高层建筑抗震标准范文

时间:2023-12-19 17:46:27

导语:如何才能写好一篇高层建筑抗震标准,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

高层建筑抗震标准

篇1

关键词:高层建筑;抗震设计;优化对策

随着我国高层建筑工程不断的发展,高层建筑抗震问题也日益严峻。制定有效的抗震设计方案能够维持高层建筑工程自身发展的需要。分析抗震设计中所存在的问题,制定有效的优化对策,能够提升高层建筑的抗震等级,更好的优化建筑结构,保障高层住户安全,推动高层建筑行业可持续发展。

1 高层建筑抗震等级的划分

在我国对于抗震等级的划分主要可以分为6个大类,从三级到八级分别为小地震、有感地震、中强地震、强烈地震和大地震。高层建筑结构设计过程中,根据不同的地区,抗震等级的设计和标准是不尽相同。一般所采用的抗震标准是能够抵抗六级地震。结构设计、房屋的高度等是抗震等级设计的标准。建筑材料的好坏也会影响到高层建筑的抗震等级。

2 高层建筑结构抗震设计所存在的问题

2.1 施工材料问题

在高层建筑结构设计中,通常所采用的材料是砂石混泥土,这种材料虽然有着比较高的强度级别,但是在运用的过程中,水泥的比例过高的话,就会导致主梁结构和墙体出现缝隙。虽然这些缝隙不会给建筑整体结构带来什么严重的影响,如果这个楼盘楼层较高,并且都出现这种现象的话,那么就会使得整个高层建筑的抗震性低于实际的标准值,从而产生相应的安全隐患。

2.2 建筑施工问题

在高层建筑施工中,不仅要对建筑设计方案的执行落实,还要注重高层建筑施工流程的评估和监督。当前高层建筑评估还不够完善,对于施工管理只是停留在制度的管理上,没有对现场施工管理过多的关注,对管理制度的落实,相关的监督机制和监督部门还不够完善,从而使得高层建筑施工管理上不能体现出管理的协调性和规范性,使得高层建筑施工不能有效的配合,各个部门之间的衔接性不够紧密。在现场施工管理的执行和落实过程中,由于涉及的环节比较多,对施工人员监督和施工标准还不够规范,这就使得抗震设计方案不能有效的落实。

2.3 抗震设计人员问题

在高层建筑抗震设计过程中,设计方案和建筑物所处环境考虑相对比较繁琐、结构比较复杂。在我们,设计人员受到专业水平的限制,对设计方案的考虑不够全面,相关的技术知识不够全面,这就使得在实际的抗震设计中,不能发现问题的所在,制约了建筑结构抗震设计的发展。一些设计人员在设计抗震方案中,没有结合当地的地震发生情况,设计人员和建筑施工人员工作积极性和工作责任意识不高,这些都使得抗震设计方案难以开展和落实。

3 高层建筑结构抗震设计的优化对策

3.1 提升设计人员的综合素质

在高层建筑设计中,根据目前设计人员综合性人才缺乏的情况,应该要加强对各种层次、各种类型的综合性人才队伍培养,以此来满足设计人员在抗震设计中的需要。加强抗震设计工作模式的完善,更应该对现有的设计人员进行强化培训,提升自我综合素质,并且能够让他们能够充分认识到抗震设计在高层建筑中的重要性。设计人员在工作中应该树立工作责任意识,提升工作的积极性。通过互联网技术和相关的信息技术,对设计人员进行指导,更好的学习先进的抗震设计技术,保障抗震设计在高层建筑施工中有效进行,同时满足抗震设计对人才的需求,确保高层建筑抗震等级。

3.2 完善高层建筑施工管理体系

当前一些建筑单位所采用的管理制度,对于管理主体还不太明确,没有特定的控制主体,造成高层建筑施工管理工作没有有效的落实到实处,管理标准不够规范。对高层建筑管理体系的完善,加强对施工的工作流程和抗震方案的落实的监督是非常重要的。详细记录检查结果,确定好抗震设计方案,从而为高层建筑施工进行提供有效保障。对于抗震设计图纸应该做好审核工作,保证图纸的整体质量。成立管理部门,构建完善的控制体系,并且构建多元化的管理结构。加强设计人员与施工人员的沟通,减少部门之间的内部矛盾。确定控制体系主体,采用分级负责的方式,明确各个部门之间的职责,将责任落实到个人。落实岗位责任制和绩效考核,从而提升高层建筑施工人员和设计人员的积极性,保证抗震设计方案有效实施。

3.3 确保高层建筑施工材料的质量

为了确保高层建筑的抗震等级,加强对建筑材料质量的关注是很重要的。在高层建筑施工之前,结合抗震设计方案的要求,对所需要的材料严格进行选购和配置工作,从而确保施工材料的质量。对建筑材料进行必要的检验工作,确保建筑材料各项参数能够符合抗震设计的施工标准。加强材料数据的统计工作,从而让施工过程中能够有足够的材料可以选用。建立专项部门,对建筑材料进行专项管理,保证材料的安全性和可靠性,保障高层建筑结构的抗震水平。

结合抗震方案施工所需的建筑钢材、混凝土等材料,应该严格对出厂合格证和材料质量进行核算。将所需的施工材料送到专业的检验机构中进行试验配给,从而确保所采购的材料能够满足高层建筑施工的需求。根据试验结果,注意保管试验材料,在材料的购买中根据试验的标准和数据。例如在混凝土的配给上,结合水泥的标准、含水量的高低、砂量的配给比例,来确保混泥土的整体施工质量,把握好材料的施工标准,必要情况下,请专业人员进行指导和纠正,从而最终确定施工比例和材料的质量,确保高层建筑抗震能力。

3.4 加强抗震设计技术的运用

在高层建筑中,严格的对抗震结构进行设计。采用抗震墙设计和地基结构设计等综合考虑,来提升高层建筑的抗震能力。如在处理一道截面较长的抗震墙方面,可以充分利用其洞口用来构成弱连梁,对每个墙段高宽比设置应该>2.5,对墙体可以设计成单肢墙或者多肢强,进而提升墙体的抗变形水平。对地基可以采用单独的承重柱和承重墙来提升抗震水平。

4 结语

综上所述,加强对高层建筑抗震设计中问题的探讨是很有必要的。通过提升设计人员的综合素质、完善高层建筑施工管理体系、确保高层建筑施工材料的质量、加强抗震设计技术的运用,能够提升高层建筑的抗震等级,更好的优化建筑结构,保障高层住户安全,推动高层建筑行业可持续发展。

参考文献

[1] 闫旭梅.高层建筑结构抗震设计分析[J].科技传播,2013,17(11).

篇2

关键词:混凝土;建筑;高层;抗震设计

建筑的抗震性设计在建筑行业现在引起了极大的重视度,近年来我国及其他的一些国家频频发生地震灾害。我国对建筑行业的高层设计提出了关于抗震性的设计目标,根据我国的一些标准法则,要求设计目标要达到大震不倒,小震不坏的情况。高层的混凝土建筑就必须进行科学合理的设计施工以实现其目标。

1高层混凝土建筑抗震结构设计的要求

在高层混凝土抗震结构设计过程中,设计人员应该对高层建筑的抗震效果进行加强,同时要保证高层建筑在遇到地震时建筑物不会坍塌或者倾斜的情况,同时经过恰当的围护可以保持建筑物的使用,若遇小型的地震时整体结构能保持稳固不会损坏。高层混凝土建筑抗震结构稳定性想要得到提高,在其设计过程中要考虑很多因素得影响,其要求也要做到刚柔并进使高层混凝土建筑能科学合理的受力,以强消弱弯的原则针对性的规划和设计。

2高层建筑混凝土结构特点

从高层建筑结构受力特点方面上看,高层建筑的垂直荷载方向没有变化,而其高度越高就不能增长高层建筑的引起量,从而使建筑物的高度与弯矩是成二次方变化的,那就要求建筑的载荷要均匀分布。根据较为专业的高层建筑混凝土结构特点来说,高层建筑为悬臂垂直结构受水平与垂直荷载的影响,其混凝土结构会产生弯矩和极大的轴向力[1]。以侧面来看,建筑物的垂直荷载不会发生明显的侧移,而横向荷载如果分布均匀,高层建筑高度与侧移的大小按照四次方进行变化。可见结构设计的主要掌握标准与水平荷载关系很大,水平荷载是影响高层结构的重要因素。

3高层建筑遭受地震特点分析

3.1建筑结构体系破坏特征

如果发生地震时,地震地区的房屋建筑采用的是钢框架填墙结构的话,容易出现剪切型的破坏高层建筑物平面内框架柱体,与此同时,高层建筑窗墙作用下使部分窗口出现短柱性破坏的情况。经过相关数据显示,地震幅度相对较小的话,对高层建筑框架剪力墙结构不会带来影响。地震时结构如果破会严重,是因为框架填墙结构中敞开式的底层框架,未砌墙时刚度较低,底框结构刚度较低,就导致其底层破坏严重。

