继电保护的基本任务范文
时间:2023-12-19 17:45:48
导语:如何才能写好一篇继电保护的基本任务,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词 继电保护;现状;发展
中图分类号 TD672 文献标识码 A 文章编号 1673-9671-(2012)122-0220-02
电力系统作为一个庞大而复杂的系统,它由发电机,变压器,母线,输配线路及用电设备以各种方式连接配置而成,各元件之间通过电或磁发生联系,任何元件发生故障都将在不同程度上影响系统的正常运行。随着科学技术的发展,特别是电子技术、计算机技术和通信技术的发展,电力系统继电保护先后经历了不同的发展时期。近10年来,电力工业突飞猛进,整个电力系统呈现出往超高电压等级、单机容量增大、大联网系统方向发展的趋势,这就对主设备保护的可靠性、灵敏性、选择性和快速性提出了更高的要求。继电保护技术作为电力系统中关键设备,它对保障电力系统安全运行,提高社会经济效益起到举足轻重的作用。在此期间也涌现出了大量先进的继电保护设备。继电保护设备是指对一次设备的工作进行监测、控制、调节、保护以及为运行、维护人员提供运行工况或生产指挥信号所需的低压电气设备,主要包括熔断器、控制开关、继电器、控制电缆、仪表、信号设备、自动装置等。
1 电保护设备的分类及基本任务
1.1 基本分类
继电保护可按以下4种方式分类:
1)被保护对象分类,有输电线保护和主设备保护(如发电机、变压器、母线、电抗器、电容器等保护)。
2)保护功能分类,有短路故障保护和异常运行保护。前者又可分为主保护、后备保护和辅助保护;后者又可分为过负荷保护、失磁保护、失步保护、低频保护、非全相运行保护等。
3)保护装置进行比较和运算处理的信号量分类,有模拟式保护和数字式保护。一切机电型、整流型、晶体管型和集成电路型(运算放大器)保护装置,它们直接反映输入信号的连续模拟量,均属模拟式保护;采用微处理机和微型计算机的保护装置,它们反应的是将模拟量经采样和模数转换后的离散数字量,这是数字式保护。
4)保护动作原理分类,有过电流保护、低电压保护、过电压保护、功率方向保护、距离保护、差动保护、高频(载波)保护等。
1.2 基本任务
电力系统继电保护的基本任务是:
1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。
2)反应电气元件的不正常运行状态,并根据运行维护的条件(如有无经常值班人员)而动作于信号,以便值班员及时处理,或由装置自动进行调整,或将那些继续运行就会引起损坏或发展成为事故的电气设备予以切除。此时一般不要求保护迅速动作,而是根据对电力系统及其元件的危害程度规定一定的延时,以免暂短地运行波动造成不必要的动作和干扰而引起的误动。
3)继电保护装置还可以与电力系统中的其他自动化装置配合,在条件允许时,采取预定措施,缩短事故停电时间,尽快恢复供电,从而提高电力系统运行的可靠性。
2 电保护设备的现状
2.1 微机继电保护
19世纪的70-80年代,熔断器已作为最早的继电保护装置熔断器开始应用。随着电力系统的发展,到20世纪初期产生了作用于断路器的电磁型继电保护装置。20世纪50年代晶体管和其他固态元器件迅速发展,电子器件型保护才得以应用。直到1965年出现了应用计算机的数字式继电保护,即早期的微机保护。随着科学技术的不断发展,大规模集成电路技术飞速发展,微型计算机和微处理机问世,价格大幅度下降,计算速度不断加快,可靠性也大为提高,微机继电保护的研制随之出现,到70年代后期已从趋于实用。
2.2 微机继电保护具有以下几个特点
1)微机继电保护集测量、控制、监视、保护、通信等多种功能于一体的电力自动化高新技术产品,是构成智能化开关柜的理想电器单元。
2)多种功能的高度集成,灵活的配置,友好的人机界面,使得该通用型微机综合保护装置可作为35 KV及以下电压等级的不接地系统、小电阻接地系统、消弧线圈接地系统、直接接地系统的各类电器设备和线路的保护及测控,也可作为部分66 KV、110 KV电压等级中系统的电压电流的保护及测控
3)采用32位数字处理器(DPS)具有先进的内核结构,高速运算能力和实时信号处理等优点。
4)支持常规的RS485总线以及CAN(DEVICENET)现场总线通讯,CAN总线具有自动重发和故障节点自动脱离等纠错机制,保护信息的实施性和可靠性。
5)完善的自检能力,发现装置异常自动报警;具有自保护能力,有效防止接线错误和非正常运行引起的装置永久性损坏;免维护设计,无需在现场调整采样精度,测量精度不会因为环境改变和长期运行引起误差增大。
2.3 自适式继电保护
自适应继电保护作为继电保护发展的未来是本世纪80 年代提出的一个较新的研究课题。自适应继电保护指可以根据系统运行方式和故障状态改变保护的性能、特性或定值的保护。自适应继电保护的基本思想是使其尽可能地适应电力系统的各种变化,进一步改善保护性能。使用自适应原理可以使保护性能优化, 并且可在线自动改变以适应系统的改变。自适应原理在继电保护领域的主要应用有自适应重合闸、自适应馈线保护、串补输电线路的自适应保护、以及自适应行波保护。
3 继电保护设备的发展趋势
3.1 微机保护硬件发展趋势
微处理器:采用高性能的16位或32位单片机,采用DSP芯片,采用工控机(嵌入式处理器,如V40 STD;386EX;486DX等)。
数据采集系统:VFC压频变换的AD654、VFC110(主要用于微机线路保护);无需CPU干预的高速数据采集芯片如AD7874、MAX125/126等(主要用于微机元件保护)。
网络通讯:通讯端口有RS232、RS485、以太网总线接口、Lonworks网总线
3.2 微机保护软件发展趋势
新型算法:最小二乘法;卡尔曼滤波算法;故障分量算法;自适应算法等。
人工智能的运用:人工神经网络(ANN);模糊理论;遗传算法(BP)等。
小波理论的运用(在时域和频域皆具有良好的局部化分析能力,用于处理局部突变信号)。
全球定位系统GPS的运用等。
总之,随着电力系统和计算机技术、通信技术等现代化技术的发展,继电保护技术必然向计算机化、网络化保护、控制、测量、数据通信一体化及人工智能化快速发展,为电力系统的可靠运行提供更加可靠、高效的保护功能。
参考文献
[1]刘国富.浅析自适应继电保护原理及其优越性[J].电力建设,2009,211.
[2]高华.新型继电保护发展现状综述[J].电力自动化设备,2000,20(5).
[3]葛耀中,赵梦华,彭鹏等.微机式自适应馈线变换的研究和开发[J].电力系统自动化,1999,23(3):19-22.
