功能高分子材料的特点范文

时间:2023-12-18 18:00:18

导语:如何才能写好一篇功能高分子材料的特点,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

功能高分子材料的特点

篇1

关键词:功能高分子材料;研究现状;发展前景

一、功能高分子材料的概念及开发意义

功能高分子材料,是指具有一定传递或存储物质、信息及能量作用的高分子和高分子复合材料。这使得功能高分子材料不仅具有原来的力学性能,同时还兼具如光敏性、导电性、化学反应活性、生物相容性、选择分离性、能量转换性等一系列其他特定性能。按照其功能划分,功能高分子材料主要可分为4类:①物理功能:具体包括超导、导电、磁化等功能;②化学功能:具体包括光的聚合、降解、分解等;③生物功能:具体来说包括生理组织及血液的适应性等;④介于化学、物理之间的功能:主要是指高吸水、吸附等功能方面。

功能高分子材料由于具备特殊的功能,受到了各个领域的广泛重视,特别是其不可替代的诸多特性都为很多领域的技术进步提供了基础和前提,甚至已经因此而诞生出了一批先进的、符合社会发展潮流的新产品。因此,当前各国都加大了对功能高分子材料的人力物力财力投入,面对时间各国的竞争,我国也需要尽快加大对功能高分子材料的研发力度,从而摆脱我国国防、电子、医药和其他尖端领域严重依赖国外功能高分子材料市场的困境。

二、功能高分子材料的研究现状分析

目前针对功能高分子材料的研究和应用现状,主要集中于功能高分子材料的光功能、电功能、生物功能以及反应型功能应用这几个方面:

1.光功能高分子材料

目前的光功能功能高分子材料的研究和应用主要体现在光固化材料、光合作用材料、光显示用材料以及太阳能光板这几个方面,这些具体的应用能通过对光的吸收、储存、传输、以及转换功能,实现对光能的有效利用。例如,目前已经能够通过光功能高分子材料的运用实现光传导来帮助植物的光合作用。此外,运用光功能高分子材料实现手机的太阳能充电也已经成为现实。

2.电功能高分子材料

电功能高分子材料,除了具备良好的导电性能外,其电导率还能根据应用状况的不同,在半导体、金属态和绝缘体的范围进行变化。此外,由于电功能高分子材料一般密度较小、易于加工,同时具备良好的耐腐蚀性,在当前的工业领域中也被广泛的应用。

3.生物功能高分子材料

生物功能高分子材料在生物领域被广泛的应用。如常见的有,由生物功能高分子材料所制成的人体植入物(视网膜植入物、脑积水引流装置等)以及人体义肢等。

4.反应型功能高分子材料

这种高分子材料是一种具备很强化学活性的高分子材料,能够有效的促进化学反应。它是通过对构建高分子骨架,并将小分子反应活性物质通过离子键、共价键、配位键或物理吸附作用进行骨架填充,以实现高分子功能才能的强化化学合成与化学反应的效果。

三、功能高分子材料的发展前景及趋势分析

功能高分子材料具备很多优势特征,这些都使得其更加符合经济发展和社会发展的需求,这也使得功能高分子材料的研究工作在各国的竞争中日益白热化。而去随着投入的不断深化,和技术的不断完善。新型功能高分子材料必然在我们的尖端科学及日常生产生活中扮演越来越重要的角色。功能高分子材料的几种发展趋势。

1.复合高分子材料

目前,功能高分子材料正逐步由均质材料向着复合高分子材料的方向发展,同时其材料的功能也向着多功能材料的方面发展。复合高分子材料往往是在一种基体材料(如金属、陶瓷、树脂等)上,加入增强或增韧作用的高聚物,再通过将多相物复合成一体,就形成了新的复合高分子材料,这种高分子材料能够充分发挥各相的性能优势,因此具有广泛的发展应用前景。在今后的发展中,航天科技、医疗卫生、生活家居、甚至汽车制造等领域,都需要各种高性能的复合高分子材料。

2.环境友好型高分子材料

经济的粗放发展,给整个地球h境都带来了深重的灾难,而随着人们对环保问题的日益重视,各国对各种材料的生态可降解性要求也日益突出。因此,环境友好型高分子材料的开发和深入研究工作,也引起了各国的重视。当前,生物降解技术和环境友好型高分子材料技术大多掌握在发到国家,我国目前还处于追赶阶段。随着世贸组织对环保观念的更加重视,环境友好型高分子材料在产品中的应用优势也将日益显著,为了把握这一趋势,我国要积极开发研究出有自主知识产权的生物降解技术和环境友好高分子材料。

环境友好型高分子材料,通过易水解的高分子的作用在各种生物酶的作用下,能够加速材料的水解反应,帮助材料进行生物降解。这种高分子材料目前研究的重点方向在理化性能、生物相容性、降解速率的控制以及缓释性等方向。

3.隐身性能高分子材料

隐身性能高分子材料的研究应用主要在军事领域,其也是当前各国的尖端军事技术的研究方向之一。以往的隐身材料多采用超微粒子和细微粉,实践证实,通过吸收衰减层、激发变换层以及反射层等多层材料的微波吸收,能够取得一定的吸波效果,达到隐身的目的。但是,由于材料制备复杂,且雷达技术的日益发展,给隐身技术提出了更高的挑战。此后,隐身性能高分子材料必然是向着厚度更小、质量更轻、功能更多以及频带更宽的方向发展。

篇2

关键词:高分子材料;生物医学领域;人体功能替代或修复

中图分类号:R318 文献标识码:A 文章编号:1671-2064(2017)01-0214-01

上世纪50年代,我国展开了对人工器官的研究,并经过50多年的发展取得了很大成就。聚乙烯、聚丙烯、硅橡胶等都是医用高分子中常用的材料,而常见的医用高分子大约有1000多个品种规格,其制品主要包括医用高分子、医疗器械制品和人工器官三大类。另外,医用高分子材料在医学生有着独特的功效,因而受到学者们的广泛关注和重视,发展前景十分广阔,并迅速成为当前发展较快的新型材料之一。

医用高分子材料用于医学领域中的主要包括:药用高分子材料、人体功能替代或修复高分子材料和高分子医疗器材及制品等。下面我们详细的介绍一下高分子材料在人体功能替代或修复中的作用,并对医用高分子材料在未来的发展趋势与发展状况进行一定的研究、探讨。

1 高分子材料在人体功能替代或修复中的运用

高分子材料运用到人体功能替代或修复中的主要目的是替代、修复人体内受损的组织或器官,从而恢复其原有的功能。其中用到高分子材料的主要包括部分功能修复材料、人工器官材料、组织工程材料等。

1.1 部分功能修复材料

在对人体缺少的一部分功能的器官或组织进行修复,如为了恢复听觉功能,制造的人工耳朵;在矫正视力的过程中,制造的人工角膜、人工晶体等;还有假肢、人工等都需要用到高分子材料。另外,部分功能修复材料一般都有利于改善患者的生活质量,并不会危害到人的生命健康。另外,不同的组织或器官所使用的高分子材料也不同,如隐形眼镜所采用的材料一般包括聚甲基丙烯酸8一羟乙酯一甲基丙烯酸戊酯、聚甲基丙烯酸B一羟乙酯等;人工角膜则包括聚甲基丙烯酸酯类、硅橡胶等;而人工晶状体则包括可用聚甲基丙烯酸酯类等。

1.2 人工器官材料

为了治疗病患,我们需要对人体的一些组织或器官进行替代性治疗,并将人工脏器引入人体系统,从而发挥原有器官的功能,促进人体系统功能的正常运行。植入人体内的永久性人工脏器主要包括人工气管、人工血管、人工食道等。另外,手术过程中还还有一些暂时性的人工脏器,如人工心脏、人工肝脏和人工肾脏等,起到替代使用的作用。通过不断的提高高分子材料制作过程中的血液相容性、抗细菌粘附性和抗凝血性等,确保制造出来的人工心脏瓣膜、人工血管等能够很好的接触血液,减少感染现象的发生。

1.3 组织工程材料

高分子材料在组织工程材料中的应用,有利于改善、维持或恢复研制生物代用品的功能,加强对正常和病理的哺乳类组织的结构-功能关系的了解。通过对生命科学规律的了解和运用,充分发挥组织工程的作用,开发新型智能修复材料,主动激发、诱导人体组织器官再生修复的功能。在设计该材料的过程中,需要有机结合人工材料和活体组织,确保组织细胞表面的特殊位点能够与配合基发生作用,进一步提升组织细胞分裂和生长的速度,从而促进周围组织细胞生长为预想功能,达到修复人体组织和器官的功能的目标。

2 对医用高分子材料未来的发展方向的展望

高分子材料在医学领域内广泛的应用,并取得了很大的成就。但目前的技术还无法满足人们的需求,还无法提高人工脏器替换病变脏器的成功率,所以我们需要对医用高分子材料的发展方向进行一下详细的研究。

首先,高分子材料会广泛应用于药物中。随着人们生活质量的不断提高,人们对药品质量也有了更高的要求,如要求药品稳定、高效、毒副作用小等。高分子材料一般具备无毒、无副作用、水溶性好、不会产生异变等特点。因此,我们需要将高分子材料应用到现代药物中,如制作缓释药物的载体、高分子材料的药物等。另外,高分子药物相比低分药物而言,几乎没有副作用,并且可以缓释药物的浓度,具体治疗人w制定的部位。所以,高分子材料在药物这一行业中具有很大的发展前景,其作用不可替代。其次,高分子材料将会广泛的应用于医疗器械中。高分子材料中的聚酯、硅橡胶等都具有一定的矫形作用,在假肢制造、整形外科等领域中都发挥着很大的作用。最后,未来的医用高分子材料应用范围将进一步扩大,其发展趋势将以聚氨酯、聚硅氧烷、聚烯烃为主,开发满足生物相容性和血液相容性的材料,发展便携带的小型化人工器官装置以及开发医疗器械、人工脏器和控制生育所用的材料等。

3 结语

医用高分子材料的广泛应用,有利于促进医疗水平的进步,不断的完善医用材料,充分发挥其在医学领域中的作用。综上所述,我们可以发现,加快对医用高分子材料的开发和研究是目前医学领域中最重要的任务之一。

参考文献:

[1]陈志祥,张政委,田华,等.生物降解高分子材料在医药领域中的应用[J].化学推进剂与高分子材料,2005, 3(1):31-34.