3.2建筑物地基破坏特征

在发生地震时,高层建筑所设计的场地和结构周期相同,就会产生共振的情况发生,从而导致地震破坏高层建筑的整体结构[2]。如果高层建筑物所在地处于软土层地基,就会到时高层建筑物因为土体液化,引起建筑基础下降的情况发生,容易导致高层建筑倾斜等破坏现象。一些处于危险地域的建筑,如果这些地区发生地震就要导致建筑出现墙体裂缝和建筑出现不均匀的沉降现象。

3.3建筑物刚度破坏特点

建筑主体的结构若用的平面形状不对称,会加大地震时破坏程度,如L形、Y形等,这样的形状在地震时极易发生扭曲。若建设的建筑形状复杂、平立面不规则,就必须根据不规则程度、地基的基础条件等因素进行详细的综合性的比较分析,看是否要设置防震缝[3]。

4高层混凝土建筑抗震结构设计的方法

4.1建筑扭转效应的控制

在高层混凝土建筑结构进行抗震设计过程中,设计时应该对垂直向力及横向力进行防护,对位移提升要求,使用扭转力作用,保证混凝土整移一致,同时测定最小和最大的位移结构刚度。高层建筑会因为地震产生部分横向力、垂直力以及扭转力,在这多种力的作用下建筑物受到的破坏严重。因为多种因素的原因,地震发生都是突发和随机性的,所以对地震发生的时间、强度难以预测准确。分析建筑整体的抗震性能要同时进行,检查出隐患时要及时纠正,从而保证高层混凝土建筑的抗震性能

4.2对建筑物合理的选定建设位置

高层混凝土建筑的建设位置合理的选择是极其重要的,一定要合理科学的对高层混凝土建筑的建筑位置进行选择,并为对建筑项目所在地的地质情况进行彻底的综合性分析,从而保证高层混凝土建筑具有较强的抗震性能。为了避免高层混凝土建筑四周的环境受到严重的影响,建筑的位置也应该回避掉离电厂、变电所较近的位置。

4.3抗震加固设计

高层混凝土建筑结构在设计过程中,不但要满足建筑延伸性、和建筑需要刚度的要求,还要达到建筑要求的刚度标准,建筑刚度标准在建筑抗震设计中尤为重要的。在进行实际建筑工程施工过程中,高层建筑物的钢筋混凝土重量比较大,所以整个建筑物的底部柱轴力必须与建筑的高度是正比关系,由此就对建筑主要构件要有很好延伸性,成高的情况确定后,要通过整轴压力比的方式来实现构件延伸性的增强,不能使轴压比过大,避免结构短柱,以免限制延申性,在遇到强震时易破坏剪切性,所以为了阻止建筑整体坍塌,必须进行抗震加固设计。依据强柱弱梁限值的标准,通常框架柱的抗剪能力要符合强剪弱弯和剪压比,柱子顶端的抗弯能力必须满足这个条件。螺旋复合箍筋的使用可使柱子的抗冲剪能力和短柱抗震性能得到有效提高的优点,在强剪弱弯和强柱弱梁时,短柱不会破坏剪切性[4]。由于地震时建筑的短柱没有发挥抗弯性能时,就会出现显著的剪性破坏,因为建筑的短柱具备的抗剪性能力低于抗弯能力,所以设计过程中要保障短柱承受抗弯的屈服强度。从而使建筑构件的抗震能力和刚度得到加强。将短柱变为长柱能使抗弯能力减低并能使柱子的抗变行能力增高,即便是采用分体柱无法有效增加柱子的抗碱性,从而增加建筑结构短柱的抗震能力。

4.4对建筑结构设计进行优化

我国早已颁布了建筑工程抗震性能相关的法律法规,防止高层混凝土建筑结构在地震发生时导致变形的同时使建筑物产生形变的可能,高层混凝土建筑结构设计当中的结构设计方案就要大程度改进,使其有利保证高层混凝土建筑的稳定性,这就让建筑结构主体能更好的避免空间变形,同时还能使建筑结构在任何延伸变化时都可以恢复原状。要使高层混凝土建筑符合其刚度设计的相关要求和标准,必须要对高层混凝土建筑的竖向结构受力状况高度的重视,使其受力均衡得到保障,这样高层混凝土建筑结构的稳定性就可以大程度的提高。对高层混凝土建筑结构在地震作用下受到影响的基础上进行评估,应该整体考虑建筑物各个结构部分,充分科学合理的进行评估,从而有效的了解高层混凝土建筑各个结构部分的受力情况,使高层混凝土建筑的抗震性能大有所提高。

5总结

在经济高速发展中,人们的居住条件日益提高,高层建筑接连而起,在高层混凝土建筑结构设计中最要重视的就是抗震结构的设计。不但要全面分析建设地段的地质条件,要用科学合理的方式提升建筑的抗震能力,以此保障人们的生命财产安全。

参考文献

[1]程亮.高层混凝土建筑抗震结构设计解析[J].江西建材,2015(23):47,52.

[2]丁灿.基于高层混凝土建筑抗震结构设计探究[J].城市建筑,2015(36):34.

[3]袁欢欢,宋利利.高层混凝土建筑抗震结构设计探究[J].建筑工程技术与设计,2015(9):639.

[4]孙伟信,刘雪.高层混凝土建筑抗震结构设计[J].建筑工程技术与设计,2016(34):389.

篇3

关键词:高层;结构;抗震;延性;设计

中图分类号:TU2文献标识码: A

1.概述

随着经济发展的不断加速,商业圈里的商务楼楼层是越来越高,住宅小区的民居建筑也紧随其后,动辄百余米的几十层建筑已经屡见不鲜。如果说以前人们对建筑物抗震缺乏直观的认识和理解的话,那么自汶川地震之后,玉树、雅安、鲁甸地震给人们带来的冲击和影响就十分的直接了。因此,对高层建筑的抗震性要求已经是检验目前高层建筑设计合格与否的一个重要环节。

2.高层建筑结构抗震原则

针对抗震要求而言,不同的建筑有不同的抗震具体要求,结构工程师也根据建筑的不同用途进行了相应的抗震性设计,基本上掌握的是“小震无伤、中震可修、大震不倒”的实际应用效果,而且,国家颁布的《建筑抗震设计规范》(GB 50011-2001)中对建筑物抗震也提出了具体的强制性要求,一般民用建筑的抗震烈度以6、7、8、9度为主。尤其是针对高层建筑而言,要求高层建筑在遭遇地震时,结构在保持一定承载能力的条件下通过自身的塑性变形来吸收地震带来的冲击能量,进而达到缓冲地震波的效果,提高建筑结构的整体抗震能力。

3.建筑结构抗震延性设计原理

在地震过程中,很多建筑物的建筑结构都处于不稳定状态,而高层建筑由于其高度的问题,建筑结构处于弹塑性状态表现较为明显,而建筑进行结构抗震延性设计后,能在建筑材料、结构达到荷载作用依然能具备一定的变形能力,通过这种变形,降低了结构的整体刚度,使结构在地震作用下的反应减小,然后利用结构的弹塑性变形来吸收和消耗地震能量,从而缓冲地震带来的强冲击力,以确保结构本身不会出现整体坍塌。

4.高层建筑抗震结构设计的基本原则

4.1 结构构件必须具备必要的强度和韧度。

结构构件是结构抗震延性设计的必要组成,这些构件自身必须要保证具备一定的承载力,这样使其具备一定的稳定性,另外,针对地震来临时出现的结构弹塑性状态变化,结构构件也应同时具备一定的韧性或延伸性方面特点,以便能对应一段时期的结构弹塑性或异形变化。

4.2 对结构薄弱环节应采取辅助措施

高层结构完成抗震延性设计之后,对应地震冲击的能力已经加强,但是就实际地震情况而言,一次较大地震之后伴随的余震冲击仍然不少,而且有的余震震级与主震震级几乎相差无几,而抗震延性设计在主震的冲击过后已经使建筑自身处于弹塑性状态了,一旦连续性余震来临的话,对于建筑自身的安全系数将直线下降。所以,必须要针对这一主要的薄弱环节采取相应的措施,确保高层建筑不仅在主震来临时尽量减少冲击,而且也要具备一定的对应余震的能力。

5.高层建筑抗震延性设计中常见问题

5.1 降低抗震标准

这是高层建筑抗震设计中唯一一个人为因素,因为《建筑抗震设防分类标准(GB 50223-95)》中的相关抗震工艺要求,涉及抗震设计的工程投入将是一笔不小的投资,个别建设方要求设计单位从设计环节上进行降低抗震标准的设计,变相的降低建筑成本,但是这样做给建筑结构的抗震性带来了严重的影响,进而给人民群众生命财产安全带来了严重的隐患。

5.2 忽视抗震缝设置

对于高层结构而言,虽然建筑材料是一样的,但是其结构刚度随着建筑高度的变化已经发生了相应的变化,在进行抗震延性设计过程中虽然对这一情况进行了有效的控制,但是由于高层建筑普遍存在着房屋结构不同的特点,而且有的房屋还存在着错层设计,所以按照《钢筋混凝土高层建筑结构设计与施工规程(JGJ 3-91)》中表2.2.3的相关要求,要在建筑相关部位和结构处进行抗震缝设置。

