机械电子工程与机械工程范文
时间:2023-12-18 17:58:33
导语:如何才能写好一篇机械电子工程与机械工程,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
摘要:新时期背景下,半导体技术取得了理想的发展成绩,而机械电子工程也随之进入到各领域当中。其中,机械电子工程被广泛应用在日常生活和生产当中,向着人工智能化的方向发展。随着相关技术的全面可持续发展,新型技术和机械电子工程的有机结合,一定程度上增强了智能化水平。基于此,文章将机械电子工程与人工智能作为研究重点,阐述了两者之间的关系,以期有所帮助。
关键词:机械电子工程;人工智能;关系
所谓的机械电子工程,集中了电子技术和机械工程,属于一种新型的工程技术,因而在机械工程应用中占据关键地位。在机械电子工程的作用下,将机械工程基本功能充分发挥出来,而且通过对电子技术的运用可以高质量地完成工作任务,所以具备了多元功能。长期以来,基于社会发展,对于与操作相关的功能都提出了更为智能化的要求,必须要实现人工智能化的变革。
1机械电子工程概述
机械电子工程将传统的机械工程和电子信息技术进行有机融合,使得电子、机械以及信息间的关系更为紧密,所以机械本身的精准度和操作可靠程度也更强大,在高新技术领域被广泛应用。现阶段,通过对计算机信息传输的合理运用,能够完美连接多样化的机械,以保证所有机械都能够将自身的功能发挥出来。而控制中枢则集中于主控系统当中,与生产多元化需求相吻合,产品性能也随之提高。通过对机械电子工程模块化的设计,能够简化其内部结果,不仅可以达到多元化生产的目标,还能够节省生产成本,所以未来发展空间较大。但是,机械电子工程产品通常都是由人工控制完成生产,即便可以达到性能和多元化生产的要求,但人工操作会直接影响实际的生产效率,使得资源和市场的需求难以保持一致。在这种情况下,机械电子工程发展遇到瓶颈,且生产灵活性以及高效性仍需不断增强。
2人工智能概述
以计算机技术为基础衍生的全新技术就是人工智能,其中包含了计算机操作系统和数据信息处理,同时实现了上述功能的具体化,可以有效地控制电子设备,并实现现代机械设备操作,对于人工操作的依赖性明显降低。其中,人工智能对计算机数据处理和信息传输功能进行了合理地运用,有效控制机械设备,所以,计算机对于人工智能来讲十分重要。在计算机技术发展的过程中,人工智能控制也更加准确与迅速。在人工智能理念被提出以后,相关研究人员开始深入研制这一技术,并且在智能机器当中有效地融入人自身的惯性思维以及流程,以保证机器可以对人的思维进行模拟,积极开展简单亦或是复杂活动。但是,由于人工智能和机械的契合度不高,始终无法实现完全人工智能。在实践过程中,人工智能在高新技术中的应用相对广泛,能够完成基本工作,所以在现实生产中的功能仍然有待完善与深入研究。现阶段,新人工智能的重点将放在和机械电子工程相互融合方面,而其发展的状态也同样对机械电子工程技术的智能化发展产生了积极的影响。
3机械电子工程和人工智能关系研究
通过以上对机械电子工程和人工智能的相关研究可以发现,两者都具有自身独特的优势,但是在实践应用过程中也同样存在缺陷与不足。在这种情况下,深入探讨两者间存在的关系能够为机械电子工程和人工智能的有效融合提供有力的保障。
(1)机械电子工程应用人工智能具有依赖性。对于机械电子工程而言,引进并应用人工智能需要将电子工程的计算机网络系统作为重要基础,所以,人工智能的应用条件也更高。在这种情况下,就必须要将高新技术作为核心,在网络命令和计算机信息传输的作用下转变人工化指令,对机械生产以及运作进行正确地指导。所以,如果机械电子工程网络系统的数据不正确亦或是分析有偏差,都会直接导致机械动作的错误,甚至还会致使以人工智能为基础的机械电子工程自动化操作系统完全瘫痪,而电子机械工程功能也难以得到发挥。近年来,在科学技术发展的过程中,工业生产领域对于系统要求逐渐提高,其中涉及到诸多类型的数据处理问题,因而人工智能必须要保证系统工作正常才能够将功能充分发挥出来,所以系统的依赖性相对较强。
(2)人工智能有效补充机械电子工程。对于传统机械电子工程来讲,采用的是模块化设计方式,因而在功能方面表现出多元性、固定性以及生产方式单一性等特点,也同样对机械工程多元延伸带来了不利的影响。在这种情况下,为了实现机械电子工程综合功能的发挥,必须要对人工智能模型推理系统进行合理地运用,辅助实现目标。现阶段,机械电子工程模型推理系统自身已经具备了相对较高的智能化水平,而且基本能够完成整套生产过程操作。需要注意的是,系统对人体神经网络进行了模拟,进而在计算机内部构建出智能神经网络系统,一定程度上提高了人工智能水平,而且对于人工操作的依赖性减少,达到了机械工程自动化运作的目标,将模块控制完整功能充分发挥出来,并且在工业生产中有效连接。
(3)人工智能强化了机械电子工程的稳定程度。不管是操作系统亦或是信息传输系统,机械电子工程的稳定性都相对薄弱,而且在设计初期,控制操作稳定且不发生改变,始终根据设计程序固定,对机械设备进行控制并完成操作。由此可见,系统本身较为死板且不具备灵活性,如果计算机操作系统数据传输不正确亦或是分析出现错误,就会将错误指令发送出来,导致机械动作不正确,严重影响了模块机械功能发挥的效果。但是,若在机械电子工程中融入人工智能,通过灵活处理手段的应用与人思维惯性的模型,可以及时处理计算机操作系统不正确之处,进一步提高数据准确程度,确保所发出的操作指令是正确的,进而补偿机械电子功能缺陷。在实践过程中,人工智能可以对机械电子工程数据输入、处理以及输出等多项工作进行合理地控制,并且保证数据处理的准确性与高效性,有效提升机械电子设备的稳定性。
(4)人工智能提高了机械电子系统的精准度。对于机械电子工程模块设计而言,对数据控制主要是以精确状态存在。但是,在系统功能实现的过程中,客观数据会发生改变,所以,必须要合理调整系统功能当中的数据,只有这样才能够确保系统稳定地运作,同时增强系统精度控制的准确性。如果机械电子工程面对这一需求,难以自动处理,那么人工神经模式对于系统精度的控制将产生积极的现实意义。
4结语
综上所述,机械电子工程的智能化特征是传统机械电子工程难以比拟的,因而也逐渐成为工业制造的重要发展方向。基于科技的全面发展,各学科也随之细化与深化,学科交叉现象更加频繁,同样实现了知识的延展,进一步推动了科技的多元化发展。而智能化机械电子工程能够进一步增强实际的生产效率,尽可能节省生产制造行业人力成本。由此可见,机械电子工程和人工智能之间存在紧密的联系,相辅相成,共同进步,而深入研究两者的关系也更具现实意义。
参考文献
[1]冯哲.关于机械电子工程与人工智能关系的探讨[J].现代交际,2013,(11):28-28.
