医疗人工智能方案范文
时间:2023-12-18 17:58:30
导语:如何才能写好一篇医疗人工智能方案,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
人工智能在医疗领域的广泛应用价值
目前,人工智能在医疗领域的研究成果频出,人工智能应用医疗领域已是大势所趋。各个科技巨头都相继布局人工智能医疗行业。对人工智能在医疗的应用主要基于多方面的客观现实:比如优质医疗资源供给不足,成本高,医生培养周期长,误诊率高,疾病谱变化快,技术日新月异;此外,随着人口老龄化加剧和慢性疾病发病率的增长,人们对健康重视程度普遍提高,医疗服务需求也在持续增加。
人工智能结合医学应用有非常多的益处,可以让患者、医师和医疗体系均受益。比如对于患者来说,可以更快速地健康z查,获得更为精准的诊断结果和更好的个性化治疗方案建议;对于医师来讲,则可以消减诊断时间,降低误诊的概率并对可能的治疗方案的副作用提前知晓;对于医疗体系来说,人工智能则可以提高各种准确率,同时系统性降低医疗成本。
据悉,人工智能在智能诊疗、智能影像识别、智能药物研发和智能健康管理等方面都有广泛的应用价值。
比如在智能诊疗方面,就是让计算机“学习”专家医生的医疗知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。智能诊疗场景是人工智能在医疗领域最重要、也最核心的应用场景。谷歌宣布已尝试将其面向消费者的机器学习能力应用到医疗保健领域中。今年谷歌的人工智能算法在乳腺癌诊断上也表现出了很高准确度;苹果公司最近收购了Lattice,该公司在开发医疗诊断应用的算法方面具有很强能力。
在智能影像识别方面,人工智能的应用主要分为两部分:一是图像识别,应用于感知环节,其主要目的是将影像进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握诊断能力。作为医生,从一个大的图像如CT、核磁共振图像判断一个非常小的阴影,是肿瘤是炎症还是其他原因,需要很多经验。如果通过大数据,通过智能医疗,就能够迅速得出比较准确的判断。
在智能药物研发方面,则是将人工智能中的深度学习技术应用于药物研究,通过大数据分析等技术手段快速、准确地挖掘和筛选出合适的化合物或生物,达到缩短新药研发周期、降低新药研发成本、提高新药研发成功率的目的。人工智能通过计算机模拟,可以对药物活性、安全性和副作用进行预测。目前借助深度学习,人工智能已在心血管药、抗肿瘤药和常见传染病治疗药等多领域取得了新突破,在抗击埃博拉病毒中智能药物研发也发挥了重要的作用。
在智能健康管理方面,则可以将人工智能技术应用到健康管理的很多场景中。目前主要集中在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。比如通过获取信息并运用人工智能技术进行分析,识别疾病发生的风险及提供降低风险的措施。计算机还能收集病人的饮食习惯、锻炼周期、服药习惯等个人生活习惯信息,运用人工智能技术进行数据分析并评估病人整体状态,协助规划日常生活。在精神健康领域,计算机可运用人工智能技术从语言、表情、声音等数据进行情感识别。在健康干预层面,计算机则可以运用AI对用户体征数据进行分析,定制健康管理计划。
从IBM Watson的发展看医学人工智能的未来
目前国内外已经有很多高科技企业将认知计算和深度学习等先进AI技术用于医疗领域,并出现了很多产品,其中以IBM的“沃森医生”(IBM Watson)最有代表性。IBM Watson作为该领域中的翘楚,随着人工智能技术的逐渐成熟,在2016年开始放开手脚,以肿瘤诊断为重心,开始在慢病管理、精准医疗、体外检测等九大医疗领域中实现突破,逐步实现人工智能作为一种新型工具在医疗领域的独特价值。
沃森是2007年由IBM公司开发的,IBM Watson具备了自然语言处理、信息检索、知识表示、自动推理、机器学习等能力,能够快速搜索分析非结构化的数据,获取想要的结果。2015年,日本东京大学医学院研究所最初的诊断结果,确诊一位60岁的日本女性患了急髓白血病,但在经历各种疗法后,效果都不明显。无奈之下,研究所只好求助IBM Watson,而IBM Watson则通过对比2000万份癌症研究论文,分析了数千个基因突变,最终确诊这位60岁的日本女性患有一种罕见的白血病,并提供了适当的治疗方案。整个过程IBM Watson只用了短短10分钟。
自2012年罗睿兰接手IBM开始,IBM公司发展方向与业务架构就一直在进行根本性调整。传统硬件与系统软件业务地位不断退后,而云计算、网络安全、数据分析与人工智能成为了公司现金流的核心投放领域。现在的IBM正在转型为一家认知计算和云平台的公司。其中在医学人工智能的优势也越来越明显。
IBM Watson首先进入的领域是复杂的癌症诊断和治疗领域,这也是目前全世界医学界聚焦的重点。Watson的第一步商业化运作就是通过和纪念斯隆・凯特琳癌症中心进行合作,共同训练IBM Watson肿瘤解决方案(Watson for Oncology)。癌症专家在Watson上输入了纪念斯隆・凯特琳癌症中心的大量病历研究信息进行训练。在此期间,该系统的登入时间共计1.5万小时,一支由医生和研究人员组成的团队一起上传了数千份病人的病历,近500份医学期刊和教科书,1500万页的医学文献,把Watson训练成了一位杰出的“肿瘤医学专家”。随后该系统被Watson Health部署到了许多顶尖的医疗机构,如克利夫兰诊所和MD安德森癌症中心,提供基于证据的医疗决策系统。
相继攻克肺癌、乳腺癌、结肠癌、直肠癌后,2015年7月IBM Watson for Oncology成为IBM Watson health的首批商用项目之一,正式将上述四个癌种的肿瘤解决方案进入商用。2016年8月IBM宣布已经完成了对胃癌辅助治疗的训练,并正式推出使用。此外沃森还在2016年11月训练完上线了宫颈癌的服务。
目前IBM Watson肿瘤解决方案已经进入中国。2016年12月,浙江省中医院联合思创医惠、杭州认知三方共同宣布成立沃森联合会诊中心,三方将合作开展IBM Watson for Oncology服务内容的长期合作,这是自IBM Watson for Oncology引入中国以来,首家正式宣布对外提供服务的Watson联合会诊中心,意味着中国医疗行业将开启一个新型人工智能辅助诊疗时代。目前Watson可以为肺癌、乳腺癌、直肠癌、结肠癌、胃癌和宫颈癌6种癌症提供咨询服务,2017年将会扩展到8-12个癌种。在医生完成癌症类型、病人年龄、性别、体重、疾病特征和治疗情况等信息输入后,沃森能够在几秒钟内反馈多条治疗建议。
此外,IBM Watson还与辉瑞达成了一项新协议,会将前者的超级计算能力用于癌症药物研发。辉瑞将用上Watson for Drug Discovery的机器学习、自然语言处理及其它认知推理能力,用于免疫肿瘤学(Immuno-oncology)中的新药物识别,联合疗法和患者选择策略。由于免疫肿瘤学的未来在于针对独特肿瘤特征的组合,这会改变癌症治疗方式。而在药物研发中利用Watson的认知能力,可以更快地为患者带来可能的新免疫肿瘤治疗。
毫无疑问,人工智能将会成为未来IBM的成长引擎。沃森目前已经不仅仅满足于涉及糖尿病等慢病、大健康、医疗影像、体外检测、精准医疗、机器人、疾病研究治疗这几个领域,未来,沃森的触角还会伸到医疗的其他行业,为整个医疗行业服务。
中国版小小“沃森”不断面世
与IBM Watson十年的发展轨迹不同,中国在医学人工智能领域的发展属于追赶者。由于中国没有统一的医疗数据格式以及数据孤岛的隔离,中国在医学人工智能I域投放的资源相对要少很多。不过这并不妨碍国人对其发展的热情。在智能影像识别和诊断方面,中国已经出现了若干版本的小小“沃森”,他们的功能虽然没有IBM Watson那么强大,但也在各个领域显示出独特的应用价值。
浙江德尚韵兴图像科技有限公司是由浙江大学知名专家和珠海和佳医疗设备股份有限公司共同投资成立一家高科技公司。浙江德尚韵兴利用深度学习处理超声影像,同时加入旋转不变性等现代数学的概念,形成了“DE-超声机器人”。该机器人算法借助计算机视觉技术,可以对甲状腺B超快速扫描分析,圈出结节区域,并给出良性与恶性的判断,大大节省了医生的诊断时间。一般来说,人类医生的准确率为60%-70%,而当下算法的准确率已经达到85%。
据悉,人体甲状腺结节已成常见病,如果不加重视,甲状腺结节可能会发生恶变,进而发展成癌症,危及生命。但由于个体化差异,目前三甲医院甲状腺结节的诊断准确率平均也只有60%,如果不做活检,不同医生对同一张片子可能会做出不同判断。而超声机器人的出现,不仅能辅助医生做出精准判断,还能缩短病人就医时间,提升医疗效率。目前“DE-超声机器人”已经在浙江大学第一附属医院、中国电子科技集团公司第五十五所职工医院和杭州下城区社区医院临床应用,一年病例达到8万多,准确率达86%以上。
2017年2月,中山大学中山眼科中心刘奕志教授领衔中山大学联合西安电子科技大学的研究团队,利用深度学习算法,建立了“CC-Cruiser先天性白内障人工智能平台”。该人工智能程序模拟人脑,对大量的先天性白内障图片进行分析和深度学习,不断反馈提高诊断的准确性。将该程序嵌入云平台后,通过云平台上传图片,即可获得先天性白内障的诊断、风险评估和治疗方案。
