是通过辅助变量来获得对主导变量的最佳估计。本文利用了两种方法。一种是单一的支持向量机建模,另一种是混合建模方法。

2.4 数学模型修正

由于过程的随机噪声和不确定性,所建数学模型与实际对象间有误差,若误差大于工艺允许的范围内,应对数学模型进行校正。

3.离子交换树脂催化剂失活[4]

3.1 离子交换树脂催化反应机理分析

常用的离子交换树脂为磺化的苯乙烯一二乙烯基苯交联的球粒状共聚物。它既不溶解,也不熔融,但是它可以溶胀,每个树脂颗粒都由交联的立体骨架构成,磺酸基团连结于树脂内部的空间网状骨架上,骨架可离解出氢离子,作为活性中心。该催化反应属于正碳离子的反应机理。

3.2 离子交换树脂催化失活机理分析

双酚A合成反应使用阳离子树脂催化剂,在使用过程中,随时间推移,催化剂会逐渐失去它的活性。阳离子树脂催化剂失活的主要原因是催化剂的活性基团失去活性或有活性的基团被转化成没有活性的基团,也会因为自身特性和操作条件的变化引起催化剂活性的波动。根据相关化学原理,使得阳离子交换树脂失去活性的因素大致有如下几个:阳离子物质;醇;氢原料物质;高温;水[5][6]。

然而上面五个影响催化剂活性的因素都没有办法用传感器在线测量,也就不适用于工业现场对催化剂活性的软测量。为了满足双酚A生产现场对催化剂活性进行在线监测的需求,本文结合相关机理以及生产经验,通过分析寻找出了影响催化剂活性并可在线测量的若干因素,将其运用到催化剂活性软测量建模之中。通过研究大量文献,可以知道影响催化剂活性并能在线测量的几个因素:催化剂的使用时间;酚酮比;反应温度;生产负荷,将这些影响因素运用到软测量建模中去。

3.3 催化剂活性辅助变量的数据处理

我们知道了有4个变量对催化剂失活产生影响。从采样数据中我们尽可能排除噪音成分,保留真实信号。数据预处理一般包括:首先提出一部分不在原始数据变量操作范围或重复的数据,然后再用原则对数据进行进一步的筛选,对筛选后的数据进行平滑处理,最后再将数据进行分类。本文选取100个数据,75个作为训练数据,25个作为测试数据。

4.离子交换树脂催化剂活性建模

4.1 基于支持向量机[7]建立催化剂活性模型

4.1.1 基于回归支持向量机的方法

近年来,作为机器学习领域中备受瞩目的支持向量机(SVM)在许多领域取得了成功的应用,显示出巨大的优越性:(1)支持向量机基于统计学习理论,根据结构风险最小化原则,具有小样本学习能力,即由有限的训练样本得到小的误差,对独立的测试集仍然能保证小的误差;(2)支持向量机算法是一个凸优化问题,因此局部最优解一定是全局最优解,所以本文先利用支持向量机软测量方法对催化剂活性进行建模研究。

4.1.2 支持向量机建模

(1)辅助变量选取

确定模型输入输出变量。输出为催化剂活性,而影响其的因素大致有四个:催化剂时间;酚酮比;反应温度;生产负荷。

(2)数据采集和处理

本文采集了100个数据,每连续四个数据中取一个作为测试集,其余三个为训练集。这样就有75个训练集,25个测试集。

(3)催化剂活性建模

将催化剂时间,酚酮比,反应温度和生产负荷分别作为该模型的输入,输出为催化剂活性。通过matlab仿真,得到如图3-1、图3-2。

由图3-1、3-2可以看出,用单一的支持向量机建模得出的相对误差在[0.8%,-1%],预测效果相对不是很理想,于是,我们提出了混合建模来进行预测。

4.2 基于混合建模建立催化剂活性模型

4.2.1 基于混合建模的方法

我们知道,常用的软测量方法有机理建模,数据驱动建模和混合建模方法。机理建模方法可解释性强,外推性好,但是建模过程非常复杂。而数据驱动建模根据过程的输入输出数据直接建模,几乎无需要过程对象的先验知识。但是这种建模方法通常学习速度慢,且容易造成过拟合现象,此外,用这种方法建立的模型不具有可解释性。而混合建模方法则是把简化机理建模方法和数据驱动建模方法结合起来,互为补充。简化机理模型提供的先验知识,可以为基于数据驱动的模型节省训练时间;同时基于数据驱动的模型又能补偿简化机理模型的未建模特性。因此,混合建模方法现已被广泛地应用并且取得了很好的效果。