[4]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
作者简介
篇2
关键词 电力系统;继电保护装置;使用与维护
中图分类号TM77 文献标识码A 文章编号 1674—6708(2012)76—0137—02
1 继电保护装置进行了概述
1.1 继电保护装置的概念及其基本任务
电力系统继电保护装置是在电力系统发生故障和运行不正常时,能够及时向运行值班人员发出告警信号,或直接发出跳闸命令,快速切除故障,消除不正常运行状态的重要自动化技术和设备。
继电保护的基本任务意思能够自动迅速,有选择的跳开特定的断路器,使电力系统的故障部分快速从电力系统中分离,达到最大限度地减少对电力系统元件本身的损坏,同时将电力系统安全供电影响降到最小;二是能够反映电气元件的不正常运行状态,同时要依据不正常运行状态以及设备运行维护条件的不同向值班人员发出信号,以便及时进行处理,反应电力系统不正常状态的继电保护装置通常带有一定的延时动作。电力系统对继电保护装置要求具备速动性、选择性、灵敏性以及可靠性。
1.2 继电保护装置的基本原理以及组成
继电保护装置就是利用正常运行与区内外短路故障电气参数变化的特征构成保护的判据,根据不同的判据就构成不同原理的继电保护,譬如电流增加(过电流保护)、电压降低(低电压保护)、电流电压间的相位角会发生变化(方向保护)、距离保护或阻抗保护等等,此外还有一些外非电气量保护,譬如瓦斯保护与过热保护。
继电保护装置?一般由测量部分、逻辑部分和执行部分三部分组成。一是测量部分。就是测量从被保护对象输入的有关电气量,并与已给定的整定值进行比较,根据比较的结果,从而判断保护是否应该起动;二是逻辑部分。就是根据测量部分各输出量的大小、性质、输出的逻辑状态、出现的顺序或它们的组合,使保护装置按一定的逻辑关系工作,最后确定是否应该使断路器跳闸或发出信号,将有关命令传给执行部分;三是执行部分。就是根据逻辑部分输出的信号,最后完成保护装置所担负的任务。
2 继电保护装置的应用与维护
2.1 继电保护装置的应用
继电保护装置广泛应用高压供电系统线路保护、主变保护、电容器保护等高压供电系统与变电站中。高压供电系统主要是对于不并列运行的分段母线装设电流速断保护,但要求是在断路器合闸的瞬间投入,合闸后自动解除。此外对于负荷等级较高的配电所也装设过电流保护。
变电站的继电保护装置分类较多,大体有以下几种:一是线路保护。通常情况下采用二段式或三段式电流保护,电流速断保护为一段保护,限时电流速断保护为二段保护,过电流保护为三段保护;二是母联保护:母联保护的要求必须同时装设限时电流速断保护和过电流保护;三是主变压器保护。主变压器保护有主保护与后备保护两类,主保护通常指重瓦斯保护与差动保护,后备保护指复合电压过流保护与过负荷保护;四是电容器保护。电容器保护主要包括过流保护、零序电压保护以及过压保护及失压保护。
2.2 继电保护装置的维护
继电器保护装置经历了电磁型、晶体管型、集成电路型、微机型的发展阶段,当前各类形式的继电保护装置保护仍在电力系统中广泛存在并发挥作用。继电保护装置不但在选用上充分考虑其是否达到基本运行条件的技术要求,日常的维护与检测也要重视。
继电保护装置的常规性检查:
一是检测继电保护装置的连接件是否紧固,焊点处是否有虚焊现象,同时也要对其机械特性进行检查。现在继电保护装置的保护屏后,有大量的端子排端子螺丝,一定要逐一不漏的对这些螺丝进行紧固,预防继电保护装置出现保护拒动、误动的隐患故障;二是将继电保护装置所有的插件拆下进行检查,对所有的芯片都要按牢,螺丝进行紧固,同时检查是否有虚焊点。在继电保护装置的检查中,务必将继电保护装置的各个元件、保护屏、控制屏、端子箱的螺丝的紧固作为重要措施来落实;三是清扫继电保护装置。继电保护装置的清扫工作要由两人或两人以上进行,避免发生误碰而影响运行设备,在清扫中,一定要注意与带电设备保持安全距离,预防造成人身触电,避免导致二次回路短路与接地事故;四是对于微机保护的继电保护装置,其电流、电压采样值要每周有一次记录,同时,对微机保护的打印机要定期检查与打印。
2.3 继电保护装置故障处理
继电保护装置的维修与维护工作要求技术性很强,不但掌握设备的调试,而且要有扎实的理论基础,能够快速处理继电保护装置故障的有效方法。继电保护装置常用故障处理方法主要有以下几种。
2.3.1 直观法
如果继电保护装置出现故障无法用仪器逐点测试,或者继电保护装置的某个插件故障无法更换备品,可以仔细观察到继电保护装置的接触器或跳闸线圈是否能动作,能动作说明电气回路正常,而机构内部存有故障,然后直接观察到继电器内部是否有明显发黄或者某个元器件是否有浓烈的焦味等现象,这样就能够迅速判定故障所在。
2.3.2 短接法
继电保护装置出现故障后,可以将回路某一段或者一部分进行短接线接入为短接,来判定故障是否存在于短接线范围之间,逐次短接就会缩小故障范围。这种方法通常用于电磁锁失灵、电流回路开路、切换继电器不动作、判断控制KK等转换开关的接点不良等故障。
篇3
关键词:220KV变电站;继电保护;故障排除
Abstract: the article analyzed the relay protection device task and basic requirements, and the 220 KV transformer substations of relay protection troubleshooting countermeasures are discussed in this paper.
Keywords: 220 KV substation; The relay protection; troubleshooting
中图分类号:U472.42文献标识码:A 文章编号:
一、前言
随着我国城市经济的高速发展,电网规模也在不断扩大,网络密集程度逐步提高。因此,在一般情况下,个别线路或母线因故障断开,只要能够保证断路器快速跳闸,对整个系统的稳定运行不会带来太大的影响。实际上,在某些系统接线中仍然存在继电保护的死区,若由带延时的后备保护来切除故障对系统的安全和稳定运行将带来很大的影响。文章分析了继电保护装置的任务及基本要求,并对220KV变电站继电保护中的故障排除对策进行了论述。
二、继电保护装置的任务及基本要求
(1)继电保护装置的基本任务
继电保护装置的基本任务是: 在供电系统正常运行的过程中能够安全完整地监控各个设备运行的基本状况,为工作人员提供十分可靠的运行数据,当供电系统发生故障时,能够自动而且迅速地将故障设备切除,以保证没有出现故障的部分继续运行,及时、准确地发出警报,以便能够尽快解决。
(2)继电保护装置选择的基本要求
首先、选择性要求。当供电系统中发生故障时,继电保护装置能够具有选择性地将故障部分切除,保证非故障部分的正常运行。其次、灵敏性要求。在继电保护系统的保护范围之内或之外,保护装置均不产生拒绝或错误动作。再次、速动性要求。保护系统应尽快切除短路故障,减轻因电流短路而产生的对电气设备的损坏,同时加快系统电压的恢复速度。最后、可靠性要求。为确保保护装置动作的可靠性,必须保证保护装置在设计、整定计算、安装调试过程的准确无误。
三、220KV变电站继电保护中的故障排除对策
(1)出线处断路器与其电流互感器间故障
目前,220kV变电站一般采用双母线或双母带旁的电气主接线方式,如图1所示,当出线断路器与其电流互感器之间的点发生故障时,如K1点接地故障。对于线路保护来说,此时故障不在其保护范围内,而属于母线差动保护范围。母差保护动作跳闸后,K1点故障仍然存在,因此在出线断路器与CT间存在保护死区。通常采用母差保护动作停信来解决此类死区故障。如高频闭锁式保护,其母差保护、失灵保护动作通过启动各线路保护中分相操作箱的永跳继电器来实现对相应断路器的跳闸。对本侧出线的高频主保护来说,K1点属于反方向故障;只能利用永跳接点来迫使收发讯机停信,让对侧高频保护及时动作切除死区故障。光纤纵联
保护为解决此类死区故障,配置了远跳功能;由永跳接点开入光纤纵差保护,实现远跳对侧线路断路器以切除故障。但在现场工作中,例如用旁路开关代运该线路,将该线路保护退出进行检修,但线路对侧开关仍然在运行。若未断开光纤纵差保护对应的光纤通道,在试验人员模拟永久性故障整组传动开关的情况下,会启动分相操作箱中永跳继电器开入至光纤保护,导致误发远跳命令,跳开对侧的运行中的线路断路器。因此,对于此类死区故障的解决措施有:①增加启动光纤保护远跳回路中的“永跳继电器启动远跳”连片,并在对侧断路器运行时退出该连片;②对于远跳命令,需完善本侧就地判据闭锁功能,若在本侧处于检修或退出状态时,闭锁发送信号;③在本侧进行检修时,退出该光纤通道或进行光纤自环。上述几种解决措施的比较如下:采取措施①后,检修时将其断开能够有效地切断远跳启动回路,从根本上避免了误发远跳命令。但还要采取一定的措施,避免在检修过程中可能会出现“误碰”该连片导致误发远跳命令的情况。措施②完善本侧就地判据进行信号闭锁,能够很好地解决误发远跳命令的问题,但就地判据条件较多,有可能需要增加微机装置硬件和修改相关软件,需要改造的线路多,成本会很高。措施③进行光纤自环是目前厂家解决此类问题的主要手段,但需要用备用光纤自环以替换与对侧相连的光纤。备用光纤作为备件,极有可能在长期
的、反复的预试检修过程中遗失或损坏,更换新的备件较为麻烦。同时,很可能因为检修人员的一时疏忽,在未将备用光纤自环的情况下进行模拟故障调试,导致发出远跳命令使对侧跳闸。这种情况虽然很少,但却真实地发生过。总结上述几种改进办法,将其中的一些方法相结合并且在检修过程中严格执行相关安全措施,可以更有效地避免事故,例如将措施①和③相结合就可以取长补短,而且容易实现。
(2)母联断路器与其电流互感器间故障
当前在大多数220kV以下的变电站中,多数采用双母主接线的方式系统,在此系统中母联只安装一组电流互感器,当故障出现在母联断路器和母联电流互感器之间时,断路器侧母线跳开后故障仍然存在,正好处于电流互感器侧母线小差的死区。采取的措施是:在死区故障时,母差保护发母线跳令后,母联开关跳开后而母联电流互感器中仍然存在电流,故障仍然存在,同时母联电流退出两母线小差,然后经延时200ms。切除另一条母线,这样可以降低故障危害程度,有利于系统稳定运行。
(3)变压器保护死区及解决措施
在220kV系统中,当主变压器断路器失灵,往往采用220kV母线差动保护动作来联跳主变压器三侧断路器。其原理是,220kV母线差动保护动作后,断路器仍在合闸位置,互感器仍有电流流过,经延时出口跳主变压器三侧。当主变压器断路器与TA之间发生故障时,如图2中K点所示。此故障在220kV母线差动保护范围内,故220kV母线差动保护动作,跳高压侧断路器1。
实际上高压侧跳开后,K点故障仍然存在;此时高压侧断路器处于断开状态,虽然母差动作未返回,但主变压器断路器辅助接点打开;只能由后备保护来切除故障。在当前的220kV系统中,尚未考虑220kV母线故障出现在主变压器断路器与CT 间的死区时采用母线差动保护联跳主变压器三侧的设计方案。虽然110kV 侧电源较弱,但是当110kV侧电源很强或者变电站有两台以上的主变压器并列运行时,如果出现此类情况而不能快速切除故障,后果是相当严重的。因此,建议在母差启动联跳主变压器三侧回路中去掉断路器辅助接点;同时为防止在保护设备检修过程中误启动联跳主变压器三侧,可在回路中增加一块连片。检修时必须将两块连片同时取下,这样就可以保证回路中有两处明显断开处,而不至于因误碰导致误启动。
四、结 语
现代的电力系统继电保护发展十分迅速,无论在硬件还是软件上都有很大程度的提高。继电保护的速度越来越快、集成度越来越高、功能也在不断增强,这些都对我国现阶段的变电站建设提供了必要的保证。只要我们能够利用好这些优势,一定能够减少不必要的损失,提高变电站的运行效率。
参考文献:
[1]尹项根,曾克娥.电力系统继电保护原理与应用[M].武汉:华中科技大学出版社,2003.