据悉,先天性白内障是一种严重威胁儿童视力的疑难罕见病。中山眼科中心有全球最大的先天性白内障队列(队列人数近2000名),基于该队列开展了一系列严谨的研究,积累了大量高质量的先天性白内障临床数据。中山大学眼科中心于2017年4月设立“人工智能应用门诊”,由人工智能云平台辅助临床医师进行诊疗。在人工智能门诊就诊的患者,除接受常规诊疗外,其检查数据即时同步到CC-Cruiser云平台,同时享受由人工智能机器人提供的“专家级”诊疗。目前CC-Cruiser已在3家协作医院完成临床试点应用,并取得理想效果。此外,中山眼科中心已经连接了、新疆、云南、青海等边远省区上百家基层医院,每天有大量眼科检查数据上传云平台请求专家协助诊断。在医学人工智能应用场景下,病例以及图像数据将首先通过人工智能程序进行初审,再由专家复核,效率将提升70%以上,极大提高了专家协诊效率。
2017年5月,丁香园、中南大学湘雅二医院和大拿科技共同宣布就皮肤病人工智能辅助诊断达成独家战略合作,并了国内首个“皮肤病人工智能辅助诊断系统”。资料显示,系统性红斑狼疮是一种慢性自身免疫性疾病,属于风湿性疾病中的弥漫性结缔组织病,可引起全身多个脏器受累,包括皮肤、关节、肾脏、血液等。如何精准诊断系统性红斑狼疮,一直是困扰各国科学家的世界医学难题。
目前三方合作研发出的是红斑狼疮人工智能辅助诊断模型,该模型对红斑狼疮各种亚型及其鉴别诊断疾病能进行有效区分,识别准确率超过85%。据悉,该系统一方面是面向皮肤科医生,医生通过APP,把图像传到系统以后,系统提示最有可能的皮肤病类型,然后建立皮肤病电子百科全书,通过百科全书再去学习,辅助临床诊断;另一方面是面向患者,系统提供图片鉴别和导诊意见。据悉,该系统第一期主要实现以红斑狼疮为代表的皮肤病人工智能辅助诊断,下一步将“渗透”到其他医疗机构,并将开放患者端服务。
医学人工智能真正落地
需要全产业链配合
专家指出,要真正实现医疗产业的人工智能化,仅靠单方面的力量难以实现,这需要依托全产业链包括医疗主管部门、医疗机构的参与和信息化服务商等各个环节的共同努力。
比如像前文所述的甲状腺结节、红斑狼疮、先天性白内障的诊断,都要依靠形态学的图像数据,这些在皮肤病和病理科特别常见,所以人工智能的优势在此可以得到充分体现。训练一个好的皮肤科医生可能要十年,把人工智能引进后,可以大大缩短时间。但是医学人工智能研发成本高、数据获取难、尚未深入诊疗核心等成为阻碍其真正落地的因素。
人工智能技术形成产品,最重要是要有大量高质量的数据。深度学习靠的是“吃透”大量样本。但目前大部分医疗机构并不愿公开数据。比如前文介绍的德尚韵兴,为了收集数据,尝试通过多个渠道,有社区检查,有付费志愿者,也有试点医院。最后该公司收集了两三万张超声图像,不嗟厥淙胂低持胁疟Vち苏锒献既仿试85%以上。该公司负责人也评价到,如果样本量能提高一倍,诊断准确率还有较大的提升空间。
在获取高质量的医疗数据方面,国内医院在过去信息化程度不高,数据虽然多,但相对杂乱,使用难度大。如何找到合适的切入点,并快速获取数据会是一个很高的门槛。同时,医院信息孤岛现象长期存在,各个医疗机构的数据尚未实现互联互通。这一局面则逐步从政策层面迎来破冰。去年6月,国务院公布了《关于促进和规范健康医疗大数据应用发展的指导意见》,明确指出健康医疗大数据是国家重要的基础性战略资源,需要规范和推动健康医疗大数据融合共享、开放应用。但该政策的真正落地依然需要时间。
篇2
记者的一位朋友,从小受过专业围棋的训练,长大后又从事过很长一段时间程序员的工作,对于围棋的奥妙深有体会,因此在李世石与AlphaGo的人机大战开始前,他曾拍着胸脯说,对战的结果一定是5∶0,人类轻松获胜。可是事情的结果呢?事与愿违。通过此事,记者的这位朋友对于人工智能(AI)有了更新的认识。
不可否认,人工智能给人们带来了无穷无尽的想象空间。人工智能到底能给人类社会的发展带来多大影响?人们的工作和生活是否将从此产生质的飞跃?现在人工智能技术的发展到底进入到什么样的阶段?11月1日―2日,一年一度的C&C用户论坛暨iEXPO 2016在日本东京举行。我们或许能从这次大会一窥人工智能领域的新动向。
NEC主办的C&C用户论坛暨iEXPO大会今年已经是第20届,“Orchestrating a brighter world”(协同创造更美好的世界)成了本届大会最响亮的口号。NEC希望借助在人工智能和物联网(IoT)方面的诸多技术和产品创新,更好地肩负起构建安心、安全、高效、公平社会的责任。
改变已经发生
“人工智能市场的增长已经超出了人们的想象。”NEC全球总裁兼首席执行官新野隆在大会的主旨演讲中开宗明义,“人口增长带来的巨大压力,新型城镇化发展引发的各类社会问题,人与人、人与物之间广泛而复杂的连接……为了更好地解决这些问题,我们必须更充分、有效地利用ICT的创新。”
人类社会正面临一场新的数字化革命,而云计算、人工智能、可视化、大数据、安全、物联网等技术将成为支撑这一变革的技术驱动力。作为一个传统的ICT厂商,NEC将如何应对这一变革,扬长避短?NEC中国总代表兼日电(中国)有限公司总裁吉田直树表示:“我们的优势主要体现在具有很强的综合实力,凭借深厚的技术积淀,以及长年服务大型企业级客户累积的经验,可以为行业用户提供全面的针对其应用需求量身订制的解决方案。”
新野隆特别强调了NEC的三大技术优势――人工智能、连接性、网络安全。NEC在这些技术领域的许多创新之作都可以在本次大会的展示区看到。据NEC的工作人员介绍,往届大会的展示区通常是按技术和解决方案的类别来划分,而今年有了很大的改变,以助力数字化变革为核心,突破了技术间的界限,以蓝色、红色和绿色三种颜色来划分展区:蓝色代表“AI和IoT引发的数字化革命”,主要展示NEC在AI和IoT领域的最新技术成果;红色代表“加快数字化变革的先进技术”,主要包括大数据、网络安全、SDN和云平台;绿色代表“利用AI和IoT加速构建更美好的世界”,主要展示NEC的AI和IoT在制造、流通、通信、医疗、市场营销、安全、智慧城市等领域的成功应用。
在展区中,让记者印象最深刻的还是NEC在网络空间安全方面的技术创新和应用。人脸识别可以说是NEC最擅长的一项技术,不仅识别速度快,而且准确率极高,已经在机场、海关,以及涉及公共安全的很多应用场合得到了广泛部署。在人脸识别技术展台前,记者做了一次亲身体验。负责演示的技术人员现场用平板电脑给记者拍摄了一张照片,并上传到后台的数据库中,然后记者走到摄像头前,NEC的人脸识别系统几乎是瞬间就认出了记者。
其实,人脸识别在今天来看已经不是什么新鲜事,许多中国厂商也在这方面有所建树。“在人脸识别方面,我们会将其他厂商不做或做不到,但又是NEC所擅长的技术和解决方案带入中国市场,凸显自身的差异化竞争优势。”吉田直树介绍说,“我刚刚参加了在北京举行的2016中国国际社会公共安全产品博览会,目的是进一步了解中国客户的需求,以及中国同类厂商的动态。虽然很多厂商都可以提供针对特定个体的人脸识别解决方案,但是目前在数百人中快速找到特定的人还是一个难题,而这正是NEC的强项。”
NEC还将人工智能技术用于网络安全领域,探测未知的网络安全威胁。NEC的自主学习型系统异常监测技术,可以在攻击发生后到产生实际危害前的这一时间段内,及时发现系统异常并报警,从而尽量避免造成实际的安全损害。NEC已经将这套融入了人工智能的系统异常监测技术用于公司内部的16万台设备上,更好地保证了公司业务的正常运行。
人工智能在行动
在本次大会上,记者还看到NEC将人工智能用于健康和医疗、物流,以及智能工厂等诸多领域。比如,NEC将人工智能与可穿戴设备相结合,用于工厂的设备管理、业务流程控制,以及远程监控等,可以及时发现生产中的问题,持续提升生产效率。在物流行业,即使是一个新手,他只要通过一副智能眼镜和一块智能手表,就可以根据货运单的要求,准确找到货物存放的货架,然后将货物运送到指定的地点。这同样得益于NEC的人工智能技术与可穿戴设备相结合的解决方案。
其实,早在半个多世纪前,NEC就已经开始在可视化、分析、控制等领域展开了研究,尤其是在声音和图像识别、语义解析、机器学习、风险预测、控制和优化等方面取得了非常多的成果,并广泛应用于多个商业场景。这为今天NEC构建先进的人工智能技术群奠定了坚实的基础。在可视化、分析、控制和引导三大领域,NEC拥有多项世界领先或唯一的技术创新成果。
举例来说,在人工智能方面,应用了NEC世界最高精度的面部识别技术的出入境系统、可以察觉因肉眼无法发现的微小状态变化导致故障的飞机故障预警系统、基于机器学习技术的可精确预测订货需求的零售订货系统等,已经广泛应用于创造安心、安全环境的公共安全领域、大型社会基础设施的监控、强化企业营销、提升业务效率等方面。NEC希望通过人与人工智能技术的协调,最终实现生活的智慧化。
就在本次大会召开前,NEC刚刚了几款人工智能和物联网解决方案。NEC the WISE NeoFace Watch Image Data Mining可以快速对图像数据进行分析。据称这是目前世界上最快速、准确率最高的人脸识别解决方案。另外,像Auto Responses Solution可以更加准确地理解文本文件中上下文的意思。NEC the WISE IoT Platform提供了一个验证平台,让那些有关物联网应用方面的创意可以更快速地转化为商业化的产品。新野隆介绍说,NEC还与大阪大学、东京大学等高校合作开发用于人工智能方面的低功耗智能芯片等。NEC与通用集团合作推出的IoT方案已经在某些领域付诸实施。