本文主要对催化剂活性进行部分机理分析[1],我们知道催化性活性会随使用时间的累积而下降,这是催化剂时候过程中容易把握的部分,所以把这个作为建立机理模型的基础。本文利用数值回归的方法,建立数学表达式f(t),来描述时间和催化剂活性之间的函数表达式。将现场中的催化剂活性数值和催化剂使用时间作为输出和输入,进行二次多项式回归,确定f(t)的数学表达式。f(t)带有一定的先验知识,能够较为准确地描述催化剂活性的变化趋势,为之后的活性建模提供基础。在以上说的四个催化剂活性影响因素中,除了催化剂时间外,还有生产负荷(flow),酚酮比(rate)和反应温度(T)。这三个因素对催化剂的影响较难把握。为了反映这些模糊因素对催化剂活性的影响,本文使用支持向量机来描述催化剂活性和这三个因素之间的对应关系。将上述三个影响因素作为支持向量机模型的输入,真实催化剂和趋势曲线f(t)的差值作为模型的输出,训练得到支持向量机模型。模型结构图如图3-3。

4.2.2 混合建模

(1)辅助变量选取

与支持向量机不同,混合建模是在确定催化剂活性与催化剂时间关系的先验知识下,将生产负荷,酚酮比和催化剂温度作为输入,而真实催化剂数值和f(t)之间的差值作为输出。

(2)仿真建模

采取和支持向量机一样的数据采集和处理,提取相同的100组数据,75个训练集,25个测试集。然后进行仿真,如图3-4、3-5。

如图3-4、3-5所示,我们得出了将机理和支持向量机结合起来的建模效果远远优于用单一的支持向量机,其相对误差在[0.07%,-0.13%]。

5.结束语

文章将支持向量机和机理与支持向量机相结合的两种建模方法都应用到了催化剂活性建模中,从仿真结果可以看出,混合建模明显优于单一支持向量机方法。所以,在进行建模的时候,尽量的了解过程的机理,在机理的基础上,结合一些智能方法,能够得到更加良好的效果。我们还了解到影响催化剂活性的四个重要因素,并且找到了催化剂活性变化的规律,建立了操作变量和催化剂活性间的软测量模型,用于催化剂活性的在线监测。

参考文献

[1]成亮铖.双酚A生产过程软测量混合建模的研究[D].江南大学,2009.

[2]许光,俞欢军,陶少辉,陈德钊.与机理杂交的支持向量机为发酵过程建模[J].化工学报,2005,56(4):653-658.

[3]潘立登,李大宇,马俊英.软测量技术原理与应用[M].北京:中国电力出版社,2008.

[4]吴玉琴.双酚A催化剂活性的软测量应用[J].技术应用,2011,20(02):146-147.

[5]马怡,常春,李洪亮.合成双酚A催化剂研究新进展[J].化工进展,2007,26(12):1686-1689.

[6]古尾谷,逸生,沈一兵.催化剂失活机理的分诶和失活对策[J].广西大学学报,1978(1):13.

[7]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):21-42.

篇8

    一、数学建模的重要意义

    把一个实际问题抽象为用数学符号表示的数学问题,即称为数学模型。数学模型能解释特定现象的显示状态,能预测对象的未来状况,能提供处理对象的最有效决策或控制。在小学数学教育中开展数学建模的启蒙教育,能培养学生对实际问题的浓厚兴趣和进行科学探究的强烈意识,培养学生不断进取和不怕困难的良好学风,培养学生分析问题和解决问题的较强能力,培养学生敏锐的洞察力、丰富的想象力和持久的创造力,培养学生的团结协作精神和数学素养。

    二、数学建模的基本原则

    1.简约性原则。生活中的原型都是具有多因素、多变量、多层次的比较复杂的系统,对原型进行一定的简约性即抓住主要矛盾。数学模型应比原型简约,数学模型自身也应是“最简单”的。