篇3

【关键词】 高分子材料 可降解 循环利用

1 生物可降解高分子材料的含义及降解机理

生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。生物可降解的机理大致有以下三种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、PH值、微生物等外部环境有关。

2 生物可降解高分子材料的类型

按材料来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。

2.1 微生物生产型

通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。

2.2 合成高分子型

脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺)制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。

2.3 天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共同混制。

2.4 掺混型

在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

3 生物可降解高分子材料的研发

3.1 传统方法

传统利用生物可降解高分子材料的方法主要包括:天然高分子的改造法、化学合成法和微生物发酵法等。(1)天然高分子的改造法。通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。②化学合成法。模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。(2)微生物发酵法。许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。

3.2 酶促合成

用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。

3.3 酶促合成法与化学合成法结合使用

酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料。

4 结语

随着高分子材料合成与加工的技术进步,生物可降解高分子材料在各行业得到广泛、深入的应用。生物可降解高分子材料助剂、树脂原料和加工机械一起组成了生物可降解高分子加工的三大基本要素。此外,加工工艺水平、配方技术以及相关配套服务设施也成为完美展现制品性能的不可或缺的因素。我国生物可降解高分子材料工业起步较晚,发展迟缓,难以适应目前的发展趋势,必须借助行业发展,探索一条具有中国特色的工业之路。在消化、吸收、仿制国外先进品种和技术的基础上,针对不同行业要求和特点,开发出高效、多功能、复合化、低(无)毒、低(无)污染、专用化的生物可降解高分子品种,提高规模化生产和管理能力,改变目前行业规模小、品种少、性能老化且雷同、针对性(专用性)差、性能价格比明显低于国外同类产品、创新能力低下、污染严重、无序竞争的局面,一些新型功能的生物可降解高分子材料的发展时间不长,消费量较低,却带来了产业新的突破点和增长点,丰富完善了整个体系,其高技术含量和巨大的增幅显示了强大的生命力,创造一个投入产出比明显高于其他化工产品的新产业。

篇4

关键词:高分子 材料阻燃技术 应用 发展

中图分类号:TQ31 文献标识码:A 文章编号:1674-098X(2015)10(b)-0198-02

高分子可燃材料具有优良的性能,其应用的范围也越来越广,特别是在建筑、交通、家具、电子电器等行业领域被大量使用,美化和方便了人们的环境和生活,获得了显著的经济效和社会效益,已逐渐代替传统材料。然而大多数该分子材料都易燃、可燃材料,在燃烧时热释放速率快、火焰传播速度快、发热量高、不易熄灭,还产生大量浓烟和有毒气体。随着高分子材料的广泛应用,其潜在的火灾危险性大大增加,因而如何提高高分子材料的阻燃性能,成为当前消防工作急需解决的一个问题。

1 高分子阻燃技术应用

1.1 高分子阻燃材料分类

关于阻燃高分子材料目前尚无明确分类,通常可按照获取阻燃性能的方式划分,可将其分为本质阻燃高分子材料和非本质阻燃材料两种。一种是材料本身具有阻燃性;另一种是通过加入添加阻燃剂获得阻燃性能。非本质阻燃材料可根据阻燃剂添加方式分为添加型阻燃高分子材料和反应型高分子材料。所谓添加型阻燃高分子材料,即在高聚物加工过程中,将阻燃剂以物理方式分散于基材中而赋予材料的阻燃性;反应型阻燃高分子材料的阻燃剂是在高聚物的合成中加入的,它作为一种单体参与反应,并结合到高聚物的主链或支链上,使高聚物含有阻燃成分[1]。

1.2 高分子阻燃技术

阻燃剂是用于提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。在现代化社会中,阻燃剂具有着诸多的类型,旨在能够为了切实满足不同环境下的防火需求,就其所包含的类型来看,主要可以分为以下3种。

第一种,是有机阻燃剂,主要用于针对有机物的燃烧预防,比如包括磷酸酯、卤系和纺织物等等,具有着耐久性的特点。

第二种为无机盐类阻燃剂,包括的产品主要有氯化铵、氢氧化铝等等材料,这种类型的阻燃剂具有着无烟、无毒与无害的优势,因此成为了目前应用领域最为广泛的一种阻燃剂。

第三种为有机和无机混合类型的阻燃剂,这种类型的阻燃剂通常被科学界认为是无机阻燃剂的升级版,拥有着和无机阻燃剂同等的优势,但相对来说具有着较高的成本,因此并未普及应用。而从不同阻燃剂的阻燃元素上看,又可以划分为几种,包括卤系阻燃剂、磷系阻燃剂和硅系阻燃剂等,其各自有着相应的优势和缺点,但依然凭借着不同的特点被广泛应用于不同的防火领域当中[2]。

受到近些年科学技术飞速发展的影响,高分子材料的阻燃技术水平也获得了突破性的发展,包括阻燃剂微胶囊技术、交联与接枝改性等等,无论是何种新技术的应用,其作用原理都大体相一致,区别主要在于对人工合成技术的依赖程度有所不同,最明显的技术优势更是在于对传统材料阻燃之后所产生的有毒有害气体的转化,最具代表性的便是现代阻燃技术领域的纳米技术应用,不仅能够有效降低阻燃过程中各类反应对环境的污染,同时更凭借较高的技术水平全面提高了阻燃技术的安全性。

1.3 高分子材料燃烧及阻燃技术应用机理

高分子材料在空气中受热时,会分解生成挥发性可燃物,当可燃物浓度和体系温度足够高时,即可燃烧。所以高分子材料的燃烧可分为热氧降解和燃烧两个过程,涉及传热、高分子材料在凝聚相的热氧降解、分解产物在固相及气相中的扩散、与空气混合形成氧化反应场及气相中的链式燃烧反应等一系列环节。当高分子材料受热的热源热量能够使高分子材料分解,且分解产生的可燃物达到一定浓度,同时体系被加热到点燃温度后,燃烧才能发生。而己被点燃的高分子材料在点燃源稳定后能否继续燃烧则取决于燃烧过程的热量平衡。当供给燃烧产生的热量等于或大于燃烧过程各阶段所需的总热量时,高分子材料燃烧才能继续,否则将中止或熄灭。从高分子材料的燃烧机理可看出,阻燃作用的本质是通过减缓或阻止其中一个或几个要素实现的。其中包括6个方面:提高材料热稳定性、捕捉游离基、形成非可燃性保护膜、吸收热量、形成重质气体隔离层、稀释氧气和可燃性气体。目前常采用的阻燃剂行为主要是通过冷却、稀释、形成隔离膜的物理途径和终止自由基的化学途径来实现。燃烧和阻燃都是十分复杂的过程,涉及很多影响和制约因素,将一种阻燃体系的阻燃机理严格划分为某一种是很难的,一种阻燃体系往往是几种阻燃机理同时起作用[3]。

2 高分子材料阻燃技术的研发动向分析

2.1 高分子材料阻燃技术的现代化发展体现

在现代工业领域当中,阻燃材料凭借着自身所具有的阻燃优势,已经获得了越来越广泛的发展前景。传统的添加阻燃剂,在热量不断加升的同时,其有毒气体也将被释放出来,产生有毒气体将会严重危害心肺功能,因此,在传统阻燃剂中,也相应增加了磷酸酯等化学物质,以便于通过磷酸酯来提升材质的气体吸附能力,相比较来讲磷氮化合物拥有更加高等的吸附能力,正是由于添加型阻燃剂中存在以上不同的化学物质,因此,阻燃剂安全系数也将被提升。由此也就确定了磷系阻燃剂的地位。伴随着现代技术的发展各类阻燃产品均获得了良好的发展应用空间,各类阻燃产品的优势也开始越来越突出,由于阻燃材质中的阻燃性能受到影响,才最终达到阻燃的实际效果。相对来讲,阻燃技术也通过阻燃剂的化学功能,改变其传统的分子结构,以至于实现阻燃价值。因此,阻燃技术应具备一定的高分子材料脱水碳化功能,并在此基础上,吸收相关的有毒气体,当值在材料燃烧中,产生有毒气体,威胁相关人员的生命健康。对此应当进一步加大对现有阻燃剂的研发力度,并在科学技术的支撑作用下对现有的阻燃剂进行改善与功能领域的创新,使现有的阻燃剂能够具备传统的阻燃性能优势,还同时具有更多的现代化功能比如耐热、抗辐射等等[4]。

2.2 高分子阻燃材料的绿色发展趋势

高分子阻燃材料的绿色发展方向已经开始被充分重视,其是社会的现代化发展需要,阻燃剂在各个行业领域当中的应用量有着明显的增加,所有新材料与新产品的更新换代频率都在不断加速。而与此同时,人们的环保意识也在不断提升,因此,阻燃剂的技术发展方向也开始逐渐趋向于绿色化发展。尤其是近些年社会开始重点关注对可持续发展的建设,由此直接决定了阻燃剂的发展需要契合生态的关系。目前,国际当中已有一部分发达国家开始致力于从环保角度出发来限制对污染环境阻燃剂的生产与使用,该文认为,这样的现状本质上也是对人们生命财产安全负责的另一种形式。不可否认,中国作为生产制造大国,高分子产业的发展具有着显赫的地位,在国际阻燃材料飞速发展的大势所趋之下,消防部门同时出台了新的规定,旨在为阻燃材料的科学化更新提供明确的方向指引。在当前市场竞争激烈的形式下,阻燃技术的开发在外界的推动下有了技术上的提高。尤其是低毒低烟、无卤高效的环保阻燃剂更是起到了不可估量的作用。综上,不管是卤系阻燃剂还是无卤阻燃剂,其必然趋势都是向环保型无卤阻燃剂发展,发展方向都以低毒化、环保化、高效化、多功能化为主[5]。

3 高分子材料阻燃技术的优化改革动向

当前,对于阻燃技术的研究,我国还有待加强,在相关技术研发力度,以及自主研发等环节,相对于国外先机技术仍然存在较大的进步空间。但根据我国当前研发技术来讲,已经较传统技术提升了许多。近些年国家积极进行科研技术支持,在研究经费中,研究技术中,积极给予帮助,使得各项技术研发工作中逐渐扩大,研发力度也逐渐加深,在国家技术支持上,当前各项技术研发应用皆取得了良好的成绩,阻燃技术便是其中一项,在国家的扶持帮助下,阻燃技术应用价值逐渐得到挖掘,阻燃技术研发也渐渐深入到人们的视野之中。

