开关电源的设计与制作范文

时间:2023-12-19 17:46:08

导语:如何才能写好一篇开关电源的设计与制作,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

开关电源的设计与制作

篇1

[关键词]单端反激式 宽范围 DC/DC变换器

中图分类号:TN86 文献标识码:A 文章编号:1009-914X(2015)13-0293-01

引言

LM5032是美国国家半导体公司推出的业内首个适用于传统及有源箝位复位电路结构的100V双通道交错输出脉冲宽度调制控制器。本文介绍了一种采用LM5032控制器设计宽范围输入(9V~36V),多路输出(+5V,±12V)的隔离型DC/DC变换器,它大大提高了DC/DC变换器的功率密度,提高了电源模块的可靠性和稳定性。

1.电路方案设计原理

众所周知,隔离型DC/DC变换器的典型拓扑结构主要有全桥式、半桥式、推挽式、正激式以及反激式等。其中全桥式和半桥式电路拓扑结构相对复杂,所需元器件较多,主要使用于大功率的开关电源,由于本电源模块输出功率为10W,所以全桥式、半桥式和推挽式电路不再本次电路设计方案考虑之中。单端反激式电路结构简单,变压器可作为输出电感,与单端正激式相比,可有效减小产品体积,提高DC/DC模块的功率密度。因此,根据产品的具体技术指标和外形尺寸综合考虑,在本电路设计中采用了单端反激式电路拓扑结构,图1是本电路设计所采用的原理图。

2.主要技术指标与变压器参数设计

2.1 主要技术指标如下:

输入电压:9V~36V

输出电压及电流:+5V/100mA,±12V/200mA

2.2 变压器参数设计

变压器选TDK公司的罐形变压器(直径Ф=9mm),磁芯有效截面积Ae=0.101cm2,

磁感应强度ΔB=1500GS,Dmax=0.5,开关频率f=200kHz.

2.2.1 计算原边绕组流过的峰值电流Ip

2.2.2 原边绕组的电感值

2.2.3 求Dmin

取14匝

3.DC/DC电源变换器结构设计

DC/DC电源变换器要求高度低(高度不超过8mm),多路输出(+5V,±12V),对器件的结构,元器件的装配、输出纹波、效率都有严格的要求,合理设计结构非常重要。

为解决较低的输出纹波及提高电源的功率密度,本产品采用单层PCB板设计,开关管选用PowerPAK SO-8封装形式,电阻、电容大部分选用0603封装的。

通过热设计,将发热元件尽可能的均匀分布整个组件中,并将其紧贴在金属壳体上,产品最终采用导热性能好的硅橡胶实体灌封,六面体金属封装,实现良好的散热,提高了产品的可靠性。

4.产品达到的性能指标

该型宽范输入范围、多路输出DC/DC变换器达到的技术指标如表1所示。

5.结论

篇2

Lu Zhuwei;Chen Yuming

(①Sanjiang University,Nanjing 210012,China;②Wiscom Electrical Co.,Ltd.,Nanjing 211100,China)

摘要:研究了开关线性复合功率变换技术,提出一种复合型精密电流源的方案。该电源结合了高频开关电源和推挽线性功放电路的优点,输出波形好,效率高、体积小。同时采用三态自适应滞环电流控制方式,有效地减小了输出电流的脉动纹波。根据设计的方案制作了一台样机,实验结果表明该电流源纹波系数小、效率高,验证了方案的可行性。

Abstract: Switch-linearity hybrid power conversion was researched and a hybrid precise current source was proposed based on the technology. The current source combined the advantages of switching power module and linear power module. It had excellent waveform, high efficiency and small volume. A novel self-adaptive three-state hysteretic control strategy was also used to reduce the ripple of the output current. Then a model machine was produced according to the design scheme. The result showed that this current source had low ripple quotient and high efficiency, so it proved the effectiveness of the scheme.

关键词:开关线性 精密电流源 滞环控制

Key words: switch-linearity;precise current source;hysteretic control

中图分类号:TM1文献标识码:A文章编号:1006-4311(2011)19-0036-02

0引言

随着电力事业的发展,用电单位越来越多,对电能表进行准确的校验是保证电力安全、电能计量准确的必要手段。在仪表校准中,希望交流电压源或电流源的精度与分辨率足够高,因为这是仪表能否校准好的关键所在。线性功率放大器具有设计简单、波形失真度小等优点,目前在精密功率源中一般都用它进行功率放大。但线性功率放大器的效率很低,特别是工频电工式仪表多为感性负载,此时线性功率放大器发热更为严重,因而在精密测量领域中的应用受到制约。精密开关电源能省去工频变压器,效率高,虽然纹波系数较大,但把它作为集成恒流源的前级,复合成精密恒流源,可将二者的优势互补,使其稳定性等技术指标大大提高。

1开关线性复合技术

开关线性复合技术(SLH)主要的特点是将电力电子纯开关功率变换电路与线性功率放大电路有机的结合起来,即把常规的PWM电压型变频器作为B类功率放大器的供电电源,由于射极跟随器的负反馈形成的系统具有强有力的抗干扰特点,使得系统具有较高的效率和较强的鲁棒性,从而构成的新型功率变换器,可以互补综合,优化性能。

该技术的本质在于开关滤波电路只作为复合线性电路的特殊供电电源,那么整体系统可以看成是一个比例放大器,从而获得极快的动态响应和比较准确地跟踪效果,而同时又因为具有压控射极输出特性的线性单元的高阻输入、低阻输出的特性,近似于功率级的缓冲器,阻隔了输入输出信号之间的相互干扰,很好的保证了系统的正常工作,实现了THD指标和效率指标的兼顾,符合目前大家追求的高保真、绿色、环保等电源变换的要求。

SLH的结构图如图1所示,由图可以看出,开关线性复合器由参考信号、前置功放、前置放大、开关电源、线性功率放大等组成。产生标准正弦信号作为参考信号,同时控制开关变换单元和线性功率放大单元,是系统输出理想波形的参考;将参考信号前置放大的目的是驱动线性功率放大装置中的功率开关器件;开关电源的作用就是为线性功率放大装置中的功率开关器件提供脉动正弦供电电源。

2基于开关线性复合技术的电流源方案设计

2.1 系统总体设计方案本文设计一种开关电源和线性功率放大器复合的电流源,将开关电源作为复合电源的前级,开关电源的输出整流滤波成馒头波后为线性功率放大器的功率放大管供电,且馒头波与系统输出电压接近线性放大器功率管的管压降,这样就大大提高了电源的整体效率。这种复合电源既保留了传统电源的优点,又根据实际需要对现有传统电源的不足作了改善。复合电源总体设计方案如图2所示,输入为50Hz、220V交流电压,经整流滤波后得到311V直流电压,采用DC/DC变换器将直流电压变换成100Hz、最大值为80V的馒头波。该馒头波经滤波后作为DC/AC逆变器的输入,DC/AC逆变器采用了三态滞环和自适应滞环相结合的电流控制方式,使输出的电压波形具有较小的波形失真度。

2.2 DC/DC变换电路设计开关电源DC/DC电路的设计方案如图3所示。交错型双晶体管正激变换器在保留双管正激变换器功率开关管电压应力低和可靠性高的优点同时,克服了等效占空比小、副边二极管电压应力高、输出电流脉动大等缺点。与全桥变换器或半桥变换器相比,它的每一个桥臂都是由一个二极管和一个开关管串联组成,从结构上消除了桥臂直通现象,可靠性高,特别适合输出中等功率、输入电压较高的应用场合。因此,DC/DC变换电路采用交错并联的双晶体管正激变换电路。