篇4
【关键词】继电保护;电力系统;计算机控制技术
电力是非常重要的社会能源,对于提高人们的生活水平和国民经济的发展有着不可忽视的关系。电力系统主要由输送、使用、生产、分配几个主要环节构成。在现代社会中电力的重要性是不言而喻的,所以我们有必要做好电力的维护工作。而电力系统是否能够正常工作,其关键就是继电保护,在电力的维护过程中其有着非常重要的作用。继电保护技术作为电力系统的主要保护手段,对于提高电力系统的安全可靠性有着至关重要的作用。所以,对继电保护技术的发展现状以及未来的发展趋势进行深入的研究具有非常重要的现实意义。本文以此为目的,简要分析并探讨了继电保护技术的发展现状和未来的发展趋势。
1 继电保护技术的发展现状
为了更好的对现代继电保护系统进行论述和分析,我们需要了解其发展历程。二十世纪六十年代,我国开始逐步应用电力系统的继电保护装置,晶体管继电保护在当时得到了广泛的应用和推广。随后晶体管保护器被基于集成运算放大器的集成电路保护装置逐步取代。自九十年代开始,开始大力推广并主要应用微机继电保护。我们从电力继电保护技术发展的历程不难看出网络监控和电子化正是现代继电保护技术的发展和应用方向。目前,网络监控技术的推广和应用已经取得了非常显著的效果。
继电保护技术从目前的情况来看,主要有两个方面特征:一方面指不断发展的微机继电;另一方面则是指迅速发展的继电保护技术,主要内容如下:
1.1 不断发展的微机继电
电力系统中的继电保护技术,随着快速发展的科学技术也得到了快速的发展。成熟的微机继电保护技术是继电保护领域中最为重要的进步。经过国内外学者长期的实践和研究,使继电保护的重要作用得到了证实,在电网中微机保护拥有巨大的优势。微机继电随着快速发展的继电保护技术,取得了新的成就。微机保护具有强大的逻辑处理能力,自我测试功能,数值记忆能力与计算能力,其选择性高、可靠性高、灵敏度高,与传统的晶体管和电磁继电器相比具有明显优势,其是继电保护的重要发展方向。此外,微机保护是采用微型计算机构建的继电保护,其对计算机技术进行了充分的利用,使电力的自动化得以实现,使微机继电的数字更准确,性能更优秀。
1.2 起步较晚发展快速
危及电网运行安全的异常工况和电力系统故障,是电力系统中继电保护技术的主要研究内容,国内对于该项研究的起步相对较晚,开始与上个世纪七十年代后期,但是发展却极为迅速。在我国继电保护技术的发展进程中,利用微型计算机构成了微机继电保护,1984年我国首个微机保护以保护电脑样机的形式试运行后,经过鉴定后大规模生产。当前,已经形成了线路保护产品,并得到了广泛的应用。通过多年的实际操作,微机保护依靠其良好的原则性和先进的技术,已经超越了进口保护,目前国内的继电保护设备具有非常明显的优势。
2 电力系统中继电保护技术的基本要求与任务
2.1 继电保护装置的基本任务
一种对电力系统中的非正常运行状态或故障元件进行反应,并发出信号或短路跳闸的自动装置,就是我们所说的继电保护装置。其基本任务是:迅速、自动、有选择的将发生故障的系统元件切除,确保正常部分的稳定运行。如果被保护元件出现异常状况,其应该能够及时的进行反应,并发出警报或信号,通知相关工作人员及时进行处理。
2.2 电力系统继电保护装置的基本要求
速动性、灵敏性、选择性以及可靠性等基本要求,继电保护装置必须要满足。在使用过程中,要根据使用条件的不同,分别对这些基本要求进行综合性考虑。
2.2.1 速动性
如果系统中的某元件发生故障,那么继电保护装置应该能够较快的从系统中将故障元件切除,这就是所谓的速动性。缩短排除故障的时间,可以降低低压的工作时间,对电气设备短路电流所造成的损坏可以大程度减轻,电力系统的运行稳定性可以得到有效提高,并能够为电动机的自启动提供有利条件。
2.2.2 灵敏性
所谓的灵敏性,就是对保护范围内所发生的异常运行状态或者故障,继电保护装置的反应能力,一般用灵敏系数对保护装置的灵敏性进行衡量。
2.2.3 选择性
所谓的选择性是指,当系统中有某个元件发生故障,选择与故障位置最靠近的保护装置动作,将电力系统中的故障元件切除,尽量缩小停电的范围,最大限度的保证正常部分的安全稳定运行。
2.2.4 可靠性
在保护范围外发生故障或者是系统正常运行过程中,保护装置不应该误动作,而在保护范围内如果发生故障问题,继电保护装置则不应该拒动,这就是我们所说的继电保护装置的可靠性。继电保护装置的衡量指标就是这些基本要求,其也是对继电保护装置的各种构成原理进行评价的主要依据,更是进行继电保护性能分析和研究的基础。
3 继电保护技术的未来发展趋势
作为确保电力系统安全可靠运行的一个重要组成部分的继电保护,其未来的主要发展趋势主要有四个大方向,分别是网络化、智能化、计算机化以及一体化。
3.1 网络化
网络保护是继电保护中的一项关键技术,所以,目前继电保护技术的一个发展趋势就是网络化。在继电保护技术的发展进程中,通过网络技术实现各种继电保护功能,能够实现继电保护数据和信息的共享。目前有一种新型的继电保护就是电力系统的网络型继电保护,网络化继电保护技术,是微机保护的必然发展趋势,也是有效提高继电保护性能的一条途径。分站保护系统在继电保护系统中的网络保护的整个系统中是最为关键的一个环节。主要有两种分站保护模式,分别是:对现有的微机保护进行利用以及为了进一步保证系统的安全,组建新系统,完全由分站系统来实现和管理各种保护功能。
3.2 智能化
随着不断普及的计算机电力保护系统,继电保护的智能化水平也得到了快速的发展,继电保护的研究方向也进一步向更高的层次发展。在现代化的电力管理当中,如遗传算法、神经网络、进化规划等人工智能技术的应用,为智能化的继电保护技术的发展提供了广阔的空间。在通信技术、计算机技术等各类技术以及电力系统的快速发展和进步影响下,在继电保护领域中人工智能技术必然会得到极为广泛的应用,并且对于一些以往难以解决的疑难问题也必将能够更好的解决。
3.3 计算机化
继电保护系统的计算机化,继电保护技术的发展过程中是不可逆转的一种系统。快速发展的电力系统对继电保护系统提出了更多的要求,这就促使继电保护技术要具备长期存放大量故障数据和信息的空间,强大的通信能力,快速处理数据的能力,高级语言的编程能力,要能够与其他控制装置、保护装置、调度装置联网做到共享全系统的网络资源、数据和信息的能力等。微机保护对计算机技术中完备的存储记忆能力和高速运算能力进行了充分的利用,对于构建灵活性和可靠性的通用软硬件平台,快速发展的通信技术和计算机技术提供了极为有利的条件。
3.4 一体化
随着用户用电需求的多样化以及用电环境的复杂化,对继电保护的要求越来越多,越来越高。在实现继电保护网络化和计算机化的基础上,实际上保护装置就是一台高性能、多功能的计算机,也是电力系统整个计算机网络的智能终端,通过对计算机网络技术的资源共享和网络集成进行合理的利用,从整体上保护电力系统不受损害。每一个微机保护装置在完成继电保护功能的同时,还能够在计算机系统中录入在变电过程中所传输的信息数据,实现控制、数据通信、保护以及测量的一体化。与传统的继电保护相比,一体化的继电保护技术具有显著的优势,对各专业传统二次系统的划分和设定被彻底打破。随着不断发展的科技技术,我们有理由相信,保护装置将会更加成熟,也将会不断研制出新型的继电保护装置,必然会为电力系统的安全可靠运行带来更加美好的发展前景。
4 继电保护技术的更新对养护和维修所提出的要求
随着现代科技的高速发展,电力系统中的继电保护技术也随之得到了快速的发展和应用。随着相关技术的不断提高,对电力系统的养护和维修也提出了更高的要求。网络技术、计算机技术以及智能化技术等的应用,都需要相关养护和维修部门不断加强学习新技术,努力提高自身的技术水平,并积极的累积相关经验。相关人员要针对现代保护技术的主要发展方向以及其与传统技术的差异进行相关学习和培训,相关人员要做到紧跟现代技术的发展步伐,对继电保护装置科学合理的开展养护和维修工作。
此外,随着继电保护技术的高速发展,对继电保护技术的推广和应用存在重要影响的一个因素就是,电力企业该如何加强经验的积累,如何进行选择设备以及如何提高解决相关问题的能力。在选择继电保护设备时,电力企业应根据实际情况进行科学合理地分析,并针对所选择设备的应用技术和类型等相关参数进行学习,以此为基础,为排除继电保护故障、以及更好的应用继电保护装置奠定基础。
5 总结
在电力系统中,电力系统的继电保护装置是不可或缺的一个重要组成部分,其是确保输变电设备安全的保障。随着科学技术和继电保护技术的高速发展,电力系统中的继电保护技术以及设备也在很大程度上发生了变化。电力企业应该努力快速提高自身的技术水平,以满足当前和未来继电保护与技术的应用需求。为了进一步降低发生故障时所造成的经济损失,提高电力系统的可靠安全运行,我们要跟紧继电保护技术的发展步伐。合理利用现有的继电保护技术,并继续完善继电保护的网络化、自动化、智能化以及计算机化技术,为我国电力系统整体水平的提高提供基础,实现我国电力系统的网络化、自动化、智能化等发展目标。
参考文献:
[1]王峰.浅析电力继电保护装置问题及防范措施[J].广东科技,2011(14).
