高分子材料的研究进展范文
时间:2023-12-18 17:58:14
导语:如何才能写好一篇高分子材料的研究进展,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:可降解高分子材料;光降解;生物降解;光-生物降解
随着经济的发展和人们生活节奏的加快,塑料饭盒、塑料袋等一次性产品开始频繁出现在人们的日常生活中,它们在给人们的生活带来便利的同时,也因其非自然降解性造成了极大的环境问题,即“白色污染”。“白色污染”既是一种视觉污染,也会影响土壤、空气、水体等的质量,因此努力合成并推广使用可降解高分子材料成为当务之急。按照降解机理,可降解高分子材料可分为光降解高分子材料、生物降解高分子材料和光-生物双降解高分析材料三大类。
1.光降解高分子材料
光降解高分子材料的特征是含有光敏基团,可吸收紫外线发生光化学反应,在太阳光的照射下,发生分子链的断裂和分解,由大分子变成小分子。
向塑料基体中加入光敏剂是目前使用比较多的制备光降解塑料的方法。光降解引发剂可以是过渡金属的各种化合物,如:卤化物、脂肪酸盐、酯、多核芳香族化合物等。很多学者都发现TiO2对聚丙烯的光降解有明显的催化作用,等人[1]分析了加有锐钛矿型纳米二氧化钛的聚丙烯纤维在人工加速紫外光降解和自然光降解过程中拉伸断裂伸长率和表面形态的变化情况,得出锐钛矿型纳米TiO2可作为聚丙烯的一种高效光敏剂的结论。除了TiO2,还有很多其它光敏剂,如硬脂酸铈、硬脂酸铁、N,N-二丁基二硫代氨基甲酸铁、硬脂酸锰等均对聚乙烯薄膜有显著的光敏化作用效果。
在高分子中添加光敏剂制得改性高分子虽然能降解,但只是部分降解,而化学合成的羰基聚合物、Et/CO等,则能完全降解。一氧化碳和烯烃的交替共聚产物——聚酮,因为分子链中含有大量以酮形式存在的羰基,容易在紫外光的照射下发生光降解,羰基键附近的碳链断裂生成酮类、烯类及一氧化碳等低分子物质并返回到物质循环圈中,不存在环境污染,是一种新型的环境友好材料[2]。且有实验证明,分子量大、结晶度低的聚酮光降解性能更好。
2.生物降解高分子
生物降解材料包含完全生物降解高分子和生物破坏性高分子,前者是指在微生物作用下,在一定时间内能完全分解成二氧化碳和水的化合物;而后者在微生物作用下,仅能被分解成散落碎片。
2.1 淀粉降解塑料
淀粉是天然高分子化合物,具有可再生、价格便宜、生物降解性等优点,成为近年来研究的热点。淀粉降解塑料泛指组成中含有淀粉或其衍生物的塑料,发展至今已经过了四个时期:填充型淀粉塑料,光/生物双降解型塑料,共混型塑料和全淀粉热塑性塑料。
填充型淀粉塑料一般是烯烃类聚合物中加入廉价的淀粉作为填充剂,其中淀粉含量在10%30%,仅淀粉能降解,被填充的PE、PVC等塑料需要几百年才能达到完全生物降解。光/生物双降解型是由光敏剂、淀粉、合成树脂及少量助剂等制成,其降解机理是先降解的淀粉可使高聚物母体变得疏松,增大表面/体积比,同时光敏剂、促氧剂等物质被光、热、氧引发,发生光氧化和自氧化作用,导致高聚物分子量下降并被微生物消化[3]。接下来人们发现,通过共混能解决淀粉粘性高、抗湿性低及与一些聚合物不相容等缺点,于是开始将淀粉与聚烯烃类等一些不可降解聚合物混合来提高淀粉的强度,但这类产品不能完全降解;后来便试图将其与PCL、PEG等可降解聚合物共混,制得了很多可完全降解材料。全淀粉热塑性塑料含淀粉70%-90%,其余组成是一些可光降解的加工助剂,使用后能在环境中完全降解,但天然淀粉不具有热塑性,必须先利用物理场作用使其分子结构无序化后才能在塑料机械中加工成型。
2.2 化学合成型生物降解高分子[4]
酯基在自然界中容易被微生物或酶分解,所以常采用含有酯基结构的脂肪族聚酯来合成生物降解高分子材料,工业化的有聚乳酸和聚己内酯。
聚乳酸是以淀粉、糖蜜等为原料,发酵制得的易生物降解的热塑性材料,因乳酸存在一个羟基和一个羧基,可通过缩聚反应直接转换成低分子量聚酯,再通过选择适宜的聚合条件来合成目标分子量的聚合物。聚乳酸具有良好的生物可降解性、相容性、透明性、机械性能及物理性能等,被视为新世纪最有发展前途的新型包装材料。聚己内酯也是脂肪族聚酯中应用较为广泛的一种可降解高分子材料,通过己内酯的开环聚合制得,是一种半结晶型聚合物,室温下为橡胶态,具有很好的柔韧性、加工性和生物相容性,土壤中掩埋一年后能被微生物降解掉95%左右,降解产物是二氧化碳和水,被认为是环境友好包装材料。