2.3 DC/AC电路设计方案开关电源DC/AC电路的设计方案如图4所示。开关电源DC/AC电路的输入为变换成100Hz、最大值为80V的馒头波。再经全桥逆变为正弦交流电压,并经LC滤波网络滤去高次谐波,最后得到所需的正弦波作为输出。吸收电容用于吸收负载以及滤波电容的回馈能量,防止直流母线电压上冲。该逆变器控制电路采用输出电流外环加电感电流内环的双环控制方案,采用三态滞环控制进一步减小输出电流的THD,采用自适应滞环控制解决了输出小电流、低电压情况下电流的THD超标问题。

2.4 后级线性电源设计后级线性电源的设计方案如图5所示,基准正弦电压经PI调节器后经差分对管输入,经中间放大级电路放大,输出采用乙类互补推挽功放电路。前级开关电源DC/AC逆变电路输出电压经整流滤波后,输出电压波形与线性功率放大器的输出波形的电压差近似为功率放大管的饱和管压降,作为线性功率放大器中功率放大管的供电电源。线性功率放大器的输出电压跟随负载的变化而变化,DC/AC逆变电路的输出电压根据功率放大管的管压降实时调整,保证电压差始终接近功率放大管的饱和管压降值。

3系统实验分析

根据设计的方案制作了一台样机,在样机实验中,负载为1A时,线性功放输出电压及电流波形如图6所示。负载为3A时,线性功放输出电压及电流波形如图7所示。

复合电源的实验数据如表1所示。由此可以看出电流源能输出高质量的正弦电流,有较好的稳定性,谐波失真度不超过0.5%。

4结论

文章将精密开关电源作为集成恒流源的前级,将线性放大电路作为后级,将二者的优势互补,复合成精密恒流源,使其技术指标大大提高。采用了三态滞环和自适应滞环相结合的控制方式,作为全桥逆变电路的电流环控制方式,减小了输出电流的脉动,减小了逆变桥开关次数,使输出电流的THD在输出电流和负载变化时均能满足小于0.5%的要求。

参考文献:

[1]黄松清.开关线性复合技术及其在电力电子变换领域中的应用[J].北京:电气技术,2006.

[2]周谦之.开关线性复合功率变换技术及其应用[J].北京:电工技术学报,2004.

[3]胡文斌,哈进兵,严仰光.自适应滞环控制高频软开关电流源的研究[J].西安:电力电子术,2004.

篇3

【关键词】开关电源EMI滤波器 原理 设计

中图分类号: TM643 文献标识码: A 文章编号:

开关电源的特点是频率高、效率高、功率密度高和可靠性高。然而由于其开关器件工作在高频通断状态,使得电磁干扰非常严重。防电磁干扰主要有三项措施,即屏蔽、滤波和接地。往往单纯采用屏蔽不能提供完整的电磁干扰防护,唯一的措施就是增加滤波器,来切断电磁干扰沿信号线或电源线传播的路径,与屏蔽共同构成完美的电磁干扰防护。

开关电源EMI滤波器的原理

1、开关电源的电磁干扰源

(1)开关管产生干扰。开关管导通时由于开通时间很短及回路中存在引线电感,将产生较大的du/dt和较高的尖峰电压。开关管关断时间很短,也将产生较大的di/dt和较高的尖峰电流,其频带较宽而且谐波丰富,通过开关管的输入输出线传播出去形成传导干扰;

(2)整流二极管反向恢复电流引起的噪声干扰

由于整流二极管的非线性和滤波电容的储能作用,二极管导通角变小,输入电流成为一个时间很短,而峰值很高的尖峰电流,含有丰富的谐波分量,对其他器件产生干扰。二级滤波二极管由导通到关断时存在一个反向恢复时间。因而,在反向恢复过程中由于二极管封装电感及引线电感的存在,将产生一个反向电压尖峰, 同时产生反向恢复尖峰电流,形成干扰源;

高频变压器引起EMI问题

隔离变压器初、次级之间存在寄生电容,这样高频干扰信号很容易通过寄生电容耦合到次级电路,同时由于绕制工艺问题在初、次级出现漏感将产生电磁辐射干扰。另外,功率变压器电感线圈中流过脉冲电流而产生电磁辐射,而且在负载切换时会形成电压尖峰;

2、干扰信号频段分析

当开关电源的谐波电平在高频段(频率范围30MHz以上)时,表现为辐射干扰,而当开关电源的谐波电平在低频段(频率范围0.15 MHz~30 MHz)表现为传导干扰。传导干扰电流按照其流动路径可以分为两类:一类是差模干扰电流,另一类是共模干扰电流。开关电源的差模干扰和共模干扰分布在不同的频段,在截止频率范围内大致可分成3个频段,在0.5MHz以下,主要是以抑制差模干扰为主;在O.5 MHz一1 MHz(或0.1MHz一1 MHz)范围内,差模和共模干扰共存;在1MHz—30 MHz范围内主要是以抑制共模干扰为主。

二、设计开关电源EMI滤波器的实际方法

1、设计中的几点考虑

EMI滤波器的效果不但依赖于其自身,还与噪声源阻抗及电网阻抗有关。电网阻抗通常利用静态阻抗补偿网络(LISN)来校正,接在滤波器与电网之间,包括电感、电容和一个50电阻,从而保证电网阻抗可由已知标准求出。而EMI源阻抗则取决于不同的变换器拓扑形式。

以典型的反激式开关电源为例,如下图(a)所示,其全桥整流电路电流为断续状态,电流电压波形如下图所示。对于共模噪声,下图(b)所示可以看作一个电流源和一个高阻抗并联;下图(c)中对于差模噪声,取决于整流桥二极管通断情况,有两种状态:当其中任意两只二极管导通时,等效为一个电压源与一个低值阻抗串连;当二极管全部截止时,等效为一个电流源和一个高阻抗并联。因而噪声源差模等效阻抗以2倍工频频率在上述两种状态切换 。

EMI滤波器设计

(1)电容、电感选取原则

一般的EMI滤波器中有两组电容,即跨接在电源线之间起差模抑制作用的X电容和接在电源线和地之间起共模抑制作用的Y电容。对于X电容其额定电压应和电网电压相当,其容量可以选的大些,典型值为零点几微法到1。对于Y电容取值允许的情况下越大越好,但Y电容会导致人员电击,所以对其最大漏电电流有限制,的大小由产品规定。

另外,为了获得较好的高频特性,降低高频等效串联电阻和等效串联电感,X和Y电容通常都是通过几个较小的电容并联来满足其容量要求。对于滤波器中的共模或差模扼流圈一般情况下要自己动手设计。磁芯材料一般是铁氧体。电感量的估算要考虑阻抗和频率。共模扼流圈典型取值为1.5 mH~20mH,差模扼流圈典型取值为10H~50H。

(2)设计EMI滤波器的步骤

要使EMI滤波器有良好的工作特性,元件在选材时有很多需要注意的地方。差模滤波电容(C)通常选取金属膜电容,金属膜电容具有较大的电容值,自谐振频率在1 MHz~2 MHz之间,对于较低频率的差模干扰信号有非常好的抑制效果,设计时通常选取值为0.1uF一1uF。共模滤波电容()选用瓷片电容,具有高达10 MHz以上的自谐振频率,所以对较高频率的共模干扰信号有较好的抑制效果,设计时通常选取值为1000 pF~6800 pF。共模电容因为要进行接地,则共模滤波电容的最大容量可用下式计算:

出于安全考虑,漏电流要尽量小,通常应小于5 mA。

为了取得良好的滤波效果,电感的取值和材料的选取原则从以下几个方面考虑:第一,磁芯材料的频率范围要宽,要保证最高频率在1 GHz,即在很宽的频率范围内有比较稳定的磁导率;第二,磁导率高,但是在实际中很难满足这一要求,所以,磁导率往往是分段考虑的。共模扼流圈磁心尽量选用起始磁导率高、高频性能好的磁心,这样对共模噪声有很好的抑制效果。绕制共模扼流圈的时候尽量让导线均匀包裹住磁心,以减少漏感,这样绕制出的电感线圈与设计值更为接近。