上文提及的NEC最新推出的产品名前面都有“NEC the WISE”的字样,其实这是NEC今年正式的人工智能技术群的统一品牌名称。在本次大会的现场,“NEC the WISE”的标志无处不在。NEC the WISE表明,NEC将协调人与AI技术,为创造安心、安全、高效、公平的社会做出贡献。
人工智能的核心之一是数据。人工智能技术的应用必须与大数据有机地结合一起。吉田直树表示:“收集数据只是第一步,更重要地是如何对数据进行有效的分析和预测。从技术的角度讲,人工智能的推进要从两方面入手,一是基础技术研究,二是与实际应用相结合研发出针对不同行业和应用场景的解决方案。NEC在全球各地的研究院将主要精力放在人工智能基础技术研究方面。NEC与各国当地的合作伙伴,以及各行业的用户协作,共同开发适合不同行业需求的人工智能解决方案。”
NEC the WISE所代表的人工智能产品是NEC物联网整体解决方案的一部分,它还要与其他相关软硬件,以及行业应用需求紧密结合。未来,NEC会把物联网作为一个独立业务计算收入。
本次大会传递的信息十分明确:NEC将积极推进人工智能技术的开发与应用,并以大数据、物联网、安全、云计算等为核心,提供创新的解决方案,支持企业的数字化变革。本次大会也可以看作是NEC全面向人工智能和物联网领域进军的誓师大会。它为NEC未来十年甚至更长远的发展定下了基调――协同创造更加美好的世界。
差异化和本地化是关键
数字化转型、人工智能、物联网等都是当下最热门的话题,也是所有ICT厂商共同关注的焦点。对于NEC来说,挑战在于如何做出差异化,如何在中国市场上更好地实现本地化发展。
吉田直树讲述了NEC的原则:第一,人无我有,做别人没有的技术和产品,比如在大数据方面,很多厂商都可以做大数据的收集和处理,那么NEC就把重点放在大数据的分析和预测上;第二,在注重自主创新的基础上,加强同合作伙伴之间的协作创新,比如NEC与农业有机栽培方面的专业公司合作,利用ICT的创新改进西红柿的栽培,推而广之,就是将NEC在构建大型基础设施方面的经验与特定行业或应用领域专业公司的技术特长相结合,取长补短,实现理想的经济效益和社会效益。
结合NEC在中国的业务发展,上面的两条原则具体体现为,根据中国用户和市场的实际情况,选择最适合的合作和发展模式,提供差异化的产品和解决方案,寻找属于NEC的蓝海市场。
根据中国的具体情况,NEC将当前的发展重点放在了安全、流通和零售,以及智慧城市等领域。安全包括与政府相关的公共安全,以及企业内部的安全两个方面。NEC的策略是,积极与本地的伙伴合作,在一些自己拥有优势的细分安全领域进行投入。NEC在流通和零售行业的业务前景十分广阔。随着电子商务的快速发展,物流可能是一个新的瓶颈。NEC有针对物流行业的融入了人工智能和物联网技术的解决方案。另外,在便利店的管理方面,NEC也有先进的解决方案,比如很多便利用店的POS机就是NEC的产品。POS机是信息汇聚的一个源头,以后针对POS机的数据进行智能分析也是NEC的强项。
篇3
IBM大中华区董事长陈黎明表示:“商业人工智能的核心是解决关乎企业经营中生存和制胜的关键问题。以电子、能源、汽车、工业产品制造及相关服务产业为核心的实体经济是保持国家竞争力和经济健康发展的基础。技术的不断创新发展,不仅将带动这些行业的生产率提高和产品性能提升,还能催生新材料、新能源、新生物产品、等战略性新兴产业的发展。IBM从未停下技术探索的脚步,引领着人工智能、区块链、物联网等创新技术的发展,以此强化行业基础能力,促进产业转型升级,助力中国企业由大变强的历史跨越。”
下面请跟随笔者来看看IBM助力中国企业实现转型和升级的几个案例吧。
神思电子(以下简称神思)是中国领先的智能识别领域软硬一体化解决方案提供商。神思率先采用IBM Watson Explorer(WEX),基于分析洞察、推理、自然语言理解能力,重点选择了金融和医疗这两个长期服务的行业,锁定“智能客服”、“实体服务机器人”和“自助设备智能升级”三大领域,改造服务流程,降低人力成本,提升服务质量与效率。
神思副总裁井j表示:“从2016年起,我们就启动了‘从行业深耕到行业贯通、从智能识别到认知行业解决方案’的战略升级。神思与IBM一样,将思考与持续创新都根植于企业的基因之中,我们与IBM并肩合作,希望运用IBM Watson认知计算加速公司战略升级的步伐,打造国内领先的智能认知行业解决方案,加速国内商业人工智能的发展。”
默克(Merck)是一家先进的科技公司,专注于医药健康、生命科学和高性能材料三大领域。默克携手IBM打造全新智能物流与智能工厂,利用IBM Watson IoT技术,对于需要妥善储存和运输产品的钢瓶实现智能化管理。通过钢瓶传感器数据收集与分析,IBM帮助默克施监测和管理厂内或运输途中的钢瓶的数量、位置和温度,确保空瓶及时回收,同时针对钢瓶的使用和返回情况,实时洞察并预测未来的库存情况,以便科学合理地采购来满足日后的需求。这不仅帮助默克达成了钢瓶的自动监控及全程追踪,还挺高了所获结果的精准度,节省人力和时间,大大提升工厂运营的整体效率。
默克中国首席信息官朱皓峰表示:“默克一直致力于以技术为驱动力,为患者和客户创造价值。IBM作为世界领先企业,在技术创新和业务管理上的先进理念都与默克的核心信念不谋而合。因此我们选择IBM作为重要合作伙伴,推行全球物联网部署计划,并将中国作为试点,加速当地的电子材料厂智能升级,引领未来默克‘工业4.0’和智能制造产业变革。”
隆基泰和与IBM共同合作,借助Watson平台,利用物联网与人工智能技术,构建综合能源云平台,为工业商业企业构建360度完整的客户能耗视图,持续构建高耗能企业用能预测及能效水平的分析和洞察能力,提升与客户的交互体验,增强与客户粘性,深度挖掘云平台服务价值,助力隆基泰和实现对传统能源服务模式的突破,打造智慧能源服务体系。
篇4
人工智能诊治癌症的机理
利用人工智能诊治疾病是人类一个雄心勃勃的计划,而且,这一计划早就有一些初步结果,例如2007年,美国国际商业机器公司(IBM)就推出了人工智能软件――沃森医生(Watson)。现在,人们特别希望利用人工智能去征服某些严重危害人们生命和健康的疾病,如癌症,而且也已经进入实践,并且有不小的收获。
要让人工智能诊治癌症,第一步需要人工智能有像人一样的感知,即知道周围的环境,尤其是生物体和人的机体环境,什么是正常的机体,什么是异常的机体,甚至是癌变的机体,尤其是只具有微小变化的机体,例如,只有几个发生癌变细胞的乳腺或肺。
第二步是,人工智能不仅要感知正常和异常机体的不同,还要理解为何有这样的不同,是癌变引起的不同,还是其他疾病引起的不同。最后第三步才是判断和决策,即得出结论,在感知和正确理解的基础上,向医生提供对某个个体检测的结果,是患癌还是没有患癌,抑或是患了其他疾病。
要让人工智能感知和理解人体环境和器官,就要让其学习,包括利用大数据的机器学习(算法)和深度学习,这两者有时是相互结合的,同时也是相互渗透的。大数据学习和处理是人工智能的强项,可以达到比人类能力强几百倍几千倍的快速数据运算、分析和理解。而在癌症诊治的深度学习上,更需要人工智能像人一样进行学习,例如对通过物理和化学方式拍摄的人体各种部位,以及深浅度不同组织的图像要有正确的感知和理解,如对X线图像、磁共振成像和CT扫描图像的感知、解读,并得出结论,即诊断。
但是,人工智能的癌症诊治深度学习并不仅限于对癌症和正常组织图像的解读,而是包括更多的深度学习的内容,例如,对癌症标记物和特异分子的识别。
癌症诊治的人工智能学习内容
2016年1月,美国总统奥巴马宣布了“癌症登月计划”,由副总统拜登全面负责。“癌症登月计划”的其中一个项目就是让人工智能进行机器学习(算法)和深度学习,以识别癌症。为此,美国能源部与美国国家卫生研究院下属的国家癌症研究所合作,提出了“高级癌症计算解决方案的联合设计任务”,这个项目就是致力于解决三个基于计算机学习的人工智能抗癌难题。
首先是从认识癌症的分子层面学习,要让人工智能了解RAS/Raf通路的蛋白质相互作用。RAS基因在20世纪60年代被发现是致癌基因,存在于30%的癌症患者中。1982年,美国科学家温伯格等人从膀胱癌细胞中克隆得到第一个人类癌基因,由于它和之前发现的鼠肉瘤病毒基因C-RAS高度同源,因此被命名为RAS基因。RAS基因编码产生的蛋白定位于细胞膜内侧,为GTP/GDP结合蛋白(GDP为鸟嘌呤二核苷酸磷酸,GTP是鸟嘌呤三核苷酸磷酸),通过GTP与GDP的相互转化来调节信号通路的传递。由于RAS蛋白的相对分子量是21千道尔顿(kDa),故又被称为p21蛋白。
之后,人们又发现了RAS蛋白的直接效应因子Raf-1蛋白激酶。Raf-1激酶对细胞增殖、细胞分化、细胞凋亡和细胞周期停滞有重要作用,利用这些作用可以知道癌症的发生、发展,以及找到治疗癌症的药物和方法。
“癌症登月计划”让人工智能进行的第二个学习任务是,进行临床前的药物筛查。这是一种研发癌症药物的预测模型,在临床试验前进行最大化的药物筛选,为癌症病人提供精准医疗方案。具体而言是对临床前和临床试验时的癌症数据进行筛选,结合小鼠模型中的新数据,通过反馈循环让实验模型指导计算模型的设计,建立肿瘤药物反应的预测模型。其实,这也是基于特殊数据和大数据的学习和分析。