2.3微生物合成的完全生物降解高分子[21-26]
微生物合成高分子材料是通过用葡萄糖或淀粉类喂养,微生物在体内发酵合成的一类有机高分子材料,主要包括微生物多糖、微生物聚酯和聚氨基酸等。
γ-聚谷氨酸就是利用微生物发酵生成的一种多功能生物高分子,具有生物相容性、可降解、无毒副作用等特性,可用于制备高吸水性树脂,作为一种治疗骨质疏松的重要载体、药物缓释材料,吸附重金属等,具有广泛的应用前景[5]。聚羟基脂肪酸酯是一类由很多细菌在非平衡生长条件(如缺氧、磷等)下合成的线性聚酯,可作为碳源和能源的贮藏性物质,增强细菌的生存能力,在自然界中可被微生物和特定的酶降解为二氧化碳和水,并且具有热可塑性、生物可再生、生物相容性、光学异构性等,可作为生物医用材料、日常消费用塑料制品、生物可降解包装材料、生物能源,已成为可降解生物材料领域研究的热点。
3.光/生物双降解高分子材料
顾名思义,光/生物双降解高分子材料同时具有光、生物双降解功能,将光降解机理与生物降解机理结合起来,可以使二者优缺点互补,达到更好的降解效果。其制备方法主要是在通用高分子材料中添加光敏剂、自动氧化剂、抗氧剂和生物降解助剂等。目前研究比较多的有淀粉和光敏剂光降解树脂合成的光/生物双降解淀粉塑料及可控降解剂共混改性法制得的改性可控光/生物双降解聚丙烯纤维制品等。光/生物双降解淀粉塑料前面已提过,此处不再赘述,而可控双降解聚丙烯纤维制品凭借着其可控降解性、存放性、无毒性等众多优点,必将具有巨大的发展前景。
4.结语
随着“白色污染”的日益加重和石油资源的日益枯竭,加大对高分子废弃物的回收利用率和研制出高效的降解技术都是有效的解决途径,但只有研究出可自然降解的高分子材料才能从根本上解决这些问题,且光-生物双降解高分子材料凭借着其独特的优势将会成为今后的研究重点之一。(作者单位:郑州大学材料科学与工程学院)
参考文献:
[1] ,严玉蓉,赵耀明.纳米二氧化钛催化光降解聚丙烯纤维的研究[J].合成材料老化与应用,2005,34(1):8-12.
[2] 邹丽萍.绿色高分子材料聚酮的合成研究[D].昆明:昆明理工大学,2007:1-5.
[3] 范良兵.淀粉降解塑料的制备及性能的研究[D].广东:华南理工大学,2010:1-8.
篇2
关键词: 民族院校 《高分子材料进展》 教学方法
《高分子材料进展》课程是高分子材料专业的一门知识全面且内容丰富的专业限选课程。该课程以高分子物理、有机化学、聚合物材料研究方法、高分子化学、聚合物合成工艺等课程为基础,涉及面极为广泛[1]。课程总学时为32学时,参考教材为化学工业出版社出版的《高分子材料进展》,为研究生规划教材,全书共分为5章,分别简要地介绍高分子材料合成反应、高分子合成反应实施技术、多组分高分子材料、液晶高分子材料及功能高分子材料方面的研究进展。[2]考虑到《高分子材料进展》课程是高分子专业在大三的上学期开设,而且民族院校学生的专业基础较为薄弱,课程学时短的特点,因此重点讲解高分子材料领域中的发展重点和热点。本课程的教学目的是帮助学生对异彩纷呈的高分子材料发展的热点领域有一个相对完整的了解,达到开阔视野的目的。针对《高分子材料进展》课程涉及知识面广、学生基础差及对考查课不重视的特点,有必要在教学过程中不断改进教学方法和考试模式,以期获得较好的教学效果。[3]
一、本民族院校《高分子材料进展》课程的基本情况
针对我校民族学生基础知识薄弱,而《高分子材料进展》课程“内容多、范围广、课时少”的特点,我们重点介绍高分子材料中发展迅速、发展前景广阔的功能高分子材料,推荐的教材有《高分子材料进展》和《功能高分子材料》[4]等。该课程总学时为32学时,学分为2学分,课程类型为专业限选课,课程以高分子材料的合成方法进展、吸附分离功能高分子材料、高分子分离膜与膜分离技术、导电高分子、感光性高分子和医用高分子材料等功能高分子材料的进展为重点学习内容,同时穿插一些国内外近几年新发表的文献和专利,以及国内相关会议等。本教学采用多媒体教学方式,采用课堂提问和讨论等多种形式进行学习,期末通过考查的方式考核学生,采用写论文与平时成绩相结合的方法,平时成绩包括上课出勤和课堂讨论情况,论文成绩与平时成绩各占70%和30%。表1为《高分子材料进展》教学内容的设置及学时分配情况。