由从传统阻燃技术当前的阻燃技术研发,期间经历中众多变迁,最早阻燃技术是由物理作用的帮助喜爱,实现对氧气的阻隔,最终达到阻燃的效果,当前新型阻燃技术的研发,使得性质阻燃上升至化学反应界面中,通过对材质化学分子的改变,使得可燃性材质逐渐具备阻燃技术,从融合阻燃逐渐转变成为无机阻燃,并在阻燃技术研发的过程中,更加注重了对有害有毒物质的处理,通过添加可吸附分子,将有毒有害物质进行吸附,在实现了阻燃技能的基础上,实现了无污染的目标。这种科技研发的成果符合了绿色发展以及可持续发展理念的要求。当前在阻燃技术研发中,微胶囊技术、纳米技术等其他技术的影响,使得可燃材料的阻燃效果大大得到提升,阻燃性能也随着阻燃效果不断变化。在阻燃技术应用中,复合型材料的应用也为阻燃技术提供了发展方向。

该文认为,在今后的发展中,随着阻燃技术的提升,阻燃性能的变化,必将使阻燃形态以及其他性能达到提高,并在科研技术的研发过程中,随着可持续发展理念的贯彻,坚信可燃材料阻燃技能将会更加环保。

4 结论

综上所述,通过对阻燃技术的研究可知,阻燃技术经历了从物理阻燃向化学阻燃技能的转变,在化学阻燃中高分子材料阻燃功能得到了有效的提升。随着阻燃技术研发的不断加深,我们坚信,阻燃材料的发展也会与之相适应,产品结构也会相应调整,我们必然会找到解决的办法,开发出符合人们需求的高分子阻燃材料。

参考文献

[1] 郭永吉.高分子材料阻燃技术的应用及发展探究[J].江西化工,2014(4):208-209.

[2] 郭晓林,李娟,李莹.挤塑聚苯乙烯泡沫塑料的阻燃技术现状与发展趋势[J].中国塑料,2014(12):6-11.

[3] 高建卫.我国建筑保温技术进展及存在问题分析[J].材料导报,2013(S1):276-280,284.

篇5

Abstract: Function polymer materials are rapidly developing in recently years. But there are not any generalizations to the development of shape memory polymers. The defined, mechanism, characterization and the preparation of the most simulative shape memory polymer are briefly introduced in this paper. Then the developing prospects are also reviewed.

关键词: 功能高分子材料;展望;形状记忆

Key words: functional polymer materials;outlook;shape memory polyer

中图分类号:TB324 文献标识码:A 文章编号:1006-4311(2012)31-0303-02

0 引言

随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料——形状记忆材料。20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它可分为三大类,形状记忆合金、形状记忆陶瓷和形状记忆聚合物材料。高分子产业的迅速发展,推动了功能高分子材料得到了蓬勃发展。形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。

1 功能高分子材料研究概况

功能高分子材料是20世纪60年代的新兴学科,是渗透到电子、生物、能源等领域后开发涌现出的新材料。由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。

1.1 功能高分子材料的介绍 功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。

1.2 功能高分子材料分类 可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。

1.3 形状记忆功能高分子材料 自19世纪80年现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支——形状记忆功能高分子材料。和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。

形状记忆聚合物(SMP)代表一项技术上的重要的类别刺激响应的材料,在于形状变动的反应。更确切地说,传统意义上的SMP是聚合物变形,随后能固定在一个临时的形状,这将保持稳定,除非它暴露在一个适当的外部刺激激活了聚合物恢复到它原来的(或永久的形状)。因此,相关的反应被称为聚合物内的形状记忆效应(SME)。虽然各种形式的外部刺激可以被用来作为恢复触发,最典型的一种是直接加热,通向温度增加[4]。

2 部分形状记忆高分子材料的制备方法

2.1 接枝聚乙烯共聚物 在形状记忆聚乙烯中,交联(辐射或化学)是必须的,但是交联程度过高会导致聚合物的加工性能不好,因此最好是将交联放在产品制造的最后一步:Feng Kui Li等采用尼龙接枝HDPE获得了形状记忆聚合物。他们采用马来酸酐和DC处理熔融HDPE在180℃反应5分钟,然后在230℃下和尼龙-6反应5分钟得到产物。SEM照片显示尼龙微粒小于0.3μm,在HDPE中分散良好,两者界面模糊,显示两者形成化学粘合;而尼龙和HDPE简单混合的SEM照片中两者界面明显试验同时表明,随着DCP含量和尼龙含量的提高,共聚物中形成了更多的共聚物具有和射线交联聚乙烯(XPE)SMP相似的形状记忆效应,形变大于95%,恢复速度好于射线交联的聚乙烯SMP,该聚合物在120℃左右形状恢复达到最大。对其机理研究表明,接枝在PE上的尼龙形成的物理交联对形状记忆效应有重要作用。值得注意的是该共混物是仅仅通过熔融混合得到的,工艺非常简单,而且采用的是通用聚合物,因此该方法值得推广[5]。

2.2 聚氨酯及其共混物 聚氨酯是含有部分结晶相的线性聚合物,该聚合物可以是热塑性的,也可是热固性的。聚氨酯类形状记忆材料,软段的结构组成和相对分子质量是影响其临界记忆温度的主要因素,硬段结构对记忆温度影响不大。

采用聚氨酯和其它聚合物共混,可以改善性能,得到所需要的产物。有报道采用聚己内酰胺(PCL)、热塑性聚氨酯(TPU)和苯氧基树脂制得的形状记忆材料。发现该产物随着组成的变化而玻璃化转化温度不同;同时发现PCL部分在混合物中结晶相消失,说明结晶过程被阻碍。改混合物具有形状记忆效应的原因在PCL/苯氧树脂作为了可逆相。该混合物的玻璃化温度可以通过TPU/苯氧基树脂的混合比例和种类决定,增加混合物中固定相和减少TPU链长度可以减少滞后效应。报道采用PVC和PU共混也能得到SMP。该混合物中存在PVC/PCL形成的无定形相,混合物的玻璃化的温度也随着PVC/PCL的组成变化而平稳的发生变化,固定相记忆着最初形状[6-8]。

3 国内外形状记忆高分子材料研究现状

3.1 国内研究现状 国内研究的形状记忆高分子材料多以聚氨酯和环氧树脂基为主,加入添加剂或固化剂进行改性,可以得到满足基本要求的SMPs,但是由于其自身缺点的约束,所以限制了其使用范围。最近几年来,形状记忆合金以利用聚合物为基体添加其他成分,突出各个优点进行对比,得到一些性能良好的形状记忆材料因此我们列举国内最新的SMPs研究。

魏堃等人将新型聚合物固化剂与环氧树脂(EP)进行机械共混,进行适度交联固化后,制出具有较低玻璃化转变温度(Tg)的无定型EP体系,得出结果显示适度交联固化的EP体系具有良好的形状记忆特性。

高淑春等人利用活化溅射方法制备TiO2薄膜,以Ni-Ti形状记忆合金生物材料为基体,附着在形状记忆和金材料的表面,其跟血液相容性比较好,因此具有较高的临床使用价值。

3.2 国外研究现状 对比国内,国外的SMPs发展比较早,例如:美国、日本、德国等由于具有先进的设备和理论基础,因此在各个方面相对国内都比较成熟,所以本人参考最近国外SMPs相关研究在此论述。

Y.C.Lu等人利用环氧基的形状记忆材料设计模拟服务环境所能反映出的预期性能要求即

①暴露在紫外线辐射下循环为125分钟;②在室温下沉浸油内;③浸泡在热水中49℃。一种新颖的高温压痕法评估适应条件的SMPs的形状和力学性能。结果表明对于有条件的比较一般环境条件SMPs的玻璃化转变温度降低与较高模和敏感应变速率。如果温度设定低环境条件影响的SMPs形状恢复能力。特别是紫外线暴露和浸入水中的SMPs回复率明显低与无条件的材料。当回复温度高于Tg,材料的回复能力相对保持不变。

R.Biju等人用双酚A(BADC)与缩水甘油醚或者双酚A(DGEBA)与苯酚螯合物(PTOH)通过一系列聚反应合成热固性聚合物表现出具有形状记忆性能。利用差示扫描量热分析、红外光谱及流变仪来表征其固化特征。以不同比例DGEBA/PTOH/BADC混合,研究了它们的弯曲、动态力学性能以及热性能;对于一个给定的成分,弯曲强度和热稳定性随着氰酸酯浓度增加而增加,而这些特性随着PTOH浓度的增加而降低,储存模量表现出相似的趋势。这个转变温度(Tt)随着整体氰酸酯含量的增加而增加。这些聚合物在形状记忆性能显示出良好的恢复形状,并且形状恢复时间减少。而显示恢复时间与形状恢复模量增加(Eg/Er)刚好相反。这个转变温度可调谐反应物组成及变形恢复速度随驱动的温度增加而增加。这些环氧基氰酸盐系统具有良好的热、力学和形状记忆特征很有希望用在智能电气领域。

4 展望

由于SMP有着丰富的后备资源,而且形状记忆的方式灵活,具有广阔应用和发展前景。因此本文认为,有很多重要因素影响将SMPs技术成功转化成生产应用,例如:标准化的不同方法描述为量化形状记忆材料的性能。应该进一步完善形状记忆原理,在分子结构理论和弹性形变理论基础之上,建立形状记忆的数学理论模型,为开发新材料奠定了理论基础;运用分子结构理论、实验设计原理和改性技术知识,提高形状记忆各项性能、丰富品种、满足不同的应用需要,增强应用和开发研究,拓宽应用领域,尽快转化为生产力。

形状记忆高分子与形状记忆合金相比具有感应温度低,且形状记忆高分子因其独特的优点而具有广泛的应用前景,但是我们也应该看到在开发应用上仍存有一些不足[22]:形变回复力小;只有单程形状记忆功能,没有双程性记忆和全程记忆等性能;优化制作设计与工艺,开发更多优秀的品种,在研究聚合物基的SMP中有许多重要工作需要我们一步步努力去做,在完善SMP过程中,同时要研究复合社会不同需求的产品。

参考文献:

[1]陈义镛.功能高分子[M].上海:上海科学技术出版社,1998:1-5.