“癌症登月计划”让人工智能进行的第三个学习任务是,学习和建立人口模型。这就要求人工智能根据不同人群的生活方式、生活环境、所患癌症的种类、不同的医疗体系等,从数百万癌症病人的病历数据中自动分析,从而获取最佳治疗策略。当然,海量病人的数据来自美国国家卫生研究院、美国食品和药物管理局、制公司和第三方付款机构。
可以看到,美国的“癌症登月计划”中的人工智能学习并不包含肿瘤图像的识别,所以人工智能诊治癌症的学习在不同的国家有不同的内容。
人工智能帮助诊治癌症
人工智能对癌症的识别和诊断首先体现于对癌症数据的解读上,其中最重要的是对癌症基因和基因组的识别和解读。
机器学习(算法)是人工智能的一个基本内容,其中,数据的输入、输出、赋值等运算可以让人工智能对某一问题进行计算分析,从而得出初步结果。对癌症的诊断和治疗也可以利用这一点。加拿大西方大学的罗根等人研发了一套算法,通过对基因数据的分析得出最可能的有效治疗癌症的方案,并且让该治疗方案变得更加个性化。
研究人员使用了一套含有40个基因的数据,这些基因可以在90%的乳腺癌中找到。在接受试验的近350名癌症病人当中,至少都会接受紫杉醇或吉西他滨一种化疗药物治疗。之后,研究人员让人工智能对数据展开处理并找出药物与病人基因之间存在的关系。结果显示,同时接受两种药物的治疗有效率为84%,只接受紫杉醇的治疗有效率为82%,只接受吉西他滨的治疗有效率则在62%~71%之间。
这就为医生提供了选择更好或最佳治疗方案的决策基础,例如,在上述方案中,医生选择对病人同时使用紫杉醇和吉西他滨,可以达到最高的84%的治疗有效率。
2016年,日本研究人员称,他们开发的人工智能软件能够准确诊断出女性患者所患的罕见类型的白血病,而且,这种软件对肿瘤大数据的提取和分析是其优势之一,它仅需要花费10分钟时间就能够对临床肿瘤研究所提供的来自2000万名女性的遗传信息进行对比分析,从而做出诊断。
但是,最早开发应用于医疗领域的人工智能的美国国际商业机器公司更是走在了前面。
沃森癌症医生
美国国际商业机器公司之前推出的人工智能软件――沃森医生诊治疾病是建立在对大数据的检索、使用和算法之上。沃森医生储存了数百万的文档资料,包括字典、百科全书、新闻、文学以及其他可以建立知识库的参考材料。沃森的硬件配置可以使它每秒处理500GB的数据,相当于1秒阅读100万本书。
沃森在面临一位就诊者的时候,会进行一系列的算法,包括语法语义分析、对各个知识库进行搜索、提取备选答案、对备选答案证据搜寻、对证据强度的计算和综合等。此外,沃森医生还可以通过询问病人的症状、病史,迅速给出诊断提示和治疗意见。通过这些程序进行诊断,沃森的诊断准确率达到73%。
现在经过多年的改进,研究人员把沃森医生的突破之一选择为对癌症的识别和诊断。最近,美国国际商业机器公司和美国著名的基因公司Illumina进行合作,在沃森医生的基础上,专门进行癌症基因组的标准化测序和解读,以诊断癌症。根据这个目标,美国国际商业机器公司研发了一个新的专门对基因组进行测序和分析的软件,即沃森基因组(相当于专门诊治肿瘤的专科医生),并将这个软件整合到Illumina公司的Base Space和肿瘤测序计划中,这就可以让沃森基因组使用Illumina公司的实体肿瘤分析面板TruSight Tumor 170。TruSight Tumor 170汇集了一套整合DNA与RNA的靶向癌症相关的基因突变,包括突变与微缺失、基因扩增、基因融合以及剪接变异,使得肿瘤谱分析从一系列单基因检测向多基因检测转变,为肿瘤基因组提供了更加全面的视图。教会机器识别这些肿瘤基因数据,可以快速辨识和诊断肿瘤。
新的智能软件融合后,沃森基因组可以在短短的几分钟之内读取TruSight Tumor 170生成的遗传信息文件,梳理专业指南、医学文献、临床试验汇编和其他知识来源。然后,系统将生成包含每个基因组改变的注释报告。使用沃森基因组可以大幅减少解释结果所花费的时间。比较起来,研究人员也可以使用TruSight Tumor 170进行癌症基因的检测,但是,速度很慢。沃森基因组在几分钟内做的事情,研究人员一般需要一个多星期才能做完。
不仅在速度上沃森基因组可以比人类快得多,而且在检测的准确性以及提供治疗癌症的方式上,沃森基因组与临床大夫和肿瘤专家提供的方案基本一致。美国北卡罗来纳大学教堂山分校的夏普尼斯博士研究了1000余名癌症患者的数据,发现在99%的病例中,沃森基因组提出的治疗建议与分子肿瘤专家团队提出的治疗建议相同。此外,美国国际商业机器公司旗下的沃森健康的副总裁哈韦还指出,在30%的肿瘤病例中,沃森基因组还发现癌症专家遗漏的一些细节。
基于这些结果,研究人员认为,教会人工智能诊治肿瘤大有可为。现在,美国20个专注于基因组学和肿瘤学领域的癌症研究所,包括纪念斯隆・凯特林癌症中心和北卡罗来纳大学教堂山分校的肿瘤研究机构正在进一步培训沃森基因组,以便让沃森基因组能更快和更好地诊治癌症。
对癌症图像的智能解读
诊断癌症不仅要靠解读癌症特有的基因、分子标记物等,还要认识和判断采用各种物理和化学方式拍摄的人体肿瘤的图像,这既是人工智能深度学习的内容,又是人工智能帮助人类诊治癌症的一个重要途径,在这个方面,人工智能也取得了一些进展。
2016年8月,美国休斯顿卫理公会医院的研究人员在《癌症》杂志上发表文章称,他们研发的一款人工智能软件在解析乳腺X线图片时比普通医生快30倍,诊断乳腺癌的准确率更是高达99%。这个癌症诊断软件可以直观地将X光图片的信息转译成诊断信息,方便医生快速对病人病情做出判断,避免耽误病情。
即便是肿瘤科的专科医生,对诸如X线片、CT和核磁共振成像图片的解读都不会是百分之百的准确,而且有很多误读。美国疾病预防控制中心(CDC)和癌症协会的数据显示,每年美国大约有1210万人接受乳腺X线图片检测,其中差不多有一半人在X图片上会出现阳性结果,但实际上是假阳性。为此,又迫使大量女性为了求得安心而进一步接受乳腺活组织检查,进行这一检查的人每年有160万人左右,其中20%的女性根本就没病。这给许多女性和其家庭造成极大经济和精神负担。
为了改变这种状况,研究人员打算从人工智能着手来解决X线图片识别癌症的假阳性问题。卫理公会医院的研究人员设计的这个人工智能软件能够扫描病人的X线影像结果,能采集诊断特征,并将乳腺X线影像结果与乳腺癌亚型进行关联。此后,医生可使用软件的分析结果来精确预测每个病人是否有患乳腺癌的风险。
篇5
2007年8月,几个人工智能专家告诉IBM高级副总裁约翰・凯利(John Kelly III),他们要创建世界上第一个处理非结构化数据、可与人互动的人工智能系统。九年之后,这个系统成了IBM第四次转型的核心。
这个人工智能认知系统,就是今天声名大噪的Watson。命名为“Watson”,意在纪念IBM(NYSE: IBM)创始人Thomas J. Watson。
2011年Watson初次亮相,就打败了美国问答游戏电视节目《危险边缘》的连胜纪录保持者和最高奖金得主。这是IBM历史上继“深蓝”计算机在1997年打败国际象棋大师卡斯帕罗夫后,又一次成功挑战人类。赛后,IBM将Watson提升到公司级战略地位。
2014年,IBM专门组建了Watson部门,迄今已经在这个部门投入了数十亿美元,目前该部门拥有约1万名员工。
今年初,IBM董事长兼CEO罗睿兰(Ginni Rometty)宣布IBM正式进入这家公司历史上的第四次转型。转型目标是成为一家认知解决方案云平台公司。Watson是IBM此次征途的核心推手。
2011年IBM百年之际,英国《经济学人》周刊曾撰文总结IBM历史上的三次重大转型,分别是从机械制造到计算机制造、从大型机制造到包括个人电脑在内的分布式计算机系统、从计算到服务。
罗睿兰称,“未来五年,我们所作的每一个决策,无论个人,或是专业机构,都将受到Watson的协助。”
第三咨询机构Forrester首席分析师戴鲲告诉《财经》记者,Watson是IBM在人工智能领域的核心产品,也是加速其相关软硬件及云服务在各行业采用、延续其收入增长与利润水平的重要推动力。
如果一切顺利,IBM这家百年老店将再次上演大象跳舞式的转型。 商业化加速
10月底的Watson世界大会期间,IBM宣布了两个重要合作。一是将与汽车制造商通用汽车公司合作,Watson将为其新版车机系统OnStar提供技术支持;此外,IBM还将与全球教育机构培生合作,Watson可以为其学生提供自然语言下的学习指导。
通用和培生都是所在领域内的标志性用户,和它们达成合作,意味着Watson的商业化再下一城。此前数年,Watson仅在医疗等领域比较著名。今年,随着金融、零售、时尚、教育等多个行业标志性样本的出现,Watson的商业化版图正在悄然扩张。
罗睿兰曾乐观预测,到2017年底,全球将有10亿人使用到Watson的相关应用或服务。
外界亦看好Watson带给IBM的营收提升力。IBM目前并不单独披露Watson的财务数据,但证券研究机构瑞士银行估计,2016年,Watson将产生5亿美元的营收,并在未来几年保持快速增长,2020年将创下60亿美元的营收,而在2022年,数字更是上涨至170亿美元。
事实上,Watson带给IBM的收益将不仅限于Watson系统自身的收入,还包括Watson助推下的包括云服务业务、咨询服务在内的多个业务板块。
结合罗睿兰对全球认知技术的测算,认知技术市场目前有320亿美元的市场份额,这个数字在过去四年增长了16倍。智能决策的市场份额,到2025年,预计将达到2万亿美元。
这意味着,从2007年研发,经过十年布局,IBM终于要收获Watson了。