篇2
关键词:机械电子工程;人工智能;信息技术;互联网;信息传输 文献标识码:A
中图分类号:TP391 文章编号:1009-2374(2015)34-0007-02 DOI:10.13535/ki.11-4406/n.2015.34.004
机械工程经过长期发展,逐步融合其他学科,其价值不断增加。综合比对机械电子工程和原有的机械工程可知,人工智能化是其最大的进步。在信息技术蓬勃发展的今天,人工智能技术日新月异,并被大范围应用在其他领域中,与此同时,机械电子工程也在广泛应用,且人们加大了对这两者内部关联上的研究力度。
1 机械电子工程概述
1.1 发展历程
从整体层面来说,机械电子工程主要包含以下三个发展时期:
1.1.1 萌芽时期。手工加工是该时期的主要操作手段,因人力资源的影响,生产力整体发展水平不高。为增强生产能力,慢慢向机械工业方面着手。
1.1.2 生产线发展时期。流水线是该时期的主要生产方式,此种方式具有一定的先进性,可显著提高生产力,以批量生产为主,并可节省较多的人力。在该时期也存在许多不足,例如某些生产线的要求较高,导致实际生产滞后于市场需求,灵活性不足。
1.1.3 产业化发展时期。在该时期,产品与市场需求处于一种平衡状态,可借助产业化发展有效满足生产需求,同时还出现了柔性制造系统,其中机械电子工程是该系统的主要组成部分。
1.2 特点
机械电子工程涵盖较广的范围,涉及较多的内容,具有综合性。它建立在原有的机械工程之上,并借助计算机来进行优化。机械电子工程隶属工程科学,其本质为跨学科专业,它建立在机械制造、电子工程等众多学科之上。将其与其他学科对比可知,它在设计环节应全面彰显科学性,同时确保系统配置满足设计标准。借助专业设计模板来优化机械电子设备,充分发挥模板的正面作用,进而确保设计的正常开展。从产品层面来说,它的产品结构相对简单,使用少量元件,在此种情形中应不断增强产品性能,确保产品质量良好,完善工程建设结构,既确保产品质量,又满足用户需求。
2 人工智能
2.1 内涵
人工智能也具有综合性,涉及多项内容,例如心理学、控制理论、计算机学科与哲学等。美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”它是新世纪中最具代表性的学科之一,它可模仿人类的智能,并能有效利用计算机,具有广阔的发展前景。
2.2 发展历程
人工智能拥有漫长的发展历程,在刚刚应用计算机这门技术的阶段,人工智能的应用较少,尚不能对社会生产活动和时代进步产生影响。在17世纪出现了首部计算器,它可进行机械计算,并引起了较大的轰动。随后各国科学家纷纷投入这一项技术的探究中,不断优化首部计算机的性能,最终研发出了首台计算机。自此之后,人工智能的发展正式开始。伴随着互联网技术的进步和普及程度的提高,人工智能出现了根本性的变化,不断优化。而计算机技术的研发与普及是人工智能发展的直接动力,并对信息数据传输产生深刻影响,其具体发展历程主要如下:
2.2.1 初期。人工智能最早出现在1956年。在该时期,翻译和验证是人工智能的主要发展内容,并将人工智能博弈作为基本研究任务。
2.2.2 停滞期。在这一时期,人工智能也取得了一定的发展成绩,具体体现在语言理解等层面。然而在具体的研究进程中,伴随着研究深度的增加,人们面临更大的困扰,人工智能无法有效模仿人类思维,在很长一段时间内,人们的研究均停留在简单映射层面,在逻辑思维方面停滞不前。
2.2.3 转折期。经过很长一段时间的发展,人工智能研究成果更加喜人,在顺利举办人工智能联合会后,它进入了新的发展时期,即知识基础发展时期,在这一时期,大部分知识工程均开始慢慢融入人工智能,使得知识工程迅速融入到人工智能中,并大大促进了人工智能的发展,拓展了人工智能的应用范围。
2.2.4 稳定发展时期。伴随着互联网技术的进步,尤其是普及程度的增加,促使人工智能也发生了改变,从原有的单个主体逐渐过渡到分布式主体,主要以分布式主体的研究为主,进入了稳定发展时期。经过长期发展和大量应用,网络普及对人工智能产生了重要影响。具体来说,网络的高度普及推动了信息社会,并加快了信息传输速度,拓展了信息传输范围,使得信息传输出现了根本性的改变。自人类步入信息时代以来,人工智能技术提升了信息处理的有效性,另外,在模型构建调控和故障诊断方面均发挥着深远影响。
3 二者的关系
在互联网日益普及的今天,互联网技术得到了人们的广泛应用,它已经成为传输信息资源的主要手段,显著增加了信息传输速率,拓展了信息传输范围,为生活及生产活动带来了便捷,而这一发展离不开人工智能技术。
3.1 人工智能初步应用机电系统
对于机械电子系统而言,在其实际应用过程中十分不稳定,其中在系统输入与输出中更加突出,在输入与输出这两者关系的描述环节存在较大的难度,以往的描述方法主要包含以下三种:其一,构建规则库;其二,论证数学方程;其三,学习并组建知识结构。原有的解析数学法虽然严谨、准确,但是仅仅能被应用在线性定常等简单系统中,不适用于相对繁琐的系统,即便应用在繁琐系统中,因不确定性等多种因素的制约,将会增加计算难度,有时甚至可能无法计算。在新时代下,社会生产以及日常生活对系统提出了更高的标准,系统更加复杂,常常需要在同一时间段处理多种信息。因人工智能的信息处理存在不确定和繁琐性的特点,与原有的解析数学手段相比更加先进,所以它将逐步取代解析数学。
3.2 人工智能在机电系统的具体改进
凭借数学方程构建模型,同时经由人工智能手段改进传统知识学习模式,且解析数学方式常常被应用在机械电子工程中。现代机械电子工程系统与原有系统相比更加繁琐,问题处理十分复杂,在实际处理过程中,要求配置多种系统,合理划分信息种类。对于机械电子工程而言,因人工智能技术的实际应用存在差异性,所以不能准确描述网络系统,且在构建系统资料库时,应进行严谨、合理的数学分析,在这一环节若出现问题将会阻碍网络系统构建工作的开展,不改进建设方式将会引发网络系统崩溃的现象,这将在很大程度上制约机械电子工程系统的可持续发展。为确保机电工程系统的有序开展,应积极改进工程方式,有效建设人工智能信息服务。另外,人工智能系统的应用具有不确定性。人工智能信息处理手段在分析研究机械电子工程时,一般借助解析数学措施实施功能性优化。对于机械电子工程而言,网络神经系统是人工系统的基本应用形式,可准确推理,神经系统近似成人脑结构,同时参照数字信号分析所搜集的信息资源,此种方式将会增加语言信号分析的准确性。然而,在系统完成的过程中,方式选择具有差异性,神经网络系统通常借助分布模式来模仿机械电子工程,这可有效采集、科学分析信息资源,切实保障系统内部的所有神经元均配有固定计算量,使机械电子工程顺利运转,减轻计算负担。
3.3 人工智能优化机电系统
神经网络和模糊推理系统是构建人工智能系统最主要的两种方式,它们映射着人工智能的系统性和实用性,其中神经网络系统主要负责模仿人脑构造,经由系统进行数字信号接收操作,分析并检验数字信号,获得参考数值;模糊推理系统负责模仿人脑功能,借助系统进行语言信号接收操作,分析数字信号。在人工智能系统中,这两种方法在其输入输出关系处理中具有一定的优势,神经网络系统主要借助分布式手段进行信息存储操作,在输入环节,位于神经网络系统中的所有神经元紧密相连,计算任务繁重,然而模糊推理系统主要借助规则方式进行信息存储操作,在输入环节,该系统数量关系衔接不稳定,计算任务较轻。在处理输入输出准确度处理环节,这两种方法各不相同,其中前者的准确度高且光滑,后者的准确度相对低且呈现阶梯状。虽然上述两种方式均可调控结构繁琐的机械电子系统,但是其繁琐程度若进一步增加,则模糊神经网络系统更加理想,它是上述这两种方法的有效结合,凭借逻辑推理规则可准确描述系统信息,借助神经网络系统巩固模型推理系统,通过各自优势来完善人工智能内系统,全面促进机电工程系统。随着网络系统的逐步优化,一定会出现模型推理系统。借助网络信息资源准确、系统描述人工智能,可加大机电与人工智能的关联,同时逻辑推理规则也将促进这两者的融合。人工智能将会进一步优化机电工程,科技进步将会增加两者的融合度,而这一融合是推动社会发展进程的主要动力。机电与人工智能的相互作用,将会有效弥补各自缺陷,实现共同发展,全面满足人们日益多样的系统需求。这两者关系的强化是技术发展的主要表现,并可大大促进机电工程。
4 结语
随着科学技术的进步,机械电子工程取得了一定的成绩,人工智能技术更加先进,而这两者间的结合在时代进步中发挥着指导作用,并为日常生活带来了新的便利。在现代行业发展进程中,自动化为发展主流。机械电子工程与人工智能紧密相连,这两者关系的增强将会推动社会的进一步发展。
参考文献
[1] 冯哲.关于机械电子工程与人工智能关系的探讨[J].现代交际,2013,(11).
[2] 赵宏博.机械电子工程与人工智能的关系探究[J].建筑・建材・装饰,2014,(2).