[2]江波等.功能高分子材料的发展现状与展望[J].石油化工动态,1998,6(2):23-27.

[3]古川淳二.对21世纪功能高分子的期待[J].聚合物文摘,1994,(6):17.

[4]Tao xie. Recent advances in polymer shape memory[J].Polymer, 2011,(52):4985-5000.

[5]Han Mo Jeong Europen polymer ourn [M].2001,(37):2245~2252.

[6]饶舟等.形状记忆聚氨酯高分子材料的研究进展[J].聚氨酯,2011,110(7):1-7.

篇6

专业大观

生活在钢筋水泥森林里的我们,对金属材料一定不陌生。从汽车外壳到小小螺丝钉,从建筑用材到锅碗瓢盆,处处充斥着金属感。可以说,金属材料的发现和应用,日益深入和改变着我们的生活。

金属材料工程是一门实用性很强的专业,通过对金属材料制备工艺及其原理的探索,研究成果可以直接应用于现实生产。该专业开设的主要课程有材料热力学、金属学、材料力学性能、材料分析技术、金属材料学、材料成型加工工艺与设备、计算机在材料工程中的应用等。通过学习这些课程,同学们将被培养成为具备金属材料科学与工程等方面的知识,能在冶金、材料结构研究与分析、金属材料及复合材料制备、金属材料成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。

金属材料工程发展历史很长,基础非常雄厚,可以说从事这方面研究的人员一开始就站在了巨人的肩膀上,但需要注意的是,借助学科雄厚的基础,初学者虽然很容易入门,但入门后看见的是一片片整整齐齐的田野,仿佛没有值得开垦的地方,要想取得突破性进展必须下一番力气。因此学生在学习时需要注重培养自己的观察和判断能力,不盲目迷信书本和权威,要敢于放开自己的思维不断探索新知。

经过本科阶段的学习,金属材料工程专业的毕业生将被授予工学学士学位,毕业后如果希望从事专业相关工作,可以去相应的研究所(比如北京有色金属研究院)参加工作,或是在宝钢、首钢等国有大中型钢铁集团以及其他相关企业担任中高级工程技术人员,当然也可以选择留校或者出国。当你看见自己辛勤劳动的成果在钢花飞溅中诞生,为国家和人民创造了巨大经济利益的时候,你一定会由衷地感到高兴。也许到时候你会发现自己对别的领域更感兴趣,不要担心,你所学的知识和方法完全可以帮助你适应其他的工作,因为在这里养成的分析问题、解决问题的能力,会令你左右逢源、游刃有余。

报考点津:由于本专业涉及到金属材料的设计、计算机的应用等专业领域,因此,有创新意识,吃苦精神,且在绘图、计算机等方面有专长的同学更适合报考该专业。

高校快照:北京工业大学、西安交通大学、哈尔滨工业大学、盐城工学院、西北工业大学等。

专业大观

高分子材料与工程属于理工科类,是研究有机及生物高分子材料的制备、结构、性能和加工应用的高新技术专业。目前高分子材料已被广泛应用于生活、生产、科研和国防等各个领域,成为我国科学研究的一个重点领域。

高分子材料与工程培养的是高新技术方面的人才,该专业的学生主要学习高聚物化学与物理的基本理论和高分子材料的组成、结构与性能知识及高分子成型加工技术知识,具体的课程有有机化学、物理化学、高分子化学、高分子物理、聚合物流变学、聚合物成型工艺、聚合物加工原理、高分子材料研究方法。看课程的名称,我们会发现,高分子材料与工程主要涉及化学、物理、材料知识。但是,不要以为你高中的物理、化学学得好就能把高分子材料与工程专业学好,我们高中时学的物理、化学其实都只是基础知识,并没有朝深方向延伸。因此说,高中所学的物理、化学知识只能算是在为学高分子化学、物理打基础。

学习了高分子材料与工程的主要课程后,充其量只能说你学到了知识,还不具备有开发研究高分子材料的能力。为了帮助该专业学生将知识转化为技能,学生在校期间的大部分时间都被用来做实验,同时学校也会适当的安排一些社会实践,同学们可以进行金工实习、生产实习、专业实验、计算机应用与上机实践、课程设计等。此外,同学们自己还可以利用寒暑假的时间到工厂、企事业单位实习。

总而言之,只有经过社会实践并且反复摸索验证课本上的理论知识,同学们才能掌握高分子材料的合成、改性的方法,获得聚合物加工流变学、成型加工工艺和成型模具设计的基本技能,具有对高分子材料改性及加工过程进行技术经济分析和管理的初步能力。当同学们在学校就具有以上这些能力,那可以说已经很优秀了,毕业时那会是企业争抢的香饽饽。

关于就业,高分子材料与工程专业的学生毕业后,可以到高分子材料及高分子复合材料成型加工、高分子合成、化学纤维、新型建筑装饰材料、现代喷涂与包装材料、汽车、家用电器、电子电气、航天航空等企业从事设计、新产品开发、生产管理、市场经营及贸易部门工作,也可以到高等学校、科研单位从事科学研究与教学工作,还可以到政府部门从事行政管理、质量监督等工作。

报考点津:对物理、化学感兴趣的学生较适合本专业。另外,由于该专业要与计算机、英语打交道,因此你要有计算机、英语方面的学习热情。还有,按照相关招考规定,色弱、色盲者不能报考该专业。

高校快照:四川大学、浙江大学、华南理工大学、大连理工大学、华侨大学等。

专业大观

复合材料与工程是实用性很强的专业,它分为复合材料设计与加工和复合材料工程两个专业方向,这样可以术业有专攻,使同学们在成为本专业通才的同时又是某个方向的专才。

既然复合材料与工程专业的学生学的是如何研发复合材料,那么复合材料究竟有何魔力驱使同学们去研究它呢?人们获取知识时常用的方法是去粗取精,从而使知识更上一层楼。复合材料其实和同学们汲取知识的方法是一样的,它是由两种或多种性质不同的材料通过物理和化学复合,组成具有两个或两个以上相态结构的材料。简单的说,就是它具有合成材料共有的优点,性能要高出任何一个合成的部分。其实,在现实生活中,我们会看到很多的复合材料产品,如休闲座椅、工艺花盆、灯饰、广告灯箱、汽车配件、电话亭等。当我们惊讶于复合材料与工程何以如此强悍时,羡慕和期待的眼光便落在了复合材料与工程专业上。

看着五花八门的工艺花盆、灯饰,同学们可能会难掩内心的激动,也想自己动手制作出漂亮的灯饰。有这样的心情,表示同学们已经爱上了复合材料与工程专业了。由于该专业所要解决的是了解复合材料的组成特点、主要应用领域、复合原理和主要制备工艺等问题,因此该专业的同学们需要学习的专业课程有复合原理、复合材料学、复合材料工艺设备、材料学概论、复合材料的实验技术、高分子化学及物理、复合材料工艺学、复合材料聚合物基础等。

罗列出这么多专业课程,你可能会发出感慨,怪不得该专业毕业的学生能够研制出许多性能各异的产品,因为他们所学的知识不仅专,而且全。该专业同学毕业后可以到航空航天、汽车、船舶、建材、化工防腐、电机、电子、石油、通信、国防等行业的科研院所、高校、公司、企业工作。即使是新入职的该专业的毕业生,薪酬也不会很低,一般薪水在3000左右,不过也分地域、单位和各人能力。

报考点津:能吃苦,有创新精神,且对化学、物理感兴趣的最适合报考本专业。尽管没有性别限制,但从往年的男女就业情况来看,男生比女生更受企业的欢迎。

高校快照:武汉理工大学、兰州交通大学、江苏大学、华东理工大学、济南大学等。

专业大观

生物功能材料专业是生命科学和材料科学的前沿叉学科,是生物医学工程、组织工程和药物释放等交叉学科技术的迅速发展对专业人才的迫切需求而设立的。

生物功能材料专业的魅力,就在于敢于实践李宁的那句名言——“一切皆有可能”。就在前不久,青岛即发集团成功研制出了“高性能壳聚糖纤维材料”,而它的原料就是不起眼的虾皮、蟹壳。虾皮、蟹壳与用来做纺织面料材料的棉花相比,在纤维等特性上相差十万八千里,但就是这样不可能的事实,科研人员利用甲壳素经化学处理和拉纤工艺制备,制出了可纺性高、抗菌性强、隔热性能好等特点的“高性能壳聚糖纤维材料”。科研人员之所以可以变不能为可能,完全归功于生物功能材料专业。

科研人员有如此“特异功能”,与天生无关,而在于他们都接受过生物功能材料方面的专业学习。他们必学的主要课程有:生物化学、分子生物学、生物医学工程、高分子化学、高分子物理、生物医学材料学、生物材料制备与加工、生物材料综合实验等专业基础及专业课程。要学好这些专业知识,没有勤奋刻苦的精神,以及科学的学习方法是学不好的,因为这些课程比较深奥难懂,同学们除了在课堂上认真听讲,认真做好笔记,在课后消化以外,还必须给自己“加餐”,以接触更多的相关知识。

因为生物功能材料是涉及面很广的专业,因此一般的学校都会加大选修课的比例,主要开设的课程有:生物医用高分子改性、组织工程学、控制释放理论与应用、生物可降解高分子、环境材料基础等。

学习了主要课程和选修课程之后,同学们可能还会关心,学习了这么多知识,究竟能把自己塑造成一个什么样的人才?从开设的主要课程来看,生物功能材料的目标很明确,就是培养能在生物材料的制备、改性、加工成型及应用等领域从事基础研究、应用研究和技术开发等的综合型高级技术人才。该专业就业面宽,同学们毕业后可在研究院所、设计院、大专院校和企事业单位工作。

篇7

关键词:高分子材料; 专业英语; 教学改革

中图分类号:G642 文献标识码:A 文章编号:1006-3315(2013)11-153-002

高分子材料相对于传统材料如玻璃、陶瓷、金属等而言是后起的材料,但其发展的速度及应用的广泛性却大大超越了这些传统材料,已成为工业、农业、国防和科技等领域的必不可少的材料。高分子材料除了作为通用材料使用外,同时向着功能化、智能化和复合化发展,这些都要求高分子材料专业的学生及时了解国内外研究进展和发展趋势,具备阅读英语专业资料的能力。