物联网是另一个商业增长实例。德国汽车零部件供应商舍弗勒集团(Schaeffler)正在利用Watson物联网平台改造其供应链、制造和销售等环节。仅在三季度,Watson物联网平台的新客户数量就增长了一倍。
需要强调的是,只有不断完善Watson的能力,IBM才能够说服客户转向IBM的云平台,与其竞争对手构建起真正的差异化,开拓更多市场。
医疗健康是Watson目前最强的领域。IBM Watson团队超过一半为医疗团队。从最早帕金森专项治疗,到利用医学影像 “狙击”癌症、糖尿病、心脏病等重大疾病,Watson的计算能力和对数据的分析能力,使得医疗行业最有可能先被颠覆。
不断吸收大量非结构化数据并学习是Watson成为全球医疗健康第一人工智能系统的秘诀所在。
2015年以来,IBM为了“喂饱”
Watson,宣布了多宗有关医疗健康领域的公司收购案,比如一家是可以查看5000万份美国患者病例的分析公司Explorys,另一家是提供云计算软件,可以把各种类型的健康数据进行处理,为医生提供数据方面分析的Phytel。此外,这份收购名单上还包括医疗数据公司Truven、医疗影像与临床系统提供商Merge Healthcare。这些公司拥有大量医疗数据,比如账单记录、病历、X射线和MRI(磁共振成像)图像等。
收购这些公司花费了IBM超过40亿美元,这相当于IBM 2016年单季度净利润的两倍。
IBM意图很明显――加强Watson在健康数据分析方面的能力。
此次Watson宣布进军更多垂直领域,给了投资者和市场无限想象力,它所隐含的挑战也正在于此。
Gartner分析师Tom Austin评论称,IBM给自己设定的目标很宏大,但可能需要花费数年的时间,以及昂贵的成本。 补齐短板
Watson解决方案与以往软件套装的模式不同,IBM将各种功能打包成API(应用程序编辑接口),根据企业需要进行调取。
Glenn Finch表示,“这就好像是乐高玩具,中间有很多的环节,能够组合在一起。”这意味着,在一段时间后,IBM可以支持40个不同的行业,数百个子行业的需求。
作为平台,Watson必须不断补充两个核心资源――基础数据和垂直行业领域的专业知识。
IBM正在加大这一投资。IBM已陆续收购了基础天气数据提供商The Weather Company、医疗与健康数据公司Truven Health Analytics、金融服务合规性方案提供商Promontory Financial Group等12家公司,投入收购资金超过50亿美元,而去年同期用于收购资金仅为821万美元。
分析师们认为,IBM会继续对能够产生数据的领域投入重金,并且这是一个长期行为。
对基础数据的收购,正在帮助Watson提升分析数据的能力。Watson正在为一家面包店可以根据天气的变化制定合理的生产策略,同时为一家化妆品公司分析下一季口红的流行色,甚至为一家巧克力公司创造新的口味。
对行业解决方案商的收购,则帮助IBM逐步完善Watson行业分析的能力。如对Promontory的收购,IBM希望其能为Watson增加金融监管的专业知识。用新的方法帮助金融业客户达到合规要求。
收购之外,合作也是一种路径。IBM通过与Twitter合作,可以获得社交网络的数据,用于Watson的大数据分析,就是典型的例子。
社交网络的数据正成为云计算厂商追逐的热点,尤其是那些过去与互联网联系不那么密切的IT厂商。
2016年,微软以262亿美元巨资收购职场社交网络LinkedIn;甲骨文携手腾讯落地中国市场,看中的也是后者在社交网络上的布局。
甲骨文中国区董事总经理李翰璋告诉《财经》记者,“腾讯有成熟的互联网经验,对PaaS和SaaS的发展起关键支撑作用。”
针对中国市场,IBM也正在寻求社交网络的合作伙伴,腾讯和新浪微博是其两个重要选项。
不仅如此,IBM还通过研发拓展Watson的能力。
10月26日,IBM宣布一系列新的产品策略和市场方案。一方面,利用Watson机器学习、自然语言处理等能力,丰富了数据处理、分析,以及移动化的使用场景;另一方面,在市场营销、商务、供应链和人力资源等垂直领域推出Watosn认知解决方案。这些方案与近期IBM推出的金融、法规和教育等方案,构成了一系列可商业化的产品阵列。
在认知技术的帮助下,传统产业的流程得以改造。IBM称,一家大型制药公司通过应用“认知预测与计划”引擎,可以快速甄别新的机遇和风险,从而作出投资决策。其预测准确性从80%提升至99%,产生超过1亿美元的增量利润。
IBM甚至决定将Watson发展成为一个新的生态系统。未来不仅将向Watson引入更多的开发人员、大学、企业参与,扩展认知技术的应用范围,而且在恰当的时机建设针对不同行业的专有平台,从上到下打通数据。
补足短板后,Watson已经形成的群聚效应会更加明显。到2017年底,Watson应用覆盖人数将达到10亿,这令Watson提升企业竞争力,进而改变行业成为可能。
Watson作为全球人工智能最高水平的代表,技术创新和商业模式创新的边界似乎无限。
阿里云人工智能首席科学家闵万里认为,人工智能的一大挑战是从分析学习人类逻辑思考能力上升到情感等更加不具备逻辑性的维度,这也是Watson新的挑战和机会所在。 转型利器
Watson平台孕育十年之久, 2016年1月,罗睿兰在消费电子展上宣布,IBM将成为一家认知解决方案云平台公司。在这个转型目标中,Watson是核心主角。
Watson已经成为全球人工智能的主要玩家。但是,IDC预测,到2020年,全球60%的人工智能应用程序将在四个公司的平台上运行,它们是亚马逊、谷歌、微软和IBM。
与亚马逊、谷歌和微软不同,这三大巨头的人工智能产品与服务处于增值地位,而Watson则处于IBM的主流地位。
罗睿兰表示,未来企业将因具有认知能力而获得差异化竞争优势。
IBM意识到,Watson自身的强大并不足以完成转型。IBM需要Watson来推动增长。该公司的营收已连续18个季度出现下降。
从具体业务板块来看,Watson、数据分析和云计算等新型业务正在增长,但这个进程还不够快,无法完全弥补其在传统硬件、软件和服务上的萎缩。
IBM的今年三季度财报显示,代表新兴业务的认知解决方案部门营收同比增长5%,但作为传统业务的硬件系统部门却同比下滑21%。
IBM决策层对这样的过渡阶段似乎已有预期。为了保证转型效率,罗睿兰一面出售低利润和亏损的业务,一面调整组织结构,增加大数据、云计算等领域的投入。IBM近年来卖出了80亿美元的业务,同时收购了50多家公司。
不过,某大型国际IT公司副总裁认为,IBM将Watson放在战略核心并非创新战略理念,他向《财经》记者表示,“以大数据为主体的分析已经成为产业标配,无论是AI(人工智能)还是BI(商业智能)。单独提出来更像是一种市场营销的策略。”
但一位前IBM中国区高层评价,这些有计划、有价值的收购,对IBM彻底转型成为一家人工智能公司十分有益,难点是这些投资也拖累了IBM的短期业绩,局面几年后才能扭转。
IBM需要在能够带来现金流的传统业务及能够带来未来的认知商业中做平衡。
IBM大中华区董事长陈黎明向《财经》记者表示,IBM既要保障传统的客户和市场,也要向云计算和认知技术投资。担心说得不够明白,他又打了个比方:“既要赚到面包和黄油,又要盯着地平线方向在发生什么,那是我们的未来。”
但眼下,陈黎明亦强调,认知计算(Watson)不是一个孤立的技术,它带给IBM的是一连串战略上的联动效应。
在组织和业务架构上,Watson团队和IBM其他团队已经融合作战。
IBM大中华区全球企业咨询服务部副总裁徐习明此前接受《财经》记者采访时透露,面对一个企业客户,IBM要确保能够提供一个完善的、整套解决方案,这需由各个业务单元共同组成――包括前端的咨询服务、提供基础设施的硬件系统、大数据、云以及安全等部门协同完成。
从产品体系来说,Watson不再是单独销售的产品,而是作为一种API,开发者可以从云平台上获取其功能。
戴鲲表示,云平台弹性伸缩的广泛服务能力和大规模实时数据处理能力是人工智能的必要保证,基于深度学习的预测分析等技术的人工智能,提升各行业产生客户的产业观察、体验和运营决策。
Watson的发展正在反哺IBM云业务。2014年,IBM基于开源项目Cloud Foundry推出了PaaS云平台Bluemix。Watson作为特色云服务之一,与物联网、区块链等集成进入Bluemix平台,这些成为了IBM混合云服务的核心。
IBM近两年针对混合云的部署,重新设计和开发了集成服务器、存储和软件等传统关键业务,并针对混合云的环境设计了多种版本的服务。
Bluemix分为本地、专属和公众三个版本,分别用于企业防火墙后、公共数据中心的独立机柜,以及公有云平台不同环境。
与此同时,一些第三方SaaS(软件即服务)应用生态基于此生根发芽。一家名为“Wayblazer”的初创企业正借助Watson为其客户精准定制旅行计划;日本软银集团研发的机器人Pepper的大脑就是Watson;教育机构芝麻街使用Watson对学生的学习材料进行个性化甄选……
可以说,IBM现在正全力把Watson云平台与其他企业级生态互联互通。罗睿兰强调,在Watson的生态圈里,IBM只是其中一员。
IBM决策层还在持续探索Watson和IBM其他业务融合的可能性。数月前的一个内部会议上,罗睿兰问IBM区块链首席技术官:“Watson和区块链是否可以融合做出更多意想不到的商业应用?”