5.3 超设计标准建筑施工

高层结构抗震延性设计,是一项较为严谨的专业性设计,是根据建筑设计规划图来进行操作的,且因为高层建筑受到高度因素的影响,相应层级的抗震设计标准是不同的,但是由于建设方为了增加实际建筑面积和使用面积,任意变更建筑设计图纸,从而导致了有的层级虽然也进行了抗震延性设计,但是跟原有结构并不能成为一体,让这种设计形同虚设一般。

5.4 对建筑物土层结构掌握不准确

在进行抗震设计之前,要对建筑作业面的土层结构进行实地勘验,根据土层实际情况制定地上结构,尤其是高层结构的抗震延性设计标准,这样能有效地让地震波来临时的建筑弹塑性状态与土层特点二者相互融合,所以,在结构设计初期的建筑论证阶段,有必要对建筑一定范围内的土层结构进行地质地貌数据分析,根据分析结果来作为抗震延性设计的重要参考数据。

5.5 有效防止瞬间脆性伤害

高层结构的抗震延性设计主要防御的是地震发生时的瞬间脆性伤害,由于目前建筑物大量的使用了钢筋混凝土结构,尤其是高层建筑中,钢筋和混凝土在建筑底部受到作用力时,在高空的脆性作用是很明显的,再加上地震的瞬间冲击波力量,如果不对高层结构进行抗震延性处理的话,高层建筑在受到地震冲击的时候轻则出现脆性裂痕,重则会瞬间倒塌。而延性设计恰恰是对这种脆性伤害进行了全接触面的缓冲,无论在哪个节点上,脆性伤害力在与具备抗震延性结构接触的时候,被分化了作用力的瞬间伤害力度,从而有效地降低了地震带来的冲击和余震带来的连贯性持续伤害。

6.提高高层建筑抗震延性的措施

要使结构具有延性,就必需保证框架梁柱有足够的延性,而梁柱的延性是以其截面塑性铰的转动能力来度量的。因此框架结构抗震设计的关键是梁柱塑性铰设计。

6.1“强剪弱弯”

适筋梁或大偏压柱,在截面破坏时可以达到较好的延性,可以吸收和耗散地震能量,使内力重分布得以充分发展;而钢筋混凝土梁柱在受到较大剪力时,往往呈现脆性破坏。所以在进行框架梁、柱设计时,应使构件的受剪承载力大于其受弯承载力,使构件发生延性较好的弯曲破坏,避免发生延性较差的剪切破坏,而且保证构件在塑性铰出现之后也不过早剪坏,这就是“强剪弱弯”的设计原则,它实际上是控制构件的破坏形态。

6.2 梁、柱剪压比限制

当构件的截面尺寸太小或混凝土强度太低时,按抗剪承载力公式计算的箍筋数量会很多,则箍筋在充分发挥作用之前,构件将过早呈现脆性斜压破坏,这时再增加箍筋用量已没有意义。因此,设计中应限制剪压比即梁截面的平均剪应力,使箍筋数量不至于太多,同时,也可有效地防止斜裂缝过早出现,减轻混凝土碎裂程度。这实质上也是对构件最小截面尺寸的要求。

6.3 箍筋

震害表明,梁端、柱端震害严重,是框架梁、柱的薄弱部位。所以按照强剪弱弯原则设计的箍筋主要配置在梁端、柱端塑性铰区,称为箍筋加密区。在塑性铰区配置足够的箍筋,可约束核心混凝土,显著提高塑性铰区混凝土的极限应变值,提高抗压强度,防止斜裂缝的开展,从而可充分发挥塑性铰的变形和耗能能力,提高梁、柱的延性;而且钢箍作为纵向钢筋的侧向支承,阻止纵筋压屈,使纵筋充分发挥抗压强度。所以规范规定,在框架梁端、柱端塑性铰区,箍筋必须加密。

7.结束语

高层建筑的抗震问题是关乎于人民群众生命财产安全的重大问题,专业设计人员在对建筑进行设计的时候必须充分考虑这一点,而施工人员在施工过程中必须严格按照相关工艺标准进行工程施工,这样的高层建筑才是符合抗震要求的合格的民生工程。

参考文献:

[1]. 张波. 高层结构抗震延性设计[J],《江西建材》2014年 第13期:26;

[2]. 于孝军. 高层建筑抗震设计中存在的若干问题及对策[J],《中国科技纵横》2014年 第2期:160;

篇4

关键词:高层建筑;抗震性能;结构设计

为了抵御或减轻地震灾害,必须提升高层建筑的抗震能力。地震具有不确定性、循环性和随机性,目前难以在灾害发生前预测地震的参数和特性。在地震破坏中,建筑物的破坏也是十分复杂的。因此,抗震性能的设计中不能仅依赖于计算设计,还应立足于灾害经验和工程经验所形成的建筑抗震概念。从而实现在地震中大震不倒、中震可修、小震不坏的抗震能力。

1 高层建筑的抗震设计基本原则

第一、高层建筑结构构件的抗震性能。作为抗震结构的建筑构件应具备较强的刚度、稳定性、延性和承载力等方面的性能。结构构件在建造中应遵循强剪弱弯、强柱弱梁和强节点弱锚固的基本原则,承受竖向载荷的构件不应作为主要的耗能构件,对可能造成结构相对薄弱的构件,应当采取提高抗震能力的措施加强抗震性能。

第二、高层建筑抗震体系的建立。一个良好的抗震机构体系是由若干个结构完善的分体系构成的,为了提高建筑物的抗震性能,应当尽可能多设置几道抗震防线,同时由延性良好的分支构件连接参与协同工作。往往在强烈地震之后伴随多次余震,若只有一道抗震防线,在经过第一次破坏后遭受余震将会因损坏程度的积累而导致高层建筑结构坍塌。因此高层建筑的抗震体系应具备最大数量的外部、内部冗余度,建立一系列有意识的分布屈服区,适当提高主要耗能构件的延性和刚度,使结构能够消耗和吸收大量地震能量,提高建筑结构的抗震性能,避免在地震中出现倒塌事故。适当的处理各个结构构件之间的强弱关系,在同一楼层内应当使主要耗能构件产生屈服后,其他的抗侧力结构构件处于弹性状态,尽量延长有效屈服的保持时间,保证结构的抗倒塌能力和延性。在高层建筑的抗震设计中,如果某一部分性能过强可能会造成其他结构部位结构相对薄弱,引起抗震受力不均衡。因此在高层建筑结构的设计中不合理加强、以大代小以及改变抗侧力配筋构件的做法都需要进行慎重周密的考虑和计算。

第三、高层建筑薄弱环节抗震能力的提高。构件在强烈的地震冲击下不存在强度的安全储备,它的实际承载能力是以薄弱部位的承载能力为基础的。要使高层建筑结构的实际承载能力与设计计算的受力比值总体保持在相对均匀变化的状态,当楼层比值发生突变时,由于塑性内力分布的变化导致塑性变形集中。应当注意防止局部受力的加强而导致忽视整体结构的承载力和刚度的协调。在高层建筑的抗震设计中有目的、有意识的控制结构的薄弱部位,使其具备足够的形变能力,同时又保证薄弱部位不能发生转移,这是提升高层建筑总体结构抗震性能的有效手段。

2 提高高层建筑抗震性能的具体措施

在具备抗震性能设计要求的建筑结构建造中除了应当满足刚度、强度要求外,还需要满足延性需求度。钢筋混凝土材料本身的自重较大,因此高层建筑结构的底层柱部分会随着高度增加,同时增加它所承担的轴力,而高层建筑的抗震设计中对结构构件的延性有明确的要求,如果建筑物层高一定,要想提高结构延性需要将轴压比控制在一定范围内,如果轴压比过大会导致柱截面增大,甚至形成短柱或超短柱。然而,短柱和超短柱的延性很小,有些超短柱甚至没有延性,当建筑物所遭受的地震强度高于本地区的设防烈度时,将有可能发生建筑物结构剪切破坏,从而造成建筑物结构破坏或坍塌。因此提高高层建筑物的抗震性能主要方法是加强短柱的抗震能力。混凝土短柱延性除了受轴压力影响外,箍筋的形式和配筋率也对混凝土短柱产生很大的影响。位于高层建筑物结构底层的混凝土短柱的轴压比非常大,其塑性变形能力比较小,一旦产生破坏将会呈现脆性破坏。因此,提高混凝土短柱的延性是提高其抗震性能的主要方法。为了提高高层建筑混凝土结构的的抗震性能,应当从以下几个方面实施抗震设计。

第一、提高高层建筑短柱的抗压力和承载力。能够提高剪跨比,减小柱截面,从而改善建筑物整体结构的抗震性能。实施该措施的最直接方法是采用强度等级较高的混凝土材料降低柱子轴压比,从而提高受压承载力。但是高强度混凝土材料的本身延性较差,因此在使用时需慎重使用或与其他措施配合。除了提高混凝土等级外,使用钢管混凝土柱以及钢骨也可以提高短柱抗压力和承载力。同时认真判断分析设计数据,确认数据的有效和合理后,才可以应用于工程设计和施工。