表1 《高分子材料进展》教学内容的设置及学时分配
二、强化基础,突出重点
首先,《高分子材料进展》授课内容看似丰富多彩,千变万化,但是万变不离其宗,归根到底都是由高分子专业的基础知识衍生出来的,比如《高分子物理》、《高分子化学》中的经典理论和概念等。从另一个角度看这些材料的出现印证了基础知识的重要性,它们的诞生是经得起检验的理论和概念的应用和发展的。因此通过介绍高分子材料的前沿进展,既使学生对异彩纷呈的高分子材料世界有一定宽度的了解,又从深度上加强学生对基础知识的理解和掌握,使学生知道这些材料是如何得到的,自己又能通过什么途径得到想要的材料。
其次,因为《高分子材料进展》这门课的每一章都是高分子材料领域中发展迅速、成果颇丰的较大分支,独立出来都能独立设课,而在本课程中必须在几个课时内讲完,所以在授课过程中,什么该讲,什么略过,讲的这些内容是否能激发学生的兴趣,是该课程的一个教学难点,要求教师对这些前沿分支有全面而深入的理解,对它们所涉及的基础知识熟练掌握,这对教师的专业知识和教学方法提出了更高要求。
三、调动学生的学习积极性,启发式教学
《高分子材料进展》是学生在已经掌握高分子化学、高分子物理基础知识的前提下进行的学习。内容除了基本概念之外,有很多设计路线、研究方法,可以引导学生运用已学知识进行思考。比如第3章吸附分离高分子材料和第4章高分子分离膜及膜分离技术中涉及自由体积和渗透压的概念,这些都是《高分子物理》中学过的内容,通过回忆这些知识,使学生加深对这些基础知识的理解,并对基础知识的应用有一定的了解。其次,要注意生活中的实际例子或新闻报道中的最新科技进展中与所讲述内容相关的部分,通过联系生活实际,引出将要介绍的高分子材料。这样既能让学生认识到这类高分子材料的重要性,提高学习的积极性,又能让学生了解到这类材料的最新的研究成果,提高对科学研究的兴趣。如从全球都非常关注的环保问题出发,引出废水和废气处理方面的高分子吸附材料或高分子膜材料,介绍这些高分子材料的设计路线和原理,让学生从理论和实际相结合的角度深入理解所学的功能高分子知识。同时可以提出一些生活中材料的不足,让学生发挥主观能动性,提出解决这些材料不足之处的方法或设计新的功能高分子材料的想法。这样,学生的学习兴趣会大大提高,教学效果也会得到显著增强。
另外,还要有效利用网络资源,紧跟最新研究进展,适当补充新的教学内容。高分子材料进展课程是综述高分子材料领域发展热点的一门课程,所介绍的内容每隔一段时间可能都有新的研究成果诞生,我们应根据情况适当补充那些热门和重要的研究成果到教学内容中。比如该课的学时少,可以在课程快结束的几周时间重点介绍一些最新的前沿进展和相关会议,让学生了解到高分子材料的发展趋势,提高学生对高分子材料的兴趣。互联网资源丰富,内容更新快,是老师补充教学内容的最佳途径。目前,利用网络资源作为课堂教学的辅助手段,是学生喜闻乐见的形式。老师可以提供一些高分子专业的权威网页,方便学生浏览查阅。同时,可以鼓励学生在网上搜索最新的研究成果,再在课堂上以口头报告的形式传达给学生。这样,既能让学生对高分子材料进行全面的了解,又能让学生主动地参与教学,达到较好的教学效果。
四、科研与教学相结合,以科研促进教学
把科研引入本科教学是培养大学生创新能力的重要措施,也是高等教育的显著特点。在《高分子材料进展》课程本科教学过程中,正确有效地将教学与科研相结合,有利于提高教学效率,丰富教学内容,营造学术氛围并提高创新能力,全面提高教学质量。教师在课堂教学中可以介绍自己的科研成果,介绍本专业课题组正在研究探索的科研项目,引导学生参观实验室和课题组,鼓励学生积极参与到教师的科研中。例如,作者介绍自己硕士和博士期间所从事的科学研究,以及科研小组的一些趣闻趣事,激发学生的学习热情和学习兴趣。
总之,在高分子材料进展课程的教学过程中,教师首先应进行教材分析和学情分析,再采用比较适合的教学方法,在知识和技能的传授中针对民族学生基础差的弱点,采取强化基础、突出重点的教学方式,了解学生的情感态度与价值观,做到教学方法灵活多样,教学内容及时更新,这样才能调动学生的学习积极性和主动性。教师还应继续努力提高业务能力,理论联系实际,使学生在这门课程的学习中得到切实的收获。
参考文献:
[1]周立,孙荣欣.科技信息.2010,21,151.