[2]张东.浅谈继电保护在电力系统中的技术应用[J].数字技术与应用,2010(10).
[3]张东.主设备继电保护在变电站的应用[J].数字技术与应用,2010(11).
[4]许建安.继电保护技术[M].北京:中国水利水电出版社,2004(03).
[5]罗建华.变配电所二次部分[M].北京:中国电力出版社,2001(07).
篇5
关键词:电力系统 继电保护 可靠性
1、继电保护装置对电力系统安全运行的重大意义
因为当电力系统发生故障或异常时,继电保护可以实现在最短时间和最小区域内,自动从系统中切除故障设备,也可以向电力监控警报系统发出信息,提醒电力维护人员及时解决故障,这样继电保护不仅能有效的防止设备的损坏,还能降低相邻地区供电受连带故障的机率。同时还可以有效的防止电力系统因种种原因,而产生时间长、面积广的停电事故,继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段。
2、继电保护装置的运行环境极其维护
继电保护装置是实现继电保护的基本条件,要实现继电保护的作用,就必须要具备有科学先进、行之有效的继电保护装置,所谓“工欲善其事,必先利其器”,有了设备的支持,才真正具备了维护电力系统的能力。
选择性继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。
可靠性。继电保护的可靠性是指保护装置在电力系统正常运行时不误动;再规定的保护范围内发生故障时,应可靠动作;而在不属于该保护动作的其他任何情况下,应可靠的不动作。(主保护对动作快速性要求相对较高;后备保护对灵敏性要求相对较高。)
快速性。继电保护的速动性是指继电保护装置应以尽可能快的速度切除故障设备。故障后,为防止并列运行的系统失步,减少用户在电压降低情况下工作的时间及故障元件损坏程度,应尽量地快速切除故障。
灵敏性即在要求继电器在系统发生故障后,可能选择性的断开离故障点最近的开关或断路器,有目标的,有选择性的切除故障部分,在实现最小区间故障切除的同时,保证系统其它正常部分最大限度地继续运行。
3、电网相间短路的电流保护
3.1 瞬时电流速断保护
输电线路发生短路时,电流突然增大,电压降低。利用电流突然增大使保护动作而构成的保护装置,称为电流保护。
通常输电线路电流保护采用阶段式电流保护,采用三套电流保护共同构成三段式电流保护。可以根据具体的情况,只采用速断加过流保护或限时速断加过流保护,也可以三段同时采用。
3.2 限时电流速断电流保护
由于瞬时电流速断保护不能保护线路全长,当被保护线路末端附近短路时,必须由其他的保护来切除。为了满足速动的要求,保护的动作时间应尽可能的短。为此,可增加一套带时限的电流速断保护,用以切除瞬时电流速断保护范围以外的短路故障,这种带时限的电流速断保护范围以外的短路故障,这种带限时的电流速断保护,称为限时电流速断保护。要求限时电流速断保护被保护线路的全长。
3.3 定时限过电流保护
定时限过电流保护是指按躲过最大负荷电流整定,并以动作时限保证其选择性的一种保护。输电线路正常运行时它不应启动,发生短路且短路电流大于其动作电流时,保护启动延时动作于断路器跳闸。过电流保护不仅能保护本线路的全长,也能保护相邻线路的全长,是本线路的近后备和相邻线路的远后备保护。
3.4 中性点非直接接地电网中的接地保护
中性点不接地系统中单相接地故障的保护,除对人身及设备安全有要求时,接地保护动作于跳闸外,一般仅动作于信号。当中性点不接地时,单相接地电流为线路对地电容电流;当中性点经消弧线圈接地时,单相接地电流则为经消弧线圈补偿后的残余电流。通常这些电流很小,与零序电流过滤器的不平衡电流大小相近,给单相接地保护带来较大的困难。
4、电力系统继电保护系统的发展前景
我国继电保护技术的发展是随着电力系统的发展而发展的,电力系统对运行可靠性和安全性的要求不断提高,也就要求继电保护技术做出革新,以应对电力系统新的要求。熔断器是我国最初使用的保护装置,随着电力事业的发展,这种装置已经不再适用,而继电保护装置的使用,是继电保护技术发展的开始。我国的继电保护装置技术经历了机电式、整流式、晶体管式、集成电路式的发展历程。随着科技时代的来临,我国的继电保护技术,也开始走向了科技时代。在未来的一段时间内,我国继电保护的技术主要是朝微机继电保护技术方向发展。
与传统的继电保护相比,微机保护有其新的特点。一是全面提高了继电保护的性能和有效性。主要表现在其有很强的记忆力,可以更有效的采取故障分量保护,同时在自动控制等技术,如自适应、状态预测上的使用,使其运行的正确率得到进一步提高。二是结构更合理,耗能低。三是其可靠性和灵活性得到提高,比如其数字元件不易受温度变化影响,具有自检和巡检的能力,而且操作人性化,适宜人为操作。而且可以实现远距离的实效监控。
我国应当在继电保护技术上增加投入,以便建立一套适应现代电力系统安全运行保障要求的继电保护技术,在继电保护装置的使用上要注意及时的更新,适应我国各方面对电力安全使用的要求,为在未来切实的做好继电保护工作提供最基本的设备支持。同时还应该掌握世界继电保护技术的发展,在微机继电保护技术上进一步的增强研究引进的力度,使我国的电力系统的安全系数达到世界先进水平,为我国强势的经济增长速度提供更完善的电力支持
篇6
【关键词】 继电 保护 趋势
我国自上世纪90年代后期开始也开展了配电自动化研究与应用工作,目前,经过十几年的探索与实践,配电自动化技术已经比较成熟,为故障的快速和科学处理奠定了良好的基础。长期以来,在配电自动化系统的故障处理功能研究领域,国内外开展了大量卓有成效的研究。
1 继电保护的发展现状
1.1 继电保护的现状
继电保护技术是随着电力系统的发展而发展起来的。几十年来,随着我国电力系统向高电压、大机组、大电网发展,继电保护技术及其装置应用水平获得很大提高。在20世纪50年代以前,继电保护是用电磁型的机械元件构成的。随着半导体器件的发展,利用整流二极管构成的整流型元件和由半导体分立元件组成的保护装置得到了推广利用。20世纪70年代以后,利用集成电路构成的装置在电力系统继电保护中得到广泛应用。到80年代后,计算机技术发展很快,利用计算机强大的计算分析能力来分析电力系统的有关电量,判定系统是否发生故障。目前,在电力系统中,微机型继电保护及自动装置得到了广泛应用,它与传统保护相比有明显的优越性。
继电保护技术与其他技术不同的是,新技术不能完全取代老技术。电力系统中运行的继电保护可以说是“四世同堂”。由于计算机网络的发展和其在电力系统中的大量采用,给微机保护提供了无可估量的发展空间,微机硬件和软件功能的空前强大,变电站综合自动化的提高,电力系统光纤通信网络的逐步形成,使得微机保护不再是一个孤立的、任务单一的、消极待命的装置,而是积极参与、共同维护电力系统整体安全稳定运行的计算机自动控制系统的基本组成单元,进入20世纪90年代以来,它在我国已得到了广泛应用,受到电力系统运行人员的欢迎,已经成为继电保护装置的主要形式,从而使得继电保护成为电力科学中最活跃的分支。电力系统的快速发展又给继电保护技术提出了艰巨的任务,电子技术、计算机技术、通信技术又为继电保护技术的发展不断注人新的活力。
1.2 继电保护技术的发展趋势
继电保护技术的未来趋势是向微机化、网络化、一体化的方向发展。电力系统对继电保护的要求不断提高,除了实现基本功能外,还应具有故障信息和数据的存储、对数据的快速处理、与其他继电保护联网、共享信息和网络资源等能力。因此,继电保护的微机化是保护技术的必然发展趋势。
保证系统安全稳定运行,就要求各个继电保护共享全系统的运行和故障信息的数据,各个继电保护在分析这些信息和故障的基础上协调动作,才能确保系统的安全稳定运行。实现这种功能的基本条件是将全系统的继电保护全部用计算机网络连接起来,实现继电保护的网络化。计算机网络作为信息和数据的通信工具,已成为当前的技术支柱,那么实现继电保护的网络化,在当前的技术条件下是完全可能的。