EMI滤波器抗共模部分的截止频率的计算式:

EMI滤波器抗差模部分的截止频率的计算式:

在实际的计算过程中,如同计算共模滤波器的步骤一样,首先确定需要的 以及厂的大小,再带人由式(4)推导出来的式(5)中,计算出的值。再由式(6)计算出的大小。一般情况下共模扼流圈的漏感取值为自身电感量的0.5% ~2%。

经过上面的步骤以后,就可以得到针对不同频率开关电源的EMI滤波器中所有元件的参数。

开关电源EMI滤波器的设计电路

①开关电源共模干扰等效电路

下图所示,开关管 由导通变为截止状态时.其集电极电压会马上变为一个高电压.这个襄变电压会引起下图中Icm2向 集电极到地之间的分布电容充电。这个突变电压还生成电流Icm1向高频变压器初、次级问的分布电容充电 形成共模电流(Icm1+Icm2)。 其充电频率就是开关电源的工作频率(即脉冲重复频率)。其中,与开关管的结构有关.而的数值视高频变压器的具体结构和工艺而定 因此可知.共模干扰电流的流动方向有两条:一条沿着电源正极到地;另一条沿着电源负极到地。LISN表示测试等效电路时连接线路阻抗稳定网络。

②开关电源差模干扰等效电路

下图所示.当导通时,差模电流和电源电流都沿着导线、变压器初级及开关管回到电流负极上。当截止时,视为开路。这时数量很小并且也对差模电流是高阻抗的。因此,差模电流是沿着电源正极到负极方向流动的。

总结

提出的EMI滤波器,完全滤除了开关电源输出端的尖峰干扰,其对开关电源传导性共模、差模噪声干扰体现了较强的抑制作用。

参考文献

[1] 付明民,袁登科,张逸成,龚增,王晖。 用于开关电源的EMI滤波器设计[J]. 电气自动化. 2009(04)

[2] 冯楠,曾国宏,张佳。 高频开关电源的EMI滤波器的研究[J]. 电气技术. 2006(12)

[3] 张逸成,苏丹,朱学军,姚勇涛。 抑制开关电源高频噪声的电磁干扰滤波器设计方法[J]. 城市轨道交通研究. 2007(09)

[4] 杨志辉,韩泽耀。 应用于开关电源的有源共模EMI滤波器[J]. 安全与电磁兼容. 2006(04)

篇4

求职者在编写个人简历之前需要注意招聘信息中的潜在要求,因为个人简历需要针对招聘信息来写。在求职过程中个人简历写的如何,直接关系到求职能不能成功通过,要编写优秀的个人简历需要对求职信息了解、对求职目标了解,还需要对自己有所了解。

名: 刘先生 性

别: 男

婚姻状况: 已婚 民

族: 汉族

籍: 湖南-永州 年

龄: 34

现所在地: 广东-东莞 身

高: 161cm

希望地区: 广东

希望岗位: 工业/工厂类-RD/研发工程师

寻求职位: 电子开发工程师

教育经历

1997-09 ~ 2000-07 湖南科技学院 电子信息工程 大专

1994-09 ~ 1997-07 祁阳四中 高中 高中

**公司 (2011-10 ~ 2012-06)

公司性质: 私营企业 行业类别: 电子、微电子技术、集成电路

担任职位: 电子工程师 岗位类别: RD/研发工程师

工作描述: 主要负责高效率高功率因数低谐波限压恒流LED驱动器的开发设计,具备200W左右实际的LLC半桥高功因数的项目实际开发经验!以及以前产品的改良,效率的提高,产线异常的跟进,客户的投诉处理以及品质的提高等!

离职原因: 向外发展

**公司 (2008-03 ~ 2011-09)

公司性质: 私营企业 行业类别: 电子、微电子技术、集成电路

担任职位: 开发工程师 岗位类别: RD/研发工程师

工作描述: 该厂是一家专业开发与生产LED分光分色的全自动测试机的民营企业,产品包括小功率直插,贴片,食人鱼,大功率等测试机,主要负责开发用于工控机可以控制的精密数控恒流恒压电源,以及与PLC简单通讯接口电路,用于PLC指示灯用电路板,工控机操作系统的安装,测试系统的安装调试,日常维护及售后服务的疑难故障的技术支持及解决方案。

离职原因: 公司搬迁

**公司 (2006-03 ~ 2007-12)

公司性质: 私营企业 行业类别: 电子、微电子技术、集成电路

担任职位: 开发工程师 岗位类别: RD/研发工程师

工作描述: 主要负责遥控充电台灯,DC-DC驱动日光灯管应急照明电路,AC-DC恒流驱动LED照明,AC-DC紧急夜灯,太阳能充电照明等电路的设计,及其以前该类产品的电路改良。

离职原因: 向外发展

**公司 (2004-06 ~ 2006-01)

公司性质: 民营企业 行业类别: 电子、微电子技术、集成电路

担任职位: 助理工程师 岗位类别: 电子工程师/技术员

工作描述: 大功率开关电源蓄电池充电器,镍氢电池充电器,大功率实验用可调开关电源等项目的跟进及其改良。

离职原因: 向外发展

**公司 (2001-04 ~ 2004-05)

公司性质: 私营企业 行业类别: 计算机硬件

担任职位: 维修,后来升为PE工程师 岗位类别: 电子工程师/技术员

工作描述: 新产品的导入,生产异常的跟进,对制程异常的分析及改善,测试治具的开发制作及改善,SOP的制作,产能的提升。

离职原因: 向外发展

项目经验

可编程程控数字电源 (2011-12 ~ 2012-03)

担任职位: 开发工程师

项目描述: 该可编程数控电源基于STM32F103以及高效高功率因数600W开关电源开发的。

责任描述: 主要负责开关电源以及嵌入式单片机周边模拟电路的硬件开发,PCB的LAYOUT,BOM表的建立,测试文件的制作,协同软件工程师进行系统的调试,试产的跟进,后续的改良以及生产资料的移交。因STM32F103具有2个16通道12位的A/D转换及2通道12位的D/A转换,无须另外的A/D及D/A,加上该芯片无等待的指令执行速度,因此满足开关电源的实时闭环反馈控制需求。开关电源基于高功率因数控制芯ICE2PCS01及TL494PWM控制芯片而设计,ICE2PCS01工作于68KHZ频率下,TL494工作于38KHZ频率下,采用半桥架构,既减少EMI,又可满足实时的动态负载调整。调试好PFC 电路再调试PWM部分电路,待各部分正常工作后,再整体调试。

基于工业ISA卡槽控制的高精度数控恒流恒压源 (2008-06 ~ 2008-10)

担任职位: 开发电子工程师

项目描述: 用于LED自动化测试设备的高精度数控限压恒流源,因为是工业应用,所以必须兼顾稳定与准确及快速,基于工业控制卡槽ISA开发,由VB程序在工控机上精确设定和控制电流以及电压,通过ISA接口8M的速率与板上D/A,A/D进行数据交换,实现闭环反馈控制,从而输出高精度的稳定的电流与电压。

责任描述: 1、构思硬件电路的功能以及元器件的选择,确认,PCB板的LAYOUT,物料BOM的制作,样板的制作,协同VB工程师对系统的调试,物料的承认,测试文件的制作,试产的跟进,以及资料的移交,后续异常的跟进,客诉问题的处理,以及提供售后疑难问题的解决方案,技术的支持。

可调光手电筒 (2006-05 ~ 2006-05)

担任职位: 电子工程师

项目描述: PIC10F202单片机控制手电筒实现PWM调光以及控制3档光照的成功案例,主要是用PIC10F202单片机产生1路可调脉宽的PWM波形来控制有输入PWM可调电流的恒流DC-DC芯片,实现PWM调光,再用电源开关实现档位的调节,即实现了3档光照的选择