篇3
【关键词】 机械电子 人工智能技术 结合性研究
科学技术在国民经济和生活中占有着非常重要的地位,而对科学技术的学术性和探讨研究也逐渐的成为了国家的目前首要任务之一,拥有一个解决智能自动调节控制问题的机械电子系统非常的具有重要现实意义,国家对其的建设和研究采取了很大的努力,期望能够建设一个完善的智能自动调节控制机械电子系统。建设完善的机械电子智能控制系统,能够有效地通过控制人员的指挥处理危险故障,并且能够在特殊区域智能工程的操作,为生产业的发展提供了有力的支持,令国家以及机械电子生产企业的服务效率和生产质量进一步的优化。
1 机械电子工程与人工智能的关系
机械电子系统的内部构造及功能存在着一定的不稳定因素,这就使得机械电子系统在输出与输入关系的处理上有着相当的难度。虽然传统的机械电子工程技术在解析数学方面也同样具有着精密性,但是,这些老旧的方法仅仅只能适用于一些相对来说比较简单的系统[1]。然而,现代的生产应用所需求的系统是比较复杂和繁琐的,往往会要求一个系统能够同时处理多种不同的信息类型。人工智能系统在对信息进行处理时,还存在一定的复杂性和不确定因素,所以现在人工智能处理方式逐渐以知识为基础,正成为成为现代解析数学方式的替代手段。
人工智能构建系统所应用的办法中,主要包含的是模糊推理系统和神经网络系统。神经网络系统不仅能够达到对人脑结构的模拟人技术构成,还能够能够对数字信号作出分析并且给出参考数值。与神经网络系统不同的是,模糊推理系统则是通过对人脑的功能进行,进而达到对语言信号有效分析的目的。在输出输入的准确度上,神经网络系统的准确度相对来说比较高,并且且呈光滑曲面,而模糊推理系统的准确度就比较低,而且还呈阶梯状。模糊神经网络系统能够对两者功能的在一定程度上进行最大融合,这对信息的合理表现是非常有实际意义的,为其提供了一个比较合适的完全表达空间,令信息的有效表达得到了保证。而逻辑推理规则能够达到节点函数的增强效果,这样一来,就为神经网络系统提供了函数连结可能性,实现了两者最大化的发挥了两者的功能[2]。
2 人工智能技术在机械电子工程中的应用
通过上文的介绍,可以看出由于机械电子工程发展具有不稳定性,尽管通过推导数学方程或者采用建设规则库的方法有效的提高数学解析的精密性,但是由于方法较为老旧和传统,致使在数据输入和输出方面存在较大的困难程度,急切需要采用先进智能化的技术来实现机械电子工程的改革。模糊推理系统通过采用合理规范的方式对信息进行保存,具有非常明确的机械含义,神经网络系统采用分布式的方法对信息进行保存,确保神经部件与神经部件之间的紧密练习,有效的提高计算量以及计算速率。通过对这两种方式的综合采用,能够保障人工智能技术作用的有效发挥,实现人工智能技术和机械电子工程两者的共同进步。
总而言之,随着科学技术的飞速发展,每个学科间的融合和交叉点就会越来越多,这为人工智能技术和机械电子工程的发展带来了更为广阔的发展前景,所以要对二者的关系进行合理的处理,进而实现这一领域的不断进步[3]。
3 基于人工智能技术下的机械电子产品实例
本文列举了人工智能技术下的智能移动机器人的实例,对人工智能技术下的机械电子工程进行阐述:
智能控制指的就是是能够对信息进行处理、反馈以及执行控制决策的能力,是控制理论研究的另一个新的高峰,主要是取代那些传统的而且已经无法满足现实需要的控制系统,智能控制系统研究的对象具有高度非线性、复杂的任务以及不确定的数学模型等主要特点。在新时代因素的影响下,越来越多种形式的智能控制系统不断的被应用到各行各业之中,更是在目前对机器人的智能化控制研究中起了很大的作用,主要通过神经控制以及网络控制来实现机器人的自由移动等活动。
智能移动机器人的设计水平随着信息化时代的发展而不断优化,智能移动机器人的应用已经不单单局限于与单一的对象,而是需要做到多种不同方面的功能拓广,我国的智能移动机器人的研究一定要要保证跟上时代的脚步,不然就只有面对被其他国家追赶上的后果。只有使现有的智能移动机器人技术与功能满足新兴业务的发展需求,才能保障我国国民经济持续稳定的发展,并且使得我国在未来的国与国之间的竞争中具备相当的科技以及经济上的优势。
4 结语
在市场竞争白热化和经济全球化的日渐严峻国际形势下,创新能力逐渐成为了一个国家的的根本核心竞争力,而对于我国目前的情况来说,影响我国技术创新能力强弱的主要因素是我国在各项创新资源上的配置、利用和开发的水平较低。因此,建立一个更加完善的技术创新平台就显得非常具有实际意义。使其能将各种创新型资源进行整合,并且为各类创新主体提供更多更加优质的创新服务,而对人工智能技术下的机械电子技术的设计研究则正好满足了当下的这种需求。
参考文献:
[1]王孙安.机械电子工程系统设计[J].西安交通大学机械工程学院,2011(10):15-19.
篇4
目前机电一体化的进程不断加快,其发展趋势如下。
1)机电一体化在向智能化的方向发展,智能化就是在原本电脑控制的基础上更具备合理性和效率性,机电一体化的智能化发展就像最初的硬件手机与现在的智能手机的区别一样。总体说来就是智能化更人性化,更能解决操作中的突发状况或者说是提前就设定了应对解决突发状况的解决措施。
2)机电一体化更加环保,机电一体化进程使原本的柴油发电带动发电机的情况得到改善,现在的机电一体化是电脑操控,解决了其中一些污染环境的问题,响应环保的口号,机电一体化也朝着更环保的方向发展。
3)机械一体化朝着微机模式发展,顾名思义就是机械的规模与形式越来越小,这就要求机械的精密程度。这样的发展趋势有利于解决原始机械庞大的占地面积问题,可以使同一片场地发挥更大的效果。机械以替换的发展趋势是更加进步与人性化,它是朝着一个操作简单、绿色无害、精密程度高的趋势更好的发展。这就是机电一体化,它是机械与电子的有机结合,有着密不可分的有机组成部分,有着良好的发展趋势。在这两者的定义下,笔者希望日后机电的结合能够更加密切,其各个组成部分能日渐精密完善使得整个机电一化得到优化;机电一体化能够在属于它的发展趋势下日益发展完善,更好的满足机电一体化进程的需要。
2机械电子工程专业
在科技发展与时代进步的大背景下,机电一体化的进程日益加快,重要程度日益提升,人才需要也越来越大,接下来笔者将介绍机电一体化的人才来源——机械电子工程专业。上文中我们论述了什么是机电一体化与机电一体化的发展趋势,根据上文我们不难发现机电一体化已经在生产生活中日益重要,为了供应机电一体化所需要的人才,机械电子工程专业应运而生,上个世纪九十年代后期,一些高校开始设置了机械电子专业。机械电子工程专业的出现是为了响应现阶段和日后的电子控制机械的主流趋势,为了使自动化方面有更多可用人才。在机械电子工程专业设置上要注意很多的问题:第一要考虑新课程的课程设置方面,要在传统的机械上有所发展又要估计学生的负担,不能是学生在学习的过程中感到吃力或者是电子与机械兼顾的拖沓。第二就是机械电子专业是机械和电子的有机结合,电子与机械的侧重点问题,在教授的过程中要二者兼顾,因为传统机械是整个机械一体化的基础而电子的计入是一个良性发展,很多新生代的同学更加重视电子方面,这是不科学的做法。总之机械电子工程专业是一个时代要求的必要专业,要安排好课程,明确侧重点,最终达到满足机电一体化进程下人才的需要。
3机电一体化与机械电子专业
介绍过机电一体化与机械电子专业以后,接下来明确机电一体化与机械电子专业之间的关系。根据上文我们不难发现,机电一体化与机械电子专业有着非常密切的关系,可以说机械电子专业是机电一体化的前身,以为机械电子专业所培养的正是机电一体化专业的对口人才,也就是说机械电子专业为机电一体化提供了人才来源。机械电子专业所学习的内容就是机电一体化的具体内容。其中包括理论知识与具体操作,也就是什么是机电一体化、几点一体化需要我们做些什么、在操作中会遇见什么问题并且该怎样解决等。机械电子专业是为机电一体化培养人才的摇篮,在机械电子专业中学习的同学毕业后的前景就是在机电一体化应用的地方工作。而机电一体化在日常操作中所遇见的难以解决的问题和需注重问题就是机械电子专业研究的课题和研究方向。总之机电一体化与机械电子专业二者之间密不可分,互补互助,机电一体化的发展要求了机械电子专业的学科内容、机械电子专业为机电一体化提供了人才来源。