    2.可推导原则。由数学模型的研究可以推导出一些确定的结果,如果建立的数学模型在数学上是不可推导的,得不到确定的可以应用于原型的结果,这个数学模型就是无意义的。

    3.反映性原则。数学模型实际上是人对现实生活的一种反映形式,因此数学模型和现实生活的原型就应有一定的“相似性”,抓住与原型相似的数学表达式或数学理论就是建立数学模型的关键。

    三、数学建模的一般步骤

    数学课程标准向学生提供了现实、有趣、富有挑战性的学习内容,这些内容的呈现以“问题情景——建立模型——解释应用——拓展反思”的基本形式展开,这也正是建立数学模型的一般步骤。

    1.问题情境。将现实生活中的问题引进课堂,根据问题的特征和目的,对问题进行化简,并用精确的数学语言加以描述。

    2.建立模型。在假设的基础上利用适当的数学工具、数学知识,来刻划事物之间的数量关系或内部关系,建立其相应的数学结构。

    3.解释应用。对模型求解,并将求解结果与实际情况相比较,以此来验证模型的科学性。

    4.拓展反思。将求得的数学模型运用到实际生活中,使原本复杂的问题得以简化。

    四、数学建模的常见类型

    1.数学概念型,如时、分、秒等数学概念。

    2.数学公式型,如推导和应用有关周长、面积、体积、速度、单价的计算公式等。

    3.数学定律型,如归纳和应用加法、乘法的运算定律等。

    4.数学法则型,如总结和应用加法、减法、乘法、除法的计算法则等。

    5.数学性质型,如探讨和应用减法、除法的运算性质等。

    6.数学方法型,如小结和应用解决问题的方法“审题分析——列式计算——检验写答”等。

    7.数学规律型,如探寻和应用一列数或者一组图形的排列规律等。

    五、数学建模的常用方法

    1.经验建模法。学生的生活经验是学习数学最宝贵的资源之一,也是学生建立数学模型的重要方法之一。例如,教学人教版课程标准实验教科书数学一年级上、下册中的“时、分”的认识时,由于学生在生活中已经多次、反复接触过钟表等记时工具,看到或听说过记时工具上的时刻,因此,他们对“时、分”的概念并不陌生,教学是即可充分利用学生这种已有的生活经验,让学生广泛交流,在交流的基础上将生活经验提升为数学概念,从而建立关于“时、分”的数学模型。

    2.操作建模法。小学生年龄小,生活阅历少,活动经验也极其有限,教学中即可利用操作活动来丰富学生的经验,从而帮助学生感悟出数学模型。例如,教学人教版课程标准实验教科书数学四年级下册中的“三角形特性”时,教师让学生将各种大小、形状不同的三角形多次推拉,学生发现——不管用力推拉哪个三角形,其形状都不会改变,并由此建立数学模型:“三角形具有稳定性。”

    3.画图建模法。几何直观是指利用图形描述和分析数学问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路、预测结果。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习和数学建模过程中。例如,教学人教版课程标准实验教科书数学三年级下册《数学广角》中的“集合问题”时,让学生画出韦恩图,从图中找出重复计算部分,即找到了解决此类问题的关键所在,也建立了解决“集合问题”的数学模型——画韦恩图。

    4.观察建模法。观察是学生获得信息的基础,也是学生展开思维的活动方式。如何建立“加法交换律”这一数学模型?教学人教版课程标准实验教科书数学四年级下册的这一内容时,教师引导学生先写出这样一组算式:6+7=7+6、20+35=35+20、300+600=600+300、……,然后让学生认真、有序、多次地观察这组算式,并组合学生广泛交流,学生从中即可感悟到“两个加数交换位置,和不变。”的数学模型。

    5.列表建模法。把通过观察、画图、操作、实验等获得的数据列成表格,再对表格中的数据展开分析,也是建立数学模型的重要方式。例如,教学人教版课程标准实验教科书数学四年级下册的“植树问题”时,教师组织学生把不同情况下植树的棵数与段数填入表格中,学生借助表格展开观察和分析,即可建立相应的数学模型——“在一段距离中,两端都植树时,棵数=段数+1;两端都不植树时,棵数=段数-1;一端不植树时,棵数=段数;在封闭曲线上植树时,棵数=段数。”。