[2]张留成,闫卫东,王家喜.高分子材料进展[M].北京:化学工业出版社,2005.
篇3
[关键字]PLA骨钉;生物可降解材料;金属合金材料;内置骨固定材料;二次手术;并发症
[ABSTRACT]In biomedical polymer material field, biodegradable materials increasingly attracted people’s attention. Biocompatibility, no need to reoperation of biodegradable materials bone-screw was becoming hotspot. This paper reviews the bone-screw materials by metal alloy to biodegradable materials, and the development of the PLA’s performance and modification, currently PLA bone-screw research achievements.
[Key words]PLA bone-screw; biodegradable materials;metal alloy materials;the field of medicine; a second surgery; complications
1综述
骨钉是一种骨内固定物,具有固定、维持骨折处的稳定的作用。[1]骨折愈合的基本病理过程包括骨折局部血肿机化、骨痂形成和骨塑形成3个阶段。根据Wolf定律,生物学骨折固定的要求为:在骨折愈合早期使骨断端坚强固定;在骨痂形成期(临床愈合期)使骨折断端有微动;在骨折临床愈合后进入骨塑形期,骨折局部应有应力通过等。[2]即骨折内固定物必须具有在骨折处最小移动的几何对齐、传递压力功能和避免过度拉或剪切应力通过的作用。
随着现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)则有着极其相似的化学结构,具有良好的物理-机械性能,一定的生物相容性及简便的生产、加工成型特性,使其在生物医用领域占绝对优势。其中,生物可降解高分子最引人注目。因为医用高分子除具有一定的强度、刚度、韧性及生物学相容性外,还必须具备一定的生物降解性,以便被生物体内吸收或排泄,可以免除患者需二次手术的痛苦。[3]骨钉也由原来的金属合金骨钉向生物可降解材料骨钉发展。
1.1骨钉材料的发展
60年代初,骨折部位的内固定并不是用骨钉,而是用骨水泥粘接。初期的骨水泥是聚甲基丙烯酸甲酯(PMMA),PMMA生物稳定,如果固定失败,将很难从骨中除去而对人体产生不良影响。于是发展了非骨水泥方法用螺钉代替粘接,以求早期固定,一旦待新生骨向预留孔隙间生长达到一足应力要求后,金属螺钉将被取出。[4]以金属螺钉作为骨的内固定物标志着固定的诞生。重点介绍骨钉材料的两种类型。
1.1.1金属型
金属合金材料(不锈钢、钴基合金、钛合金等)骨钉具有良好的力学性能,能实现早期的坚强固定,尤其是承受重力的骨,疗效可靠。但其有三个显著的缺点:①由于金属合金材料骨钉的力学性能和人体致密骨的不匹配,而且其力学性能不能随骨折愈合过程而动态变化,出现了医学上的“应力遮挡效应”,导致骨质疏松或自身骨退化,影响骨愈合后的强度。[5]②这种金属合金材料材质决定了其长期埋入人体组织体液内,易于电解磨损和腐蚀,导致局部的炎症反应和组织坏死。③金属合金材料骨钉需要进行二次去除手术,增加患者经济、心理及身体上的负担。
90年代初,生物陶瓷引起了人们的重视。在骨钉领域也得到了应用。在金属合金材料骨钉表面涂上一层Al2O3或ZrO2陶瓷涂层,其隔绝了金属与骨组织等直接,避免了上述金属合金材料骨钉的前两个缺点。而且含有人体骨组织等形成的化学元素成分的陶瓷涂层直接和骨组织等形成了矿化物的结合,对生物相容性差的金属合金材料骨钉意义重大。
非晶金刚石涂层具有优良的耐用性,即使一些骨钉被安装了很多次也没有明显的分层。由于涂层的惰性和生物多样性使得机体产生最低限度的反应,提高骨连接的速率。
无论是生物陶瓷涂层,还是非晶金刚石涂层,这些无机涂层对在一定程度上提高了金属合金材料骨钉的性能。
1.1.2生物可降解材料骨钉
随着现代医学的发展,生物可降解材料现己成为骨内固定材料研究的热点。
生物可降解性骨钉具有生物可降解吸收性和力学性能的衰减性,免除患者需二次手术的痛苦。生物可降解性骨钉的三个优势恰好是金属合金材料骨钉的缺点。在理论上最符合骨折生物学固定的要求。
使用高强度的可降解吸收性材料作骨内固定材料,在骨折早期能实现坚强固定,随着自身骨的愈合,可降解材料的强度、刚度不断衰减,其载荷可逐步转到新生骨上,满足骨折愈合动力学的要求。克服了应力遮挡,提高了自身骨的修复效果。因此,高强度的可降解吸收性骨内固定材料在骨内固定治疗中具有重要的科学意义和广阔的应用前景。[2]