4结束语
篇5
数字化时代,存储独领
伴随着近年来数字化技术发展迅速,电影、电视的数字化已经变成不可逆转的趋势,广播电视数字化进程大大加快。根据国家广电总局公布的有线电视数字化时间表,2010年我国全面实现广播电视数字化,2015年将停止模拟广播电视的播出。跟随全面数字化风潮而来的,是内容制作环境走向数字化,这为相关设备供应商带来了市场契机。尤其是4K和3D效果的制作比例增加,内容制作环节将对数字化存储形成强劲需求,随之而来的存储容量和存储安全问题刻不容缓。
大容量存储
谈起存储,华创科技的“易盘卡”不得不谈。为适应用户的不同需求,华创科技前瞻性地开发了两种不同的媒体记录存储介质,分为易盘(E2-Disk)、易卡(E2-Card)。易盘采用硬盘垂直磁记录技术方式实现,提供较高性价比的优势;易卡以半导体记录存储技术方式实现,提供较高的性能和性价比优势。华创科技的“易盘卡”是DaTaCam全系列“摄录、编播、存储、显示、管理”等产品的核心存储介质。
面对存储大容量的需求,“易盘卡”最大容量高达500G,并且读出写入方法简单、可长期保存,轻便易携带、容易交换、交互等优势,可以更好地保存具有历史价值的音视频资料,增强节目制播的灵活性,为电视节目资料的保存、节目及时有效制播提供帮助。而且“易盘卡”的价格也比较亲民。
便捷存储
对于大多存储设备尺寸和型号不兼容的问题,松下公司已经为广播应用开发了尺寸与SD存储卡相同的MicroP2卡固态记录介质,为存储领域带来了革命性的变革,新型的MicroP2卡是世界上第一款符合UHS-II标准的专业存储卡,可以提供同等水平的数据容量以及高速度、卓越的可靠性和安全性。P2半导体卡,有着“即插即用”的特点,对存储卡中的数据内容可直接编辑,实现AV/IT更好的融合。
高速存储
一些业内专家认为,在内容的后期制作过程中,存储系统的处理速度会影响视频编辑时的效率以及渲染速度。因此,存储系统的处理速度,是目前数字化剪辑工作流程中必须解决的技术问题。2014年1月7日,Lexar世界最快的存储卡样品――Lexar Professional专业系列3333x CFast 2.0。
Lexar专业系列3333x CFast 2.0存储卡可提供的样品容量有:256GB、128GB、64GB和32GB,展示了拍摄高质量图像和1080像素全高清、3D和4K视频的新速度起点。为充分发挥下一代高清摄像机和高分辨率数码单反相机的功能而设计,该卡的读取传输速度高达3333x(500MB每秒),是任何CompactFlash存储卡的三倍。此外,全新Lexar专业系列3333x CFast 2.0存储卡支持针对专业品质视频拍摄的视频性能保证(VPG-65)规格,并随卡附赠最新版本的Image Rescue图像抢救软件。“全新Lexar专业系列3333x CFast 2.0 存储卡将使未来用户突破过去的速度障碍,并且提供能满足摄影师和摄像师的特殊需求的容量选择。”Lexar产品经理Adam Kaufman如此说道。
低成本存储
在存储的安全与稳定性之外,最为重要的可能就是存储成本了。Avid公司产品与服务高级副总裁Chris Gahagan说:“传媒机构现正面临着巨大的压力,他们需要在增强内容产出的情况下,进一步提升运营效率并控制成本。”为此,Avid公司顺势推出ISIS 7500在线共享存储系统,为大型设备提供更强大的运行能力,为加快生产能力所必须的实时工作流做出保障。
ISIS 7500提供128TB容量的全新ISIS存储板,而最优化性能的设备,可扩展性,更好的存储密度,所有的这些都能够在更易接受的价格内获取。更重要的是,全新的i8000存储板,有更低廉的拥有成本(TCO),能够带来2倍于原来版本的存储容量(最高达到3PB的原始存储)。与小型容量配置工具占用相同的实体空间使用与先前较小容量产品相同的硬件规格一致,完全不会增添耗电量,无需额外冷却,电缆或其他的操作花销。
云存储
近几年“云计算”、“云服务”响彻九州。根据Gartner的调查,约有19%的组织在生产计算中使用云服务,有约20%的组织在使用公有云存储服务。这意味着云计算市场,尤其是云存储市场有着相当大的规模。针对行业发展的变化,我们对存储在设备购买支出、提高使用效率、数据管理方面进行优化。通过重删,自动精简技术的控制磁盘成本。同时在减少支出的情况下,分级存储解决方案,以及横向扩展技术,使得存储的效率有很大提升。
存储即服务、备份、归档相应的数据密集型的应用成为户向云服务应用。而云环境下对于存储的要求,随着服务器平台虚拟化推动作用,无论是公共云还是私有云,开放的模式和融合的基础架构成为云计算下数据中心的发展。据小编所知,央视的第八演播室二楼,早已开始运用云存储进行数据分享,更快速无损的进行工作,工作效率大大提升。当然,在优化管理上,通过虚拟化技术实现在购买成本,提升效率等解决方案上互相交叉、互相结合的,进而实现存储虚拟化、服务虚拟化将互相促进、互相影响,虚拟化的安全性和稳定性还是应该进一步得到重视。
集成媒资,打造理性数字化时代
随着节目制作的全面化、丰富化,节目素材来源渠道越来越广泛,更多的资源收集与面临着传输安全不稳定和工作效率低下的窘境,这为电视节目制作带来了不小的麻烦。集成媒资系统使这些麻烦迎刃而解。
云媒资
在集成媒资方面,中科大洋可谓是首屈一指的专家。大洋的浩瀚D3 MAM媒体资产管理系统,通过云媒资的开发,将云计算从理论变为广电行业的应用实践,也为全台资源的深度整合提供了新的思路,采用:云媒资=云平台+浩瀚媒资+媒资运营的思维方式,并取得了显著效果。
大洋针对视音频应用,提出基于云技术的全媒体发展战略,将节目资源的制作、存储、管理、交换、等业务全面构建在云计算平台上。“云媒资”是该战略的重要组成部分。大洋“云媒资”是在浩瀚媒体资产管理系统(D3 MAM)成熟应用的基础上,结合先进的云计算技术而推出的视音频存储、管理、运营解决方案。大洋“云媒资”提供面向广电媒体内部应用的私有云媒资解决方案,同时可为广电集团各分支机构提供集团云媒资服务。
全媒体资产管理
随着高清标准的建立,高清制播概念的逐渐引入,在电视台的新闻、制作、播出网络化、数字化都已有显著成果的基础上,建立以收集高标清视音频资源兼顾高标清视音频资源整理、保存、开发与再利用等功能为主的高标清混合媒体资产管理系统成为提高资源使用效率、改善业务流程的核心。
篇6
关键词:协同创新;电子信息工程技术;模块化;课程体系
中图分类号:G712 文献标志码:A 文章编号:1674-9324(2016)46-0260-03
一、引言
目前,国内外对校企协同的人才培养已有了一定的研究,探索出了一些校企协同的新路子和新方法。在研究校企协同的文献中,绝大多侧重于研究校企协同的意义、校企协同的原则、校企协同的困境(问题)、校企协同的政策建议等等。这些极大地推动了校企协同的人才培养实践,但是对于更深层次的课程体系协同以及如何建立起一个可持续发展的校企协同的良性循环等,都缺乏更多的系统性探讨,对具体某个专业基于协同创新的课程体系研究与实践方面的探索尚不多见。
从课程体系改革的发展趋势来看,西方国家在职业教育教学质量和课程体系建构方面取得了显著成就。我国高职教育发展时间较短,在课程体系构建上一直处于在摸索中实践,在实践中完善的状态。在高职教育课程体系构建的过程中,国内和国外都在克服学科体系中理论与实践分离的弊端,都在试图以工作任务为载体,以工作过程涉及的知识为核心,将课程内容与工作过程进行高度整合建立适合时展需要的课程体系。