责任描述: 1、构思硬件电路的功能以及元器件的选择,确认,PCB板的LAYOUT,物料BOM的制作,程序的调试,样板的制作,物料的承认,测试文件的制作,试产的跟进,以及资料的移交,后续异常的跟进。

技能专长

专业职称:

计算机水平: 中级

计算机详细技能: 熟练操作psds2007,power pcb,protel99,AD10等软件进行单双面及多层pcb的Layout设计,熟练操作office办公软件完成各种工程文件的制作,电脑的软硬件安装,常用软件的安装,系统的格式化及其重装,优盘安装系统及其优盘的制作,以及局域网的组建管理及维护。

技能专长: 1.有PIC10F202单片机控制手电筒实现PWM调光以及控制3档光照的成功开发案例。

2.成功开发出基于工业控制ISA卡槽控制的高精度数控恒流恒压源,及其PCB的layout。

3.成功开发出基于STM32F103控制的程控600W开关电源、STM32外围硬件电路的设计,以及PCB的layout。

4.能熟练设计开关电源电路,PIR红外感应安防电路,线性电源电路,红外遥控电路,DC-DC驱动日光灯应急照明电路,AC-DC,DC-DC恒流驱动LED照明电路等的应用及设计,如无线红外遥控充电手提灯,大功率LED路灯,AC-DC红外遥控LED厨房灯,感应洗手液机,充电LED手电照明等。

5.熟悉开关电源电路的各种拓扑架构,如RCC,Flyback,Forward,Half-brigde,目前流行的QR模式,LLC半桥等结构,设计高频变压器及其电路的调试,熟悉UL,VDE等安规及EMC滤波电路的设计,整改。

6.有扎实的数模电子基础,有多年丰富的新产品导入及新产品开发经验,较强的数模电子分析及设计能力,熟悉STM32、恩智浦ARM单片机的资源及外围硬件电路设计,熟悉C语言的程序设计,懂PLC的梯形图语言。

语言能力

普通话: 流利 粤语: 差

英语水平: 三级 口语一般

英语: 一般

求职意向

发展方向: 高级电子开发工程师

其他要求: 包食宿,5天八小时制,可提供5险1金。

自身情况

自我评价: 1.有10年丰富的工作经验及较强的实际动手操作能力。

2.扎实的数模电子电路理论基础.

3.较强的工作责任心及团队合作精神,能吃苦耐劳,任劳任怨。

4.具有创新意识,敏锐的洞察力,较强的分析能力。

篇5

早期的恒流源多为线性电源,近几年随着开关技术的不断成熟,线性恒流源逐渐被开关式恒流源所替代。相比之下,开关电源具有体积小、重量轻、功率因数高、效率高等优点,开关电源的研究涉及到自动控制、电力电子等诸多技术领域,高效率、软开关是开关电源的研究和发展方向。因此,PFC技术、软开关PWM技术得到了空前的发展,并在开关电源中得到了广泛的应用。

【关键词】软开关;功率因数校正;移相全桥ZVS变换器

早期的恒流源多为线性电源,近几年随着开关技术的不断成熟,线性恒流源逐渐被开关式恒流源所替代。相比之下,开关电源具有体积小、重量轻、功率因数高、效率高等优点,开关电源的研究涉及到自动控制、电力电子等诸多技术领域,高效率、软开关是开关电源的研究和发展方向。因此,PFC技术、软开关PWM技术得到了空前的发展,并在开关电源中得到了广泛的应用。

1 开关电源发展现状

电源是人类目前生活和生产中最为重要的能源形式之一。在工农业领域,很多用电设备都无法直接使用供电电网提供的工频交流电作为供电电源,而是需要通过某种形式对电网提供的工频交流电进行变换,得到其所需要的电能形式,才可以使用电设备处于各自的最佳工作状况或者满足用户负载的特殊工作情况的要求。可调直流电源实质是输出电压(或电流)可调的稳压(或稳流)电源。可调直流电源的应用非常广泛,在工业领域主要用于大功率直流电动机的供电电源;蓄电池充电电源,PCB曝光灯电源;电阻器、继电器、电机等电子元件老练供电电源;电解电源、实验室、电子设备的供电电源等。同时许多用电设备,如信号源、自动控制系统、检测系统等,对其供电电源的电压稳定精度要求比较高。

就信号源而言,若其供电电压不稳定,就会造成信号源发出的信号不稳定或不能发出特定频率的信号。对一些精密的电子仪器而言,若其供电电压出现波动,将导致测量和计算结果出现误差。对一些控制系统而言,若其供电电压不稳定将引起自动控制系统工作不稳定,甚至不能工作。可调直流电源在农业领域也有应用,例如静电喷雾杀虫、环境静电除尘、静电杀菌、生物静电效应研究、种子静电处理等等。

2 可调直流电源的特点

随着工农业技术的不断发展,一些用电设备对供电电源要求也变得越来越高,并对其性能、精度、体积、重量、智能化操作等各方面都提出了新的技术要求,现有的直流电源已经不能满足相关要求。

可调直流电源主要分为线性直流电源和开关型直流电源两种。线性直流电源电路中的调整功率管工作在线性放大区。这种稳压电源的主要优点是电路结构简单,输出纹波小,精度高,对电网的谐波干扰小,输出电压稳定,抗干扰性好。当然,直流线性稳压电源也有一些致命缺点,限制了它在一些场合的应用。其调整管工作在线性放大状态,因而发热量大,效率低,其效率一般只有45%;由于线性稳压电源的发热量比较大,必须进行散热,所以线性稳压电源往往需要加上庞大的散热片,而且稳压电源工作在工频50Hz下,输入端口的工频变压器体积也很大;当要制作多组电压输出时,变压器体积会更庞大,不便于开关电源的微型化和轻量化。

高频开关电源是指功率晶体管工作在高频开关状态的直流稳压电源。高频开关电源与线性直流电源相比主要有以下优点:(1)体积小,重量轻由于开关电源采用了高频技术,去掉了传统的工频变压器,使得变压器、滤波电感和滤波电容的体积和重量大大减小。(2)效率高。高频开关电源采用的功率开关管功耗一般比较小,尤其将软开关技术应用在开关电源中时,可以大大的减小开关损耗。(3)功率因数高。在配有功率因数校正电路的高频开关电源中,功率因数一般在0.9以上,而且基本不受负载变化的影响。(4)稳压精度高。高频开关电源的稳压精度可高达0.2%。(5)可靠性高、灵活性高。在采用单项有源功率因数校正电路的开关电源中,电源允许的输入范围比较大,能满足世界各国不同的电网等级,所以电源装置的可靠性和灵活性比较高。由于高频开关电源具有以上这些优点,其应用也越来越广泛,并且逐渐占领主流市场,有取代线性直流电源之势。因此研究和设计一种低功耗、高效率、大功率的高性能开关电源意义深远。

现在市场上主流的可调直流电源有线性直流电源和开关型直流电源,开关型直流电源以其功率因数高、体积小等优点占据主流市场,近几年随着科技的发展,我国生产的直流稳压电源(开关电源)的工作频率由原来的几十千赫兹发展到现在的几百千赫兹,但是和欧美、日本等发达国家还是有一定的差距,以美国为首的几个发达国家在这方面的研究已经转向高频下电源的拓扑理论、工作原理、建模分析等方面技术领域。因此,我国开关电源的研究及应用在这些方面与发达国家还有很大的差距。

3 结语

随着我国科学技术的不断提升,我们国民生产各部门,各行业对直流电源的要求会更一步的提升,尤其是对20A直流电源方面,寻找新式的电源已经分非常迫切的了。为此希望我国能够早日制造出能够适合各种行业的电源,进一步促进我国的兴旺发展。