按照罗睿兰的计划,IBM2018年超过40%的收入将来自业务分析、云计算、网络安全、社交网络设计和移动技术的公司市场。
这一目标正在被快速接近。IBM今年10月公布的2016年三季度财报数据显示,IBM第三财季营收为192.26亿美元,净利润为28.53亿美元,虽然同比依然下滑,但云业务营收同比增长74%。此前,IBM已经连续七个财季业绩超出华尔街分析师预期。原因在于云业务增长强劲。
接下来,IBM和罗睿兰需要面对的最大难题是如何停止已经超过18个季度的营收下滑。
中国的一位大型云平台服务商创始人向《财经》记者评价,IBM并不会因为眼前的低迷而衰落。
原因有二:其一,IBM是一家矩阵式的公司,是集体自由的。它跟微软完全不同,微软的老板太牛了,而IBM是一家没有老板的公司,这种公司很难死;其二,IBM的组织架构令整个公司的研发体系非常强大,研发和产品能力强大,公司CEO的职责更倾向于销售和市场。
篇6
VR巨头统领市场
在经历前几年的概念热潮之后,整个VR领域已经完成一轮洗牌,早期进入市场的一些低端品牌逐步出局,人才和资金向正在有价值的、方向正确的公司聚拢。
HTC在本届展会上了Vive的新配件Vive追踪器,可以与兼容设备搭配使其成为VR设备。其基本原理与HTC Vive的手柄相同,通过多个点确定出立体空间坐标。
不过,PSVR、HTC Vive、Oculus Rift三大VR巨头并没有完全堵住市场可能性,对于这三家以外的公司,差异化将使其获得一定的市场空间,与三大VR巨头合作也正在成为趋势。
英特尔用一场沉浸式虚拟现实会首次展示了用英特尔虚拟现实技术进行体育赛事的现场直播。据悉,英特尔计划在今年晚些时候把VOKE VR引入Oculus Rift。英特尔将是率先在多个VR设备上实现体育直播的技术提供商之一。此外,英特尔和一家计算机视觉公司HypeVR宣布进行合作,双方计划在2017年把HypeVR的立体视频内容引入Alloy项目。2016年8月的Alloy项目是一个一体化融合现实解决方案,无缝地融合现实世界和虚拟世界。
人工智能助推汽车智能化
S着自动驾驶、无人机、可穿戴设备、智能终端、健康医疗、无线互联、智能家庭和物联网进入整个消费技术生态系统的大潮来临,“人工智能”成为今年CES最为热门的关键词。
虽然消费者无法直接看到人工智能,但是人工智能的卖点主要在于提升产品体验,比如机器学习能力、自然语言处理能力、数据分析的结合能力,从而让产品更贴心更个性。这一点在汽车领域得到验证。
在本届展会上,众多汽车和互联网企业都将多种浸入式车内信息和娱乐体验产品,而这些都是建立在人工智能基础上的最新技术。如采埃孚(ZF)宣布与英伟达(NVIDIA)合作开发ProAI系统。它可以通过深度学习处理来自汽车传感器和摄像头的数据,清晰识别周围环境,在高清地图上精确定位,为车辆规划并自动化驾驶。而作为全球领先的汽车和车载信息娱乐半导体解决方案提供商,高通在本届展会了骁龙835处理器,这是首款采用10纳米FinFET工艺节点实现商用制造的移动平台,能为顶级系列的消费与企业级终端提供下一代娱乐体验和联网云服务支持。同时,高通旗下的恩智浦半导体NXP Semiconductors N.V宣布推出SAF4000,这是全球首款全集成式软件定义的无线电解决方案,能够兼容包括AM/FM、DAB+、DRM(+)以及HD在内的全球所有广播音频标准。这种新的IC以单个超紧凑型RFCMOS设备取代了现今使用的多芯片解决方案,体现了在简化高性能信息娱乐平台开发方面实现的重大突破。
而在整车方面,丰田在展会现场首发了“TOYOTA Concept-爱i”人工智能概念车,该车通过把驾驶员情绪和喜好集合成大数据,并与行驶数据结合起来形成“Emotion Map”,向驾驶员提出有乐趣的线路方案以及共享其他驾驶员的数据,从而提供一种安全的探索未知的驾驶乐趣。同时,乐视战略伙伴法拉第未来也在CES展上正式首款量产汽车FF91。据悉,FF91能够持续感知并主动学习用户的行为习惯,具备自动泊车、智能升降3D激光雷达、面部识别等技术。
在可预见的几年,涵盖人工智能的自动驾驶和车载智能系统依旧将会是CES汽车领域的主流主题。
中国智造竞逐亮相
对于越来越多的中国厂商而言,参展CES已成为每年的固定节目。众多中国智能终端与硬件厂商都把CES作为新产品的世界级平台。据美国消费技术协会统计,此次展会将有超过1300多家中国公司参展,在参展商总数中的占比超过1/3。
除了乐视炫酷的FF91亮相之外,中国手机厂商在CES 2017展会上的表现有不少亮点可寻。“硬件魔头”华硕了两款重磅手机产品ZenFone 3 Zoom与ZenFone AR,前者主打长焦双摄高续航;后者主打AR与VR。中兴利用个性化定制这一噱头,正式一款由用户直接参与产品开发、设计到上市全过程的手机“鹰眼”,并将在美国Kickstarter平台开启预定,有望在2017年Q3面向全球发货。
对于中国手机军团而言,CES乃提升海外知名度的关键战役,海外市场依旧会是2017年主要比拼的方向,鉴于国内市场的相对饱和,海外无疑存在更广阔的机会,这也就是为什么每年华为、小米、中兴都会选择亮相国际型展会的原因。
篇7
2021年,全球将会拥有18亿台PC,86亿台移动设备,157亿台物联网设备。而到2035年,物联网设备的数量将会超过1万亿台,相应的数据数量将会增长2400倍,从1 EB增长到2.3ZB。如何有效管理、控制和利用如此浩瀚的数据,人工智能是解决之道。因此,业界有了“得AI者得天下”一说。
正如英特尔公司副总裁、数据中心事业部数据中心解决方案部门总经理Jason Waxman在一次人工智能的会议上所言:“人工智能将变革企业业务运营方式以及人类与世界的交互方式。从海量数据分析中创造业务洞察,人工智能正在扮演着越来越重要的角色,并不断推动着行业的变革和转型。人类历史上一个伟大的时代正在到来。”
2016年,产业巨头们都将目光和资源投向人工智能领域。例如百度的无人驾驶汽车、微软开发的虚拟助手APP以及乐视推出的LeEco人工智能生态手机无一不是基于人工智能。特别是阿里,推出了ET机器人,拥有智能语音识别、图像或视频识别、情感分析等技术,这个机器人甚至被包装为“20年后马云的接班人”。
据不完全统计,2016年,中国的人工智能企业有709家,新增创业公司约有250家,与人工智能相关的投融资事件达到了近50起。于是有人称2016年为人工智能元年。
2016年,对于人工智能来说,更多的是褒扬和喧嚣。但是人工智能真的是无所不能?可以为所欲为吗?
Northpointe 公司开发了设计了一个被称为“少数派报告类型”人工智能系统,用以预测被指控的罪犯再次犯罪的几率。这一系统一问世便被指控带有种族偏见,因为相比于其它种族,黑人罪犯被标注为未来可能再次犯罪的概率要大得多。
7 月,一个由 Knightscope 平台所创造的一个所谓的“打击犯罪机器人”在硅谷的一家商场里使一个 16 月大的男童受伤。机器人伤人事件在2016年深圳高交会上也同样发生过一起。
5月,在佛罗里达的一条高速公路上,一位驾驶者乘坐一辆开启了 Autopilot 模式的特斯拉与一辆拖车发生了碰撞并最终陨命。
一系列的负面事件说明人工智能还有很大的缺陷和不足,更不能为所欲为。360董事长周鸿说,人工智能是风口也是泡沫,对人工智能要有客观理性的认识。人工智能不是在各个领域都能用,要找到深度学习、适合解题的领域。
那么在即将到来的2017年,人工智能会有怎样的发展轨迹呢?一家名为Datamation的网站进行了预测,指出了人工智能一些可能的热点应用领域
聊天机器人。在TechEmergence进行的一项2016年调查中,询问了人工智能的高管和创业者,什么人工智能应用在未来五年内可能会获得成功,而2017年将是普及之年。
应用开发。越来越多的企业正在将人工智能和深度学习功能集成到他们的Web应用、移动应用和内部的企业应用中。Gartner预计,到2018年,全球最大的 200家企业大多数都会利用智能应用,并使用大数据的完整工具包和分析工具,来优化自身的产品和改善客户体验。
医学研究。IDC在其《全球半年度认知/人工智能支出指南》中将诊断和治疗系统列为2016年吸引最多投资的领域之一,并表示在未来五年内,包括药物研究和发现以及诊断和治疗系统的使用案例将获得最大的发展。并预测在未来五年期间医疗健康人工智能投资的年复合增长率为69.3%。
智能硬件。英特尔最近详细描述了其将人工智能功能构建到其芯片中的努力,愿景是使人工智能“人人都能使用”(available for all)。其他开发商正在研究人工智能自动驾驶车辆、机器人和无人机。IDC预测,智能硬件收入将在未来五年内以超过60%的复合年增长率增长。
篇8
与此同时,互联网创业进入下半场的争夺渐成共识。其背后的逻辑是移动互联网人口红利和流量红利的衰竭:怀疑越来越多,超常规的高速增长还会重现吗?新的机会将出现在什么地方?