    6.计算建模法。计算是小学数学教学的重要内容,是小学生学习数学的重要基础,是小学生解决问题的重要工具,也是小学生建立数学模型的重要方法。例如,教学人教版课程标准实验教科书数学六年级下册第132~133页的“数学思考”中的例4时,教师就让学生将实验数据记录下来,然后运用数据展开计算,在计算的基础上即可建立数学模型——过n个点连线段条数:1+2+3+4+……+(n-1)=1/2 (n2-n)。其主要过程如下:

    过2个点连线段条数:1

    过3个点连线段条数:1+2

    过4个点连线段条数:1+2+3

    过5个点连线段条数:1+2+3+4

    ……

篇9

关键词:大学生;数学建模;数学素质

Abstract: Mathematics modeling is a mathematical tool for solving real world problems with focus on major and unique features of the system studied, which is the core of mathematics competence of undergraduates. In this paper, the significance of mathematics modeling is analyzed by presenting the relations between mathematics modeling and mathematics competence. Finally, it studies how to cultivate undergraduates′ comprehensive qualities by mathematics modeling study.

Key words: undergraduate; mathematics modeling; mathematics competence

数学模型作为对实际事物的一种数学抽象或数学简化,其应用性强的特点使其影响正在向更广阔的领域拓展、延伸。因适应新时期应用型、创新型人才培养的需要,数学建模受到了高等院校的重视,相应的课程建设计划得到了实施,竞赛活动得到了开展。基于数学建模培养学生解决实际问题能力的优势,通过数学建模来提升大学生的综合素质,已成为一个逐步引起关注的教育教学问题。

一、数学建模的内涵及其应用趋势

《数学课程标准(实验)》中提出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容……,高中阶段至少应安排一次较为完整的数学探究、数学建模活动。”[1]对于数学建模的理解,可以说它是一种数学技术,一种数学的思考方法。它是“对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的数学表示”[2]。从科学、工程、经济、管理等角度来看,数学建模就是用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。

通俗地说,数学建模就是建立数学模型的过程。几乎一切应用科学的基础都是数学建模,凡是要用数学解决的实际问题也都是通过数学建模的过程来实现的。就其趋势而言,其应用范围越来越广,并在大学生数学素质培养中肩负着重要使命。尤其是 20 世纪中叶计算机和其他技术突飞猛进的发展,给数学建模以极大的推动,数学建模也极大地拓展了数学的应用范围。曾经有位外国学者说过:“一切科学和工程技术人员的教育必须包括数学和计算数学的更多内容。数学建模和与之相伴的计算正在成为工程设计中的关键工具。”[3]正因为数学通过数学建模的过程能对事实上很混乱的东西形成概念的显性化和理想化,数学建模和与之相伴的计算正在成为工程设计中的关键工具。因而了解和一定程度掌握并应用数学建模的思想和方法应当成为当代大学生必备的素质。对绝大多数学生来说,这种素质的初步形成与《高等数学》及其相关学科课程的学习有着十分密切的关系。

二、数学建模与数学综合素质提升

当今的数学教育界,对什么是“数学素质”,有过深入广泛的讨论。经典的说法认为,数学是一门研究客观世界中数量关系和空间形式的科学,因而,人们认识事物的“数”、“形”属性及其处理相应关系的悟性和潜能就是数学素质。一是抽取事物“数”、“形”属性的敏感性。即注意事物数量方面的特点及其变化,从数据的定性定量分析中梳理和发现规律的意识和能力。二是数理逻辑推理的能力。即数学作为思维的体操、锻炼理性思维的必由之路,可提高学生的逻辑思维能力和推理能力。三是数学的语言表达能力。 即通过数学训练所获得的运用数学符号进行表达和思考、求助与追问的能力。四是数学建模的能力。即在掌握数学概念、方法、原理的基础上,运用数学知识处理复杂问题的能力。五是数学想像力。即在主动探索的基础上获得的洞察力和联想、类比能力。因此,数学建模能力已经成为数学综合素质的重要内容。那么,数学建模对于学生的数学综合素质的提升表现在哪些方面呢?