参考文献:

[1]翼飞.高压直流电源技术的发展现状及应用[M],农业电气化,2004

[2]郝欣.基于PSM高压开关电源控制策略的研究,[D],合肥,合肥工业大学,2007

[3]王增福,李昶,魏永明.新编线性直流稳压电源[M],北京:电力工业出版社,2004

[4]杨贵恒,张瑞伟,钱希森等.直流稳压电源[M],北京:化学工业出版社,2010

篇6

关键词 CUK直直变换器 直直变换器 直流开关电源 应用

中图分类号:TM46 文献标识码:A

电源是现代生活必需品,衣食住行离不开电源,文化娱乐、办公学习、科学研究、国防建设、交通运输都离不了电源。计算机、电视机、X光机等虽然也是打开开关就能工作,但是这些机器里面都已经做了电能变换处理,将正弦的交流市电转换成各自需要的直流电、高压电、脉冲电。另外用蓄电池经过电能变换可获得电能。卫星、飞行器,把太阳能收集起来,再经过电能变换获是需要的各种电能来维持长期运行。近年来,通信技术发展迅速,通信产品日趋小型化、绿色化,这对其供电模块,即通信电源模块,提出了越来越高的要求。通信电源模块的发展趋势为高效率、高功率密度、高可靠性,与此同时,它还要有良好的动态性能和适应宽输入范围的能力,这些对通信电源模块的设计提出了很大的挑战,尤其是宽输入范围。由于通信电源模块大多数时间工作在额定电压下,因此保证额定输入电压时的高效率十分重要,它是高功率密度和高可靠性的保障。针对宽输入电压范围,选择合适的电路拓扑十分重要。Buck 型拓扑结构的变换效率最高点一般在输入电压较低时,而Boost 型则恰恰相反,因此很难在额定输入电压时取得最高的效率。

1直直变换器概述

1.1直直变换器源头

要想探究变换器的源头,我们就要先来了解一下开关电源的分类。现代开关电源分为直流开关电源和交流开关电源两类,前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。电力电子变换器是应用电力电子器件将一种电能转变为另一种或多种形式电能的装置,按转换电能的种类,可分为四种类型:直流-直流变换器,它是一种直流电能转换成另一种或多种直流电能的变换器,是直流开关电源的主要部件;逆变器,是将直流电转换为交流电的电能变换器,是交流开关电源和不间断电源UPS的主要部件;整流器,是将交流电转换为直流电的电能变换器;交交变频器,是将一频率的交流电直接转换为另一种恒定频率或可变频的交流电,或是将变频交流电直接转换为恒频交流电的电能变换器。这四类变换器可以是单向变换的,也可以是双向变换的。单向电能变换器只能将电能从一个方向输入,经变换后从另一个方向输出;双向电能变换器可实现电能的双向流动。近些年还有人提出一种新颖的四开关Buck-Boost 变换器及其控制策略,该变换器由Buck变换器和Boost变换器级联等效而成,其可以将宽范围的输入电压高效率变换到额定电压附近,这样对后级变换器而言输入就是一个窄范围,从而保证了后级变换器的优化设计;与此同时,四开关Buck-Boost变换器的滤波工作模式还保证了额定输入电压附近效率的最高。之后,推导出输入与输出电压关系式和电感电流纹波理论值。设计并制作出样机,经实验证明理论分析的正确性,并给出详细的实验数据,包括MOSFE T驱动时序、漏源极波形、电压纹波、输入与输出电压关系验证表和开关占空比与主电路效率关系曲线图。它以TI的MSP430F6638芯片为控制核心,主电路以四开关单电感Buck-Boost结构为拓扑,采用同步整流控制,外扩驱动电路和电压、电流检测电路。MOSFET驱动信号是由430片内两个PWM 模块发出的四路PWM 波提供,通过430片内12位ADC采集输入电压、电流和输出电压、电流,通过数字PI 算法来调节PWM 占空比即可实现电源的恒压、恒流输出和恒定功率输出。系统外接了键盘和液晶屏可进行人机交互。另外其通信端口可以和其它设备进行通信,可根据系统要求进行电源参数设定。高效性、灵活性和宽范围的输入、输出电压是数字开关电源的重要性能指标。对于主电路拓扑的选择考虑在不需要隔离的电源系统中,尽量不采用有变压器的拓扑,以提高效率;在非隔离型的基本变换器中具有升降压功能的拓扑Buck-Boost、Cuk、Zeta 和Sepic,但Buck-Boost 和Cuk的输出电压与输入电压极性相反,使检测电路设计复杂化;而Cuk、Zeta 和Sepic所需储能元件多,不利于电源参数的灵活调节。本系统主电路采用同步整流方式控制的四开关单电感Buck-Boost 结构。它是由一个同步Buck 电路通过电感桥接到一个同步Boost 电路。此电路具有升降压功能,把原有的Buck电路和Boost电路的续流二极管用低导通电阻的MOSFET管代替,利用其反向导电特性降低了导通损耗,提高了转换效率。

1.2直流变换器的分类

直流变换按输入与输出间是否有电气隔离可分为两类:没有电气隔离的称为非隔离的直流变换器,有电气隔离的称为隔离的直流变换器。非隔离型的直流变换器按所用有源功率器的个数,可分为单管、双管、和四管三类。隔离型的变换器可以实现输入与输出间电气隔离,通常采用变压器实现隔离,变压器本身具有变压的功能,有利于扩大变换器的应用范围。非有隔离型的变换器和隔离型的变换器组合得到单个变换器不具备的特性。按能量传递来分,直流变换器有单向和双向两种。

按开关管的开关条件,直流变换器可分为硬开关和软开关两种。软开关直流变压器的开关管在开通或关断过程中,或是加于其上的电压为零,即零电压开关,这种开关方式显著地减少了开关损耗和开关过程中引起的震荡,可以大幅度地提高开关频率,为变换器的小型化的模块化创造了条件。

直直变换器分类示意图如图一所示:

图1:直直变换器分类

1.3直直变换器基本概念

直直变换器,即直流/直流变换器,它是将一种直流电源变换成另一种具有不同输出特性的直流电源的电力电子装置。直直变换器可将某种直流电能变换成负载所需的电压或电流可控的直流电源,它通过对电力电子器件的快速通、断控制,而反恒定直流电压斩成一系列的脉冲电压,通过控制占空比的变化来改变这一脉冲序列的脉冲宽度,以实现输出电压平均值的调节,再经输出滤波器滤波,在负载上得到电压可控的直流电能。

1.4控制输出电压方法

控制输出电压的基本方法有以下三种:

(1)定频调宽控制,称为脉冲宽度调制型,即:PWM型。

(2)定宽调频控制,称为脉冲频率调制型。

(3)调频调宽混合控制。

在固定开关频率的脉宽调制(PWM)方法中,开关通、断控制信号由此产生。

2 Cuk直直变换器

2.1 Cuk直直变换器基本形式及工作状态

Cuk直直变换器是非隔离型变换器的一种,Cuk型电路可以看成是由升压型电路和降压型前后级联而成的。Cuk电路及Cuk等效电路如图二所示。

图2:Cuk电路(左)及Cuk等效电路(右)

(1)S通时,Ui―L-S回路和R-L1-C1-S回路有电流。

(2)S断时,Ui―L-C1-D回路和R-L1-D回路有电流。

(3)电路相当于开关S在A、B两点之间交替切换。

2.2 利用伏秒平衡推导

对电感L:UiTon =(Uc1-Ui)Toff

对电感L1:(Uc1+U0)Ton=- U0 Toff

U0/Ui=-D/(1-D)