过去7年,移动互联网红利催生了创新创业热潮,带动一批中国企业成为独角兽、十角兽,也让腾讯、阿里巴巴等互联网早期创业公司攀上了一个又一个市值高峰。
正是在这复杂因素交织的转折点上,创业邦连续第八年展开公司调研,评选出年度最受瞩目的100家创新成长型初创公司。我们进行了持续的行业梳理,并调研了近400家创业公司和200多位投资人、数十家机构,从中发现了创业投资的风向和趋势。在此基础上,依据行业前景、创新潜力、团队能力、可持续增长能力,我们从中精选出了100家最具代表性的公司构成2016年“中国创新成长企业100强”(创业邦100)榜单。
进入榜单的100家企业广泛分布于前沿科技、大消费、内容创业、企业服务、金融等大主题当中,其中前沿科技、内容创业公司在今年格外抢眼。
前沿科技:主要涵盖VR/AR、人工智能、机器人、医疗科技、智能驾驶这五个行业,其中人工智能类公司最多,且主要为机器视觉、语音识别及其行业应用公司,如Face++、出门问问、思必驰等。移动互联网的繁荣使数据积累达到了前所未有的规模,给人工智能的爆发做好了铺垫;而人工智能技术与不同行业(如医疗、金融、教育等)对接应用,有望碰撞出更多的创业机会,也将对未来社会产生深刻影响。从某种意义上来说,这就是以终为始,过去未去,未来已来。
内容创业:移动互联网流量红利终结,新的传播形态产生,越来越细微具体的精神文化需要,这三个前提以及资本的冲动带来了2016年内容创业领域的集体亢奋。最为耀眼的是新媒体、移动直播、短视频、游戏电竞、网络综艺、互联网影视制作与发行公司的繁荣。“创业邦100”一共选取了17家内容创业公司,而只要上述前提不变,内容创业仍将继续繁荣。
大消费或消费升级:代际迁移,85后、90后甚至00后渐成为社会主流群体,新的消费圈层、消费观念和需求推动着新品牌、新电商、生活方式、教育、旅游等行业的发展。这将是一个长期的创业投资趋势,而今年有22家“创业邦100”企业正在这个方向上努力。
篇9
2021年行动计划
为落实2021年市委1号文和《南京市关于加快应用场景开发建设2021年行动方案》(宁新产业办〔2021〕1号)要求,2021年全市将1000个应用场景,其中下达我区80个以上应用场景的目标任务,为确保目标任务顺利完成,特制定本行动计划。
一、总体要求
应用场景一般是指在城市基础设施建设运营管理、产业发展、民生服务等领域,对新技术新产品有应用需求的各类工程、项目。通过应用场景开发建设,可以推进新技术新产品的示范应用和迭代升级,助力新技术新产品推广应用。
——在搭建主体上。应用场景可分为产业发展、城市治理、民生服务等类别,不完全由政府主导,更强调政府“搭台”,企业“出题”和“答题”。搭建主体可包括政府部门、事业单位、团体组织、企业等各类主体。
——在技术应用上。通过对5G、人工智能、云计算、大数据、区块链、工业互联网、量子通信等产业链领域先进技术的应用,通过系统性解决方案完成搭建,促进新产品新技术的落地验证或迭代升级。
——在项目特质上。应用场景必须具备开放性和吸附性,通过对外合作,完成场景建设。通过场景建设,对外输出可复制推广的成功经验和模式。
——在建设方案上。应用场景必须有明确具体的建设方案和投资主体,经过论证项目切实可行,一般为在建项目,或者已经具备建设实施的基本条件即将开工建设的项目。
二、主要目标
加快5G、人工智能、区块链、大数据、工业互联网、量子通信等先进技术集成创新和融合应用,提高城市治理能力和精细化管理水平,促进产业转型发展,培育和壮大新增长极,保障和改善民生,为各类市场主体创新成果应用提供更多市场机遇,有力支撑更高水平现代化国际性城市中心建设。2021年,围绕产业发展、城市治理、民生服务等领域80个以上的应用场景。
三、重点任务
(一)围绕产业发展,开发一批经济数字化应用场景
1. 拓展数字化制造场景。加大智能制造装备、新能源汽车等产业链应用场景开发力度。围绕数据采集和感知、高清视频、机器视觉、精准远程操控、现场辅助、数字孪生等六类典型应用场景,鼓励制造业企业积极探索“5G+工业互联网”融合应用,推动智能化、数字化转型。实施企业内网升级工程,引导和支持重点企业应用5G、IPv6、TSN、工业PON等新技术部署企业内网,实现生产设备的广泛互联和数据互通。加快促进省市重大科技成果转化,支持未来网络与实体经济深度融合,深化工业互联网在先进制造业领域的应用。(责任单位:区发改委,各园区)
2. 拓展数字化文旅场景。结合零售、餐饮、出行等服务业数字化转型,加大应用场景开发力度,助推平台经济、共享经济、在线经济等新兴服务经济发展。围绕内容创作、设计展示、信息服务、消费体验等文化领域关键环节,推动人工智能、大数据、超高清视频、5G、VR等技术应用,促进传统文化产业数字化升级,培育新型文化业态和文化消费模式。深挖采集重点旅游区域基础数据,导入VR、AR能力,建设以社交媒体为主导的营销渠道,为游客提供个性化智能服务。(责任单位:区文旅局、商务局,区委宣传部,各园区)
3. 拓展数字化消费场景。提升潮流街区数字化消费场景,激发数字消费潜力。积极引入新零售新服务业态,打造汇集5G应用、刷脸支付、网红直播为一体的新消费商圈,建设环境舒适、购物便捷、科技感强的网红街区,塑造城市消费新形态。推广直播线上带货等新场景,推动无接触服务向住宿、生鲜零售、物流、金融等应用场景延伸。(责任单位:区商务局,各园区)
4. 拓展数字化金融场景。引导金融机构积极探索应用区块链、人工智能等技术,提高金融行业运转效率、优化服务流程、降低交易成本、保障交易安全。建设数字金融平台,丰富平台应用场景,持续优化平台各功能板块,将平台打造为以技术驱动、生态共建、数据融合、价值共享为特色的数字金融平台。引导金融行业在智能客服、智能身份识别、智能营销、智能风控、智能投顾、智能量化交易等业务中,拓展“人工智能+金融”应用场景,形成标准化、模块化、智能化、精准化的风险控制系统。(责任单位:区金融监管局,各园区)
(二)围绕城市治理,开发一批治理数字化应用场景
5. 智慧政务。探索运用区块链等技术提升数据共享和业务协同能力,重点推进电子证照、电子档案、数字身份等居民个人信息的全链条共享应用。打造企业服务平台,实现惠企政策与企业精准匹配,推出数字化服务企业的应用场景。强化新技术在“互联网+”监管领域的应用,推动实现线上监管和“非接触式”监管。(责任单位:区行政审批局、发改委、信息中心,各园区、街道)
6. 智慧警务。建设市域社会治理现代化指挥中心,打造智慧警务应用生态和智慧家园平台,推进智能安防建设。推进政法各部门间的数据共享和业务协同以及执法监督、法律服务、特殊人群管理等全方位联动应用。以人工智能、大数据、物联网、5G等前沿科技为重点,构建符合现代警务机制和社会治理要求的新一代智慧警务体系,做强智慧警务支撑。(责任单位:区委政法委、建邺公安分局、区司法局,各园区、街道)
7. 智慧交通。聚焦汽车自动驾驶与交通安全、智慧公路建设、城市交通靶向治理等领域,推动5G、大数据、云计算、人工智能、北斗导航等技术在智慧交通的应用示范。实施数据驱动打造“新型公交都市”行动计划。聚焦智慧轨道交通建设与运营等典型应用场景,围绕智慧车辆、智能维护、智慧建设、智慧制造等,推动机器人、环境智能感知及控制、智能安检、北斗导航、5G、建筑信息模型(BIM)等技术在轨道交通项目中推广应用。(责任单位:区发改委、建设局,各园区)
8. 智慧生态。积极参与全市生态环境智慧应用平台建设,健全水灾害监测预警、灾害防治、应急救援体系。支持大气、水、土壤等生态环境质量监测与评估,污染物及温室气体排放控制与污染源监管等领域关键产品研发与集成示范应用,持续推动环境质量改善,切实维护生态安全。积极建设“智慧园林一张图”。(责任单位:区发改委、生态环境局、城管局,各园区、街道)
9. 智慧应急管理。建设城市安全综合应用系统,开展城市风险多变量预警分析模型研制和城市风险源标注。开展危化品全流程管理信息化系统建设,形成企业安全信用脸谱,深化建设应用,强化指挥信息网安全边界防护,推进融合通信系统建设。(责任单位:区应急管理局、信息中心,各园区、街道)
10. 智慧城管。建设城管大数据运行管理平台,推进系统同构、数据同构,提升协同治理效能、问题预警发现能力和处置效率。加大生活垃圾分类投放收运等关键产品研发与集成示范应用力度,科技助力垃圾分类。建设服务城市精细化管理及城市安防、交通管理的智慧灯杆,拓展智慧停车、智慧井盖等应用场景。(责任单位:区城管局、城管水务集团,各园区、街道)
11. 智慧建设。构建建设工程综合服务管理平台,实现建设工程全流程、全区域、全要素监管。推动先进技术赋能城市建设和建筑业应用场景的开发。(责任单位:区建设局、城建集团,各园区、街道)
12. 新型基础设施。推进城市公共基础设施数字化建设改造。加快交通、水电气热等市政领域数字终端、系统改造建设。加快5G网络规模部署和商业应用,推进车站、社区、商场等重点区域5G基站和配套网络建设,推进骨干网、城域网扩容,推动家庭宽带千兆、百兆接入普及。推进工业、交通、物流等重点领域物联感知设施部署。探索开展无人机、机器人运转所需配套设施建设。(责任单位:区发改委、建设局、城建集团,各园区、街道)