模块化课程体系的思路就是按专业设置职业基础课程模块和职业方向课程群模块,并根据技术变化和市场对各职业方向人才的需求情况,动态修改、增加或减少部分职业方向课程群模块。模块化课程体系体现以学生为主体的课程开发理念,适应学生因个体差异性、自主性对课程的要求,满足学生根据自己的爱好和特长进行专业方向的选择,有利于学生的成长与发展。
专业课程体系开发作为人才培养活动的一个重要环节。从微观层面看,它是一个“教育系统”,需要遵循教育自身的规律;从宏观层面看,它又是一个与产业相联系的“社会系统”,需要行业的指导、企业的参与。因此,需要校企双方协同人才培养理念,从宏观和微观两个层面,统筹协调相关课程资源,共同开发形成一个适宜开展工学结合人才培养的开放的模块化课程体系。
二、基于校企协同创新的电子信息工程技术专业模块化课程体系研究的现实意义
1.协同创新是当前高职电子信息技术专业培养高级技术技能人才的必然选择。2011年4月24日,同志在清华大学百年校庆大会上发表了重要讲话,明确提出“要积极推动协同创新,通过体制机制创新和政策项目引导,鼓励高校同科研机构、企业开展深度合作,建立协同创新的战略联盟,促进资源共享,联合开展重大科研项目攻关,在关键领域取得实质性成果”。在此基础上,教育部启动了“高等院校创新能力计划(2011计划)”。作为高等教育生力军的高等职业教育,肩负着培养适应生产、建设、管理、服务一线需要的高级技术技能人才的重任。因此,协同创新成了当前高职电子信息技术专业培养高级技术技能人才的必然选择。
2.基于校企协同创新的电子信息技术专业模块化课程体系的研究,是落实“五个对接”,提升专业服务地区电子信息产业发展能力的客观要求。“十二五”时期,国家“把经济结构战略性调整作为加快转变经济发展方式的主攻方向”,产业转型升级对技术技能型人才培养提出了新的要求。据调查,目前东莞电子信息产业转型升级对技术技能人才的需求呈现出中端人才需求量大,低端人才需求在萎缩,高端人才需求在逐渐增加的趋势。未来几年,随着东莞电子信息产业升级与高端化发展的需要,对高级技术技能人才的需求将越来越大。产业转型升级对技术技能人才培养提出了新的要求,为了符合这一要求,高职院校的课程体系需要进行改革,但改革不是孤立的改革,需要学校同行业企业等主体协同创新进行改革。因此,必须依靠协同创新,引领多方合作,通过对专业课程体系的深入研究和具体落实,才能真实提高学生的岗位职业能力和就业竞争力,为构建现代产业体系和经济社会建设提供强有力的技术支持和人才支撑。
3.探索基于校企协同创新的电子信息技术专业模块化课程体系,为高职工科专业拓展专业建设思路,提升人才培养质量指明了方向。目前高职院校在合作培养人才方面面临着诸多困难,校企合作人才培养脱节,合作主体找不到利益相关的结合点,人才培养协调机制不完善,人才培养与企业发展定位不紧密。因此,把握“协同是方法,创新是手段,高级技术技能人才培养是目的”这一协同创新的精髓,深入探索基于协同创新的模块化课程体系,已成为今后高职教育课程体系改革与创新的重要思路,也是提高人才培养质量的切入点和突破口。
三、基于校企协同创新的电子信息工程技术专业模块化课程体系的构建
构建基于校企协同创新的电子信息工程技术专业模块化课程体系的主要工作集中在职业基础课和职业方向课程群模块的校企协同建设方面,其主要建设步骤如下。
1.校企协同成立校企协同及专业指导委员会。在校企协同及专业指导委员会的平台中,深入研讨获得人才市场、学生就业和行业企业现状,并总结出表1所示的东莞市电子信息工程技术专业就业所对应的主要职业方向,每个职业方向典型的工作任务以及应具备的职业能力。
2.设计职业方向模块。确定每个职业方向模块所开课程,确定职业方向模块对应的职业资格证书。因此,制定出表2所示的职业方向模块、开设课程和对应的职业资格证书。
3.构建课程体系。将政治理论课、公共基础课模块、职业基础课程模块、职业方向课程群模块组合起来就形成了基于校企协同创新的电子信息工程技术专业模块化课程体系。
四、结束语
基于校企协同创新的电子信息技术专业模块化课程体系符合当前高职院校培养高级技术技能人才的理念,体现了高职的办学特色,吻合了国家在《现代职业教育体系建设规划(2014―2020)》中提出的“形成对接紧密、特色鲜明、动态调整的职业教育课程体系”的精神,是对多年来教学改革实践工作的提炼,是传承中的创新,为高职课程体系建设探索出了一条新的道路。
参考文献:
[1]肖炎根.高职应用电子技术专业“三元学分制”模块化课程体系[J].职业技术教育,2007,(17):20-21.
[2]李昌,包新华.高职电子信息专业“宽基础、活模块”课程体系的构建[J].职业教育研究,2008,(5):94-95.
[3]刘继平.高职模块化课程体系构建[J].中国高等教育评估,2008,(1):46-49.
[4]刘涛.高等职业教育课程设计的技术路线[J].职业技术教育,2005,26(34):45-48.
篇7
1机械电子工程
1.1机械电子工程的发展史
20世纪是科学发展最辉煌的时期,各类学科相互渗透、相辅相成,机械电子工程学科也在这一时期应运而生,它是由机械工程与电子工程、信息工程、智能技术、管理技术相结合而成的新的理论体系和发展领域。随着科学技术的不断发展,机械电子工程也变的日益复杂。
机械电子工程的发展可以分为3个阶段:第一阶段是以手工加工为主要生产力的萌芽阶段,这一时期生产力低下,人力资源的匮乏严重制约了生产力的发展,科学家们不得不穷极思变,引导了机械工业的发展。第二阶段则是以流水线生产为标志的标准件生产阶段,这种生产模式极大程度上提高了生产力,大批量的生产开始涌现,但是由于对标准件的要求较高,导致生产缺乏灵活性,不能适应不断变化的社会需求。第三阶段就是现在我们常见的现代机械电子产业阶段,现代社会生活节奏快,亟需灵活性强、适应性强、转产周期短、产品质量高的高科技生产方式,而以机械电子工程为核心的柔性制造系统正是这一阶段的产物。柔性制造系统由加工、物流、信息流三大系统组合而成,可以在加工自动化的基础之上实现物料流和信息流的自动化。
1.2机械电子工程的特点
机械电子工程是机械工程与电子技术的有效结合,两者之间不仅有物理上的动力连结,还有功能上的信息连结,并且还包含了能够智能化的处理所有机械电子信息的计算机系统。机械电子工程与传统的机械工程相比具有其独特的特点:
1)设计上的不同。机械电子工程并非是一门独立学科,而是一种包含有各类学科精华的综合性学科。在设计时,以机械工程、电子工程和计算机技术为核心的机械电子工程会依据系统配置和目标的不同结合其他技术,如:管理技术、生产加工技术、制造技术等。工程师在设计时将利用自顶向下的策略使得各模块紧密结合,以完成设计;2)产品特征不同。机械电子产品的结构相对简单,没有过多的运动部件或元件。它的内部结构极为复杂,但却缩小了物理体积,抛弃了传统的笨重型机械面貌,但却提高了产品性能。
机械电子工程的未来属于那些懂得运用各种先进的科学技术优化机械工程与电子技术之间联系的人,在实际应用当中,优化两者之间的联系代表了生产力的革新,人工智能的发展使得这一想法变成可能。
2人工智能
2.1人工智能的定义
人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的交叉学科,是21世纪最伟大的三大学科之一。尼尔逊教授将人工智能定义为:人工智能是关于怎样表示知识和怎样获得知识并使用知识的科学。温斯顿教授则认为:人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。至今为止,人工智能仍没有一个统一的定义,笔者认为,人工智能是研究通过计算机延伸、扩展、模拟人的智能的一门科学技术。
2.2人工智能的发展史
2.2.1萌芽阶段