等式右边的负号表示输出电压与输入电压极性相反,其输出电压即可以高于其输入电压,也可以低于输入电压。

2.3优点

与升降压斩波电路相比,期优点在于输入电源电流和输出负载电流都是连续的,且脉动很小,有利于对输入、输出进行滤波。

3 直流开关电源及其应用

直流开关电源是具有直流变换器且输出电压恒定或按要求变化的直流电源,其输入为直流电,也可以是交流电。直流开关电源部分或全部符合以下特征:电源电压和负载在规定的范围内变化时,输出电压应保持在允许的范围内变化;输入与输出间有好的电气隔离;可以输出单路或多路电压,各路之间有电气隔离。

直流开关电源与直流线性电源相比,其电力电子器件在开关状态工作,电源内部损耗小,效率高;开关频率高,电源体积和重量小。

直流开关电源在大型计算机、通信系统、航空航天器中的电源是分布式电源系统,包括三个部分:第一部分为发电系统,第二部分是一次电源,第三个部分是二次电源。发电系统是将其他能量转化为电能的设备一次电源用于将变化范围较大的输入电压转变为所需的输出电压。二次电源则直接面向用电设备,分布式电源系统的发电系统、一次电源和部分二次电源为多冗余度电源,电源间互相并联,电源模块内有运行状态监控电路,可准确判断电源故障,并切除故障电源,因而有较高的可靠性。同时,一次电源和输出都并有蓄电池,从而防止发电系统或个别一次电源故障引起的汇流条电压中断,实现了不间断供电。因此,分布式电源系统是高可靠和不间断供电系统,目前只有直流供电系统才能实现完善的不间断供电。

4对直流开关电源的要求

电源是电子设备正常工作的基础部件,有很高的要求,包括使用要求和电气性能要求。使用要求是:高的可靠性、好的可维修性、小的体积重量、低的价格及使用费用和好的电气性能。平均故障间隔时间MTBF是衡量开关电源和其他设备可靠性的重要标志。减小损耗、提高效率和改善散热条件,从而减小电源的温度升高,是提高可靠性的基本方法。加强生产过程质量控制,保证好的电气绝缘和机械强度等也十分和重要。对于中大型开关电源,改善可维修性十分重要。及时诊断故障部位,不用专用工夹具即能排除故障是可维修性好坏的衡量标志。可维修性包括现场维修和车间维修两个方面。现场维修要求在电源系统运行情况下快速卸下故障电源模块,更换新模块,并有新模块方便地投入系统运行。车间维修是对故障电源本身的修理。对于小功率电源模块则一般不再修理。随着芯片集成的不断提高,电子设备内功能部件的体积不断减小,因而要求设备内部电源的体积和重量不断减小。直接装在印制板上的模块电源,还要求薄型化。提高开关频率要求发展高速电力电子器件和高频损耗的磁芯及电容器,发展高强度、高绝缘性能和高导热性的绝缘材料,发展新型的零开关损耗电路拓扑和相应的电源结构与工艺方法。降低开关电源生产成本和使用费是提高市场竞争力的主要条件。直流开关电源的输入电源有两种:直流电源和交流电源。交流输入时,交流电压往往要先经整滤波变换成直流电压后,再通过直流变换器转变为所需的直流电压。使用直流电源时,电源电压额定值及其变化范围,输入电流额定值及其变化范围。输入冲击电流,输入电压的突然下降或瞬时断电,输入漏电流等是必须考虑的因素。输入为交流时还必须考虑输入电压相数,电源额定频率用项变动范围,输入电流波形和输入功率因数等要求。开关电源还应有输出过压、欠压、过流和过热等保护功能,以免损坏用电设备。直流开关电源的发展高频化、小型化、模块化和智能化是直流开关发展方向。智能化是便于使用和维修的基础,无人值守的电源机房、航空和航天器电源系统等等都要求高度智能化,以实现正常、故障应急和危急情况下对电源的自动管理。

5 CUK变换器电路拓扑和控制方式

由于BUCK/BOOST变换器的Lf在BUCK/BOOST变换器的这个缺点,美国加州理工学院SLOBODAN (下转第188页)(上接第163页)CUK教授提出了单管CUK变换器,该变换器在输入端和输出端均有电感,从而显著地减小了输入和输出电流的脉动。和BUCK或BOOST相比,CUK电路有两个电感,输入是电感L1和输出电感L2,另外还增加了一个电容C1。它的输出电压Vo极性和输入电压Vin相反,与BUCK/BOOST是相同。另一个与BOOCK/BOOST的相同点是输出电压Vo也可低于、等于或高于输入电压Vin。开关管Q也是采用PWM控制方式。变换器也有电流连续和断续两种工作方式。但与前三种变换器不同,这里不是指电感电流的断续,而是指流过二极管的电流连续或断续。在一开关周期中开关管Q的截止时1-Dy)TS内,若二极管电流总是大于零,则为电流连续;若二极管电流在一段时间内为零,则为电流断续工作;若二极管电流在t=Ts时刚降为零,则为临界连续工作方式。

6结语

本文力图按照直流开关电源软开关技术的发展过程来论述各类软开关技术的基本思路、概念和工作原理,使大家能从中得到一些有益的思路,并且举一反三,从而进一步丰富和发展直关电源软开关技术。特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。开关电源还应用在有输出过压、欠电压、过流和过热等保护功能,以免损坏用电设备。在构成电源系统时,开关电源还应有遥控、遥测和遥信功能。以及开关电源应有高的电能转换效率、低的噪音、好的电磁兼容性和绝缘性能等。

参考文献

篇7

[关键词]开关电源 ;PWM;UC3875;驱动电路

中图分类号:TM743 文献标识码:A 文章编号:1009-914X(2015)26-0257-01

0 引言

开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛应用于电子整机与设备中。开关型稳压电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。以功率晶体管(GTR)为例,当开关管饱和导通时,集电极和发射极两端的压降接近零;当开关管截止时,其集电极电流为零[1]。所以其功耗小,效率可高达70%-95%。而功耗小,散热器也随之减小。开关型稳压电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器。此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此开关电源具有重量轻、体积小等优点。

1 开关电源的类型

按驱动方式分类有:(1)自激式开关电源其借助于变换器自身的正反馈控制信号,实现开关自持周期性开关。开关管起着振荡器件和功率开关的作用[2]。(2)他激式开关电源其电源内部备有专门独立的振荡电路,与振荡器同步的控制信号驱动开关管[3]。

按能量转换过程的类型分类有:(1)直流~直流(DC~DC)。(2)逆变器(DC~AC)。(3)开关整流器(AC~DC)。(4)交流~交流变频器(AC~AC)。

2 开关电源设计

在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。

在设计制作的1.2kW(48V/25A)的软开关直流电源中,其主电路为全桥变换器结构,四只开关管均为MOSFET(1000V/24A),采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS,电路结构简图如图1。VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,以实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及L1、C3、C4等滤波器件组成。

图1 1.2KW软开关直流电源电路结构简图

其基本工作原理如下:当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。

由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。

当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。

关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。

VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2,由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3、Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预选设置好的死区时间延迟后开通VT4,由于变压器漏感及副边滤波电感的作用,原边电流不能突变,VT4即是零电流开通。

3 UC387构成的驱动电路设计

UC3875是美国Unitrode公司针对移相控制方案推出的PWM控制芯片,实用于全桥变换器中驱动四个开关管,四个输出均为图腾柱式结构,可以直接驱动MOSFET或经过驱动电路放大,驱动大功率MOSFET或IGBT。由于该期间设计巧妙,是一种应用前景较好的控制芯片。

本电源的主功率管选用的MOSFET,是电压型驱动方式,驱动功率要求比较小。采用脉冲变压器将功率管的驱动端和控制电路隔离。UC3875的驱动端具有2A的电流峰值,但为了提高电路的可靠性,防止UC3875因为功率太大而损坏,所以采用达林顿驱动的晶体管组成输出电路来驱动脉冲变压器的原边。超前桥臂的驱动电路如图2所示,之后桥臂的驱动电路也一样。