(一)拓展学生知识面,解决“为‘迁移’而教”的问题。数学建模是指针对所考察的实际问题构造出相应的数学模型,通过对数学模型的求解,使问题得以解决的数学方法。数学建模教学与其他数学课程的教学相比,具有难度大、涉及面广、形式灵活的特点,对学生综合素质有较高的要求。因此,要使数学建模教学取得良好的效果,应该给学生讲授解决数学建模问题常用的知识和方法,在不打乱正常教学秩序的前提下,周密安排数学建模教学活动,为将来知识的“迁移”打下基础。具体可将活动分为三个阶段:第一阶段是补充知识,重点介绍实用的数学理论和数学方法,不讲授抽象的数学推导和繁复的数学计算,有些内容还可以安排学生自学,以此调动学生的学习积极性,发挥他们的潜能;第二阶段是编程训练,强化数学软件包MATLAB编程,突出重要数学算法的训练;第三阶段是数学建模专题训练,从小问题入手,由浅入深地训练,使学生体会和学习应用数学的技巧,逐步训练学生用数学知识解决实际问题,掌握数学建模的思想和方法。[4]

(二)发挥主观能动性,强化学生自主学习能力。数学建模是一种对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,需要学生发挥主观能动性,通过主体心智活动的参与,实现问题的建构和解决。在大学,自主学习是学生学习的一种重要方式。大学生课外知识的获得、参与科研活动、撰写毕业论文和进行毕业设计等等,都是在教师的指导下的自主学习,因此,自主学习的意识和能力培养成为提升大学生综合素质的关键。数学建模对于强化学生自主学习能力,培养数学综合素质无疑具有典型意义。由于数学建模对知识掌握系统性的要求,而这些系统的知识又不可能系统地获得,很多参与数学建模学习和研究的学生,都深感其对提高自主学习能力的重要性,并从中汲取不竭的动力,进行后续的学习和研究

(三)把握数学建模的内在特质,培养学生的创新能力。创新能力是指利用自己已有的知识和经验,在个性品质支持下,新颖而独特地提出问题、解决问题,并由此产生有价值的新思想、新方法、新成果。数学建模具有创新的内在特质,其本身就是一个创新的过程。现实生产和生活中,面临的每一个实际问题往往都比较复杂,影响它的因素很多,从问题的提出、模型的建构、结果的检验等各个方面都需要创新活动的参与,建立数学模型需以创新精神为动力,不断激发学生的创造力和想像力。因此,在数学建模活动中,要鼓励学生勤于思考、大胆实践,尝试运用多种数学方法描述实际问题,不断地修改和完善模型,不断地积累经验,逐步提高学生分析问题和解决问题的能力。持续创新是知识经济时代的重要特征,高等院校应坚持把数学建模教育作为素质培养的载体,大力培养学生的创新精神、创新勇气和创新能力,使其真正成为创新的生力军。

(四)促进合作意识养成,培养团队协作精神。 适应时代的发展,越来越多的高校将参加数学建模竞赛作为高校教学改革和培养科技人才的重要途径。数学建模比赛的过程就是培养学生全局意识、角色意识、合作意识的过程,也是一个塑造学生良好个性的过程。数学建模竞赛采取多人组队、明确时间、完成规定任务的形式进行。一个数学建模任务的完成,往往需要成员之间的讨论、修改、综合,既有分工、又有合作,是集体智慧的结晶。竞赛期间学生可以自由地查阅资料、调查研究,使用必要的计算机软件和互联网。作为对学生的一种综合训练,学生要解决建模问题,必须有足够的知识,并有将其抽象成数学问题、有良好的数学素养,有熟练的计算机应用能力,还要有较好的写作能力,这些知识和能力要素的取得,往往来自于一个坚强的团队。具有一定规模的建模问题一般都不能由个人独立完成,只有通过合作才能顺利完成,没有全局观念和协作精神作为支撑,要完成好建模任务是非常困难的。

三、在数学建模的教与学中提升学生数学素质

数学建模课程的教学不是传统意义上的数学课,它不是“学数学”,而是“学着用数学”。它是以现实世界为研究对象,教我们在哪里用数学,怎样用数学。对模型的探索,没有现成的普遍适用的准则和技巧,需要成熟的经验见解和灵巧的简化手段,需要合理的假设,丰富的想像力,敏锐的洞察力。直觉和灵感往往也起着不可忽视的作用。因此,在数学建模教学中要把握“精髓”,侧重于给予学生一种综合素质的训练,培养学生多方面的能力。