高分子材料专业英语作为高分子材料专业开设的一门专业基础课,是大学英语教学的一个重要组成部分。学生毕业后无论在企业、科研机构或高校进一步学习或工作,只要从事科技开发,需要大量查阅英文科技信息资料,这些信息多存在于当前发表的专利、期刊等专业文献中。因此,培养高分子材料学生的专业英语技能是科学研究和实际工作的迫切需要。针对目前高分子材料专业英语的实际教学状况,本文从高分子材料专业英语的特点着手,对于词汇教学、课堂教学内容,教学方法,考核方式等方面进行了研究和教学实践。

一、专业英语词汇教学

专业词汇是用来专门描述某一学科、某一领域中的具体事物或者过程的词汇,一般其词义较单一,应用范围仅限于专业领域。专业英语词汇是学习专业英语的基础,因此要求学生必须掌握大量的专业英语词汇。经过大学英语的学习,学生积累了丰富的普通词汇,对于浩繁复杂的专业词汇还知之甚少。这些专业词汇看似难识别和难记忆,但实际上大多数专业词汇的构成是有规律的,不少是由一些含有具体意义部件,即词根、前缀、后缀等所构成的组合体。如高分子材料专业中常见的表示元素的词缀有hydro-(氢),-oxy(氧),thio-(硫),chloro-(氯),fluoro-(氟);bromo-(溴)等;表示数量的词缀有poly-(聚,多),mono-(单);di-(二),tri-(三),tetra-(四),penta-(五)等;表示化学基团的词缀有methyl-(甲基),ethyl-(乙基),propyl-(丙基),butyl-(丁基),vinyl-(乙烯基),phenyl-(苯基)等;烷烃多以-ane结尾,烯烃多以-ene结尾,醇类多以-ol结尾等;表示属性的词缀有thermo-(热),electro-(电),cyclo-(环),opto-(光)等。以polytetrafluoroethylene(PTFE,聚四氟乙烯)为例分析,该词汇是由poly-,tetra-,fluoro-,ethyl-,-ene五个词缀构成,取前四个词缀的首字母就构成PTFE,记忆起来就简便多了。课堂上讲授这些规律对于学生专业词汇的掌握就会收到事半功倍的效果,同时也激发了学生学习的兴趣。

二、以教材内容为基础,适当补充教学内容

目前高分子材料专业英语的教材有不少,覆盖了高分子化学、高分子物理和高分子材料加工等课程内容。但这些内容大多摘选自国外早期的原版专业书籍,不少内容陈旧,体裁单一,一方面不能反映高分子材料专业发展现状,同时让学生感到应用性不强,缺乏学习兴趣。针对以上教材内容的缺陷,笔者在有选择的讲述教材内容的同时,精心选择一些著名国际高分子专业期刊,如《Macromlecules》、《Polymer》、《Macromolecular Rapid Communications》等期刊的部分相关内容作为教材的补充,同时鼓励学生上网搜索一些相关资料,如美国化学会下的Chemical & Engineering News下有关高分子材料方面的报道,这些内容反映当今高分子材料发展的前沿,拓宽了学生的知识面。同时考虑到学生毕业之后在工作中或进一步深造中会接触到专利、说明书、技术标准、市场报告等多种体裁的专业文献,在课堂教学中适当增加这部分实用性的内容,起到学以致用的效果。

三、课堂理论教学方法的革新

专业英语教学内容一般为专业知识的论述,具有很强的逻辑性和学术性。为提高学生的专业英语阅读、翻译、初步写作的能力,笔者采取的方法如下。

1.师生互动是专业英语教学的重要手段

传统专业英语的教学模式是先讲解词汇,再阅读和翻译课文,这样的课堂单调且冗长,学生学习兴趣不高。考虑到语言教学的特殊性,为达到好的教学效果,需要学生在课堂中的积极参与,尝试改变以往教师讲学生听的简单教学模式,采用多种形式与学生互动交流。通过提前布置作业,学生做好预习工作,每次带着问题上课,在课堂上再随机指定学生朗读并讲解翻译,其他同学进行补充或修正,最后教师结合专业内容进行点评,并讲解相关的重要知识点和专业词汇。这样,充分调动每个学生的学习积极性,使之从被动学习变成主动学习,加深了学生对教学内容的理解和认识。

2.适当进行多媒体教学,丰富课堂教学内容

现在多媒体及网络等教学手段已广泛引入到课堂教学中,这些教学手段使课堂教学更加直观生动,增大了课堂的信息量,提高课堂效率,激发了学习兴趣。为此,在每次课文内容讲解结束后,笔者播放一些相关内容的科普性英文短片,比如介绍高分子材料合成、成型、应用等方面。由于刚学完相关内容,所以学生表现出浓厚的兴趣,通过看、听、讲述,留下了直观的知识,同时也锻炼了学生的听说能力。把一些信息量大、实用性强的专利、论文、技术标准等专业资料制作成多媒体课件进行课堂讲解,在有限的课堂时间内给学生传递了较多的信息内容,提高了课堂效率。

3.教学效果的检验

考核方式是教学中的重要环节,是检验教学效果和巩固学生所需知识的重要手段。考核主要涉及两个层次,平时考核与期末考试。平时主要考核学生以英语为工具进行专业信息交流的能力,期末考试则通过试卷形式检验学生对专业词汇的掌握情况,以及快速阅读科技论文并从中获取信息的能力。在完成每一阶段的教学环节后,教师要不断总结,了解学生对所授知识的掌握程度,确定考核指标,根据考核结果来修正下一阶段的目标,设计下一阶段的教学内容。平时的阶段性考核可以有多种方式,如根据教学内容,学生抽签选择一个题目用英语讲述,考察听说能力。或针对知识点,把常见的错误总结出来,引导学生纠错,考察语法知识的掌握情况。在课堂教学将结束的时候,我们对学生进行分组合作完成一次科研课题的汇报,学生自行分工,查找资料、设计制作多媒体课件、上台汇报讲演。在这个过程中,学生不但提高了自己的专业英语水平,还培养了团队合作的能力。

四、结束语

综上所述,对于高分子材料专业的学生而言,高分子材料专业英语是继大学英语后非常重要的英语教学课程,教学应培养学生以英语为工具解决专业学习中的实际问题的能力,为学生今后毕业设计、实际工作或进一步深造学习奠定良好的基础。为此,从教学内容、教学方法及考核方式及内容等方面改革高分子材料专业英语的教学是很有必要的。

参考文献:

[1]曹同玉,冯连芳,张菊华.高分子材料与工程专业英语[M]北京:化学工业出版社,2011

篇8

关键词:磁性高分子聚合物;吸附;重金属

1 磁性高分子聚合物l展现状

1.1 磁性高分子聚合物的合成方法

复合型磁性高分子材料主要是指在塑料或橡胶中添加磁粉和其他助剂,均匀混合后加工而成的一种复合型材料。复合型磁性高分子材料根据磁性填料的不同可以分为:铁氧体类、稀土类和磁性高分子聚合物晶磁粒类。根据不同方向上的磁性能的差异,又可以分为各向同性和各向异性磁性高分子材料。能够作为功能材料应用的主要有磁性橡胶、磁性塑料、磁性高分子微球、磁性聚合物薄膜等。复合型磁性高分子材料中的磁性无机物主要是铁氧体类磁粉和稀土类磁粉。稀土永磁材料是近年来备受关注的磁性材料,其粘结磁体的磁性可超过烧结铁氧体及其他金属合金,从第一代的SmCo系到第二代的NdFeB系,发展非常迅速。目前我国的NdFeB产量居世界前列,质量逐步提高,并且已有一些自己的专利技术。20世纪90年代以后,又出现了新型稀土磁性材料,如稀土金属间化合物,稀土永磁材料及磁性高分子聚合物及纳米晶复合交换耦合永磁材料等。

稀土磁粉出现后,树脂粘结磁体飞速发展。作粘结剂的高分子主要是橡胶、热固性树脂和热塑性树脂。橡胶类粘结剂包括天然橡胶和合成橡胶,主要用于柔性复合磁体的制造,但与塑料相比,一般成型加工困难。热固性粘结剂一般用环氧树脂、酚醛树脂。热塑性粘结剂主要为聚酞胺、聚丙烯、聚乙烯等,聚酞胺P(A)类最为常见,综合考虑机械加工性、耐热性、吸湿性,目前最常用的PA基体是Nylon6、Nylon66等。除了上述这些聚合物基体外,刘颖等还用结构型的磁性高分子-二茂金属高分子铁磁体(OPM)粉作粘结剂与快淬NdFeB磁粉复合制成磁性高分子粘结NdFeB磁性材料,其磁性能比环氧树脂粘结NdFeB的磁性能高。磁性高分子微球所采用的高分子材料主要是蛋白质、生物多糖、脂类等生物高分子和人工合成的兼有各式各样功能基团的合成高分子。将合成高分子作为微球壳层的研究报导较多,同时,考虑到生物高分子的优良特性,近年来对生物磁性高分子微球的研究也正成为新型生物材料领域的研究热点。可以用于制备磁性聚合物膜的聚合物基体较多,原则上能用于制备高分子膜的聚合物都可以,如纤维素、氟碳塑料、聚醋、聚酞胺等。作者曾用聚偏氟乙烯和醋酸纤维素作基体膜,在其中分散磁性氧化铁粒子用于气体分离。聚醋磁性薄膜多用来制成磁带。目前国内外研究较多的是以核径迹蚀刻膜为基板的磁性高分子聚合物磁性材料,它实际上是采用模板法,以聚碳酸酷核径迹蚀刻膜为基体,在其中电沉积磁性粒子,利用其规整膜孔来控制得到的有序磁性高分子聚合物磁性材料。