在体内能被降解吸收的有机低分子化合物有许多,但具备骨折内固定物所需要的理化特性的却仅有很少几种。比较适宜的是聚乳酸(PLA)、聚乙醇酸和聚对二氧六环。除了这些同聚体外,各种聚乙醇酸和聚乳酸的共聚体也必被广泛试用。这些化合物在化学结构上属α-聚酯。[6]特别值得一提的是,聚己内酯(PCL)作为骨钉已应用于临床。
可吸收固定物的价格昂贵。一付55mm纤维增强棒的价格是同型号金属表层多孔螺丝的15倍。一根欧洲进口的生物可降解材料骨钉需要一千多元。
1.2目前PLA骨钉的研究成果
1.2.1聚乳酸(PLA)
聚乳酸(PLA),也称聚丙交酯,是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,聚乳酸制品废弃后在土壤或水中,3O天内[7]会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,不污染环境,这对保护环境非常有利,是公认的环境友好材料。因此,聚乳酸是一种真正意义上的能完全降解的生物环保材料,被视为继金属材料、无机材料、高分子材料之后的“第四类新材料”[8]。
PLA是一种重要的脂肪族聚酯类生物降解材料,无毒、无刺激,具有良好的生物相容性,在生物医学领域被广泛用作组织工程、人体器官、药物控制释放、仿生智能等材料。然而,PLA存在不少缺陷,比如性脆(纯的PLA断裂伸长率仅为6%[9])、耐冲击性差、在自然条件下降解速率较慢、与软组织的相容性差、合成过程较为复杂造成产品价位高等,不利于PLA的广泛应用。因此,对PLA进行改性制备PLA基生物降解性高分子材料成为高分子材料研发的热点。[10]PLA改性方法主要有物理改性:如填充、增塑、共混;化学改性:如嵌段共聚、接枝共聚。
尤其是PLA的脆性大、抗冲击性差极大的限制了其在骨钉领域的发展,因此,需要对其进行增韧改性。增韧改性可以通过共混和共聚两大类方法来进行。其中,共混增韧是获得新型聚合物材料的最有效方法,且投入少,见效快,效益高。PLA与PBS(聚丁二酸丁二醇酯)、PBAT(聚己二酸-对苯二甲酸丁二酯)等可生物降解树脂共混,材料受到冲击时,内部会形成微裂纹而吸收大量的能量,从而起到很好的增韧效果。[11]共聚增韧是通过与其他单体进行共聚反应,在PLA分子链上引入另一种分子链,降低分子链的规整度,或者削弱高分子链间的相互作用力,可提高PLA的抗冲击性能。
1.2.2 PLA骨钉的研究成果
大多数的PLA骨钉研究结果表明,在一定时间内,PLA骨钉和金属合金材料骨钉的治疗效果无显著性差别,但PLA骨钉不需要二次取出手术显示了明显的优势。这种优势使得PLA骨钉、PCL骨钉等生物可降解材料骨钉的研究日益受到重视。
Bostman在五年内治疗了881例不同类型的骨折患者。在相同的治疗时间内,与ASIF型钉板固定作比较,结果表明无明显差异。Verkeyen等人用羟基磷灰石充填聚乳酸(PLLA-HA)材料,研究表明,其具有很高的压缩强度和抗张强度。[12]1984年Tormala等研制出自增强聚羟基乙酸和自增强聚L乳酸等可吸收性骨内固定复合材料,其强度可与ASIF相媲美,已应用于临床治疗脚部骨折。[12]
浙江温州市第三人民医院胸心外科邹宗望[13]等用左旋聚乳酸骨钉对19例多发性肋骨骨折患者治疗,结果均治愈且无并发症。Partio等[14]用左旋聚乳酸螺丝固定51例多处骨折患者无一失败。
但在众多研究成果出现的同时,有的研究发现,PLA骨钉植入体内会引发并发症。Bostman等[15]查阅了一个创伤中心516例用聚乙醇酸或聚乙醇酸和聚乳酸共聚物制作棒治疗患者的情况,经过统计得:固定失败需再次进行手术的概率为1.2%,切口细菌感染率为1.7%,迟发非细菌性炎性组织反应需手术引流率为7.7%。迟发炎症反应的主要特点是相当持久,手术后近期内患者没有局部或全身因创口问题的特征。之后,在愈合创口上突然产生疼痛、红斑及波动性脓肿。骨折固定至临床反应出现平均时间为12周(7-12周)。据文献[16]报道,PLLA植入人体3年后,在缓慢降解的后期出现炎症和肿胀并发症。
1.3总结
目前,虽然金属合金骨钉技术已经非常成熟,但是生物可降解材料骨钉不可比拟的优势――生物可降解吸收性、力学性能的衰减性和免除患者需二次手术痛苦,正在推动其迅速发展。PLA的脆性、抗冲击性差、在自然条件下降解速率较慢、与软组织的相容性差、合成过程较为复杂造成产品价位高等限制了其发展,尤其脆性、抗冲击性差极大阻碍了其作为骨钉的临床应用,所以对PLA进行增韧改性,使其具有骨钉高强度、高抗冲击性能的要求。目前,PLA骨钉已成为研究的热点。众多研究表明,同一时期内,PLA骨钉固定骨折的效果和金属合金材料无明显差别,而且无需进行二次手术。但也有少部分研究表明PLA骨钉将引发并发症,这将有待进一步的实验研究。
参考文献:
[1] Arto Koistinen, Seppo S. Santavirta, Heikki Kro¨ ger, Reijo Lappalainen. Effect of bone mineral density and amorphous diamond coatings on insertion torque of bone screws.Biomaterials 26 (2005) 56875694.