如果实现了继电保护的微机化和网络化,继电保护可从网上获取电力系统运行和故障的任何信息和数据,也可将自身所获得的信息和数据传送给网络控制中心或任一终端。因此,各个继电保护不但可完成本身基本功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,即实现了保护、控制、测量、数据通信一体化。
2 继电保护的目标
2.1 继电设备的故障
电力系统继电保护是电力系统安全、稳定运行的可靠保证。电力系统中的电气设备在运行中,受自然的(如雷击、风灾、机械损伤等)外力破坏、内部绝缘击穿、人为的(如设备制造上的缺陷、误操作等)原因等,不可避免地会发生各种形式的短路故障和不正常工作状态。
电气设备故障最常见的是短路,其中包括三相短路、两相短路、大电流接地系统的单相接地短路及电气设备内部线圈的匝间短路。在大电流接地系统中,电气设备短路故障以单相接地短路的机会最多。
最常见的异常运行状态是电气元件的电流超过其额定值,即电气元件处于过负荷状态。长时问的过负荷会使电气元件的载流部分和绝缘材料的温度过高,从而加速设备的绝缘老化,或者损坏设备,甚至发展成事故。故障和异常运行状态都可能发展成系统中的事故。事故是指整个系统或其中一部分的正常工作遭到破坏,以致造成对用户少送电、停止送电或电能质量降低到不被允许的地步,甚至造成设备损坏和人身伤亡。在电力系统中,为了提高供电可靠性,防止造成上述严重后果,要对电气设备进行正确的设计、制造、安装、维护和检修;对异常运行状态必须及时发现,并采取措施予以消除;一旦发生故障,必须迅速并有选择性地切除故障元件。
2.2 继电保护装置的任务
继电保护装置是一种能反映电力系统中电气元件发生故障或异常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务有以下两方面:
(1)当电力系统中被保护元件发生故障时,继电保护装置应能自动、迅速、有选择地将故障元件从电力系统中切除,并保证无故障部分迅速恢复正常运行。
(2)当电力系统被保护元件出现异常运行状态时,继电保护应能及时反应,并根据运行维护条件,动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据电力系统及其元件的危害程度规定一定的延时,以免不必要动作和由于干扰而引起的误动作。
继电保护装置的功能,就是将检测到的电气量与整定值或设定的边界进行比较,在越过整定值或边界时就动作。这里的越过有两层含义:①对于反应被测量的增加而动作的保护装置,是指测量的量大于整定值或越过边界到界外;②对于反应被测量的减小而动作的保护装置,是指测量的量小于整定值或越过边界进入界内。
3 对继电保护的要求
继电保护的种类有很多,按保护基本工作原理不同归类:有反映稳态量的常规保护和反应暂态量的新原理保护两大类。其中,根据所反应参数不同,常规保护有过电流保护、低电压保护、距离保护、差动保护、高频保护、方向电流保护、零序保护及气体保护等;新原理保护有工频变化量保护和行波保护等。按保护动作原理不同归类:有机电型保护、整流型保护、晶体管型保护、集成电路型保护及微机型保护等。实际上继电保护的动作原理也表明了继电保护技术发展的进程,目前通常把微机保护之前的保护称为传统保护或模拟保护,与此相对应,微机保护还可称为数字保护。
为了能正确无误而又迅速地切除故障,要求继电保护具有足够的选择性、快速性、灵敏性和可靠性。
3.1 选择性
系统发生故障时,继电保护装置应该有选择地切除故障部分,非故障部分应能继续运行,使停电范围尽量缩小。
继电保护动作的选择性,可以通过正确地整定上下级保护的动作时限和电气动作值的大小来达到配合。一般上下级保护之问的时限差取0.5~0.7s,即同一故障电流通过时,上一级保护的整定时间应比下一级保护整定时间长0.5~0.7s,故下一级开关比上一级开关先动作。
3.2 快速性
快速切除故障可以提高电力系统并列运行的稳定性,减少电压降低的工作时间。理论上讲,继电保护装置的动作速度越快越好,但是实际应用中,为防止干扰信号造成保护装置的误动作及保证保护问的相互配合,继电保护不得人为地设置动作时限。目前最快的继电保护装置的动作时间约为5ms。
3.3 灵敏性
灵敏性是指继电保护装置对其保护范围内的故障的反应能力,即继电保护装置对被保护设备可能发生的故障和不正常运行方式,应能灵敏地感受和很灵敏地反应。上下级保护之间灵敏性必须配合,这也是保证选择性的条件之一。
3.4 可靠性
为保证继电保护装置具有足够的可靠性,应力求接线方式简单,继电器性能可靠,回路触点尽可能减少。除此之外,还必须注意安装质量,并对继电保护装置按时进行校验和维护。
以上四个基本要求贯穿整个继电保护内容的始终,要注意四个基本要求间的矛盾与统一,例如强调快速性时,可能会影响到可靠性和选择性;强调选择性时可能会影响到快速性。可以想象,同时满足四个基本要求的继电保护装置,其造价一定昂贵。所以对具体的保护对象,装设怎样的继电保护装置,在满足技术条件的同时,还要分析其经济性。
继电保护发展到今天,它的构成原理已形成了两种逻辑:一种为布线逻辑,另一种为数字逻辑。布线逻辑的继电保护装置,其功能靠接线来完成,不同原理的继电保护装置其接线也不同;数字逻辑的继电保护装置其功能由计算(程序)来完成,不同原理的装置计算方法(程序)不相同,但硬件基本相同。布线逻辑的装置要实现一种完善的特性(如四边形阻抗边界),接线将十分复杂,有些边界还不可能实现。数字逻辑的装置其原理是由计算(程序)来实现的,因此,可实现特性完善的装置。
4 结语
继电保护技术的发展先后经历了机电型、晶体管型、集成电路型和微机型,从初期的机电型发展到今天的微机型,已经历了四代的更新。继电保护的种类虽然很多,但就其基本组成而言,整套继电保护装置是由测量部分、逻辑部分和执行部分三部分组成。
篇7
关键词:继电保护;电力系统;综合自动化技术
中图分类号:TM774
文献标识码:A
文章编号:1009-2374(2012)18
继电保护是指电力系统发生故障,危害到系统安全运行的异常情况,并对事故处理策略进行研究的自动化措施。继电保护中主要使用带触点的继电器对电力系统、电机、变压器以及输变线等进行保护,以保证电力系统免受损害。继电保护的基本任务是:当电力系统发生故障或者系统运行的工况不正常时,在尽可能短的时间和最小区域范畴内,自动将故障设备从电力系统中剥离出来,或者发出报警指示信号提示值班人员及时找到异常工况发生的根源并及时排除故障设备,使系统恢复正常,以减轻对电力系统设备的损害,避免对电网稳定运行造成影响。因此,研究电力系统的继电保护技术对保障电力系统的安全稳定运行有着十分重要的现实
意义。
1 继电保护技术的发展
我国继电保护技术的发展大致可以分成四个
阶段:
第一阶段。20世纪50年代,我国工程技术人员通过学习国外先进的继电保护设备和技术,将这些设备的性能和技术进行消化和吸收,建立了一支继电保护队伍,这个队伍对继电保护理论有着深刻的理解,并且有着丰富的经验,创建了我国自主的继电器制造业,这一时代的继电保护主要是机电式
为主。
第二阶段。这一阶段从20世纪50年代末开始,它的标志是开始研究晶体管继电保护,使继电保护开始国产化的道路。
第三阶段。20世纪70年代中期开始,继电保护领域研究基于集成运算放大器的集成保护,并且开始取代晶体管保护。我国自主研制的集成电路采用高频保护方式进行相电压补偿,并且运用在多条输电线路上。
第四阶段。这一阶段从20世纪90年代开始持续到现在,以微机继电保护为主,出现了多种机型的微机保护线路和设备,微机继电保护具有自检查功能、逻辑处理能力强大、存储记忆和数值计算能力,数字信号通信能力较强。
2 继电保护技术的前景分析
随着计算机技术的快速发展,计算机在电力系统继电保护领域中得到了广泛地应用,新的现代控制原理被广泛应用到微机继电保护中来,从而将微机继电保护的发展推向了更高的层面。目前,主要向计算机化、网络化、智能化以及一体化等趋势