第二、高层建筑结构采用钢管混凝土柱。钢管混凝土是一种套箍混凝土的特殊形式,由于钢管内混凝土受到侧向约束力,导致混凝土处于一种三向受压的状态,使混凝土的极限压应变和抗压强度都有很大的提高,尤其是高强混凝土延性提高效果非常明显。由于钢筋既是横向箍筋,又是纵筋,因此当选择了高等级混凝土以及合适的套箍后,建筑物的柱子承载力将会大幅度提高,消除了结构中的短柱并且具备了良好的抗震性能。

第三、高层建筑结构采用分体柱。短柱的抗剪承载力比抗弯承载力小很多,因此在地震破坏下通常是由于剪坏而导致失效,抗弯强度还没有完全发挥。因此在高层建筑结构的设计中可以消弱短柱的抗弯强度,使其略低于或等于抗剪强度。可以通过沿短柱的竖向设缝将短柱分成2―4个分体柱,在组成分体柱的支柱间设置连接键,增强支柱的后期耗能和分期刚度。

3 总论

第一、高层建筑抗震性能设计研究的结论。从抗震设计理论提出至今,世界各国工程界和抗震学术界取得了许多新的科技成果,在设计方法上也改变传统的单一力学抗震设计方法,尝试了基于位移和性能等方面的新型设计理念。抗震理论和计算机科学不断发展,新的设备和施工技术也不断涌现,为高层建筑抗震性能的发展提供了必要的技术条件。与此同时,我国的高层建筑结构基于抗震性能的设计与探究也在不断向前发展的过程中,同时完善自身的不足之处。

第二、高层建筑抗震性能设计研究的意义。目前,高层建筑结构共同工作理论的发展与研究使建筑抗震设计进一步完善。如果能够在地基与结构的动力响应、材料特性、稳定标准和计算理论等方面进行符合实际情况的发展,将会在在高层建筑抗震性能研究领域起到重要的作用。

参考文献

[1]徐宜和,丁勇春:《高层建筑结构抗震分析和设计的探讨》,《江苏建筑》,2004年第3期

[2]程玉梅,王英,张乐文:《地震作用下土层结构动力相互作用研究综述》,《四川建筑科学研究》,2009年第5期

[3]王钲日,姜春宝,卜祥宇:《探讨高层建筑抗震设计原则及常见问题》,《黑龙江科技信息》,2011年第12期

[4]郑晓红:《超高层建筑建筑体外预应力施工质量控制措施的探讨》,《黑龙江科技信息》,2010年第26期

篇5

关键词:高层建筑;抗震;设计

中图分类号:[TU208.3] 文献标识码:A 文章编号:

0 引言

高层建筑结构的抗震性能关系重大,本文探讨了抗震概念、构造及设计过程中如何解决遇到的问题,然后分析了影响建筑物抗震效果的主要因素,指出了高层建筑抗震设计应遵循的原则和方法,就此,提到了高层建筑结构抗震设计的广阔前景。

1 建筑结构抗震等级的规定和标准

震级是根据地震的强度而进行的划分,在我国,地震划分为六个级别:3级为小地震,3~4.5级为有感地震,4.5"--6级为中强地震,6~7为级强烈地震,7~8级为大地震,8级以上的为巨大地震,是国家根据相关的历史、地理和地质方面的经验资料,经过勘查和验证,对进行地震分组的一个经验数值,它是地域概念。抗震设防有甲、乙、丁类建筑,在我国大部分的房屋抗震等级是8度,可以抵抗6级地震的作用。国家设计部门依据有关规定,按照建筑物的分类和设防标准,根据房屋高度、结构等方面,采用不同的抗震等级。比如,在钢筋混凝土结构中,抗震等级可以分一般、较为严重、严重和很严重这4个级别。

在高层建筑的抗震设计中,混凝土结构应高根据建筑的高度、建筑的结构和设防的烈度运用不同的抗震等级,而且应该符合相应的计算和措施要求。

2 影响建筑物抗震效果的因素

研究高层建筑结构的抗震设计,必需明确建筑物抗震效果的主要影响因素。下面,将从建筑结构本身的设计效果、施工材料施工过程以及建筑场地情况3个方面进行分析。

2.1 建筑结构建造过程中所使用的材料和施工过程

建筑结构的材料是影响抗震效果非常重要的因素,但是这个因素往往被人们忽视,工作人员需要明确这样一点:在一般情况下,地震对建筑物作用力的大小与建筑物的质量成正比。在同等地震环境下,建筑物材料使用越好,其受到的地震作用力也相对较小;反之,建筑物就会遭到来自地震的很大的作用力。所以,在实际的建筑物的建设中,建议他们多采用隔断、板楼、维护墙等构件,广泛采用空心砖、加气混凝土板、塑料板材等质轻的建筑材料,这将会有利于建筑物抗震性能的提高。所以,高层建筑在具体施工中,要加强监管和规范,严格做好高层建筑施工管理,从建筑结构的质量上来提高抗震效果。

2.2 建筑物自身的结构设计

建筑物的结构设计是影响抗震效果极为关键的一个因素,建筑物若要达到抗震目的,必须进行合适的结构设计,保证抗震措施合理,能够基本实现小地震不坏、大地震不倒这样的目标。无论点式住宅或是版式住宅,都要进行合理的结构设计,提高建筑结构的抗震性能。如果建筑物对平面的布置较为复杂,质心与

刚心不一致,在地震情况下,将会加剧地震的作用影响力,破坏性增强。所以,建筑物的结构平面布置尽量保证建筑物质心和刚心重合,提高建筑物的抗震能力。

在建筑结构的设计中,出屋面建筑部分不宜太高,以降低地震过程中的鞭梢影响;平面布置不规则的房屋注意偏离建筑结构刚心远端的抗震墙等等。

2.3 建筑物所处地质环境情况

在地震中,对建筑物造成破坏的原因是多方面的,比如:岩石断层、山体崩塌、地表滑坡等使得地表发生运动,造成建筑物的破坏;海啸、水灾等次生灾害对建筑物造成破坏。在造成建筑物破坏的诸多原因中,有些是可以通过工程措施加以预防的。所以,在选择建筑工地的位置之前,要进行详尽的勘探考察,分析地形和地质条件,避开不利地段,挑选对建筑物抗震有利的地点。

3 高层建筑抗震设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

3.1 减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

3.2 运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的空着建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒一。

3.3 注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150 m以上的建筑,采用的3种主要结构体系(框.筒、筒中筒和框架.支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56层、321 m高,就是运用拱结构抗震减灾的很好的例子。

4 高层建筑结构抗震设计前景展望

今后若干年,中国仍将是世界上修建高层建筑最多的国家,这将会给高层建筑抗震设防带来新的难题。21世纪,高层建筑结构抗震将有如下变化:

(1)高层建筑的抗震结构体系将从以硬性为主向柔性为主的结构抗震转变,通过“以柔克刚”方式,调整建筑结构构件的隔震、减震和消震来实现抗震目的。

(2)建筑材料对结构抗震的影响越来越得到重视。建筑材料的各个抗震指标的提升可以提高高层建筑的抗震能力,研制新的建筑材料可推动高层建筑结构抗震技术的发展。通过优化的抗震方法设计,来实现高层建筑的抗震要求。

(3)计算机模拟抗震试验得到广泛应用。将制作好的模型或结构构件放在模拟地震振动台上,台面输入某一确定性的地震记录,能够较好地反映该次确定性地震作用的效果。计算机模拟环境可以拟真抗震效果,帮助科学改进各因素,有效抗震。

另外,高层建筑结构的抗震设计的计算方法也有了新的转变:从线性分析向非线性分析转变,从确定性分析向非确定性分析转变,从振型分解反应分析向时程分析法转变 。

5 结语

高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

参考文献:

篇6

关键词:建筑抗震设计;发展与背景;最新修订;注意的方面

中图分类号:TU2文献标识码: A

引言

继唐山大地震,近年来我国陆续又发生大规模的严重地震,不断在敲响建筑抗震的警钟,《建筑抗震设计规范》也在我过建筑科技科研人员的精心研究下,做出了一次又一次的改动变更。随着科技的进步与经济的发展,在人民政府的带动下,越来越多的高层住宅,高层办公用楼等高层建筑陆续出现在了我们的视线中。所以为了人民更安全的生活,我们需要在高层建筑的设计上响应规范的微调,做出一些变化。本文结合了《建筑抗震设计规范》的发展进程与最新的修改,对于高层建筑的抗震设计给出了一些新的见解。