1.2 磁性高分子聚合物的功能

复合型高分子磁性材料分为树脂基铁氧体类高分子共混磁性材料和树脂基稀土填充类高分子共混磁性材料两类,简称为铁氧体类高分子磁性材料和稀土类高分子磁性材料,目前以铁氧体类高分子磁性材料为主。以高分子化学和无机磁学为基础发展起来的磁性高分子材料,是高分子功能材料研究的热点。复合型磁性高分子材料,由于其具有高磁性、易加工和成本低等优点,使它广泛应用于微型电机、办公用品、家电用品和自动控制等领域,但如何提高磁性微粒在高分子基体材料中的分散度是提高其磁性能的关键。结构型磁性高分子材料,由于其具有轻质、低磁损、常温稳定、易加工及抗辐照等优点,且其介电常数、介电损耗、磁导率和磁损耗基本不随频率和温度变化,其适合制造轻、小、薄的高频、微波电子器件,广泛应用于军工、通讯、航天等高技术领域,改进合成方法以提高它的磁性能是以后研究的重点。磁性高分子微球作为一种新型的有机一单倍线无机复合功能材料,由于其兼具高分子的众多特性和磁响应性,它被用做酶、细胞、药物等的载体广泛地应用到了生物医学、细胞学和生物工程等领域。对于磁性高分子微球,如何制得高磁响应性、高比表面和单分散性好的微球,以及高分子结构的精细化和功能化是以后研究的热点。随着新技术的广泛应用,高分子磁性材料必将会有更广泛的应用和发展前景。

2 传统重金属的处理

2.1 传统处理方法

2.1.1 化学法

臭氧接触池的臭氧投加采用布气帽投加方式,均设有尾气破坏装置,避免臭氧泄漏污染大气。纯水具有接近7的pH(既不是碱性的也不是酸性的)。海水的pH值范围为7.5至8.4(中等碱性)。如果水是酸性的(低于7),可以加入石灰、苏打灰或氢氧化钠以在水净化过程中提高pH。石灰加入增加了钙离子浓度,从而提高了水的硬度。对于高度酸性的水,强制通风脱气器可以通过从水中去除溶解的二氧化碳,这是提高pH的有效方式。使水成为碱性有助于凝结和絮凝过程有效地工作,并且还有助于最小化铅从管道和管道配件中的铅焊料中溶解的风险。足够的碱度还降低水对铁管的腐蚀性。在某些情况下,可将酸加入碱性水中以降低pH。碱性水(高于pH7.0)不一定意味着来自管道系统的铅或铜不会溶解到水中。水沉淀碳酸钙以保护金属表面并降低有毒金属溶解在水中的可能性。所有高级氧化工艺(AOP)的特征在于具有共同的化学特征,在驱动氧化过程中利用HO自由基的高反应性的能力,其适合于实现完全减弱和通过甚至更少反应性污染物的转化。处理的目的是去除水中不需要的成分,并使其安全饮用或适合于工业或医疗应用中的特定目的。广泛的技术可用于去除污染物,如固体、微生物和一些溶解的无机和有机材料或环境持久的药物污染物。方法的选择将取决于被处理的水的质量,处理过程的成本和处理水的预期质量标准。

2.1.2 物理法

重金属处理系统可以包括砂或砂粒通道或室,调节进入的污水的速度以允许沙子、砂砾、石头和碎玻璃的沉降。这些颗粒被去除,因为它们可能损坏泵和其他设备。对于小型下水道系统,可能不需要砂粒室,但是在较大的工厂需要除去砂粒。砂粒室有3种类型:卧式砂粒室,充气砂粒室和涡流砂粒室,该过程称为沉降。流动均衡澄清剂和机械化二级处理在均匀流动条件下更有效。均衡池可用于临时存储日间或潮湿天气流量峰值。盆地提供在工厂维护期间临时保持进入的污水的地方,以及稀释和分配可能抑制生物二级处理的有毒或高强度废物的排放。对废水沉淀后的污泥进行离心脱水,形成泥饼委托专业的公司处理。水厂处理是从海水或者其他水源中中去除污染物的过程。它包括物理、化学和生物过程,以去除这些污染物并产生可以安全使用的水。水厂处理的副产品通常是称为污水污泥的半固体废物或浆料,其在适于处置或土地应用之前必须进行进一步处理。水厂处理也可以称为净水处理,其也可以应用于处理工业农业废水。

2.1.3 生物法

与单功能离子交换树脂不同,生物重金属处理法含有多种功能性位点,包括羧基,咪唑,巯基,氨基,磷酸酯,硫酸酯,硫醚,苯酚,羰基,酰胺和羟基部分。生物重金属处理法是更便宜,更有效的替代方法,用于从水溶液中除去金属元素,特别是重金属。广泛应用于重金属去除的生物重金属处理法,主要集中在细胞结构,生物吸附性能,预处理,修饰,再生/再利用,生物吸附建模(等温和动力学模型),新型生物重金属处理法的开发,旨在提高吸附能力的生物重金属处理法的预处理和改性。分子生物技术是解释分子水平机制的有力工具,并构建具有较高生物吸附能力和目标金属离子选择性的工程生物。尽管生物吸附应用面临着巨大的挑战,但金属去除的生物吸附过程的发展有两个趋势。一种趋势是使用混合技术去除污染物,特别是使用活细胞。另一个趋势是使用固定技术开发商业生物重金属处理法,并改善生物吸附过程,包括再生/再利用,使生物重金属处理法可以进行大力市场开发。

2.2 存在的不足

重金属的常规处理有着众多的不足,物理法通过吸附进行处理,大部分时候采用活性炭,但是近年来,活性炭有被滥用的嫌疑,因其表面积并没有所宣传的那样效果,同时活性炭价格较高,因此在重金属处理中并不十分合算。化学法采用大量化学物质进行沉淀与pH调整,但是这样会使得水质受到破坏,这样得到的水源可能无法有着更加合适的用途。

2.3 改进方向

使用磁性高分子聚合物净化池具有以下优点:增加净化池的可用功率,减少净化所需的时间。这些是通过用磁性高分子聚合物颗粒涂覆电极的表面来实现的,这样增加了电极的表面积,从而允许更多的电流在电极和净化池内部的化学物质之间流动。当净化池不使用时,磁性高分子聚合物材料可用作⒌缂与净化池中液体分开的涂层。在当前的净化池技术中,液体和固体相互作用,导致低电平放电,这降低了净化池的使用寿命。磁性高分子聚合物技术在净化池中的应用也存在着一些问题,磁性高分子聚合物颗粒具有低密度和高表面积。表面积越大,空气表面越容易发生氧化反应,这可能使净化池中的材料不稳定。由于磁性高分子聚合物颗粒的低密度,存在较高的颗粒间电阻,降低了材料的导电性。磁性高分子聚合物材料难以制造,增加成本。虽然磁性高分子聚合物材料可能大大提高净化池的能力,但它们可能成本高昂。

3 磁性高分子聚合物在重金属处理中的应用

3.1 作用机理

主要依靠顺磁性进行重金属吸附,顺磁是一种磁性的形式,其中某些材料被外部施加的磁场吸引,并且在所施加的磁场的方向上形成内部感应的磁场。与此相反,抗磁材料被磁场排斥,并在与所施加的磁场相反的方向上形成感应磁场。顺磁材料包括大多数化学元素和一些化合物,它们具有大于或等于1的相对导磁率(即非负磁化率),因此被吸引到磁场。施加场诱发的磁矩在场强中呈线性,相当弱。通常需要敏感的分析天平来检测效应,并且常规用SQUID磁强计进行顺磁材料的现代测量。顺磁材料对磁场具有较小的敏感性。这些材料被磁场略微吸引,并且当外部场被去除时材料不保持磁性。顺磁特性是由于存在一些不成对的电子,以及由外部磁场引起的电子路径的重新排列。顺磁材料包括镁,钼,锂和钽。与铁磁体不同,在没有外部施加的磁场的情况下,辅助磁铁不会保留任何磁化,因为热运动使自旋取向随机化。一些顺磁性材料即使在绝对零度下仍保持旋转紊乱,这意味着它们在基态下是顺磁性的,即在没有热运动的情况下。因此,当施加的场被去除时,总磁化强度降至零。即使在场的存在下,只有很小的感应磁化,因为只有一小部分的自旋将被场取向。这个分数与场强成正比,这解释了线性相关性。铁磁材料的吸引力是非线性的,而且更加强烈。通过细乳液聚合制备的磁性聚合物磁性高分子聚合物球的表面改性和定量表征的新颖有效的方案。由聚合物涂覆的氧化铁磁性高分子聚合物颗粒组成的复合磁性高分子聚合物球通过甲基丙烯酸甲酯和二乙烯基苯在磁性流体存在下的细乳液聚合制备。使用磁性聚合物与聚(乙二醇)(PEG)的表面改性反应获得亲水羟基官能化的磁性磁性高分子聚合物球。然后将亲和染料Cibacron blue F3G-A(CB)共价偶联以制备磁性无孔亲和吸附剂。通过透射电子显微镜和振动样品磁强计检查所获得的聚合物磁性高分子聚合物球的形态和磁性。基于IC-O-C/IC=O的强度比和PEG的含量之间的线性关系,通过使用扩散反射傅立叶变换红外光谱定量测量表面改性的含量。X射线光电子能谱(XPS)用于检测磁性磁性高分子聚合物球的表面同时比较与CB配体偶联的染料涂覆的和未涂覆的磁性磁性高分子聚合物球的XPS光谱,发现效果较好。

3.2 效果分析

以水厂净化为例,通过水厂的净水、输水管、取水泵三部分入手。对于净水厂的产能评估,应该着重于预臭氧的接触区域的进水量评估。因其采用石灰投入来改变酸碱性,因此对于水池中的水量进行预估是极为重要的,通过石灰投放量投入的调研可以正确预估净水部分的产能。在输水管道的输送过程中,可以对其流量进行监测与分析,通过进出水的流量与出水的沉淀物数值、pH值、微生物量来确定净水能力的实际水平。在取水泵的环节,通过对原水浑浊度、pH值与电导率的测定,对其洁水能力作出预估与在线的检测。在深度处理环节,对高压放电方式进行调研,对臭氧接触池的运行速率进行分析。在中央监控系统,可以直观地看到目前正在进行的各个环节的处理过程,进出水量、水的各种理化数值,系统还可以对其进行预估,预测未来可能出现的水量变化并加以提前控制。在中控室可以更好地计算水厂的实际产能,并且与各个环节进行比较,推断数据的真实性与有效性,对水厂的净水产能进行精确的复核。完善的中央监控系统:可以对现场设备、供配电系统、视频监控、管网压力等方面进行全面监控,可以及时发现管网参数的异动,借助自动化的控制来进行反馈与解决,从而最小化故障的波及范围,保证水质的要求。采取稳定高效的通信管理,使得工作人员可以在较短的时间内发现故障并且上报与解决。集成化的中央自动控制管理也是现代工厂的重要方向。

4 发展前景

通过采用磁性高分子聚合物,工作人员可以加强净水环节中的重金属处理能力,可以利用高新的技术进行产能的提升与设备的改进。净水效率的提升是一条光明而曲折的路,在这条路上会出现很多难题与挑战,这个任务长期而又艰巨,需要结合实际生产经验,不断地进行总结归纳。为实现自身的长远发展而进行大胆革新,利用创新思维进行现代化建设,从而大踏步地走向科学高效的重金属处理目标。

参考文献

[1]施冬梅,邓辉,杜仕国,等.雷达隐身材料技术的发展[J].兵器材料科学与工程,2002(01).