发展。
2.1 计算机化
继电保护系统的不断发展,要求系统除了基本的保护功能以外,由于现在系统的数据量急剧增多,这就需要具有强的数据处理能力,大容量的存储空间以保存大量的故障信息,为了及时传输信息必须具有强大的通信能力,以及与其他系统融合联网的功能,使整个系统的数据和信息实现资源共享。随着计算机技术的进步,计算机的存储、数据处理和通信能力都得到了不同层次的提高,这些都是继电保护计算机化的技术保障。
2.2 网络化
系统的数据和信息要实现资源共享就离不开继电保护的网络化,计算机网络和继电保护相互结合可以有效保证数据和信息的共享,从而使电力系统安全、稳定运行。随着对电力系统要求的不断提高,要求每个保护装置的故障信息和数据都能够实现全系统共享,保护装置根据整个系统的故障信息来决定保护装置下一步的动作,从而保护系统的安全。要想实现上述功能,就必须对整个系统主要电气设备的保护装置实现网络化管理,即实现微机保护装置的网络化。当前一些线路已经开始试行网络化,但只是起步阶段,有大量的工作需要继续
努力。
2.3 智能化
为了使继电保护达到更高的水准,人们将自适应理论、专家控制、人工神经网络、支持向量机、模糊逻辑和蚁群算法等智能算法广泛应用到系统中。如输电线两侧系统电势角度摆开发生渡电阻的短路故障情况就是一个非线性问题,采用传统的距离保护很难判断出故障的位置,如果使用人工神经网络方法,将大量故障数据作为训练的样本,只要选择的样本充分考虑到各种故障情况,就可以实现对任何故障的准确判断。只要将各种智能算法有机地结合在一起,就可以将各种不确定因素对继电保护系统的影响降到最少,提高了保护装置的可
靠性。
2.4 一体化
继电保护装置不仅要实现故障的继电保护,在正常运行状态是可以完成测量、控制和数据通信等功能,从而实现保护、控制和数据通信一体化。
3 综合自动化技术
综合自动化技术相对于常规变电站二次系统,有以下特点:
3.1 设备、操作、监视屏幕化、图形化
综合自动化系统的各个子系统全部微机化,其中还包括系统的功能软件化和信号数字化的内容,完全摒弃了常规变电所中各种机电式、机械式,大大提高了二次系统的可靠性和电气性能。操作监视屏幕化、图形化,通过微机CRT显示器,可以监视整个系统的实时运行情况和对开关设备及过程控制设备等进行操作控制。
3.2 通信网络化
计算机局域网络技术和光纤通信技术在综合自动化系统中得到普遍的应用。因此,系统具有较高的抗电磁干扰的能力,能够实现高速数据传输,满足实时性要求,组态更灵活,易于扩展,可靠性大大提高,而且大大简化了常规变电所繁杂量大的各种电缆,方便施工。
3.3 运行管理智能化
智能化不仅在传统的自动化功能上,如自动报警、自动报表、自动调节等方面,还表现在能够进行事故判别与处理、智能决策、在线自诊断等。智能系统具有以下特点:人机一体化;自组织;学习能力与自我维护能力;在未来,具有更高级的类人思维的能力。
4 结论
随着计算机技术和网络技术的快速发展,继电保护必将得到更大的发展,继电保护技术向着计算机化、网络化、一体化、智能化和综合自动化的方向发展。
参考文献
[1] 李渊.电力系统继电保护技术运用及前景展望[J].中国新技术新产品,2011,(11).
[2] 范磊.牵引变电所微机继电保护技术研究及装置实现
[D].武汉:华中科技大学,2009.
[3] 丁锋.电力系统继电保护技术的现状与发展[J].机械制造与自动化,2008,(10).
篇8
[关键词]继电保护;模型;可靠性指标
中图分类号:TM73 文献标识码:A 文章编号:1009-914X(2015)44-0065-01
继电保护系统是一个由继电保护装置、测量装置(电压互感器、电流互感器)、断路器及其操作机构及二次回路(由继电器、电器元件和连接不同电器设备的导线及电缆所组成)构成的统一整体。电力系统二次系统,如继电保护、自动装置等是保护一次设备的哨兵,它们能自动、快速、有选择性地将故障元件从电力系统中切除,直接关系到电力系统的安全运行与可靠性。过去人们一直把可靠性分析的重心放在一次系统上,这造成了二次系统可靠性理论研究的空白。近几十年来,一些国家大停电的教训使得建立二次系统可靠性标准越来越迫切。因此,电力系统二次系统可靠性研究的理论意义和实践意义也越来越深远。
1 电网可靠性分析中继电保护模型
1.1 继电保护保护模式分析
电力系统继电保护一般遵循主保护加后备保护的配置模式。不同的电压等级,保护的配置模式也有着很大差别。不同的保护硬件和软件配置模式,使得保护装置切除故障的概率不一样,而且由主保护或后备保护切除故障的概率也不一样。继电保护切除故障的机理均可认为是由主保护或后备保护通过操作断路器来切除故障完成的。当一次元件发生故障时,则可能由主保护或后备保护切除故障,其中包括主保护正确切除和主保护未及时动作后备保护误动切除。如果主保护发生拒动,在被保护元件故障的情况下,主保护不可能再出现误动,因为误动一般出现在被保护元件受到扰动的情况下,则由有后备保护切除故障。
1.2 继电保护运行原理
在配电网可靠性分析中,某一元件发生了金属性接地故障,如果其所配置的保护都完好,则由该区段的主保护动作切除故障,故障被切除后该元件所在的负荷点对其他负荷点没有影响但会使整个系统的供电可用度降低。主保护发生了故障而拒动则由其近后备保护来断开故障元件,和主保护一样切掉的是同一故障区域,对其他负荷点的影响也相同。如果近后备保护也故障,不能正确动作切除故障,必然使停电范围扩大。由于上段线路的保护无故障,其作为本段线路的远后备保护正确切除故障,使停电范围仅保留在本段和上段线路,避免了事故的继续扩大,多重保护的设置使得系统更能稳定可靠运行。
1.3 继电保护对系统运行可靠性响应
保护系统的不同配置直接影响保护系统的可靠性,而保护系统的动作行为将影响电网可靠性评估的准确性,因此,对于由不同保护单元(主保护、后备保护)组成的保护系统,根据各保护单元之间的动作逻辑,计算在一次元件故障情况下各保护单元的正确动作概率。设一次元件的保护配置为一套主保护以及近、远后备保护。当一次元件故障时,如果主后备保护都正常,则首先由主保护正确切除故障,也可能是由于主保护未来得及动作而由近后备保护或远后备保护误动切除故障;如果主保护故障,近后备保护也可能未及时动作而由远后备保护误动切除故障;如果主保护故障而拒动,则近后备保护由备用状态转启用并且正确切除故障;如果主保护和近后备保护都故障,则远后备保护由备用状态转启用并且正确切除故障;如果主保护和近远后备保护都故障,则保护系统完全失效。
2 继电保护装置的可靠性指标
2.1 可靠性指标的引出
继电保护装置即指能反映电力系统中电气元件发生故障或不正常运行状态,并动作与断路器跳闸或发出信号的一种自动装置。它的基本任务是自动、迅速、有选择性地将故障元件从电力系统中切除,保证其他无故障部分迅速恢复正常运行;反映电力设备的不正常运行状态,并根据运行维护条件而动作并发出信号或跳闸。继电保护装置的可靠性是指在该装置规定的范围内发生故障时,它不应拒动,而在任何其他不应动作的情况下,它不应误动。对传统继电保护装置可靠性的研究已经有很多,随着微机保护的发展,微机继电保护装置逐渐取代了传统继电保护装置,本文针对微机保护的特点运用马尔科夫理论建立其状态空间模型,准确全面评估微机保护装置的可靠性指标。
2.2 可靠性指标含义
可靠性指标是用数值大小来表示可靠性各个方面性质的量,它既可以从成功的观点出发,也可以从失败的观点出发。通常采用以下可靠性指标:
各项指标分析
2.3 继电保护装置可靠性指标的分析
继电保护装置的运行状态一般有正确工作和不正确工作2种,相应的,继电保护装置运行的可靠性指标也存在正确工作率和不正确工作率2种。过去,继电保护装置运行的正确动作率的定义为保护区内故障正确动作次数/总动作次数)×100%,不正确动作率的定义为保护区内故障拒动作次数+区内、外故障误动作次数+正常运行时的误动作次数)/总动作次数]×100%。这里总动作次数等于正确动作次数和不正确动作次数之和。如果将保护装置在正、反方向区外动作统计在不正确动作次数内,则保护装置在正、反方向区外故障不动作也应认为是一种正确动作而计入正确动作率内,否则将出现不正确结论。