1 《建筑抗震设计规范》的发展与背景

我国最早期的建筑工程抗震设计主要参考苏联的《地震区建筑抗震设计规范》。1959年和1964年,我国曾两次起草并拟定了包括各类工程结构的《地震区建筑抗震设计规范》(草案),虽然未正式颁布,但对以后的工程抗震设计仍起了重要的作用[1]。而后,随着国力的发展与技术的提高,我国于1974年正式颁布了第一本工程抗震设计规范――TJ11―74《工业与民用建筑抗震设计规范》(试行)。1978年,TJ11―78《工业与民用建筑抗震设计规范》(简称《78规范》)[2],国家建委批准颁布。1989年,GBJ11―89《建筑抗震设计规范》(简称《89规范》)[3],建设部批准颁布。1990年开始实施,并于1993年作局部修订。2001年,GB50011―2001《建筑抗震设计规范》(简称《2001规范》)[4],建设部和国家质检总局联合。于2008年5・12汶川地震后作了局部修订,成为GB50011―2001《建筑抗震设计规范》(2008版本)[5]。2010年,GB50011―2010《建筑抗震设计规范》,目前已完成报批手续。我国在建筑工程抗震设计领域的规范基本成型。

2 建筑抗震设计规范的最新修订

修订主要依据住房和城乡建设部建标[2006]77号文件通知进行的。于2007年7月对《2001规范》开始修订,2008年4成初稿。而2008年5月12日发生了汶川地震,面向全国征求意见的修订计划工作暂时中断,但是编制组成员迅速进入灾区开展震害调查,取得大量的建筑破坏资料数据,为规范修订提供宝贵而珍重的参考。震害资料显示,建设规划选址应充分考虑各种地质情况影响,中、小学校舍和医院等重要建筑应提高抗震设防类别,各类结构的重要部位和薄弱部位、例如楼梯间等应予加强,结构防止连续倒塌和强柱弱梁设计问题应予重视等等。根据住房和城乡建设部落实国务院《汶川地震灾后恢复重建条例》的要求,在认真总结建筑震害经验的基础上,对《2001规范》作了应急的局部修订,于2008年7月30日颁布了GB50011―2001(2008版)《建筑抗震设计规范》。局部修订的修订内容有:

(1)依据地震动参数区划图的局部修订,对四川、陕西、甘肃地震灾区的设防烈度予以变更;

(2)增加山区场地建筑抗震设计的专门要求;

(3)从概念设计的角度,提出建筑结构体系需要注意和改进之处;

(4)提高楼梯间抗震安全性的对策;

(5)抗震结构材料性能和施工要求的局部调整;

(6)增加一定数量的强制性条文。

在完成2008版局部修订之后,《2001规范》的修订工作步入正轨,认真吸取汶川地震的震害经验,按要求于2009年12月完成审查并报批。2008版和2009年修订基本延续了《2001规范》的主要抗震设计理念和方法。

3 高层建筑抗震设计中应该注意的方面

3.1结构体系与材料的选用

在地震常发区,建筑结构体系或材料的选用是否合理是人们特别关注的事情。在我国,低于150 米的建筑采用的结构体系主要有三种:筒中筒、框―筒和框架―支撑体系。其它国家的高层建筑也常采用这些体系。但国外建筑大多都是钢结构建筑,而我国钢筋混凝土建筑的比例高达9 成。如此高的钢筋混凝土结构及混合结构,国内外对如此高比例的钢筋混凝土建筑的抗地震作用并没有很好的经验。混式结构的钢筋混凝土内筒常常要承受70%至90%的震层剪力。采用钢筋混凝土核心筒结构,则应将钢筋混凝土结构的位移限值作为变形控制的基准;但因为此结构的弯曲变形侧移比较大,采用刚度较小的钢框架协助减小侧移的方式,不仅效果不明显,而且会使钢结构负担显著增大,有时必须通过设置伸臂结构或增加混凝土筒的刚度的方式产生加强层才能达到规范的侧移限值;如果柱距或结构体系发生变化时,就应设置结构转换层。转换层和加强层产生的大刚度容易造成结构刚度的突变,往往会造成柱构件剪力的突然加大,外框架柱连接处与转换层构件或加强层伸臂之间很难保证强柱弱梁。因此要慎重选择转换层和加强层的结构模式,尽可能降低它们的刚度,避免其造成的不利影响

3.2场地和地基的选择

建筑的场地以及地基的选择对于高层建筑的抗震能力具有直接的影响,是建筑抗震设计的基础,在进行建筑场地以及地基的选择时,应该充分了解当地的地震活动情况,对当地的地质情况进行有效性、科学性的勘察,在收集丰富资料的基础之上对场地进行综合的分析和评价,评估当地的抗震设计等级,对一些不利于抗震设计的场地应该尽可能的进行规避,而实在无法规避的应该有针对性的做好相应的处理措施,在高层建筑地基选择过程当中应该尽可能的选择岩石或是其它具有较高密实度的基土,从而提高建筑地基的抗震能力,尽可能的避开不利于抗震的软性地基土,对于一些达不到抗震要求的地基应该采取相应的措施进行加固和改造,使其能够符合相应的标准。

3.3建筑结构的规则性

在进行建筑结构设计的过程当中,应该尽可能的按照规则来,尤其是抗侧力结构应该尽可能的简单化,从而保证可靠性和承载力分布的均匀性;建筑结构的平面布置应该选择形状比较规则的图形,这样在发生地震的时候能够确保建筑整体的承载力均匀分布;应该尽可能的避免不规则的结构平面,造成建筑结构质心和刚心出现交错,这样一旦出现地震;一些和刚心距离比较大,刚度不足的构件就会发生侧移,受到较大的地震力的影响,有可能因为承受不住而发生损坏,最终导致建筑由于某个构件的损坏而发生倾斜和倒塌,为了防止抗侧力结构横向刚度突然出现变化,应该使垂直方向的抗侧力的截面积从上到下逐渐的递减。

3.4楼梯间设计的加强

楼梯的结构是直接或间接与主体结构相连的,例如,对于框架结构房屋,楼梯事实上是主体框架结构的一部分,在地震作用下,斜向构件梯段板也要承受剪力,这有可能导致梯段板断裂。梯段板通常有半个层高,两个标高处的水平位移有差值,容易使梯段板拉裂。另外,其各跑段梯段板的振型不一定相同和同步,容易导致梯段板底部受力钢筋与梯段板分离,钢筋断裂,还可能导致平台梁受扭破坏。在框架结构楼梯中由于存在休息平台,易形成短柱*除此以外,楼梯间高度相当于1.5个层高,这也会对楼梯间的稳定性造成影响.施工缝的留置也可能会影响楼梯的稳定性。多层民用房屋结构中,楼梯多为现浇板式结构,楼梯的施工应与楼房其他主体结构的施工同步进行,才能保证房屋的主体结构安全和抗震效果。这样,在楼梯中就不可避免地留置一定数量的施工缝,施工缝的留置位置和支模方法直接关系到主体工程质量和施工难易程度。

为加强楼梯间的整体性及墙体的稳定性,以增强其空间刚度,应加强纵横墙体之间的可靠连以限制墙体裂缝的产生,发展及倒塌。

(1)顶层楼梯间墙体应沿墙高每隔500mm设2Φ6通长钢和Φ4分布短钢筋平面内点焊组成的拉结网片或Φ4点焊网片;7~9度时,其他各层楼梯间墙体在休息平台或楼层半高处设置60mm厚、纵向钢筋不应少于2Φ10的钢筋混凝土带或配筋砖带;配筋砖带不少于3皮,每皮的配筋不少于2Φ6,砂浆强度等级不应低于M7.5且不低于同层墙体的浆强度等级。

(2) 楼梯间及门厅内墙阳角处的主梁支承长度不应小于500mm并应与圈梁连接。

(3)突出屋顶的楼梯间,除其构造柱应伸到顶部!并与顶部圈梁连接外,所有墙体应沿墙高隔2Φ6通长钢和Φ4分布短钢筋平面内点焊组成的拉结网片或Φ4点焊网片。

4 结语

我国的《建筑抗震设计规范》还会在今后的实践中吸取更多的经验,从而成长的更加成熟,而高层建筑的成熟也将称为这我国走向小康社会的鲜明符号。在高层建筑的设计上积极响应《建筑抗震设计规范》是对人民群众安全的责任。从长远角度看,开发各种合理的实用可行抗震设计策略,是一件非常重要且有意义的事情。

参考文献

[1]TJ11-74 工业与民用建筑抗震设计

[2]GB 50011-2001 建筑抗震设计规范[S].2008版

[3]王亚勇 《建筑抗震设计规范》的发展沿革和最新修订 《建筑结构学报》 2010年6月

篇7

目前,我国建筑抗震技术已经有了一定的提高,但是与国外的技术相比还有很大的差距。建筑工程师还不能把建筑设计和抗震设计很好的结合,建筑抗震设计的发展还比较慢,并且抗震设计也不能与各地区的实际情况很好的结合。我国抗震设计存在的问题主要表现在以下几个方面。

1.1工程师缺乏实际工程经验

由于我国的科技水平不高,不能准确的判断地震的成因,并且对其预测,造成居民的很大损失,还有在地质地震等方面的研究不够,特别是建筑物的抗震能力方面。这就导致我国建筑设计中抗震设计的发展滞后,而且也没有统一规范的设计理念,因而很难实现建筑设计的抗震目标。