[2]陶长元,吴玲,杜军,等.磁性高分子材料的研究及应用进展[J].材料导报,2003(04).

[3]丁明,孙虹.Fe_3O_4/壳聚糖核壳磁性微球的制备及特性[J].磁性材料及器件,2001(06).

[4]杨鹏飞,孟凡君,鲁成学,等.磁性聚合物研究与应用现状[J].磁性材料及器件,2004(04).

[5]秦润华,刘宏英,姜炜.磁性高分子微球在生物、医药领域的应用[J].中国粉体技术,2004(04).

[6]谢钢,张秋禹,罗正平,等.单分散磁性P(St/BA/MAA)微球的制备[J].高分子学报,2002(03).

篇9

关键词:高分子化学;新工科;教学改革

“高分子化学”是研究高分子化合物合成和反应的一门科学,是化工和材料类专业学生在具备了必要的有机化学、物理化学等基础知识之后,必修的专业主干课。该课程为高分子材料的制备和功能化提供重要的专业基础知识,是学生将来从事高分子材料研发和生产必备的理论基础,在专业课程体系中起着关键性作用。然而,由于该课程知识点繁琐,涉及概念、原理抽象,学生普遍反映难以理解,学习效果不佳,而且,在新工科背景下,传统的理工科已不足以应对社会发展,需要重构一些核心知识,重新整合课程体系,以实现更新的教育理念、更好的教学模式、更高的教育质量,满足大学毕业生创新和创业的需求,使毕业生能支撑新兴产业,甚至创造产业新领域。按照新工科的要求,本文根据“高分子化学”等工科专业的特点,结合以往教学授课经验,在教学内容、教学模式、实践性教学方法等方面进行了一系列的探索,以期提高该课程的教学质量,培养出满足新工科建设要求的综合型高分子材料类专业人才。

1“高分子化学”课程的内容和特点

“高分子化学”主要是学习如何以小分子原料合成高分子化合物的原理和方法,通过学习缩聚与逐步聚合、自由基聚合、自由基共聚合、离子聚合、配位聚合、开环聚合和聚合物化学反应等内容[1],使学生掌握高分子合成的原理和方法,明确如何寻找合适的单体和引发剂及合适的反应条件,以合成预定结构的聚合物。“高分子化学”课程涉及基本概念繁多,学生记忆有困难[2]。以第一章内容为例,高分子的基本组成就涉及到重复单元(链节)、结构单元和单体单元;谈到高分子的分子量,聚合物往往是同系聚合物的混合物,因此具有分散性,测得的分子量为平均分子量,又分为数均分子量、重均分子量、Z均分子量、粘均分子量,分别对应不同的测试方法;聚合物命名也有多种方法,仅习惯命名法就有中文和英文俗名,诸如PE(聚乙烯)、PP(聚丙烯)、ABS(丙烯腈、丁二烯和苯乙烯三元共聚物)等需要识记。另外,“高分子化学”课程中有些原理抽象,难以理解。诸如自由基聚合反应和离子聚合反应以及配位聚合反应和开环聚合反应的反应机理,单体结构对反应类型的选择和判定,聚合反应过程中影响聚合物分子量的链转移因素等。高分子的立体异构也是一个抽象而不好掌握的难点,学生往往将构型和构象混淆。构型是分子中由化学键所固定的原子在空间的几何排列,这种排列是稳定的,要改变构型需经过化学键的断裂和重组;构象是由于单键内旋转而产生的分子在空间的不同形态,由于热运动,分子的构象是可以改变的,因此高分子链的构象是统计性的。

2“高分子化学”课程教学改革的几点探索

2.1抓住经、纬线,有效梳理知识结构

尽管“高分子化学”课程所涉及知识点浩繁,貌似杂乱无章难以梳理,学生觉得难学,老师觉得难教,其实不然。经过细心总结,你会发现这门课程各章节知识点之间有着很强的规律性。正如“高分子化学”教材作者潘祖仁老先生在书序中指出,“以聚合反应和聚合物化学反应作主经线,以聚合物品种作副纬线,相互交织深化”。高分子合成的聚合反应按照聚合机理可以分为由活性中心引发单体聚合的连锁聚合反应,和无活性中心,单体通过官能团间相互反应而发生的逐步聚合反应。大部分缩聚反应属于逐步聚合机理,对应于教材中第二章内容:缩聚和逐步聚合,介绍缩聚反应,缩聚反应的机理,缩聚动力学,缩聚物聚合度及其分布,这是清晰的经线(纵向),接下来聚酯、聚碳酸酯、聚酰胺等典型缩聚物的介绍就是纬线(横向),将抽象的机理、动力学等知识通过具体例子进行阐述说明。再来看由活性中心引发的连锁聚合反应,当活性中心是自由基时,对应第三章内容:自由基聚合,介绍自由基聚合反应特点和自由基产生体系,自由基聚合机理,聚合动力学,聚合物的聚合度及其分布,讲解说明过程中引用乙烯、氯乙烯、苯乙烯等单体聚合的典型例子。接下来讨论了聚合单体为两种不同结构单体时的聚合反应规律,对应第四章内容:自由基共聚合。自由基聚合反应的具体实施工艺,对应第五章内容:聚合方法,分别为本体聚合、溶液聚合、悬浮聚合和乳液聚合。当活性中心为离子时,对应的是第六章内容:离子聚合。活性中心为阴离子,对应的阴离子聚合,活性中心为阳离子时,对应的为阳离子聚合,具体授课内容为反应体系、聚合机理和聚合反应动力学。第七章的配位聚合是阴离子聚合性质,第八章的开环聚合反应属于离子聚合性质,均遵循阴、阳离子聚合反应原理。前八章介绍了高分子的合成反应特点(高分子生成),第九章介绍高分子之间所能发生的反应及其衍生出的功能高分子,为另一门课程“功能高分子”奠定了基础。

2.2讲述科学故事,激发学习兴趣

学生在大量专业知识的学习过程中常常会觉得枯燥乏味,我们可以讲讲自然规律、科学原理发现背后的科学故事,从而激发学生的学习兴趣和对高分子科学的热爱。比如,绪论部分关于高分子科学的形成和发展就蕴藏着一段科学故事。什么是高分子呢?追溯高分子的发展历史,人们对高分子的认识和发展经历了一段曲折的过程。1861年,英国化学家格雷阿姆认为高分子是由小的结晶分子形成,提出了高分子的胶体理论。在一定程度上解释了某些高分子的特性,得到许多化学家的认可。直到1922年,德国化学家施陶丁格在研究天然橡胶加氢过程中得出高分子是由长链大分子构成的观点。这一观点一经提出,就遭到胶体论者的强烈反对和讥讽。但施陶丁格仍然坚持开展相关课题的深入研究,直到1926年瑞典化学家斯维德贝格测量出蛋白质的分子量,从而证明了施陶丁格大分子理论的正确性。通过讲述科学故事,不仅激发了学生对高分子学科的兴趣和热爱,还培养了学生敢于质疑权威、维护真理的求是科学精神。在高分子学科,这样的科学巨匠不胜枚举,美国化学家Flory也是其中之一。他通过反复试验发现聚合物增长链的活性与它的末端结构有关,而与高分子链的长度无关,并采用统计学方法推导出高分子分子量的数学表达式,称为“弗洛里分布”。专业教师在课堂上讲述这些科学故事的同时,要引导学生在国家新工科发展理念下,追求精益求精的“工匠精神”。

2.3研讨性教学,变被动学为主动学

传统的教学模式是教师讲,学生听,学生一开始还能精神饱满,渐感枯燥后可能会跟不上教师思路,于是思想和精神也开小差去了,导致课堂教学效果差。为了更好地调动学生学习的积极性,变被动学习为主动学习,我们教学团队在传统教学模式中融入研讨式教学方法[3]。每次课上根据当次授课内容为学生布置课下讨论问题,于下次课上进行研讨,可采取主动发言或随机抽查的方式来进行,以便学生对授课内容有更好的理解。另外还可根据授课内容安排一到二次学生的报告机会,鼓励并指导学生课下查阅文献,培养学生主动获取知识的自学能力。比如,在讲授第五章聚合方法时,伴随乳液聚合技术的发展,涌现出种子乳液聚合、核壳乳液聚合、微乳液聚合等一系列新的乳液聚合技术。教师讲授了经典乳液聚合的基本概念、机理和动力学,可以让学生根据聚合速率、微结构、分子量及其分布等控制目标,结合乳胶粒度和粒度分布、颗粒结构和形貌、表面积等影响因素,讲述对新的乳液聚合方法的认识并列举实例。有效的师生互动有助于提高学生在“高分子化学”学习过程中对知识的理解与掌握,形成正确的“高分子化学”学习方法和思维模式[7]。教师在研讨式互动过程中完成了“教”的任务,同时也和学生一起延伸“学”的活动。讨论过程方便教师及时准确地发现学生在学习上存在的问题,不断地对教学内容进行必要恰当的更新。传统的课堂线下教学教师和学生可以问答互动,讨论研究。即使疫情期间的网络教学,教师与学生也可以通过网络教学平台如雨课堂中的弹幕互动、腾讯会议教学模式中的小窗口对话来进行高效高质的师生活动。