若某一继电保护装置在1年内因为系统未发生内部故障而没有区内故障动作次数,但在正、反方向区外发生的100次故障却有1次误动,按前述正确动作率计算方法,则保护装置的正确动作率为0,不正确动作率为100%。这种结论当然是不能接受的,对保护装置的评价也极不合理。而更加准确的可靠性指标定义为:正确动作率包括区内故障正确动作率、正反方向区外故障正确不动作率、正常运行时的正确不动作率;不正确动作率包括正常运行时的误动率、正反方向区外故障的误动率、拒动率。
3 结语
总之,继电保护系统是防止故障及扰动对电力系统危害的第一道防线,是电力系统必不可少的组成部分,对保证系统安全运行、电能质量、防止事故的发生和故障的扩大都有着极其重要的作用。
参考文献
[1]王树春,双重化继电保护系统可靠性分析的数学模型,继电器,2005,23(18):6~10
篇9
关键词:电力系统;继电保护;可靠性
作者简介:杨文英(1980-),女,山西黎城人,长治供电公司,工程师;盖志强(1980-),男,山西襄垣人,长治供电公司,工程师。(山西 长治 046011)
中图分类号:TM77 文献标识码:A 文章编号:1007-0079(2013)27-0210-01
我国的经济建设不断发展,对电网系统的规模有着一定的影响,其规模会随着经济的发展而不断增大,覆盖范围也不断扩大。[1]因此,不同种类的电子设备以及线路能够紧密相连。另外,由于社会环境、人为等多种复杂因素的影响,导致电器不可避免出现故障现象,给人们的生活带来了不良影响。为了解决这一问题,工作人员必须要保证系统的正常运行,并正确地设置继电保护装置,加强鉴定工作,防止继电保护动作的不规范。下面对电力系统继电保护可靠性问题进行分析探讨。
一、继电保护系统的可靠性指标
1.电力系统继电保护的定义
电力系统继电保护能够有效保障电气的安全,并确保供电的安全。它是所有电力系统中一项根本性的工程技术,它能够有效满足电力系统关于可靠性和灵敏性的选择,当电器出现短路或者异常情况的时候,实现继电保护工作,保证用电的安全性。[2]从继电保护的系统设计方面看,继电保护系统主要是由保护装置以某种形式共同组建的,所有的电力设备都必须在有继电保护的状态下运行。
2.继电保护的基本任务
在系统出现故障的时候,可以通过电力系统继电保护装置对其作出准确的判断,并及时采取处理措施,对远距离故障进行判断,并选择最近的断路器,发出命令,让发生故障的部分能够马上与电力系统断开(跳闸指令)。在满足系统要求的同时,还能够有效降低系统部件的损坏情况,从而减少威胁。此外,电力系统继电保护还能够对工作过程中出现的不良情况作出反应,并根据不同的情况发出不同的警报信号,因此有利于设备装置的自动调节。在对装置自动调节的过程中,继电保护系统的装置能够进行相对的延时动作。
3.继电保护装置的可靠性指标
继电保护装置的可靠性指的是质量问题,通过技术等配置系统,让部件和设备在一定的条件和范围之内完成规定功能,并保障切除内容是出现故障的线路或者电器。这些都是保护装置工作方面的基本要求,其中装置的可靠性主要表现在以下两个方面:一方面,设备具有的可靠性;另一方面,设备功能所具有的可靠性。功能的可靠性指的是继电保护系统在工作状态之下进行正确工作的几率。
工作人员在对继电保护系统可靠性进行检验的时候,使用的方法主要包括以下几种:故障分析法、概率分析法、马尔科夫模型法等。然而,继电保护系统与一般的系统不同,因此使用概率法不利于分析求解。
二、提高继电保护可靠运行的措施
1.设计和优化
设计人员在进行继电系统软件设计的时候,通常使用备用切换以及多数表决等方式,它们能够有效改善继电保护的可用性,对提高可用性指标有着很好的促进作用,也能够让误动率有所下降。另外,多数表决方式将可靠性固定在规定范围内,从而不断提高该指标。备用切换方式能够对可用度指标进行改变,然而这种方式对于其他方面并没有明确的影响。因此,在进行设计的时候,设计人员还必须要根据电力系统继电保护的实际情况进行分析,并选择合适的方式。
另外值得注意的是,继电保护系统的优化设计应该要在提高可靠性的基础上,尽可能减少装置数量,以节省资金,实现资金的最小化。在进行实际运行的时候,设计人员应该将系统可靠性指标放在首位,依靠该规定进行设计。
2.提高继电保护装置的可靠性
在电力系统继电保护装置运行的过程中,指标计算与继电保护系统两者间的关系非常紧密,其中包括:装置的发展、使用、评价和改善等。根据电力系统继电保护的可靠性能够对继电保护装置的运行状况进行确定。继电保护系统的可靠性则主要是指,系统装置在规定范围内出现了动作故障的时候,应该对该动作进行及时制止,避免误动作的产生。
要进一步合理正确地评价继电保护装置可靠性,工作人员必须要从以下两个方面入手:一方面,在电力系统继电保护装置运行的时候,工作人员要对工作率指标进行科学计算,并将计算结果纳入到故障动作范围中。另一方面,要对工作率进行细分。正常情况下,高效的工作率主要由两个方面来组成,分别是正确的动作率和不正确的动作率。通过这两种划分,对继电保护装置运行的深入研究和分析有着重要的作用。
另外,值得注意的是,继电保护装置必须要有配套的辅助装置,这样可以提高继电保护的准确率,保证其能够安全运行,对维持电力系统的稳定产生重要作用。电力系统继电保护装置中的辅助装置主要功能是为了更好地控制断路器,并用作电力系统二次回路的切换。由于辅助装置一定程度上会影响到继电保护装置的可靠性,因此,对其进行有效的控制,提高辅助装置的可靠性,注意对新器件的引进和利用是非常重要的。例如,工作人员应该选用可靠性较高的中间继电器,对工作继电器中的技术数据加以保障。此外,对于一些特殊设计,工作人员必须要多留意辅助装置中的发热电阻,降低机箱内部的工作温度。也要充分考虑辅助装置中的回路耐压水平和绝缘电阻。
三、继电保护操作的运行规范
1.做好继电保护的验收工作
验收工作对于每一项工程的施工是非常重要的,它能够对施工的完整性进行测定,对电力系统运行条件的稳定性进行检查。在进行验收工作的过程中,工作人员在做好电力系统继电保护的调试之后,要进行严格的自检工作。由专业的程序员填写验收单,然后交给厂部进行运行和生产工作。在此过程中,必须要对其进行详细的记录。记录的内容主要包括:时间、保护装置的内容、负责人员的签字等。在进行试运行之后,要确保准确无误之后才可以启动系统进行程序运行。
2.要做好继电保护装置的巡检
施工人员要做好继电保护的防护工作,要及时发现电力系统中继电保护的安全隐患并解决,避免在投入使用的时候出现大规模事故。其中一个重要的方法则是对电力系统设备进行定期的巡检,保证设备工作状况良好。全面巡检工作主要包括:监视灯、警铃、指示灯等是否完整和运行是否正常,接点是否完好,装置的回路接线有没有出现不正常(发热、臭味、松落)现象。并要对保护压板、自动装置等方面进行检查,检查其投入、开关、压板位置等方面是否正确。
3.做好继电保护系统的技术改造
随着计算机技术和网络通信技术的不断发展,继电保护技术也得到了不断的进步,有效突破了传统的格局,并提高了电力系统继电保护的自动化水平。因此,电力工作人员必须要与时俱进,考虑到继电保护系统配置和运行的可靠性、灵敏性以及速动性等,并且要做好相应的技术改造工作。
四、结束语
在社会经济不断发展的今天,电力企业和日常用户对于电力系统继电保护的需求越来越大,继电保护技术也得到不断的发展,逐渐迈向信息化。其发展方向也逐渐转向以保护、控制、测量以及通信一体化为主。[3]因此,电力系统继电保护工作人员的任务变得更加复杂和艰辛。由于我国的继电保护技术还处于起步阶段,因此需要不断地进行努力,才能够促进继电保护技术的不断发展,为电力系统作出贡献。
参考文献:
[1]许彩娟.关于电力系统继电保护可靠性问题的研究[J].中国新技术新产品,2012,16(15).