[2]艾永平等.可降解骨内固定材料研究进展.中国组织工程研究与临床康复,2008,12,49.
[3]傅杰等.生物可降解高分子材料在医学领域的应用(1).武汉工业大学学报,1999,21,2.
[4]王远亮等.生物可降解聚乳酸骨科材料研究进展.功能材料,1995,26,6.
[5]刘东钱等.浅谈可吸收骨内固定材料在骨科临床应用中的利弊.基层医学论坛,2006,10,6.
[6]季卫平.可吸收骨折固定物的研究进展.国外医学生物医学工程册,1992,15,3.
[7],杨云翠,张小英.聚乳酸的合成及降解机理的研究.科学之友:下旬,2009,6,115.
[8]雷燕湘.聚乳酸技术与市场现状及发展前景.当代石油石化,2007,15,1.
[9]曾方,王文广,夏邦富.可生物降解高分子材料的研究进展及应用.塑料制造,2006,8,33.
[10]杨小玲,王珊,张卫红.聚乳酸基生物降解性高分子材料在医用领域的研究进展.中国生化药物杂志,2010,1,59.
[11]强涛,于德梅.聚乳酸增韧研究进展.高分子材料科学与工程,2010,26,9
[12]王元亮,赵建华.生物可降解聚乳酸骨科材料研究进展.功能材料
[13] Qiu, Hongjin; Yang, Jian; Kodali, Pradeep; Koh, Jason; Ameer, Guillermo A. A citric acid-based hydroxyapatite composite for orthopedic implants.2007,10,27.
[14]邹宗望,杨美高等.可吸收肋骨钉内固定治疗多发性肋骨骨折.新医学,2008,39,5.
[15]Partio Ek,et al.Acta Orthop Scandinavica Supplementum 1990,237,43.
篇4
关键词:高分子塑料;成型工艺;分析探讨;未来发展
中图分类号:TB32 文献标识码:A
一、高分子塑料的概述
1高分子塑料定义
高分子塑料是指以高分子化合物为主要成分的所有材料。从物理概念来说,高分子化合物的分子量应该在1000以上。目前我们所使用的塑料,它就是一种合成的高分子化合物,一般把它称之为高分子或者巨分子,它是利用单体原料以合成或缩合反应聚合而成的,并由合成树脂及填料、稳定剂、色料等添加剂组合而成的。而根据它的特点来说,它可以自由改变形体样式。
2高分子塑料的特性
单就高分子塑料的特性来说,除了它可以自由改变形体样式以外,它还具有一定的粘弹性,它在外力作用下会发生高弹性变形和粘性流动,其变形与时间有关。还具体低强度和高比强度。一般地高分子塑料强度很低,但是由于它的密度很低,所以比强度较高。
除此之外,还有一定的高耐磨性、高绝缘性、膨胀性、高化学稳定性、导热性低、热稳定性差等诸多特点。
3高分子塑料的分类
分析了高分子塑料定义、特性外,我们再来看它的分类。目前在我国现阶段我们把它分为七大类。具体如下:高分子胶粘剂、橡胶、塑料、高分子涂料、纤维、功能高分子材料和高分子基复合材料。下面笔者根据工作经验和体会分别对这七大类做一详细的说明介绍,仅供参考。
第一类是高分子胶粘剂。它是以合成天然高分子化合物为根本的一种胶粘材料。而在实际应用中我们又把它分为天然和合成胶粘剂,不完全统计应用较多的是合成胶粘剂。
第二类是橡胶。从物理概念来说,它的分子链间次价力小,分子链柔性好,一般地在外力作用下可产生较大的形变,不稳定,而在除去外力作用下,很快就能迅速恢复原状。
第三类是塑料。塑料在我们的生活生产中听到的比较多。一般来讲它是以合成树脂或化学改性的天然高分子为主要的成分,加入填料、增塑剂和其他添加剂组合而成。我们通常按合成树脂的特性分为热固性塑料和热塑性塑料。
第四类是高分子涂料。这个类型的主要是以聚合物为主,在生产中再添加溶剂和各种添加剂制得。一般把它分为油脂涂料、天然树脂涂料和合成树脂涂料三中,在日常生活中很常见。