2.4结合实验、实践教学,培养学生科研实践能力

为使学生加深认识和理解高分子科学理论,有必要配套开设“高分子化学实验”课程,让学生自己动手进行高分子合成。在学习自由基聚合时,许多单体聚合至10%转化率后,都出现明显自动加速现象,即凝胶效应。以甲基丙烯酸甲酯(MMA)为例,进行本体聚合时,转化率低于10%,聚合体系从流动液体转变成粘滞状,转化率为10%~50%,体系从粘滞状转变为半固体,加速明显,直至80%转化率才减速终止。出现凝胶效应的原因,链自由基的终止反应包括链自由基的平移、链段重排和双基化学反应。随着反应进行,体系粘度增加,链段重排受阻,链终止速率常数kt下降;40%转化率时,kt降低上百倍而kp变化不大,导致聚合反应加速。甲基丙烯酸甲酯本体聚合体系的微观动力学变化可以体现宏观体系特征,从实验现象可以明显观察到自由基聚合的凝胶效应,因此强调学生的实验课程效果,有助于深入理解“高分子化学”课程的理论知识。另外,新工科背景下,需要培养创新型人才,可通过推行“本科生导师”制,为学生创造科研工作机会[4]。教师可根据自己的研究方向给学生提出研究导向,指导学生查阅文献资料,制定实验方案,并开展实验、测试以及数据分析和整理。这些过程不仅能激发学生的学习热情,还能培养学生独立思考和创新能力,为以后的科研活动打下坚实基础[5-6]。比如,高分子材料因为所具有的缓释、控释和靶向作用而广泛作为药物基因载体应用,不仅可以提高药物疗效,还能提高药物的安全性、合理性和精密性。其中,对药物起到保护和运输功能的载体就是通过两亲嵌段共聚物组装而形成的具有疏水性的核和亲水性的壳(“核-壳”)结构的胶束。嵌段共聚物聚乳酸聚丙烯酸是通过阴离子开环聚合和RAFT聚合相结合的方法合成的。学生在实验过程中反复熟练课堂学习的阴离子开环聚合原理知识,真正做到活学活用。而且,应用到的RAFT聚合是可控自由基聚合技术中的一种,让学生在实际操作中体会“引入自由基控制剂,实现快引发、慢增长、无链转移和无链终止的活性自由基聚合技术”,不仅使学生对所学知识领悟深刻,还能培养学生的开拓钻研精神。此外,教师还可以鼓励和指导学生参加挑战杯等创新创业大赛,提升学生的科研素养和团队合作精神,开阔视野,拓宽未来发展平台。用科研和科创活动促进学生学习专业知识,有利于学生将所学知识应用于实际,并且将理论和实践有机结合,有效避免了课堂灌输的枯燥乏味,寓教于研,更好地发挥科学育人的目的。

3结束语

为应对新一轮科技革命与产业革命,将培养具有竞争力的科技创新型人才作为新工科培养目标,本文在这种大背景下对“高分子化学”课程的教学改革进行了探索。提出以经、纬线编织知识网,建立知识体系内部框架;挖掘科学知识背后的故事,激发学生学习兴趣和培养科学精神;采用研讨性教学模式,变学生被动式学习为主动学习;紧密结合科学实验和科研实践,培养学生的实践创新能力。通过以上举措,在教学科研结合的氛围中实现师生互动,专业课堂才能成为培育科技型创新人才的重要途径。

参考文献

[1]潘祖仁.高分子化学[M].5版.北京:化学工业出版社,2014.

[2]王柏臣,李伟,高禹.面向工程教育专业认证的“高分子化学”课程教学改革探索[J].化工时刊,2021,35(1):42-44.

[3]李继航,张强.高分子化学教学中的互动式教学的应用探索[J].山东化工,2020,49(24):159-160.

[4]霍利军,倪健领.“强基计划”背景下高分子化学教学改革与探索[J].化学教育(中英文),2021,42(24):17-22.

[5]张源源.高校高分子化学实验教学改革探讨[J].山东化工,2018,47(6):147-148.

[6]杨金燕,赖俐超.基于应用型人才培养的高分子化学实验教学改革[J].高分子通报,2019(9):87-91.

[7]王建国.有机化学教学中应注重师生有效互动[J].大学化学,2022,37(3):172-176.

篇10

关键词:快速原型技术;复合材料;成形;应用

中图分类号TU5 文献标识码A 文章编号 1674-6708(2012)66-0146-02

随着复合材料制造市场发展的多元化,快速原型技术的产生对复合材料产品的竞争、加速新型产品的开发、制造技术的提高都有很大的推动作用。它综合了数控、检测、激光、机械、计算机、CAD等许多学科的先进技术,很快在复合材料成形方面得到了广泛的应用。现如今,RP技术已经是制造业新产品开发的一项关键技术。

1 快速原型技术的概述

RP技术是基于物体分层原理来进行产品原型的制作的一种方法,RP技术的基本原理是:根据CAD/CAM技术构造出的理想物体的三维模型,将其进行分层处理,然后分析各层截片的轮廓数据,利用CAD/CAM设计软件将数据原型系统的激光装置,有选择的利用激光对物体进行切割箔材、烧结粉末、固化树脂、热熔材料等操作,这样可以使介质行成一系列薄层,再进行层层迭加使其形成我们设计的三维实体,从而完成所设计的新产品三维实体模型。

2快速原型技术(RP技术)的工艺方法

2.1熔融沉积造型工艺

这是一种将各种热熔性的丝状材料(蜡、ABS和尼龙等)加热熔化成形方法,它技术设备简单,运行费用便宜,这种工艺适用场合比较灵活,没有毒气或化学物质的危险,工艺相对于其它成型方法,比较干净、操作比较简单、且不产生多余的垃圾。可以快速成型楼空模型,原材料以线的形式提供,相对于其它成型方法易于搬运和更快速更换。但是问题在于精度相对低,难以成型结果比较复杂的零部件。在垂直方向上强度较小,成形速度也较慢,不适合构建大型零部件。这种工艺方法适合于产品设计的概念建模以及产品的功能测试。其原理图如图1:

2.2三维打印成型工艺

其工艺原理图如图2:

如图所示,左侧是一个储料容器,是材料放置在快速成型设备中的起始位置,工作平台中间有一个平整的金属平台,上面有一层层的粉末材料,它由成型机的滚筒设备铺开,由成型机打印头喷出的粘结剂进行粘接,这种工艺的成形速度快,运行成本也较低,可以使用淀粉、石膏粉等常见的材料做原材料,且废弃物较少,任意结构和形状的零件都适用。

2.3立体印刷成型工艺

其工艺原理图如图3:

它是快速原型技术中技术应用最广泛、最成熟的一种方法。它在工作过程中首先在成型机工作台上铺一层液态树脂,CAD/CAM软件控制的激光束依照截面轮廓做横、纵向上的激光扫描,使轮廓内的树脂固化,然后把工作台下降一定的位置,在涂上一层树脂,再进行扫描,如此反复进行直到整个原型成形完毕。这种工艺可以成形任何形状的三维实体,仿真性很强,成形的精度及材料的利用率都很高。

3 RP技术在复合材料中的应用

3.1复合陶瓷材料的制备

RP技术首先借助支撑材料把陶瓷制品内的可动件和主体联成一体,再经过预烧工艺除去支撑材料,然后经过烧结工艺获得陶瓷制品。虽然陶瓷制品都需要经过高温烧制工艺,但其在制胚过程中可以在常温下进行。

3.2高分子基复合材料的制备

有机高分子材料具有熔点低、密度小、其自身在熔融状态具有一定的粘性,不需要外加粘结剂的特点,所以它是非常理想的快速原型技术的材料。但是有机分子高分子材料的机械的综合性能较低,就连高密度聚乙烯的抗压强度也只有20MPa~ 40MPa。所以,一般都要掺入增强材料来组成有较高机械强度的复合材料。例如:美国用粒度3μm~6μm的玻璃纤维增强的PVC,制备出了大量的特种模具和零件,它们的精度高,抗拉强度好,且其强度是钢材的3.5倍左右。

快速原型技术在制备高分子材料时,要注意尽管增强纤维在引出工作头前已经进行过浸胶处理,即在增强纤维的表面涂抹一层熔融有机高分子材料,这样可以使新原材料间的相互粘接问题得到解决。但是由于零件的形状具有多个凹槽、空洞、凸起等结构,这就使得工作头在越过这些结构时,有些长纤维在离开原来位置时呗自动剪断,而到达新的位置时又自动与工件粘牢的问题。

3.3金属基复合材料的制备

在室温或者较低的温度条件下,高分子材料可以使工作头引出的新料和固化的旧料黏结在一起,在常温的条件下,陶瓷材料本身虽然不会出现黏结的现象,但是经过塑化后的熟料和外加有机黏结剂可以让陶瓷材料黏结成胚,但是,这些工艺都不适合制备金属材料。

金属材料的新、旧料之间的黏合比其它复合材料的要困难和复杂。制备金属和金属基复合材料制品使用快速原型技术有快速凝固的特点。作为基体材料的金属在熔融状态时是以金属流的形式从工作头引出的,这点和快速凝固工艺中的Taglor抽丝方法较为相似。例如:用碳纤维作增强芯料制备复合材料,它既能够有优良的快速凝固金属的性能,又可以制的具有综合性能的纤维增金属基复合材料。所以,使用RP技术制备金属基复合材料是非常具有可行性的。

4结论

RP技术突破了传统机械零件加工制造的材料成形的工艺,它引入了自动控制学、机械工程学、计算机、材料学等多种学科的先进制造技术,并且它在下面两个方面还有非常突出的作用,制备高分子材料基复合材料各复合陶瓷制品方面;在解决金属材料新旧料之间的黏合问题上它使用的是局部跟踪加热技术和焊接技术,对这个问题也有很大的帮助,尤其是RP技术应用在复合材料成形方面,使复合材料的发展得到了很好的前景。

参考文献

[1]胥光申.用于高精度小尺寸零件制作的光同化快速成型技术的现状与发展[J].机械科学与技术,2004,23(10):1222-1224.

[2]唐一平,周宏志,王平,等.基于快速成型技木的电火花加I用石墨电极研磨技术[J].西安交通大学学报,2000,34(11):61-64.