[2]赵晓林,张利钦.电力系统继电保护的可靠性研究[J].硅谷,
篇10
摘要:继电保护对电力系统的安全有效运行影响重大,要确实保证电力系统的正常使用,就要在保护措施上做好工作,而继电保护是其中最主要,最有效的方式。因此,为保障电力系统的安全运行,必须对继电保护有一定的了解,才能有效使用。本文将对继电保护的作用意义和装置使用及维护,以及其技术发展前景进行分析。 关键词:电力系统;继电保护;保护装置及技术
中图分类号:F407.61 文献标识码:A 文章编号:
电力在现代社会各方面起着重大的作用,没有电力的支持,社会生活和生产根本就无法正常进行。基于电力在现代社会中的重要性,对电力的维护就显得格外重要。而对电力维护起重要作用的继电保护,则是电力系统能否正常工作的关键。继电设施的正常运转,技术运用与发展对电力系统的运行影响重大。如何确保继电保护设施和技术的可靠性和有效性,是电力系统应该着重关注的,也是社会各界所关注的问题。 1继电保护的作用与意义改革开放以来,中国的市场经济得到快速的发展,我国的经济建设取得了举世瞩目的成就。随着经济的发展,对电力的需求越来越大,电力供应开始出现紧张,在很多地方都出现了供电危机,使其不得不采取限电、停电等措施,以缓解电力供应的紧张。在如此严峻的形式下,加强对电力系统的安全维护至关重要,而继电保护正是其中主要的保护手段之一。继电保护对电力系统的维护有重大的意义。一是,继电保护可以保障电力系统的安全、正常运转。因为当电力系统发生故障或异常时,继电保护可以实现在最短时间和最小区域内,自动从系统中切除故障设备,也可以向电力监控警报系统发出信息,提醒电力维护人员及时解决故障,这样继电保护不仅能有效的防止设备的损坏,还能降低相邻地区供电受连带故障的机率。同时还可以有效的防止电力系统因种种原因,而产生时间长、面积广的停电事故,是电力系统维护与保障最实用最有效的技术手段之一。二是,继电保护的顺利开展,在消除电力故障的同时,也就对社会生活秩序的正常化,经济生产的正常化做出了贡献,不仅确保社会生活和经济的正常运转,还从一定程度上保证了社会的稳定,人们生命财产的安全。前些年北美大规模停电断电事故,就造成了巨大的经济损失,引发了社会的动荡,严重的威胁到了人们生命财产的安全。可见,电力系统的安全与否,不仅仅是照明失效的问题,更是社会安定、人们生命安全的问题。所以,继电保护的有效性,就给社会各方面带来了重大的影响。 2继电保护装置使用条件和维护 继电保护装置是实现继电保护的基本条件,要实现继电保护的作用,就必须要具备有科学先进、行之有效的继电保护装置,所谓“工欲善其事,必先利其器”,有了设备的支持,才真正具备了维护电力系统的能力。因此,要做好继电保护的工作,就必须要重视保护的设备。而设备的质量问题,直接决定了继电保护的效果,因而必须对继电保护的装置提出较高的要求。首先是继电保护装置的灵敏性,即要求继电器保护装置,可以及时的把继电保护设备,因为种种问题而出现的故障和运行异常的情况,灵敏的反映到保护装置上去,及时有效的反映其保护范围内发生的故障。以便相关部门和人员采取及时有效的防治措施。其次是可靠性。即要求继电器保护装置的正常,不能发生误动或拒动等不正常的现象,在继电器接线和回路接点上要保证其简练有效。第三是快速性,即要求继电设备能在最短时间内,消除故障和异常问题,以此保证系统运行的稳定,同时可以把故障设备的损坏降到最低限度,以最快的速度启动正常设备的正常运转,避免出现由局部故障而造成全面故障的情况出现。最后是选择性。即在要求继电器在系统发生故障后,可能选择性的断开离故障点最近的开关或断路器,有目标的,有选择性的切除故障部分,在实现最小区间故障切除的同时,保证系统其它正常部分最大限度地继续运行。 继电保护装置的重要性,不仅要在选用上考虑其是否达到基本运行条件的要求,还要在日常的检测和维护上做好工作。 首先,要全面了解设备的初始状态。继电保护设备的初始状态,影响其日后的正常和有效运行。因此必须注意收集整理设备图纸、技术资料以及相关设备的运行和检测数据的资料。对设备日常状态的检修,要对设备生命周期中各个环节都必须予以关注,进行全过程的管理。一方面是保证设备正常的、安全有效的使用,避免投入具有缺陷的设备。同时在恰当的时机进行状态检修,以便能真正的检测出问题的所在,并及时的找到应对方案。另一方面,在设备使用投入前,要记录好设备的型式试验和特殊试验数据、各部件的出厂试验数据、出厂试验数据以及交接试验数据和运行记录等信息。 其次,要对设备运行状态数据进行及时全面的统计分析。首先要了解设备出现故障的特点和规律,进而通过对继电保护装置运行状态的日常数据的分析,预先判断分析故障出现的部分和时间,在故障未发生时,及时的排查。因此状态检修数据管理就显得非常重要,要把设备运行的记录、设备状态监测与诊断的数据等结合起来,通过正确的完整的技术数据进行状态检修。通过数据的把握和设备运行规律的把握,可以科学地制定设备的检修方案,提高保护装置的安全系数和使用周期,保证电力系统的正常运行。 再次,要了解继电设备技术发展趋势,采用新的技术对设备进行监管和维护。在电力事业高度发展,继电保护日益严峻,继电保护设备不够完善的情况下,必须加强对新技术的应用,唯此才能保证保护装置的科学有效,在电力系统的保护中发挥应有的贡献。 3电力系统继电保护技术发展的前景 我国继电保护技术的发展是随着电力系统的发展而发展的,电力系统对运行可靠性和安全性的要求不断提高,也就要求继电保护技术做出革新,以应对电力系统新的要求。熔断器是我国最初使用的保护装置,随着电力事业的发展,这种装置已经不再适用,而继电保护装置的使用,是继电保护技术发展的开始。我国的继电保护装置技术经历了机电式、整流式、晶体管式、集成电路式的发展历程。 随着科技时代的来临,我国的继电保护技术,也开始走向了科技时代。在未来的一段时间内,我国继电保护的技术主要是朝微机继电保护技术方向发展。 与传统的继电保护相比,微机保护有其新的特点。一是全面提高了继电保护的性能和有效性。主要表现在其有很强的记忆力,可以更有效的采取故障分量保护,同时在自动控制等技术,如自适应、状态预测上的使用,使其运行的正确率得到进一步提高。二是结构更合理,耗能低。三是其可靠性和灵活性得到提高,比如其数字元件不易受温度变化影响,具有自检和巡检的能力,而且操作人性化,适宜人为操作。而且可以实现远距离的实效监控。 微机继电保护技术的这些特点,使得这项技术在未来有着广阔的发展前途,特别是在计算机高度发达的21世纪,微机继电保护技术将会有更大的拓展空间。在未来继电保护技术将向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展的趋向发展。 我国应当在继电保护技术上增加投入,以便建立一套适应现代电力系统安全运行保障要求的继电保护技术,在继电保护装置的使用上要注意及时的更新,适应我国各方面对电力安全使用的要求,为在未来切实的做好继电保护工作提供最基本的设备支持。同时还应该掌握世界继电保护技术的发展,在微机继电保护技术上进一步的增强研究引进的力度,使我国的电力系统的安全系数达到世界先进水平,为我国强势的经济增长速度提供更完善的电力支持。 4结束语 继电保护对我国电力系统的安全运行,起着不可替代的作用,在我国经济持续发展,对电力要求不断增大的情况下,要做好继电保护工作,就要从各方面对继电保护的基本任务和意义,以及起保护作用的继电保护装置有深刻的了解,并要及时掌握未来技术发展的方向。