第五类是纤维。这个也是在平时听到最多的一种塑料,一般分为天然纤维和化学纤维两种。物理学分析我们得出纤维具有次价力大、形变能力小、模量高等特点,一般为结晶聚合物。
第六类是功能高分子材料。现在我们已经采用的是高分子透明材料、高分子模拟酶、生物降解高分子材料等待。它具有物质、能量和信息的转换、磁性、传递和储存等特殊功能。
最后一种是高分子基复合材料。这种材料综合了原有材料的性能特点,在实际使用中我们根据需要进行材料的任意设计。
4高分子塑料的应用
如果说塑料的应用,我们大家都不陌生,在生活生产中都常见,而提到高分子塑料的应用,大部分人都比较陌生,而实际上,我们在生活中或多或少都听到见到过,只是加以高分子就难以理解了。经过多年的工作体会和实际工作操作,现笔者就高分子塑料的应用做一阐述。具体如下。
从军事尖端大方面来说,高分子塑料的应用已经涉及到军事及尖端技术上,无形中它促使了高分子合成和加工技术的发展,据不完全统计它已经成为一种独立的专门工程技术。
从高分子材料科学研究上来看,它是年轻而新兴的学科。我们的科学家主要集中于结构和组成与材料的性质、探索加工工艺,对各种环境因素对材料性能的影响,其主要目的是为了进一步开发新材料、新工艺等。目前,从一些材料上看高分子材料已经和金属材料等并驾齐驱,在国际上我们把它列为一级学科,这是很高的级别。
二、高分子塑料加工工艺
上文我们分析了高分子塑料的定义,特性,分类及应用,从大的方面我们有了一个感官的认识和了解,下面笔者再结合实际谈谈它的加工工艺。以便在实际中进一步总结应用。首先我们先来了解高分子塑料在加热中出现的物理和化学变化。先来看物理变化。
1高分子塑料的物理变化。一般地,高分子塑料在等温条件下会结晶,我们把它称为静态结晶。但实际在加工过程中,它大多数情况下结晶都不是等温的,笔者认为这些因素都会影响结晶过程。实践中我们得出,熔化温度与在该温度的停留时间会影响聚合物中可能残存的微小有序区域或晶核的数量。
另外,高分子塑料如果在纺丝、薄膜拉伸、挤出等成型加工过程中会受到高应力作用,这个时候它就会有加速结晶作用的倾向;如果在剪切或拉伸应力作用下,熔体中会生成长串的纤维状晶体,随应力或应变速率增大,它的晶体中伸直链含量增多,晶体熔点升高。
经过多年的实践,笔者得出这样一个结论:就是说高分子塑料的分子链结构与结晶过程有很大的关系。具体来说,如果分子量愈高,大分子及链段结晶的重排运动愈困难,高分子的结晶能力一般随分子量的增大而降低,这是成反比的,需要我们加以注意。
2高分子塑料的化学变化是指高分子塑料在高温和应力作用下,受到热和应力的作用它的大分子结构发生的一系列变化。这个变化中会发生轻微的降解物质,这个物质释放出来后会产生大量的有害物质。所以,我们在实际加工的过程中,要严格控制原材料指标,并使用合格的原材料,在配方中我们还要考虑使用抗氧剂、稳定剂等辅材料来增强高分子对降解的抵抗能力,确保生产安全。
3高分子塑料成型加工工艺
在明确了高分子塑料的物理和化学变化后,下面我们进一步阐述它的成型加工工艺。具体如下:
现阶段高分子塑料成型加工一般包括原料的配制和准备、成型及制品后加工等诸多过程。从它的加工工艺定义出发,一般地是通过温度的作用,让高分子塑料受热熔化,经过高分子塑料成型设备加工成具有一定结构形状的产品过程。笔者统计,现阶段有挤出成型工艺、挤出注射技术、压延成型、气体辅助注射技术等。
3.1挤出成型工艺。这个工艺原理采用的是利用螺杆旋转加压,将塑料生产物料用挤出机挤入机头,形成具备口模形态的型坯,完成冷却定型,塑化等基本工艺流程。这个技术对成型工艺发展的研究具有重要的现实意义。但需要加以注意的是,在实际的加工过程中,我们为了确保工艺流程质量,在生产物料制备、模具设计方面我们的工作人员应当严格监督控制,确保质量有所提升。