图中,D1、D2和D3、D4是肖特基二极管,用于防止驱动管的电压由于低于或高于电源电压而损坏。R21和R22是限流电阻,DW1、DW2和DW3、DW4是齐纳稳压管,用来限制脉冲变压器的输出电压,防止功率管损坏。T1和T3选中TIP122,T2、T4选用TIP127,T1?T4是达林顿驱动的晶体管,耐压为100V,持续电流为5A,峰值电流可达8A,其开启时间和关断时间分别为1.5μs和2.5μs,而开关电源的设计的频率为70KHZ,即14μs>1.5μs+2.5μs,满足设计要求。

图2 功率管驱动电路

除了输出电流限制外,本电源还设置有五个保护功能:输入过电压保护、输入过流保护、输出过压保护、输出过流保护、过热保护。五种保护都是通过一个或门UC3875的电流检测端C/S+(5脚),使其电压高于2.5V,导致UC3875关断输出。输入、输出电流分别取自串联在输入、输出回路中的分流器上的信号(0-75mV)。

4 结束语

本文介绍了由UC3875芯片作为控制电路的1.2KW移相控制全桥变换软开关电源,由于开关管在ZVS条件下运行,可实现高频化,而且控制简单,性能可靠,适用于大功率场合。且能保持恒频运行,就不会同时出现大电压、大电流,减少了开关所受的应力,实现了高效化。大大减小了电源的体积。

参考文献

[1] 曲学基.稳定电源基本原理与工艺设计[M].北京:电子工业出版社,2004.

[2] 李定宜.开关稳定电源设计与应用[M].中国电力出版社.2006.

[3] 杨恒.开关电源典型设计实例精选[M].中国电力出版社.2007.

篇8

在本地市面上,出现一种小霸王TDX-668B中九专用接收机,经认定很可能是一款山寨机,该机电源是以THX203H集成电路为核心的开关电源,笔者头一次见到这类电源,在此暂不对小霸王TDX-668B是否为山寨机进行讨论,只对该机开关电源电路原理进行分析。

THX203H是专为高性价比AC/DC转换而设计的高性能电流模式PWM控制器,集成电路内部的启动电路被设计成一种独特的电流吸入方式,可利用功率开关管本身的放大作用完成启动,显著地降低了启动电阻的功率消耗,在输出功率较小时将自动降低工作频率,从而实现了极低的待机功耗。THX203H内部还提供了完善的防过载、防饱和功能,可实时防范过载、变压器饱和、输出短路等异常状况,提高了电源的可靠性。图1为THX203H内部电路框图,其引脚功能为:①脚(OB)接功率管基极,启动电流输入,外接启动电阻,②脚(VCC)供电端,③脚(GND)接地端,④脚(CT)振荡电容端,外接定日寸电容,⑤脚(FB)反馈端,⑥脚(IS)开关电流取样与限制设定端,外接电源取样电阻,⑦、⑧脚(OC)输出端,接开关变压器。图2是根据实物绘制的小霸王TDX-668B中九专用接收机开关电源原理图,下面对该电源电路原理作一简要分析。

交流220V市电经电源开关SW、保险管F1送到由D1-D4组成的桥式整流电路整流、EC2滤波后,产生约300V的直流电压,该电压一路经开关变压器T初级绕组①一②加到THX203H⑦、⑧脚(内部功率开关管的集电极),另一路经启动电阻R2加到THX203H①脚,在THX203H内部由功率管输入启动电流到VCC,当VCC电压上升到8.8时,THX203H内部完成启动过程,进入正常工作阶段。这个初始的启动电压由启动电阻提供,输入的高电压通过启动电阻注入功率管的基极,放大的IC电流在THX203H内部经过限制电路对②脚(VCC)外接电容充电,从而形成启动电压。THX203H正常时VCC电压应保持在4.8-9V之间,若VCC电压下降到4.4V时振荡器将进入关闭状态,VCC电压进一步降低到3.8V时THX203H即开始重新启动。电源正常工作后,开关变压器各次级绕组输出高频脉冲电压,经各自整流滤波后输出3.3V、15V、20V三组电压,为主板各单元电路提供电源。

该机开关电源稳压电路主要由1C1(THX203H)、光电耦合器IC2(PC81 7B),精密可调基准三端稳压器IC3(TL431)以及取样电阻R11、R10、R13等组成,次级3.3V组电源作为稳压调节的取样电压。当因某种原因导致输出电压升高时,R11与R10、R13分压处的电压值随之升高,取样电路把这一升高的变化量送到IC3(TL431)的控制端R,控制端R的电压也会随着升高,经其内部电路处理后使TL431的K端电压下降,变化的电压通过IC2(PC817B)反馈到ICI(THX203H)反馈端⑤脚(FB),在FB电压低于1.8V时,将使振荡器振荡周期加大,开关频率下降,使输出电压降低,达到稳定输出电压的目的。当输出电压降低时,稳压控制与上述过程相反。

小霸王TDX-668B中九专用接收机开关电源的过流、过热、过压和欠压保护均由THX203H内部电路完成。THX203H具有逐周期电流限制功能,每个开关周期均对开关电流进行检测,达到设定电流或防上限电流时即进入关周期。THX203H内部集成了精确的过温度保护功能,当内部温度达到140℃时,热保护电路动作,将时钟信号下拉,使开关频率降低,开关频率随温度的升高而降低,直至振荡器关闭。THX203H内部具有带迟滞的欠电压保护功能,在THX203H正常工作8寸VCC电压应保持在4.8-9V之间,若VCC电压下降到4.4V时,振荡器将进入关闭状态;THX203 H内部VCC具有上限电压比较器控制功能,若VCC电压试图大于9.6V时,则比较器动作,反馈电压将被下拉。锁定VCCA9.6V,达到过电压限制作用。在THX203H外部的保护电路主要是由R4、C3、D5组成的消尖峰电路,吸收THX203H内部功率管截止瞬间开关变压器初级绕组产生的尖峰脉冲电压,保护THX203H内部的功率管不被过高的尖峰电压击穿。

篇9

关键词:功率因数开关电源功率因数校正

1. 前言

在开关电源出现以前,功率因数校正主要是为了解决在感性负载或容性负载电路中,电流和电压不同相的问题,以提高电源的利用效率。在开关电源被广泛使用之后,功率因数校正又有了新的内容。

开关电源大都是在整流后直接用一个大容量的电容滤波,在滤波电容的充、放电作用下,电容两端的直流电压输出略呈锯齿状的波纹。由于滤波电容上电压的最小值远非为零,与其最大值(波纹峰值)相差并不多,又因为整流二极管的单向导电性,只有在供电线路中交流电压的瞬时值大于滤波电容上的直流电压时,整流二极管才会因正向偏置而导通。而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管又会因反向偏置而截止。也就是说,在AC线路电压的每半个周期内,只有在其峰值附近,二极管才会导通。因此,虽然供电线路中的输入电压大体保持了正弦波波形,但供电线路中的输入电流却呈尖峰脉冲状。这种波形严重失真的电流中含有大量的高次谐波。由于要保证负载功率的要求,在二极管导通期间会产生极大的导通电流,使供电电路中的供电电流呈幅值极高的尖顶尖顶脉冲状态,它不仅降低了对供电的利用效率,更为严重的是它在供电线路容量不足,或电路负载较大时会产生严重的交流电压的波形畸变,并产生多次谐波,从而,干扰了其它用电器具的正常工作。

现在功率因数校正的含义,不再仅仅是解决供电的电压和电流不同相位的问题,更要解决的是因供电电流呈强脉冲状态,而引起的电磁干扰(EMI)和电磁兼容(EMC)的问题。

2. 什么是功率因数

在开关电源出现以前,功率因数主要是指电路中电压和电流相位差的余弦值,开关电源出现以后,考虑到电路中有高次谐波成份,就把功率因数(PF)定义为有功功率(P)和视在功率(S)的比值。该公式为:

          (1-1)

公式中:I1为输入电流基波有效值;U1为输入电压基波有效值;IR为电网中电流的有效值,IR= , 其中 I1、I2、…、In为输入电流中1次、2次至n次谐波的有效值 ;γ定义为为输入电流的波形畸变因数;称为基波电压和基波电流的位移因数。由此可见,功率因数的大小由输入电流的波形畸变因数以及基波电压和基波电流的位移因数共同决定。越小,则设备产生的无功功率就越大,设备利用电源的效率越低,导线和变压器绕组中的感抗损耗就越大;γ 越小,表示设备输入电流谐波成分越大,将造成线路中输入的电压波形畸变,对供电电网造成污染,使功率因数降低,严重时会干扰其他电子设备正常工作甚至造成电子设备的损坏。通常无源电容滤波二极管整流电路输入端的功率因数只能达到0.65 左右 。从式(1-1)可见,抑制电路中的电流的高次谐波分量即可以减小γ,提高功率因数。如何抑制消除谐波对公共电网的污染、提高功率因数已成为每个开关电源设计工程师必须要考虑的问题。

3. 功率因数校正的方法

目前广泛应用的改善功率因数的方法主要有以下几种:

① 多脉冲整流法。它是利用变压器对各次不同谐波电流进行移相,使奇次谐波(开关电源中的谐波主要是奇次谐波)在变压器次级相互叠,进而消除谐波。这种方法主要应用于变压器负载平衡时的低次谐波的滤除。

② 无源滤波法。利用一个滤波电感,串连在整流和滤波电容之间,或在交流电源输入侧接入一个谐振滤波器。该方法的主要优点是电路结构简单,成本低,稳定性高,电磁干扰比较小;缺点就是是电感电容的尺寸大,重量大,功率因数改善有限(一般可提高到0.9左右),电路的工作性能与频率、负载变化及输入电压有关,并且电感和电容间有教大的充放电电流等。该方法对抑制电路中的高次谐波有效,不过滤波设备体积庞大,而且运行的时候会受到系统阻抗的影响,若不使用调谐电抗器,就有可能会与系统中的电抗产生谐振。

③ 有源功率因数校正。它直接采用高频的有源开关或采用AC/DC变换方法,迫使输入电流成为和电网电压同相位的正弦波。在整流电路和负载电路之间接入一个DC/DC开关变换器,采用电流负反馈技术,使输入端的电流波形跟踪交流输入正弦电压的波形,从而使供电线路输入端的电流波形近似为正弦波,并与输入的供电电压同相位。该方法的主要特点是:可得到比无源滤波更高的功率因数,总谐波电压的波形畸变小,可在较宽的电压输入范围内和更大的带宽内工作,电路的体积小、重量轻,输出的电压也可保持恒定。主要缺点是:电路结构复杂,平均无故障时间下降,成本较高,效率会有所降低等。

综上所述,凡是能够消除电路中的高频谐波成份,改善输入电流的波形,使其成为或无限接近于供电电压的的正弦波形,就可实现功率因数校正的目的。

4. 功率因数校正电路的结构形式

目前,功率因数校正电路可以简单的分成无源和有源两种。无源功率因数校正电路,通常是在滤波电容之前,加上一个大容量的电感,由电感抑制电路中的高频电流,进而改善功率因数,不过效率不高而且电路体积大而笨重。有源功率因数校正电路,往往是利用一个高频开关,控制电流的的通断,进而让电流波形和电压波形大体相似,以改善电路的功率因数。有源功率因数校正电路的特点是体积较小,重量轻,功率因数比无源功率因数校正电路的高。图(1)给出了功率因数校正电路的三种不同的结构形式。

图(1)

由于Boost电路结构简单,实现成本低,所以它是目前应用最广泛的功率因数校正电路。除了上述特点以外,在Boost电路中与整流桥串联的电感能减小高频噪声,减小输入滤波器的体积,从而降低了成本。

Boost拓扑结构的功率因数校正电路工作在连续电流模式(也就是说输入端的电感电流在整个切换周期内是连续导通的),利用输入电容Ci可减少切换时所造成的杂信号回流至交流电源。此外,Boost电感只储存一小部分的转换能量,因为交流电源在电感去磁 期间,即MOSFET在关断期间仍持续供给能量,所以与其他拓扑结构相比,Boost拓扑结构只需较小的电感。

5. 小结

随着开关电源的快速发展和大量应用,人们对功率因数校正电路的研究也越来越深入和全面。现在市面上已经有了很多的功率因数校正集成模块,人们已经能够很容易的利用这些模块来设计简单而又高效率的开关电源电路。但是,人们并没有停止继续探索,还有很多学者和工程师们在这个领域继续着创新和进步。

参考文献:

     [1]张占松,蔡宣三开关电源的原理与设计.北京:电子工业出版社,1998

     [2]严百平等,不连续导电模式高功率因数开关电源.北京:科学出版社,2001

     [3]毛兴武,祝大卫电子镇流器原理与制作.北京 :人民邮电出版社,1999

篇10

一台某品牌ABS-S中星9号直播铁壳接收机,输出接口只有AV端子,有序列号。使用中图像出现两条缓慢滚动的宽约1 00mm的干扰带,干扰带经过的地方,图像出现雪花,颗粒较粗,非常影响收看。另外电视机收看有线电视时,如果开启该接收机,会干扰有线电视的正常收看,表现为电视图像有网纹,雪花糙点明显增加。

打开接收机箱后发现未装主板螺丝,主板向上翘起,高频头为主板集成且无屏蔽罩。起初怀疑故障是AV端子接地不良所致,经检查AV端子接地良好。然后检查直流滤波电容容量,结果3.3V、5V、13V、19V各电压级滤波电容容量正常。仔细查看电源板电路,发现电源进线端未使用滤波电路,市电直接经过四只二极管构成的桥式整流电路变为直流后供给开关电源电路。

由于桥式变换器的输入电流波形在阻性负载时近似为矩形波,开关电源中功率开关管在导通时流过较大的脉冲电流,其中含有丰富的高次谐波分量,会产生谐波干扰。功率开关管在截止期间,高频变压器绕组漏感引起的电流突变又会产生尖峰干扰。尖峰干扰和谐波干扰能量通过输入输出线传播出去而形成传导干扰,而谐波和寄生振荡的能量,通过输入输出线传播时,会在空间产生电磁场形成辐射干扰。为消除干扰,开关电源都需在输入输出端使用抑制干扰的滤波电路,以免对下级电路及周围电器的正常工作造成干扰。

该接收机电源电路由于未使用抑制干扰的滤波电路,干扰能量通过线路传导和空中辐射的形式干扰了有线电视的和接收机的视频输出信号。

解决办法就是加装抑制干扰的滤波电路,电路可以自己制作,电路如图1。

获得抑制干扰滤波电路最简单的办法就是从废旧电器设备上获得。凡是使用开关电源的电器设备上都有抑制干扰滤波电路,如旧彩电、旧显示器、旧计算机电源,甚至部分旧手机充电器电路中都有,将抑制干扰的滤波电路用锯条或刀片取下来,进线端接市电,出线端接到接收机的电源以进线端即可,笔者使用的抑制干扰滤波电路就是从旧光纤收发器电源盒中得到的,见图2。

安装滤波器要特别注意输入导线与输出导线的间隔距离,不能把它们捆在一起走线,否则干扰信号很容易从输入线上耦合到输出线上,这将会大大降低滤波器的抑制效果。

滤波器装上后,原来的雪花干扰带消失了,图像也通透不少,接收机对有线电视的干扰也消失了,使用效果可谓立竿见影。