(一)将数学建模思想渗透到教学中去。把数学建模的思想和方法有机地融入“高等数学”等课程教学是一门“技术含量”很高的艺术。其困难之一就是数学建模往往与具体的数学问题和方法,可能是很深奥的数学问题和方法紧密相连。因此,怎样精选只涉及较为初等的数学理论和方法而又能体现数学建模精神,既能吸引学生而且学生又有可能遭遇的案例,并将其融入课程教学中十分重要。特别要重视在教学中训练学生的“双向翻译”的能力。这一能力的要求,简单地说,就是把实际问题用数学语言翻译为明确的数学问题,再把数学问题得到解决的结论或数学成果翻译为通俗的大众化的语言。“双向翻译”对于有效应用数学建模的思想和方法,是一个极为关键的步骤,权威的专家多次强调了这一点。建模的力量就在于“通过把物质对象对应到认定到能‘表示’这些物质对象的数学对象以及把控制前者的规律对应到数学对象之间的数学关系,就能构造所研究的情形的数学建模;这样,把原来的问题翻译为数学问题,如果能以精确或近似方法求解此数学问题,就可以再把所得到的解翻译回去,从而解出原先提出的问题。” 

(二)数学建模教学中重视各种技术手段的使用。在“高等数学”等课程的教和学中,使用技术手段,尤其是数学软件,只是时间的问题,尽管关于技术手段的好与坏还仍有争议。企图用技术手段来替代个人刻苦努力的学习过程,只会误导学生。但决不能因此彻底地排斥技术手段, 这是一个“度”的问题。对于数学建模的教师来说,技术手段既可能成为科研和教学研究的有力工具, 也可以通过教学实践来研究怎样使用它们。数学建模课程教学中涉及数理统计、系统工程、图论、微分方程、计算方法、模糊数学等多科性内容,这些作为背景性知识和能力的内容,一个好的教师一定要在教学中把它作为启发性的基本概念和方法介绍给学生。而这些内容要取得基于良好引导效果的教学成效,就必须使用包括数学软件在内的多种技术手段,以此来培养学生兴趣,引导学生自学,挖掘学生的学习潜能。

(三)确立“学生是中心,教师是关键”的原则。所有的教学活动都是为了培养学生,都要以学生为中心来进行, 这是理所当然的。数学建模的教学要改变以往教师为中心、知识传授为主的传统教学模式,确立实验为基础、学生为中心、综合素质培养为目标的教学新模式。然而,教学活动是在教师的领导和指导下进行的, 因而,教师是关键。在教学过程中教师对问题设计、启发提问、思路引导、能力培养方面承担重要职责,教师能否充满感情地、循循善诱、深入浅出地开展数学建模的教学就成了学生学习成效的关键,教师的业务能力、敬业精神、个人风格等发挥着非常重要的作用。因此,作为数学建模的教师,把数学建模思想运用在高等数学教学中的意义,就在于在整个教学中给了学生一个完整的数学,学生的思维和推理能力受到了一次全面的训练,使学生不仅增长了数学知识,而且学到了应用数学解决实际问题的本领。

参考文献

[1]叶尧城.高中数学课程标准教师读本[M]. 武汉:华中师范大学出版社,2003:20.

[2]王庚.数学文化与数学教育[M].北京:科学出版社,2004:56.

篇10

关键词:注塑机料筒;建模;两点法

0 引言

对于任何仿真测试技术,模型精度都是整个系统的关键,只有对象模型具有足够的精度,才能保证使用的算法控制参数具有足够的可靠性。注塑机料筒是通过加热将塑料原料由固态转化为液态,最后注射进模具的装置。由于塑料分子在不同的温度下表现复杂的特性[1],所以注塑机的料筒温度精确建模特别困难。

1 注塑机溶胶工艺及料筒温度特性研究

1.1 注塑机溶胶工艺

注塑机溶胶过程就是把堵料融化的过程,塑料原料在注塑机料筒内变为熔融状态一般经过三个阶段:固体输送段,压缩段、熔融段[2],注塑机料筒结构如图1所示。在塑料原料放入料斗后,进入固体输送段,随着液压马达的转动,螺杆不断推动原料进入料筒内部。随着输送原料的增多,塑料不断被压缩,加快了原料的融化速度,同时原料内的空气被排出。当接近熔融塑料到达料筒顶端部分时,进入熔融段。