17世纪的法国科学家B.Pascal发明了世界上第一部能进行机械加法的计算器轰动世界,从此之后,世界各国的科学家们开始热衷于完善这一计算器,直到冯诺依曼发明第一台计算机。人工智能在这一时期发展缓慢,但是却积累了丰富的实践经验,为下一阶段的发展奠定了坚实的基础。
2.2.2第一个发展阶段
在1956年举办的“侃谈会”上,美国人第一次使用了“人工智能”这一术语,从而引领了人工智能第一个兴旺发展时期。这一阶段的人工智能主要以翻译、证明、博弈等为主要研究任务,取得了一系列的科技成就,LISP语言就是这一阶段的佼佼者。人工智能在这一阶段的飞速发展使人们相信只要通过科学研究就可以总结人类的逻辑思维方式并创造一个万能的机器进行模仿。
2.2.3挫折阶段
60年代中至70年代初期,当人们深入研究人工智能的工作机理后却发现,用机器模仿人类的思维是一件非常困难的事,许多科学发现并未逃离出简单映射的方法,更无逻辑思维可言。但是,仍有许多科学家前赴后继的进行着科学创新,在自然语言理解、计算机视觉、机器人、专家系统等方面取得了卓尔有效的成就。1972年,法国科学家发现了Prolog语言,成为继LISP语言之后的最主要的人工智能语言。
2.2.4第二个发展阶段
以1977年第五届国际人工智能联合会议为转折点,人工智能进入到以知识为基础的发展阶段,知识工程很快渗透于人工智能的各个领域,并促使人工智能走向实际应用。不久之后,人工智能在商业化道路上取得了卓越的成就,展示出了顽强的生命力与广阔的应用前景,在不确定推理、分布式人工智能、常识性知识表示方式等关键性技术问题和专家系统、计算机视觉、自然语言理解、智能机器人等实际应用问题上取得了长足的发展。
2.2.5平稳发展阶段
由于国际互联网技术的普及,人工智能逐渐由单个主体向分布式主体方向发展,直到今天,人工智能已经演变的复杂而实用,可以面向多个智能主体的多个目标进行求解。
3人工智能在机械电子工程中的应用
物质和信息是人类社会发展的最根源的两大因素,在人类社会初期,由于生产力水平低,人类社会以物质为首要基础,仅靠“结绳记事”的方法传递信息,但随着社会生产力的不断发展,信息的重要性不断被人们发现,文字成为传递信息最理想的途径,最近五十年间,网络的普及给信息传递带来了新的生命,人类进入到了信息社会,而信息社会的发展离不开人工智能技术的发展。不论是模型的建立与控制,还是故障诊断,人工智能在机械电子工程当中都起着处理信息的作用。
由于机械电子系统与生倶来的不稳定性,描述机械电子系统的输入与输出关系就变得困难重重,传统上的描述方法有以下几种:1)推导数学方程的方法;2)建设规则库的方法;3)学习并生成知识的方法。传统的解析数学的方法严密、精确,但是只能适用于相对简单的系统,如线性定常系统,对于那些复杂的系统由于无法给出数学解析式,就只能通过操作来完成。现代社会所需求的系统日益复杂,经常会同时处理几种不同类型的信息,如传感器所传递的数字信息和专家的语言信息。由于人工智能处理信息时的不确定性、复杂性,以知识为基础的人工智能信息处理方式成为解析数学方式的替代手段。
通过人工智能建立的系统一般使用两类方法:神经网络系统和模糊推理系统。神经网络系统可以模拟人脑的结构,分析数字信号并给出参考数值;而模糊推理系统是通过模拟人脑的功能来分析语言信号。两者在处理输入输出的关系上有相同之处也有不同之处,相同之处是:两者都通过网络结构的形式以任意精度逼近一个连续函数;不同之处是:神经网络系统物理意义不明确,而模糊推理系统有明确的物理意义;神经网络系统运用点到点的映射方式,而模糊推理系统运用域到域的映射方式;神经网络系统以分布式的方式储存信息,而模糊推理系统则以规则的方式储存信息;神经网络系统输入时由于每个神经元之间都有固定联系,计算量大,而模糊推理系统由于连接不固定,计算量较小;神经网络系统输入输出时精度较高,呈光滑曲面,而模糊推理系统精度较低,呈台阶状。
随着社会的不断发展,单纯的一种人工智能方法已经不能满足日益增长的社会需要,许多科学家开始研究综合性的人工智能系统。综合性的人工智能系统采用神经网络系统与模糊推理系统相结合的方法,取长补短,以获得更全面的描述方式,模糊神经网络系统便是一成功范例。模糊神经网络系统做到了两者功能的最大融合,使信息在网络各层当中找到一个最适合的完全表达空间。逻辑推理规则能够对增强节点函数,为神经网络系统提供函数连结,使两者的功能达到最大化。
4结论
篇8
关键词:卓越工程师;校企合作;人才培养;思想政治教育
0引言
2010年6月,教育部正式启动了“卓越工程师培养计划”,旨在培养和造就一大批创新能力强、适应经济社会发展需要的高质量各类型工程的技术人才,以适应国家经济形势发展的需要。该计划的实施对于我国“高等教育根据社会经济发展形势来调整人才培养方式,提高人才培养质量,推动高等教育与教学改革,增强毕业生就业能力、提高毕业生就业率都具有非常重要的现实意义”。众所周知,机械工程专业属于工科范畴。传统的机械工程在向现代化机械工程转变的大背景下,我国的机械工程类产业的快速发展必然急需大批量的高素质的卓越型机械类的工程师。而我国传统的机械类工程科技人才的培养往往与社会需求相脱节,无论是人才的培养模式或方式,还是成长环境都不能很好地适应当下社会发展对工程类人才提出的高标准的要求和需求。这也迫使各大高校在国家实施卓越计划为契机的大背景下,必须深化学科专业的人才培养模式和改革创新,以培养出卓越的工程类人才。
1人才培养现状南京林业大学是江苏省
“卓越计划”高校之一,学校根据国家《卓越工程师教育培养计划通用标准》,结合学校特色和人才培养定位,制定了全面的教育培养计划方案,以推进人才培养模式改革,提升工程技术人才培养水平。机械电子工程学院自1958年招收的首届机械类本科生以来,至今已经有近60年的发展历史,多年来为国家农林机械类行业培养和输送了一大批优秀人才。现有机械工程一级学科博士后科研流动站、机械工程一级学科博士点、机械工程一级学科硕士点;机械制造及其自动化、机械电子工程、机械设计及理论、林业机械工程等多个二级学科博士点;机械制造及其自动化、机械电子工程、机械设计及理论、车辆工程、检测技术与自动化装置、农业机械化工程、控制理论与控制工程等7个二级学科硕士点;机械工程、控制工程等2个工程硕士专业学位点,农业机械化农业推广硕士专业学位点。随着国家改革开放的不断深入,尤其是现在已进入到改革深水区,高校必须面向市场办学,这将会对传统办学的理念和培养人才的模式需求带来了更高的要求。但就学院机械工程专业的人才培养模式而言,依旧沿袭传统的人才培养模式,即只注重基础理论知识的灌输,不重视学生的实践能力和创新能力的培养。根据学院近5年的本科生就业去向统计分析,机械工程专业每年基本招生8个班左右的学生,就业率居学校各专业的前列,但是有近五分之一的毕业生并没有从事与本专业相关领域的工作。进入机械工程专业及相关专业领域的工作的毕业生,企业虽认可机械工程的专业的人才培养质量,但其存在的创新能力不强、动手能力差及吃苦耐劳精神不足等问题,更不能很好地适应行业对专业技术人才的要求不容忽视,必须引起学校的高度重视。“卓越人才计划”是一个系统的高等教育人才培养计划,不仅具有独特的指导思想、基本原则和实施内容,也在组织实施上有着与众不同的明确规定。国内工程教育界人士经过大量研究,提出其具有三个特点:一是行业企业深度参与培养过程;二是学校按照行业标准和通用标准培养工程人才;三是强化培养学生的工程实践能力和创新能力。笔者本次就以南京林业大学机械电子工程学院在相应工作中的思路和做法进行分析。
2校企深度合作搭建培养卓越人才的途径与探索
2.1创建校企合作平台,建立卓越工程师培养实践基地