1.2工程师对实际情况的考量不足

目前,很多建筑工程师只是根据数据和固有的一些参数进行施工,缺少对地区的实际情况进行考量。因为不同地区地质的构造截面的实际承载能力不同,所以要结合实际情况进行检测计算。不能根据固定地震降级系数来进行施工,例如,我国建筑抗震设计中的把地震降级系数固定为2.81,容易导致工程师把小级别的抗震应用到建筑抗震设计中,当遭到大级别的地震时,建筑物不具备抗震能力,会造成很大的损失。

2.建筑抗震设计的注意要点

2.1坚持建筑结构设计的对称原则

目前,根据相关的建筑抗震设计规定,建筑工程师要坚持建筑结构的规则,同时要求结构设计师做大简单、规则的设计,从而做到建筑物遇到小级地震不坏、中级地震可以修补、高级地震不会倒的目标。并且要求工程结构设计师遵循竖向形态的建筑规则,通常选择方形和圆形的形状,因为矩形和梯形的形状规则比较均匀。按照此类形状设计的建筑物,在遇到地震时内部构件承受力比较均衡,通常只会出现平移震动,而一些非对称结构的建筑在地面平移时,会出现扭转震动,主要是因为建筑物的质心和刚心不能重合,当发生地震时,建筑物的内部构件会遭到严重的破坏,发生变形。

2.2注重建筑构件与连接点处质量

在建筑工程设计和施工过程中建筑构件的合理配置以及连接点处的质量与建筑施工安全质量存在直接的联系。并且在新型建筑材料问世的同时建筑物的外部设计大都会采用新型建筑材料,例如大理石、瓷砖等。而建筑室内装饰也会使用到吊顶等技术。这些室内以及立面装饰本身存在抗震性能的问题,并且其与建筑主体的牢固连接也是抗震设计的关键。近几年,在一些地震灾害中,发生过很多下“玻璃雨”的事情,主要原因是目前的技术还不能防止地震中玻璃幕墙的变形,因此,在很多地震中,一些高层建筑的玻璃幕墙会遭到很大的破坏。所以,如果在建筑中采用玻璃幕墙,必须提高建筑构件与连接处的质量,从而保证玻璃幕墙在地震时不会变形。并且在遭遇地震时能够与建筑物脱离,将所受到破坏的程度降到最小。此外,在内隔墙、玻璃隔断等构件的设计上也要提高连接点的质量,保证建筑主体连接点的牢固性,从而提高建筑物的抗震性。

2.3关注建筑顶部抗震

建筑屋顶的抗震设计对于高层建筑物有重要的影响。这就要求设计师十分重视建筑顶部的抗震设计,在遭遇地震时,建筑屋顶过高、过重都会加重建筑的变形程度,特别是我国的高层建筑物中普遍存在这样的问题,如果不重视高层建筑屋顶的抗震设计,发生地震时,下层建筑物会受到很大的影响。如建筑的屋顶与下层建筑的重心没有位于同一条直线上,那么建筑屋顶的抗侧力墙也会与下层建筑的抗侧力墙出现分离,当地震出现时则会加剧损坏。因此在高层或超高层建筑设计中应该使用新型高强度轻质的建筑材料,尽可能保证屋顶的重心与下层建筑的重心位于通一条直线。当建筑屋顶的较高时要保证其抗震定性,缓解地震带来的变形作用。此外顶部结构的设计也适当的选用强度高、刚性均匀轻质的结构材料。

2.4建筑竖向布置

建筑竖向布置主要体现在建筑物的高度结构质量以及刚度的设计中,特别是在高层或超高层建筑中建筑的竖向布置对于建筑抗震设计来说更加重要。建筑楼层的使用功能差异导致建筑物楼层分布的质量和刚度均不一致,例如楼层包括游泳池、会议室、健身房等。楼层的功能导致楼层上下之间的刚度差异过大。高层建筑中刚度最差的楼层的抗震性能最为薄弱,在出现地震时即为变形严重的薄弱层。在建筑设计中由于楼层功能不同导致的墙体不连续,柱子不对称等极大的限制了抗震性能。因此在建筑抗震设计中应该尽量保证竖向的刚度分布靠近,尤其是在结构上刚度转换层更加要着重注意。

2.5建筑设计需要达到的设计限值

在实际的工程操作以及设计时,一定要严格遵循我国相关部门的标准规范要求,例如在8度的防烈度情况下,粘土砖多对地震降级系数固定为2层建筑物的高度不能够高于18m,建筑层数不能大于6层等。一旦超过相关的规定,就会严重影响到建筑物的抗震能力,除此之外,对于建筑物局部的墙体尺度也要控制它的最小值,保与实际情况结合在一起证墙体截面的抗震强度能够满足抗震要求,避免墙体在地震时不会出现开裂或者倒塌等破坏情况的发生。

3.结束语

篇8

关键词:高层建筑;结构设计;抗震设计;基本原则

中图分类号:TU97文献标识码: A

前言

建筑工程的抗震性能取决于抗震结构的设计,这就对抗震结构的设计提出了更高的要求。建筑单位需要不断分析预见地震灾害中可能会遇到的各种问题,探讨如何在设计过程中有效规避这些问题,不断优化抗震结构,尽量减小地震造成的建筑损失。另外,在研究建筑工程的抗震结构设计过程中,建筑单位必须明确抗震结构的设计目标,利用最有效的设计方式,提高建筑工程的安全能力,保障建筑工程的稳定性,发挥建筑工程的最大效益。

一、建筑抗震性能的主要影响因素

影响建筑工程抗震结构安全性的因素是多方面的,建筑地基和建筑高度是其中的两个重要因素,直接关系到建筑的抗震性能。首先,建筑地基。地基是抗震结构设计重点考虑的内容,建筑工程的地基稳定程度直接影响其抗震性能,良好的地基建设能够为建筑抗震提供稳定的基础。科学的抗震结构设计必须要深入研究地基问题。其次,建筑高度。我国对建筑高度与抗震烈度之间的关系有明确的规定,建筑高度必须与抗震烈度相匹配,然而部分建筑没有遵循此原则,无法达到相应的抗震烈度,为建筑抗震埋下安全隐患。

二、建筑抗震结构设计的基本原则

建筑工程抗震结构需要遵循一定的设计原则,以此保障抗震结构设计的安全性,提高工程质量。(1)协同原则,建筑工程的抗震结构并不是单一个体,而是由多个独立的单元模块组成,建筑单位必须确保协同作用,才能发挥抗震结构的优势,提升建筑的抗震性能;(2)多防线原则,地震产生的波动不局限于一次,建筑抗震设计需考虑地震的连锁危害,不能仅靠一条防线,根据建筑的实际情况,设置多防线保护,最大程度的保护建筑工程;(3)刚性原则,抗震结构的建设材料,必须达到刚性标准,确保抗震材料的坚韧度;(4)平衡原则,建筑抗震结构需具备平衡的数据参数,各项抗震结构保持在统一水平,避免作用力突然转移,发挥建筑工程动态抗震的优势;(5)整体原则,抗震结构需以整体为出发点,不能单纯考虑单方面的防震。

三、抗震概念在高层建筑结构设计中的应用

1.选择有利的地基和场地

根据我国以往发生的多次发地震造成的建筑损害情况分析,表明了地震对建筑物的破坏程度受建筑物所在场地地形以及地基的影响较大。一般情况下,建筑场地条件包括局部地形、断层、地基土层、沙土液化等。在场地和地基的选择方面,表层覆盖层的厚度越小、土质硬,所以其承载力就高,稳定性也越好,在发生地震时地基不易失效;但是表层覆盖层的厚度越大,土质越软,那么对地震的效果作用也就会加大倍数的放大。另外,场地周围如果有突出的山梁或者是孤立的山包,那么也会对地震效果放大。地震中,在断层处常会出现地基失效、地层错位、滑坡、土体变形等现象。因此,在高层建筑抗震设计时,要选择硬质场地,尽可能避免不利因素的场地选择,当实在无法避免时,就要采取必要的措施,减少地震效果的输出。

2.对建筑平面以及立面科学的布局

在进行建筑结构的设计中,应该保证建筑平面和立面的规整性。在建筑抗震设计中,使结构的刚度中心与质量中心相重合,以达到建筑平面与立面规则、简洁的效果。那些建筑平面不规则建筑物的质量中心和刚度中心一般情况下不能够重合,这样在地震中建筑结构会发生扭曲,增加了地震的破坏力。对于建筑的立面设计,要避免有突变的阶梯立面出现,降低建筑的重心,并且保证凸出建筑主体的建筑部分高度,避免在地震中出现鞭梢效应。建筑物的高度与地震造成的损害成正比,所以,在高层建筑建设过程中层数和高度都要有一定的限值。在保证建筑平面与立面的平整要求后,还应该考虑建筑的外观造型设计上美观、大方。这样既能达到抗震效果,又能符合建筑的使用条件。

3.对建筑结构合理的选择和布置

在建筑结构的选型上要根据许多综合因素考虑,这此因素包括建筑的高度、建筑用途、设防烈度、基础、地基、材料、施工、场地等,还要在经济技术和经济条件进行比较以后确定建筑选型。对于建筑结构的布置方面,应该遵循“平面对称、竖面均匀”的原则。还应该注意的是,纯框架高层建筑中,要尽量防止出现框架柱和楼梯斜梁或平台梁直接连接的情况,因为这样会将框架柱变为短柱,发生地震就容易产生剪切破坏。