通过注塑机的溶胶工艺可知,注塑机熔料在每个阶段都有不同的状态,要求的温度也就不同。

1.2 注塑机温度特性研究

根据注塑机料筒内热量的来源于传递原理,由图2所示可知,对于加热段2温度:

y2=(Q2+QJ2+Q23-Q21-Q20)/(C・m)+y0

其中Q表示热量。y表示实际温度;y0表示初始温度;C表示比热容,m表示熔料质量。

从图1-2中可知,对于单个加热段2的热量的来源和传递方向,可得到料筒温度特性[3]:

(1)非线性。料筒温度的上升主要依靠加热片Q2产生的热传递。温度下降主要是料筒向周围环境中自然散热Q20,升温和降温表现为两个不同的特性。降温时,只能依靠温度差自然冷却;升温时,可以靠大功率加热装置快速升温,应避免过高超调。

(2)强耦合性。各加热段设定温度不同,相邻加热段之间必然存在温差,就会导致有热量交换。相邻段温差越大,互相干扰就越强。

(3)时变性。注塑机在实际使用中,四季变换和早晚更迭都存在环境温度产生变化,这都会对降温过程的快慢产生影响。从控制对象数学模型特征上来说,滞后时间常数不断在变化。

2 注塑机温度建模

2.1 注塑机温度理论模型的确立

对象数学模型的建立一般分为:解析法和实验法。解析法是对系统运行机理进行分析,根据其物理规律建立方程公式。实验法是通过给系统加入测试信号,记录其输出响应,并采用合适的数学模型逼近,建立对象传递函数[4]。注塑机原料在不同温度下塑料分子间的特性也在变化,根据热工原理,注塑机料筒温度内部机理无法获取,则无法利用解析法建模型的对象。

注塑机料筒加热系统实验法建模通常采用反应曲线法来确定,注塑机每段料筒温度的数学模型可用一阶惯性环节加纯滞后环节的形式近似表示:

(2-1)

式(2-1)中: 为放大系数; 为惯性时间常数; 为滞后时间(单位秒); 为拉普拉斯变换因子。

2.2 注塑机温度数学模型参数辨识

注塑机各加热段间设定温度不同,必然存在温差,就会互相干扰。为了建立更加准确的数学模型,考虑了干扰存在,在对每个加热段加其总功率30%的阶跃响应信号并检测各段的温度变化数据。采用对注塑机设定为3段加热的方式,得到每段及其对相邻段的影响数据如图3所示。

确定数学模型中各辨识参数的值是特别重要的。通过设定注塑机温度模型为一阶纯滞后模型,采用常用的两点法[5]求取各个模型参数。根据两点法放大系数K可由下式(2-2)计算得到:

式中为测试初始值,为测试最终稳态值,为控制输入量大小。

然后需要求取被控量的无量纲形式,与一阶惯性加纯

延迟相对应的阶跃响应无量纲形式为:

(2-3)

为求取式(2-3)中的T和L,需要选择两个时刻t1,t2,其中t2>t1>L。则两个时刻对应的值为:

(2-4)

对式(2-4)取对数可得:

(2-5)

以加热段1为例求取加热段的传递函数数学模型参数为:

最后可得注塑机温度数学模型为:。选取t1=4000,t2=5000时,(4000)=0.7261,(5000)=0.8054。则

从而可得加热段1的温度变化数学模型为:

同理,可得其他加热段及其对相邻段影响的模型参数,最终可得3x3阶的矩阵传递函数的注塑机料筒温度数学模型:

3 总结

通过分析注塑机溶胶工艺和料筒温度特性可知,根据机理法很难建立精确的数学模型,最后采用阶跃响应模型辨识法建立了考虑加热段之间干扰的多输入多输出矩阵料筒温度传递函数数学模型。

参考文献:

[1]孙优贤,邵惠鹤.工业过程控制技术(应用篇).北京:化学工业出版社,2006:131-179.

[2]陈福练.基于非线性分离的注塑机料筒温控技术研究[D].宁波大学,2009.

[3]汤进举.注塑机微机控制系统研究[D].浙江大学,2002.

[4]毕效辉,于春梅等.自动控制理论[M].北京:中国轻工业出版社,2007:19-100.

[5]张伟伟.工业锅炉燃烧系统辨识与建模研究[D].上海交通大学,2007.