2014年11月至今,机械电子工程学院通过走访校友,多渠道调研与宣传等方式对有意报名参加校企合作意向的企业单位进行面试与筛选,确定出镇江中福马机械有限公司、苏州苏福马机械有限公司、泰州林海集团、南京乐鹰商用厨房设备有限公司共4家公司签订了卓越工程师计划实施的合作协议,作为机械电子工程学院首批卓越工程师培养计划的实践基地。这批实践基地将作为学院今后的卓越工程师计划的顺利开展汲取丰富的理论与实践经验,也为今后组建卓越工程师计划的实验班而培育。2014年11月与2015年11月,经学院大四年级学生的申请报名参加卓越工程师计划,专业老师与企业导师共同对学生进行一对一面试的双向选拔,即确定了一名学生由企业与校内两位导师共同指导的培养模式,共选出16名大四年级的毕业班学生分作为首批加入卓越工程师计划队伍,赶赴企业进行毕业设计或毕业论文,经过近一年的校企合作中的摸索与探索,在双方指导老师的培养与学生自身努力下,这16名毕业生顺利完成了毕业设计,且其完成的毕业设计论文质量明显要高于在校学生完成的质量,缘由归于这些学生在企业学习阶段,能直接接触到企业生产设计的一线,充分了解企业生产的规范与流程及企业文化,更好地将理论知识与实践经验相结合,从而取得了优异成绩。
2.2强化校企深度合作,共同制定人才培养标准,促进校企合作双赢
在确立作为机械工程专业卓越工程师计划的企业过程中,学校与企业都需从各自最关心的问题角度出发,共同商议制定人才培养标准。因为产学研相结合是工程教育的一个重要特征,也是工程教育的一个本质要求。学校从学生教育的角度及办学理念出发,在校大学生的培养显然缺乏实际工程案例,企业的先进技术装备和生产工艺,要提高学生的实践动手能力与解决实际生产过程中的问题就必然要去企业生产一线,为此,要实现工程教育的要求必然离不开企业的深度参与培养过程。企业从引进人才的角度来看,通过企业对学生培训,致使其能够适应企业的工作要求和考量,但这必然会增加企业的成本。因此,只有加强校企深度合作,才可以使机械工程专业人才的学校教育与企业的专业培训对接起来,这对学校与企业来说是双赢的结果。机械电子工程学院与上述提到的4家企业,在制定卓越工程师人才培养方案过程中就各自关切的问题均体现和表达出来,如学校通过企业对学生的培养的达标要求,企业需要学生完成的指标任务等进行详细商讨后在签订合作协议。
2.3强化卓越人才计划学生的思想政治教育
在本次选拔出参加卓越工程师计划的这批学生中,学校不仅仅关心关注他们在校期间的各方面的表现,更加注重和关心他们在企业实习期间的表现,通过校企双方的相应指导老师对其加强思想教育,让其感受到校企双方的关心和关爱。机械电子工程学院在与企业制定卓越工程师培养计划方案过程中也明确了这点,学院这边配备相应学生的政治辅导员老师作为这批学生的思想政治教育的牵头人,企业也专门配备一名指导老师作为学生的思想政治教育老师,学生在企业实习期间,通过校企双方老师的定期沟通与交流时刻掌握学生的思想动态,对可能存在的些许问题及时加以引导与开导并加以教育,本批次的16名学生均很好地完成和遵守学校与企业为其制定的培养指标和政治要求,校企双方的思想政治教育老师的配备为学生的成长与成才保驾护航。
3结论
“卓越工程师教育培养计划”是工程教育满足国家战略需要,服务企业需求、创立校企联合培养机制,以解决人才培养过程中校企脱节的重大教育改革项目,也是一项系统工程。机械电子工程学院为积极响应国家重大教育改革项目,即卓越人才教育的培养进行了探索,为今后学院组建卓越工程师计划班的开展积累经验,从而也为构建校企合作的长效机制创立条件。
参考文献:
[1]周吉林,翟华敏,彭斌.卓越林业工程师培养的实践与思考[J].中国林业教育,2012(5):1-4.
[2]王桂荣,刘元林,刘春生,等.卓越工程师培养背景下机电本科毕业设计改革[J].教学研究,2014(1):89-91.
篇9
机械电子产品虽然结构相对简单化,没有掺杂过多的运动元件或者部件,但是它的内部结构是非常复杂的,若想要产品的性能得到提高,就必须将传统落后的笨探究机械电子工程与人工智能的关系姚磊河北农业大学机电工程学院河北保定071000重机械面貌彻底抛弃,缩小物理体积。由于机械电子工程所涉及和利用到的内容非常广泛,所以电子机械工程是一种具有极强综合性的学科。机械电子工程的基础是传统机械工程,同时充分利用计算机的辅助作用,来强化机械电子工程的核心力量。这使得机械电子工程与其他学科相比较而言更能体现出科学性,并且能够保证满足系统配置方面的设计需求。机械电子工程充分利用到专业设计模板来完善机械电子设备,发挥设计应用中的模板作用,这样有利于保证机械电子工程设计能够顺利进行。机械电子工程产品在设计结构方面较为简单,并且元件利用数量也是相对较少的。所以在这种情况下,要通过持续提升产品性能,强化机械电子产品质量,优化机械电子产品的结构,来满足消费者的更多需求。
2人工智能的定义及特点
何为人工智能,人工智能是一门综合了计算机科学、信息论、控制论、神经生理学、语言学、心理学、哲学等多门学科的交叉性学科,是21世纪最伟大的三大学科之一。人工智能的发展其实经历了一段非常漫长的历程,人工智能在计算机开始发展的初期就已经被应用到了各个方面,只是它在起初所发挥的作用相对而言是非常小的,并没有得到足够的重视或者引起足够的注意。但是随着时代的进步,人工智能已经摆脱了过去相对弱小的形象,发生了翻天覆地的变化,得到了很大的改善。人工智能发生的这些转变正是人类对计算机的应用和熟悉程度的转变。信息时代的趋势已经使人工智能技术得到了很大的强化,在社会中的地位也越来越重要。机械电子工程的发展需要依靠人工智能的力量和支撑,相信随着人们对人工智能更加深入的研究,人工智能模仿人类思维的能力定会越来越强大。只有对人工智能不断创新和改善,才能在计算机语言理解和应用方面得到更大的进步,才能更加符合机械电子工程的发展需求。
3机械电子工程与人工智能的关系
机械电子工程在应用上不稳定主要表现在系统输入输出的问题,即利用数学方程来建立模型,并且依靠人工智能来完成对传统知识学习的更新,这种解析数学的相关方式在机械电子工程中的应用是非常广泛的。传统机械工程方式的应用是非常简单的,但是随着时代的发展和科学技术的进步,新时期出现的机械电子工程系统在处理各种问题时是相对复杂的,会通过配置多种系统对信息类型来进行区分。但是人工智能在机械电子工程领域还存在着一些不确定的因素,在计算机电子工程中,人工智能信息处理的方式主要采用的是解析数学措施,其应用方式主要是利用网络神经系统对网络系统进行合理安排,将神经系统迷你成人脑的结构,根据相关数字所传达出来的信号,对已经搜集到的资源进行参数分析。其实,人工智能在机械电子工程中的应用是有差异的,这种差异性也是人工智能的一种特点,没有办法对网络系统进行有效的描述,同时在建设系统资料库的过程中进行严密数学分析,在分析过程中若是出现错误会直接影响到网络系统的建设,甚至导致网络系统的崩溃。创新工程方式,加强人工智能信息的服务建设是保证机械电子工程能够顺利开展和进行的关键。随着时代的发展和人民日益增长的需求,生活方式的单一性早已不能满足社会的发展需求速度。不断完善的综合性人工智能系统必将会使生产模式发生转变。利用模型推理系统和神经网络系统的优势来补充综合性人工智能,逐步完善机械电子工程的发展,网络系统得到完善的必然结果就是模型推理系统。同时,模型推理系统也是二者功能性融合的重要体现。人工智能通过网络信息资源进行完整性表达,完善机械电子和人工智能的密切关系。
4结束语
篇10
关键词:组合学;机械电子工程学;传感器网络
传统的机械工程可以分为制造和动力两大类。制造类包括毛坯制造、机械加工和装配三个生产过程;而动力类包括各种发动机。与自人类使用工具以来就有的机械工程相比,电子技术是二十世纪发展的新学科。机械工程与电子技术的结合始于上世纪。起初,二者结合是分离的“块与块”关系,或者是功能结构上的相互替代。随着计算机技术发展的推动,机械系统和电子系统通过信息有机地联系起来,形成了真正的机械电子工程。人工智能技术的发展与渗透,使得机械电子在传统的机械系统能量连接、功能连接的基础上,更加强调了信息连接和驱动,并逐步使机械电子系统向具有一定智能的方向发展。