4.保障建筑结构的整体性

只有保证建筑结构的整体性,在发生地震时建筑结构的各个部件才能相互协同工作,使建筑结构的抗震效果更加显著。建筑结构的抗震力是由结构整体刚度以及整体的稳定性决定的,在高层建筑施工中使用型钢混凝土结构或现浇钢筋混凝土结构,可以实现结构整体稳定性效果,这两种钢筋混凝土结构具有整体性好、水平刚度大等优点,使用这两种钢筋混凝土结构不但可以解决滑移问题,还可以增强楼板刚度,达到抗震效果更好。

5.对于其他非结构部件的处理

建筑物中非结构部件对抗震有影响的有:框架填充墙、墙板、楼梯踏步板、内隔墙等。在地震中,这些结构也会在不同程度上参与抗震工作,改变这些结构的承载力以及刚度,或者是改变整个结构,或许在地震中这些结构会起到意外的效果。所以说,对其他非建筑结构部件进行合理的处理,能更好的提高建筑物的抗震能力,减少地震给其造成的损害。

结语

随着我国经济水平的快速提升,人口迅速的增加,城市土地资源严重匾乏,为了解决这一难题,中高层建筑乃至于超高层建筑在城市建设的过程中越来越多。众所周知,建筑物层数越多,高度越高,它的抗震效果就越差,在地震发生时对其的损害程度也就越多,这严重威胁着人民生命财产安全。所以在高层建筑结构设计中应用抗震概念设计,在建筑结构施工的各个方面,对建筑结构抗震设计进行完善,消除建设过程中出现的不利于建筑结构抗震的操作。在高层建筑结构设计中应用抗震概念设计,有效的提高了建筑物的抗震能力,能有效减少地震对建筑物的损害,从而保证人民生命财产安全。

参考文献:

[1]华颖.抗震概念设计在高层建筑结构设计中的应用[J].中华民居.2013.

[2]刘华新,孙志屏,孙荣书.抗震概念设计在高层建筑结构设计中的应用[J].工程技术.2007.

[3]郭继武.建筑抗震设计(第三版). 中国建筑工业出版社,2011(02).

篇9

关键词:高层建筑;平面规则性超限;抗震设计

1 引言

在高层建筑设计的过程中,抗震设计一直是一个非常重要的环节,其设计的水平直接影响到了建筑工程自身的安全性,当前随着相关技术的发展,平面规则性超限技术在不断的发展和应用,这种技术的应用使得高层建筑抗震的质量和水平得到了非常显著的提升,所以对其进行全面的研究也有着十分积极的现实意义。

2 基于性能的结构抗震设计基本原理

基于性能的抗震设计在当前的建筑抗震设计当中发挥着十分重要的作用,同时其在很多国家都得到了非常广泛的应用,它是一种相对比较先进的设计思想,这种设计方法是上个世纪末由美国的专家学者提出的,但是这个概念本身并不是一个创新,在20世纪70年代的时候,波兰的学者就提出了和这种概念十分类似的观点,在很多地区和国家发生了地震之后,当地建筑物的损伤现象并不是十分的严重,这样也在很大程度上保证了人们的生命和财产安全,但是在经济方面却造成了非常严重的损失,所以为了可以更好的对这种现象予以控制,在实际的工作中,很多学者也逐渐的意识到建筑结构抗震性能设计的重要性和必要性,在研究的过程中所树立的目标就是借助抗震设计使得整个建筑结构的安全性和稳定性都得到较好的保证,对建筑物自身的破坏程度也要进行有效的控制,将生命和财产损失控制在一个相对较为合理的水平,只有通过结构自身的抗震设计,才能更好的保证以上目标的顺利实现。

目前,很多国内外的专家和学者对于基于性能的抗震设计工作的关注程度越来越高,在实际的工作中也对其进行了非常积极的研究,取得了非常好的成果,对于这种设计方法的研究不断的加深,但是在对其定义进行描述的过程中,很多学者都有自己的看法,因此还没有形成统一的定义,虽然他们之间存在着一定的差异,但是这些描述当中的基本思想是相同的,在设计的过程中必须要考虑到建筑结构在使用期限之内,如果遇到了不同程度的地震作用的时候,其要按照事先设定好的抗震标准、结构发生的变化和损坏程度对其进行设计,这样就使其在安全性、可靠性和经济性上能够达到一种相对较为平衡的状态。在开展性能设计的过程中,业主可以根据其实际的经济状况提出一个比较科学合理的性能指标,同时设计人员也可以按照工程的实际情况对其进行设定处理,这样也就给设计人员对各个因素全面深入的分析提供了非常好的条件,此外在这一过程中也要针对不同形式的建筑采取不同的措施,制定一个更加贴合实际的目标。综上所述,基于性能的抗震方法在我国的高层建筑抗震设计工作中还是存在着非常强的科学性和合理性的。

3 钢筋混凝土结构基于性能的抗震设计方法

3.1 基于性能抗震设计的基本步骤

基于性能的抗震设计在实际实行的过程中,必须要按照工程实际的情况对其进行处理,比如设防烈度、建筑的高度和建筑立面的形式等等。此外在这一过程中还要充分的考虑到业主对建筑抗震性能的实际需要,以及自身的经济水平,之后才能设定一个相对比较科学合理的目标,并按照其设计的基本步骤逐步操作。基于性能抗震设计的基本步骤流程图如图1所示。

3.2 超限高层结构抗震性能目标的设定和选用

建筑物的抗震性能目标通常就是指在设定了地震作用等级的条件下,结构自身的预期性能水平。不同标准下抗震性能目标和性能水准示意图如图2所示。

实际工程中的超限高层建筑可根据具体建筑的场地条件、设防烈度、建筑高度及建筑不规则及建筑超限程度,综合业主对建筑的建造成本、建筑重要性及震后损失、修复等方面的考虑,参考图2选择合适该超限工程的性能目标。

需要注意的是:建筑的超限程度对结构的延性变形能力会产生直接的影响,而结构的延性变形能力与其承载力要求成反比关系,即:结构及构件的承载力较高,对其延性变形能力要求则较低;结构及构件的承载力较低,对其延性变形能力的要求则较高。超限高层建筑结构抗震设计应根据建筑高度的超高情况及结构不规则程度,在考虑提高结构承载力和延性变形能力时,应注意两者的协调从而选择既合理又能保证结构安全抗震性能手段。

4 建立在我国设计规范上的基于性能设计方法

根据《高层建筑混凝土结构技术规程》3.11条规定,结构抗震性能设计有两项主要工作:首先,对结构工程进行分析判别,确定其采用抗震性能设计方法的必要性。结构分析与判别主要包括对建筑方案的高度、结构类型、结构规则性、场地条件及抗震设防标准等方面进行分析,并以此作为抗震性能目标选用的主要依据。其次,综合考虑建筑物的设防烈度、场地条件、重要性、造价、震后损坏和修复难易程度等各项因素,作为选定合适的抗震性能目标的主要依据。对结构进行抗震性能设计时,对抗震性能目标的选用需十分谨慎,同时应作深入的分析论证。由于地震地面运动难以预测,对结构在强烈地震作用下的非线性分析计算的模型及参数选用等方面也存在经验因素,实际工程也缺少实际震害的验证,因此对结构抗震性能作出准确判断难度很大,对超高层建筑由于其自振周期较长及结构自身的复杂性和不规则性,对其抗震性能作出准确判断就更困难了。因此在性能目标选用时,考虑到地震作用的不确定性,性能目标选择时适宜偏于安全、保守。

结束语

基于性能的抗震设计是一个相对比较新颖的设计思想,当前,对这种方法的研究在不断的深入,而且很多研究已经有了非常好的成果,但是要想在工程中应用这些研究成果,还需要一定的时间,必须要保证这种技术处于非常成熟的状态之后,才能对其予以应用。

参考文献

[1]方虎生.某超限高层结构分析设计[J].广东建材,2007(5).