(三)围绕民生服务,开发一批民生数字化应用场景
13. 聚焦社区生活。开展“美丽家园”行动,加强人工智能技术在车牌识别、人脸识别、区域管控、异常行为分析等方面融合应用,推进住宅小区尤其是老旧小区安防监控设备增设和改造。逐步提升小区特别是老旧小区的数字化和智慧化水平,利用智慧家园(智慧物业)管理平台,实现政务服务协同化、业主自治在线化、居民生活便捷化。(责任单位:区房产局、公安分局、新城房产集团,各街道)
14. 聚焦医疗健康。在医疗健康领域引入人工智能、5G、区块链、物联网、身份认证等技术,加快推进“智慧医院”“互联网医院”建设,围绕医院智能化管理、智能化诊疗等关键环节,加快预导诊机器人、语音录入、人工智能辅助诊疗等技术布局,推动医院内部流程再造,提高医疗质量和效率。拓展云计算、人工智能等技术在影像读片、病症筛查、远程医疗等领域的应用场景建设。(责任单位:区卫健委,各园区、街道)
15. 聚焦现代教育。探索人工智能、区块链、5G等先进技术在教育领域的应用场景开发开放。推动未来教室建设、综合素质评价、在线学习、学业测评、体能测评、校园安全、招生和培训等方面的智能化工作,逐渐形成教育大数据,通过大数据分析推动教育现代化。建设以移动终端、智慧教室、智慧校园、智慧教育云等为主要标志的智慧教育环境,推动场景示范应用。(责任单位:区教育局,各园区、街道)
16. 聚焦智慧房产。以全国住房租赁市场发展试点为契机,着重打造市场监测、租赁监管、智慧物业、智慧房安等智慧房产重点示范子项目应用,协同探索城市治理新模式。(责任单位:区房产局,各园区、街道)
17. 聚焦智慧水务和电力。推动信息技术与水务业务深化融合,基本完成智慧水务总体框架搭建,统筹推进水务调度、排水管理、河湖管理应用系统开发,建成智慧水务平台。鼓励面向智能配电网的5G技术融合应用,实施智能化管理,进行实时监测和预警,提高电网安全性和经济性。(责任单位:区水务局,各相关园区、街道)
18. 聚焦智慧文体。不断提升文化科技融合建设水平,发展数字出版、游戏动漫、影音娱乐、小视频、直播等一批文创应用场景建设。丰富工业设计、工艺设计、建筑设计、环境设计等多元化场景内容。(责任单位:区委宣传部、区文旅局,各园区、街道)
附表:1. 重点应用场景项目登记表
2. 重点应用场景项目汇总表
附表1
重点应用场景项目登记表
应用场景
项目名称
应用场景
所在区域
建邺区
应用场景
所属领域
¨产业发展:(具体细分领域)
¨城市治理:(具体细分领域)
¨民生服务:(具体细分领域)
¨其他领域:(具体细分领域)
应用场景
搭建单位
搭建单位简介
注:不超过150字
搭建单位性质
¨国家机关 ¨事业单位 ¨社会团体 ¨国有企业 ¨民营企业
¨外资企业 ¨其他(请注明)
搭建单位联系人
姓 名
手机号码
应用场景简介
注:不超过200字
应用场景
建设实施方案
一、建设背景和可行性分析
二、建设思路和目标
包括对产业发展的示范带动,对本地新技术、新产品的集聚与使用等。
三、建设主体及建设内容
四、进度安排
五、资金概算
六、保障措施(其它)
可另附页
照片
请提供搭建单位宣传图片1-2张,应用场景项目图片1-2张,照片不小于1MB,照片不要复制在WORD文档中,连同该表放在同一文件夹中一并提交。(如有视频,也可提供)
附表2
重点应用场景项目汇总表
序号
应用场景
所属类别
具体细分领域
应用场景建设区域
应用场景项目名称
应用场景
搭建单位
项目起止日期
项目投资额 (万元)
应用场景概述(不超过200字)
欢迎合作
的方向
是否有本区企业参与(具体合作情况)
是否应用南京市创新产品(产品名称及使用情况)
联系人
联系
方式
1
城市治理
智慧
政务
XX区
XX
单位全称
2020.03-
2023.03
3000
例:以物联网、云计算、大数据、人工智能等为支撑,建设数据中台和业务中台,加快各类信息资源的整合共享。项目建设将为南京市软件企业提供新技术研究和新产品应用机会。
……
例:1、物联网感知层技术
2、大数据分析与挖掘技术
3、人工智能计算机视觉技术
4、数字孪生技术
……
……
……
XX
填:手机号码
2
篇10
解词
人工智能(A r t i f i c i a l Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
论调
2016年是人工智能概念提出60周年。对于人工智能,斯蒂芬・霍金博士评论道:“真正的人工智能技术,将是人类历史上最了不起的发明。”
2016年3月初,经过7天的鏖战,谷歌的“阿尔法狗”(AlphaGo)在人机围棋大赛中大胜韩国九段李世石,彰显了当代人工智能的飞速进展和强大实力,也给无数人的心灵震撼一击。
同时,其他巨头的人工智能产品也都在不断显露锋芒。2016年4月,阿里云人工智能程序小Ai成功预测了《我是歌手》第四季总决赛的前三名,并在最终对决中成功预测李玟夺冠;微软的人工智能系统实现了“看图讲故事”;百度的“百度大脑”已经达到4岁孩子的智力水平,百度无人汽车已在路况复杂的北京五环路上试行,应急表现优于司机;度秘机器人已经入驻上海虹桥的肯德基概念店,直接为客人点餐,等等。
看上去,这些人工智能离大规模普及似乎还需较长时间,实际上,随着人工智能与大数据、物联网、机器人、生物医药、虚拟现实等新兴产业结合,它对其他产业乃至社会经济的渗透速度,将会越来越快。
当前,新一轮科技革命和产业变革正在孕育兴起。从2016年11月召开的第三届世界互联网大会来看,世界互联网科技的创新正在呈现出愈加趋向前沿科技竞争的方向。前沿技术的创新作为互联网行业的“风向标”,几乎决定了整个互联网的发展高度。
2016年10月,奥巴马主持白宫前沿峰会,展望美国在未来50年的发展。白宫在峰会上《国家人工智能研究与发展策略规划》报告,旨在把人工智能计划的全部潜能用来强化经济及改善社会。不仅如此,欧盟委员会也宣布,“人脑工程项目”入选欧盟“未来新兴旗舰技术项目”。
而中国对人工智能的重视程度与扶持力度也在持续提升。2015年7月的《国务院关于积极推进“互联网+”行动的指导意见》,明确指出要重点发展人工智能在家居、终端、汽车、机器人等领域的应用;“十三五”规划中将人工智能上升为国家战略;2016年5月,国家发改委、中央网信办等联合印发《“互联网+”人工智能三年行动实施方案》……毋庸置疑,未来人工智能技术的发展与飞跃,将极大地改变世界面貌,改变人们的生活方式。
电报从发明到推广用了20年;电话从发明到推广用了不到10年时间;而当前计算机软件的研发和推广,常常连几个月时间都用不到――2017年1月初,在AlphaGo的升级版化身“神秘棋手”Master以60胜0负1平的战绩横扫人类围棋高手之后,人工智能百度大脑又险胜“世界记忆大师”――互联网在进入下半场的同时,新的一幕在2017年被揭开,人工智能激动人心,充满无限可能。
记事
当前,一股席卷全球的人工智能热潮正扑面而来,无论是硅谷的创业公司、大学及科研机构,还是世界科技巨头谷歌、微软及百度都纷纷在人工智能领域投入大量人力物力,着手进行前瞻性研究。
AlphaGo大胜李世石
2016年3月15日,谷歌人工智能围棋软件AlphaGo与韩国名将李世石的第五场对战结束,AlphaGo以4:1的总比分大胜李世石。3月9日到15日,AlphaGo与李世石一共大战五局,前三局AlphaGo大胜,第四局李世石扭转了败势,但第五局李世石再次失利。
作为中华民族传承已久的棋类游戏,围棋一直以来都被业内公认为是一块计算机无法攻克的高地。回顾这场吸睛全球的人机大战,其意义已经远超围棋,人们热衷于谈论AlphaGo,更多的是出于对人工智能技术的关切。
2016年3月12日,《经济学人》刊发题为《人工智能和围棋一决胜负》的文章指出,不同于1997年深蓝对弈的国际象棋,AlphaGo对弈的围棋更加复杂,每下一步后能产生的可能性也更多。但AlphaGo背后的算法在比赛中已经显示出自己的优势。通过深度学习,它已经能模拟人类下棋,拥有“直觉”,并能给出下一步的最佳策略选择。深度学习是未来通用人工智能必不可少的部分,目前已经有众多公司在这一领域投入资金和精力。未来,我们可以期待深度学习在人脸识别、语音识别甚至是医疗领域的应用。
百度大脑险胜“世界记忆大师”
2017年1月6日晚,江苏卫视播出的第四季《最强大脑》节目中迎来一位特殊选手――百度派出搭载百度大脑的人工智能机器人“小度”,挑战最强大脑的名人堂选手。经过两小时比赛,“小度”凭借在人工智能和人脸识别领域的深厚积累,以3:2险胜人类最强大脑的代表王峰。
百度大脑“小度”的背后是万亿级的参数、千亿样本和千亿特征训练,能模拟人脑的工作机制,学习训练极其复杂的模型。
此前,百度董事长兼CEO李彦宏也在《最强大脑》第四季预告片中表示,如果最强大脑是人类脑力极限的代表,那么百度大脑是人工智能高水平的代表。无论输赢,都会对人工智能的技术发展做出突破性的贡献。
- 上一篇:劳动经济学研究生方向
- 下一篇:对外经济与贸易专业
相关期刊
精品范文
10医疗安全管理知识