一、组合学简介
组合学(Combinatorics)是研究离散结构的存在、计数、分析和优化等问题的科学。组合学源于数学娱乐和游戏,组合学问题在生活中随处可见,主要可划分为两类:排列的存在性、排列的计数和分类。组合学有两个研究领域:组合数学与组合学问题的算法。离散对象的处理是计算机科学的核心,研究离散对象的科学就是组合数学;程序就是算法,绝大多数情况下,程序算法是针对离散对象的,正是因为有了组合学问题的算法,才使人感受到计算机的“智能”。组合数学的主要研究内容有:鸽巢原理、排列与组合、二项式系数容斥原理及应用,递推关系和生成函数、特殊计数序列、二分图中的匹配、组合设计。组合学问题的算法,计算对象是离散的、有限的数学结构。
组合学问题的算法包括算法设计、算法分析两个方面。关于算法设计,历史上已经总结出了若干带有普遍意义的方法和技术,包括动态规划、回溯法、分支限界法、分治法、贪婪法等,应用相当广泛,如:旅行商问题、整数规划问题等。
组合学不仅是计算机科学的基础,在其它科学技术领域也有重要的应用。美国Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国及国际学术界都有很高的地位。
二、机械电子
早期的机械工业以手工加工为主,生产力低,但适应性强;三十年代开始集中在标准件和流水线,适合于大批量生产,但缺乏灵活性;现代生产一般要求转产周期短、生产灵活性强、产品质量高,因此常采用以机械电子系统为主要构成的FMS可以达到上述要求。与传统的机械工业相比,机械电子工程有着鲜明的特点:就设计而言,机械电子工程并不是一门有严格界线并且独立的工程学科,而是在设计过程中一个综合思想的实践。设计中,根据系统结构配置和目标,机械电子工程把它的核心部分(机械工程、电子工程、汁算机技术)与其它领域的技术,如:制造技术、管理技术和生产加工实践等有机地结合在一起,采用一种基于信息的自顶向下的模块化策略,完成设计就系统(产品)而言,机械电子系统(产品)结构简单,元件和运动部件少(如电子表),它用小巧的电子系统取代“傻、大、笨、粗”的机械系统,减小了系统的体积,提高了性能,但是系统的复杂性却大大增加了。
机械电子学要求机械与电子技术的规划应用和有效结合,以构成一个最优的产品或系统。现代的机械电子系统除了“块与块”之间的动力联系之外,还有信息之间的相互联系,并由具有数值运算和逻辑推理能力的计算机来对机械电子系统的所有信息进行智能处理,人们已经认识到生产改革的未来属于那些懂得怎样去优化机械和电子系统之间联系的人;尤其是在先进生产和制造系统的应用中,对优化的需求将会变得更为迫切;在这些系统中,人工智能、专家系统、智能机器人以及先进的工艺制造系统将构成未来工厂的下一代工具。
三、CMG机构的优化编码
CMG机构是一种可用于引信保险与解除保险控制的密码鉴别机构。根据密码鉴别的功能要求及指定的“解锁符号序列”,设计CMG机构中复合齿轮A,B上鉴别齿(discrimination teeth)的二值装定编码,可称为“CMG机构编码”问题;基于工程优化的考虑,还希望编码得到的复合齿轮A,B,其齿轮层数N最小,此即CMG机构的优化编码问题。
为了解决CMG机构的优化编码问题,我们首先研究其数学建模的方法。在CMG机构编码类型划分的基础上[7],基于“二维迷宫映射方法”[2]、迷宫映射图中“路格点(route grid)”和“阱格点(trap grid)”的概念[6]、及“关键陷阱格点(Critical Trap Grid,CTG)”互斥的“十字叉”判据[8],将CMG机构的优化编码问题转化为无环、无重边的无向简单图G(V,E)的k-顶点着色问题(k-vertex coloring problem)。但k-顶点着色是组合学中著名的NP完全问题,穷举法的时间复杂度高达O(mn)(m表示染色数,n表示顶点数)。文献[9]已证明,对于任意CMG机构,密码齿轮层数至少为3;因此,即便在最佳情况下,穷举计算求解的时间复杂度也高达324。文献[10]提出了一种“基于团划分数的聚类算法”,对于任意一组指定的、有限长度的“解锁符号序列”,理论上可以求解得到所有的CMG机构优化编码,但其本质上仍然是穷举法,计算的时间复杂度仍为O(mn)。权衡计算的时间复杂度与优化设计目标,我们采用贪婪法求解CMG机构编码的顶点着色问题,该方法具有时间复杂度低、易于编程的优点,在大多数情况下可以获得优化编码结果。
基于贪婪法,采用Visual Basic编写了CMG机构的编码及编码校验程序[11],包括编码、校验两个功能,实现了只需输入“解锁符号序列”,即可自动绘制二维迷宫映射图,求解并绘制密码齿轮编码示意图,以TXT文件输出设计结果,验证鉴别齿编码与“解锁符号序列”是否“锁-钥匹配”的功能。
四、传感器网络节点布设
传感器网络(sensor networks)涉及传感器、微电子机械系统(Micro-Electromechanical System,MEMS)、现代网络和无线通信等多种技术,将客观世界的物理信息与传输网络联系在一起,扩展了人们获取信息的能力,可应用在军事国防、工农业控制、城市管理、环境监测、抢险救灾、防恐反恐、危险区域远程控制等诸多领域,是当前IT 技术研究的热点。传感器网络的研究涉及通信协议、支撑技术、应用技术三部分,其中一个基本的问题是传感器网络节点的覆盖与连通。
传感器网络的每个传感器节点都能够采集、存储和处理环境信息,并与相邻的传感器节点通信。传感器节点的覆盖问题(Coverage Problems),就是要判断敏感区域被传感器监控或追踪的优良程度。例如,对于如图1所示的一个单位矩形敏感区域,假设采用5个同构的传感器如图布设,在完全覆盖该敏感区域的前提下,出于传感器节能设计的考虑,需要计算传感器的最小覆盖圆半径。这一问题在组合学中,可以用1-等圆覆盖问题 (1-Unit-Disk Coverage Problem)描述。
图1单位矩形敏感区域的1-等圆最优覆盖例(5圆覆盖,圆半径约为0.3621605)
为了定位需重点监测“热点(hot spots)”,跟踪活动目标的位置,或者为了提高传感器网络的容错能力(可靠性),需要考虑敏感区域的k-等圆覆盖问题。传感器节点k-等圆覆盖问题的物理意义是:设一组同构的传感器布设在某一区域,该区域中的任意一点应至少被k个传感器覆盖。事实上,传感器网络中可采用多种多样的异构传感器节点,由于各种传感器的敏感距离可以不同,因此,需要采用k-不等圆覆盖问题(k-Non-Unit-Disc Coverage Problem)描述二维区域的覆盖问题。
更进一步,传感器网络节点是在三维空间中布设的,假如每个传感器的敏感区域可用一个三维球体来模拟,则引出了传感器节点的三维空间覆盖问题。如果再考虑为了节能而规划传感器的值班时间、传感器节点发现目标的时延等,则情况更加复杂。
五、结论
组合学在诸多科学技术领域中有着重要应用价值。本文结合作者的研究工作,介绍了组合学在机械电子工程学领域的两个应用实例。
(1)CMG机构的编码问题,是设计一种微小型机械密码锁的关键。受微执行器(微电机)驱动能力的限制,并且为了提高密码锁装置的可制造性和可靠性,还希望CMG机构中复合齿轮A,B的齿轮层数N最小,此即CMG机构的优化编码问题。为了解决这一问题,我们通过“二维迷宫映射”和其它数学建模步骤,将问题转化为图G(V,E)的k-顶点着色问题,并设计了CMG机构鉴别齿优化编码、校验的组合学算法;
(2)传感器网络是传感器技术与网络通信技术相结合的产物,传感器网络节点的覆盖与连通是传感器网络规划的一个基础问题。
- 上一篇:电工教学大纲和教学计划
- 下一篇:农村道路治理
相关期刊
精品范文
10机械制图实训总结