篇10

关键词:高层建筑;结构;抗震设计;措施

1高层建筑结构抗震设计的布置原则

在高层建筑结构设计中,当结构体系确定后,结构总体布置应当密切结合建筑设计进行,使建筑物具有良好的造型和合理的传力路线。因此,结构体系受力性能与技术经济指标能否做到先进合理,与结构布置密切相关。

一个先进而合理的设计,不能仅依靠力学分析来解决。因为对于较复杂的高层建筑,某些部位无法用解析方法精确计算。因此,还要正确运用“概念设计”。“概念设计”是指对一些难以做出精确计算分析,或在某些规程中难以具体规定的问题,应该由设计人员运用概念进行判断和分析,以便采取相应的措施,做到比较合理地进行结构设计。以下论述的诸方面均须用概念设计的方法加以正确处理。

1.1结构平面布置

高层建筑的开间、进深尺寸和选用的构件类型应符合建筑模数,以利于建筑工业化。在一个独立的结构单元内,宜使结构平面形状和刚度均匀对称。需要抗震设防的高层建筑,其平面布置应符合下列要求:

1)平面宜简单、规则、对称、减少偏心。

2)平面长度不宜过长,突出部分长度不宜过长,值宜满足有关要求。

3)不宜采用角部重叠的平面图形或细腰形平面图形。

1.2结构竖向布置

高层建筑的高宽比不宜过大,一般将高宽比控制在5~6以下,当设防烈度在8度以上时,限制应更严格一些。高层建筑的竖向体型宜规则、均匀,避免有过大的外挑和内收。

1.3变形缝的设置

在结构设计中,为防止结构因温度变化和混凝土收缩而产生裂缝,常隔一定距离设置温度伸缩缝;在高层部分和低层部分之间,由于沉降不同设置沉降缝;在地震区,建筑物各部分层数、质量、刚度差异过大或有错层时,设置防震缝。温度缝、沉降缝和防震缝将高层建筑划分为若干个结构独立的部分,成为独立的结构单元。在高层建筑里,应尽量少设置变形缝,当不可避免地需要设置变形缝时,应确保各单元间的变形缝有足够的宽度。

2高层建筑抗震设计存在的问题

2.1 缺乏岩土工程勘察资料或资料不全。有的在扩初设计阶段还缺建筑场地岩土工程的勘察资料,有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。无岩土工程勘察资料,设计缺少了必要的依据。

2.2抗震设防标准掌握不当。有一些项目擅自提高了设防标准,按照《建筑抗震设防分类标准(GB 50223-95)》划分应属六度设防的,但设计中提高了一度按七度设防,提高了建筑抗震设防标准,将会增加工程投资;有的项目严格应按七度采取抗震措施的,但设计中又按六度设防,减低了抗震设防标准,不利抗震。

2.3结构的平面布置。外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。

2.4结构的竖向布置。在高层建筑中,竖向体型有过大的外挑和内收,立面收进部分的尺寸比值B1/B不满足≥0.75的要求。

2.5框架结构砌体填充墙抗震构造措施不到位。砌体护墙砌筑在框架柱外又没有设置抗震构造柱,框架间砌体填充墙高度长度超过规范规定要求又没有采取相应构造措施。

2.6抗震构造柱布置不当。如外墙转角处,大厅四角未设构造柱或构造柱不成对设置;以构造柱代替砖墙承重;山墙与纵墙交接处不设抗震构造柱;过多设置抗震构造柱等。

2.7结构其他问题。有的底层无横向落地抗震墙,全部为框支或落地墙间距超长;有的仅北侧纵墙落地,南侧全为柱子,造成南北刚度不均;有的底层作汽车库,设计时横墙都落地,但纵墙不落地,变成了纵向框支;还有的底框和内框砌体住宅采用大空间灵活隔断设计,其中几乎很少有纵墙。

3加强高层建筑结构抗震设计的基本措施

3.1场地和地基的选择

选择建筑场地时,应根据工程需要,掌握地震活动情况、工程地质和地震地质的有关资料,对抗震有利、不利和危险地段作出综合评价。对不利地段,应提出避开要求;当无法避开时应采取有效措施;选择地基时,一般而言,岩石、半岩石和密实的地基土对房屋抗震最有利,是最好的建筑场地;而松软的,软弱粘性土等,尤其是易发生砂土液化的地区,都对房屋的抗震不利。同一结构单元的基础不宜设置在性质截然不同的地基上;同一结构单元不宜部分采用天然地基不采用桩基。

3.2建筑结构的规则性

建筑及其抗侧力结构的平面布置宜简单、规则,刚度和承载力分布均匀。平面宜为矩形,方形、圆形等规则的平面,因为形状规整,地震时能整体协调一致,并可以使结构处理简化。否则当平面为L、T形时,形状凸出凹进,结构的质心和刚心不重和,地震是转角应力集中,扭转震动明显,导致远离刚心的刚度较小的构件,侧移量加大,所分担的水平地震力与显著增大,很容易发生破坏,甚至导致整个结构因一侧结构失效而倒塌。竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免抗侧力结构的侧向刚度和承载力突变。如果竖向不规则的建筑结构,应采用空间结构计算模型,其薄弱层的地震剪力应乘以1.15的增大系数,应按规范有关规定进行弹塑性变形分析。

3.3建筑结构材料的选取

在高层建筑结构方案的设计中,结构材料的选取是很重要的。从抗震角度设计来说,结构体系的抗震等级,其实质就是在宏观上控制不同结构的延性要求,例普通钢筋宜选用延性、韧性和可焊性较好的钢筋;普通钢筋的强度等级,纵向受力钢筋宜选用HRB400级和HRB500级热轧钢筋,箍筋宜选用HRB335、HRB400和HPB300级热轧钢筋。这要求我们应根据建设工程的各方面条件,选用既符合抗震要求又经济实用的结构类别,按此标准来衡量,使用不同材料的几重结构类型,依其抗震延性性能优劣的顺序是:钢结构,型钢混凝土结构,现浇钢筋混凝土结构,装配式钢筋混凝土结构,配筋砌体结构。

3.4隔震和消能减震设计

隔震和消能减震设计,应主要用于使用功能有特殊要求的建筑,对于高层建筑,选择坚硬的场地土建造高层建筑,可以明显减少地震能量输入减轻破坏程度。错开地震动卓越周期,可防止共振破坏。隔震设计应根据预期的水平减震系数和位移控制要求,选择适的隔震支座及为抵抗地基微震动与风荷载提供初刚度的部件组成的隔震层。提高结构阻尼,采用高延性构件,能够提高结构的耗能能力,减轻地震作用,减小楼层地震剪力。

3.5抗侧力体系的优化

对一般性构造的高楼,刚比柔好,采用刚性结构方案的高楼,不仅主体结构破坏轻,而且由于地震时的结构变形小,隔墙,围护墙等非结构部件将得到保护,破坏也会减轻。提高结构的超静定次数,在地震时能够出现的塑性铰就多,能耗散的地震能量也就越多,结构就愈能经受住较强地震而不倒塌。改善结构屈服机制,使结构破坏十按照整体屈服机制进行,而不是楼层屈服机制。设计结构时遵循强节弱杆、强柱弱梁、强剪弱弯,强压弱拉的原则。在进行结构设计时,应该选定构件中轴力小的水平杆件,作为主要耗能杆件,并尽可能使其发生弯曲耗能。从而使整个构件具备较大的延性和耗能能力。

3.6常用的加固设计

针对抗震鉴定结论,根据建筑结构不同体系及不同特点,在抗震加固时宜从以下几个方面来考虑具体的加固方法:对了原有结构体系存在明显不合理的情况,条件许可时可采用增设构件的方法予以改善,否则采取能同时提高承载力和变形能力的方法,使整体抗震能力满足要求;对于需要提高承载力或结构整体刚度的情况,可以增设构件,扩大原截面,设置套箍等方法;对了结构的整体性连接不符合抗震要求的情况,可以以提高变形能力为思路;对于局部构造不符合要求时,可进行局部处理或改变传力途径,使地震作用由增设的构件承担,从而保护局部薄弱构件;对于次要的非结构构件不符合抗震要求的情况,可仅对可能倒塌伤人的部位加以处理。

3.7控制结构变形

地震时建筑物的破坏程度,主要取决于主体结构变形的大小。水平地震作用下高层结构各楼层的侧移,包含四种成分:整体剪切变形,整体弯曲变形,整体平移,整体转动。对不同的结构应采取针对性的措施,控制结构的变形。结构实验和震害调查表明,采用层间侧移角度来评估结构的损坏程度是比较合理的,《抗震规范》对高层结构不同水准下的层间侧移角限值作出了规定。减小结构侧移的途径主要有:减小框架的柱距和梁距,采用弯-剪双重抗侧力体系,设置刚臂,竖向支撑的交错布置,变平面构件为立体构件,围护结构参与抗震,倾斜立面的利用,扭转体型的应用,双曲线圆筒的应用,加大房屋等有效宽度。

3.8减轻房屋自重

在高层地上部分的总重之中,各层楼盖的自重越占40%左右,所以可通过采用密肋楼板、无粘结预应离平板,预制多孔板,现浇多孔板、应用防火隔热涂料等方法减轻楼板重量。钢筋混凝土墙体较多的高层结构中,应在满足承载力要求的前提下,适当减薄墙体。使用高强混凝土、轻骨料混凝土、加气混凝土、轻型隔墙、轻型围护墙等措施也是减轻房屋自重的有效途径。

4结语

未来,随着城市人口的逐渐增多,建筑用地的日益减少,城市高层建筑必定会成为人们最佳选择。而保证高层建筑结构的安全性、特别是要保证建筑结构的抗震强度是十分重要的。而高层建筑结构的抗震设计就逐渐成为建筑工程设计的重中之重。加强高层建筑的抗震设计的理念和实践的创新,保证建筑结构的安全性,是建筑结构设计的关键点之一,也是促使高层建筑物持续发展的重要条件。

参考文献:

[1]陈维东.高层建筑结构抗震设计存在的问题及其对策[J]. 中国高新技术企业. 2009(05)