3.2挤出注射工艺。挤出注射工艺它的突出优点是可以更加灵活地调节复合物的配方,省去了造粒、包装等工序,可以降低设备费用和减少了生产时间。
3.3吹塑成型工艺。在这个工艺中,笔者仅仅拿出其中一个工艺来讨论——多层吹塑成型工艺。这个工艺可以用于要求反渗透性能良好的制备品加工中。在生产中它能够实现原料的不断更换。对于那些大型燃油箱容器的生产时的冷却工艺处理来说,这个时候就急需要减少模腔内压力。我们可以采取将熔料储存在挤出螺杆前端的熔槽中,在高速下挤出型坯,以最大限度减少型坯壁厚的变化,确保消除垂缩和挤出膨胀现象。
3.4注射成型工艺。笔者认为,该工艺是塑料加工生产中最为实用且最为普遍的一种工艺。在生产中可以配合设备自动化控制系统的运用情况下,实现高分子塑料生产工艺的价值。经过笔者的实践分析来看,这种工艺具有应用范畴广、生产效率较高以及工艺操作简单等很多的特性。在目前的生产中应用比较广泛,生产效率也很高。
三、高分子塑料成型加工工艺未来发展
随着目前科技的日益发展和实际的需求情况来看,高分子塑料成型加工工艺已取得了一定的成果。这主要体现在向高性能化方向发展。比如说用化学或物理的方法来控制发光倍率的发泡制品,具有分离机能和透析机能的离子膜。
再有就是向精密化发展。比如说,我们使用的超微指令的激光唱盘、计算机光盘等。最后是向优质化发展。我们可以采用与其他成型加工技术组合的加工方法,比如挤出压缩法等。还有就是以磁带为代表的记忆制品,像录像带,以及高绝缘等。
结语
本文对高分子塑料材料的定义、特性、分类及加工工艺,未来发展分别做了阐述,这让我们不难看出,高分子塑料材料在实际应用中不但取得了一定的成绩,而且还向高度集成化、精度控制自动化等特性方面快步发展。换句话说,高分子塑料材料是通过制造成各种制品来实现其使用价值的,我们从应用角度来讲,以对高分子材料赋予形状为主要目的成型加工技术有着重要的意义。
参考文献
[1]《高分子材料学与工程》征稿简则[J].高分子材料科学与工程,2010(04).
[2]胡杰,袁新华,曹顺生.《高分子材料成型加工》课程教学中的几点思考[J].科技创新导报,2010(04).
[3]陈捷.炸药、高分子材料及部件贮存性能与老化机理研究进展[A].中国工程物理研究院科技年报,2010.
篇5
关键词:高分子材料新型材料市场应用农业领域
1.前言
随着社会的发展,我国的科技有了崭新的发展机会以及广阔的发展平台,高分子材料科学也处速发展的状态。经过多年的发展,高分子材料已经在我国市场上的多个领域得到了十分广泛的应用。值得一提的是,合成高分子材料凭借着其独特的优良性质以及相对良好的使用性能,在市场上已经占据了比较重要的地位。伴随着时代的持续发展,人们对新型高分子材料也相应的提出了更高的要求,因此,为了适应人类的需要,对新型高分子材料的研究便十分重要。
2.高分子材料简述
高分子化合物是高分子材料的组成基础,构成高分子化合物的基本成分是聚合物。所以,高分子材料所具有的性质便是其构成基础聚合物所具有的性质了,其含有的主要材料所具有的特性,便是这种高分子材料的特征性能。目前,高分子材料和无机非金属材料以及金属材料是在当前的市场上应用的材料主体,是应用性材料科学的主要内容。在三者当中,属高分子材料最受欢迎,由于其优良的性能得以广泛的应用,在整体的新型材料的市场上都占据着重要的地位。在全球范围内的材料市场上,高分子材料的发展一直都没有停止,反而是以高速的发展形态展现在人类的面前。例如,合成树脂的数量在十年之内几乎增加了一百倍,高分子材料的飞速发展,给人类的生活带来了极大的便利以及翻天覆地的变化。塑料便是一种典型的高分子材料,塑料的用途广泛,传统的木材和水泥的年产量加起来也远远没有塑料的产量高。合成橡胶的产量也大于天然橡胶的产量,合成纤维一年的产量几乎达到了羊毛和棉花等人造纤维或者天然纤维总产量的二倍之多。还要合成树脂的发展等等。但是,即使高分子材料在我国取得了很大的研究进展以及生产应用,但是相比于世界上的发达国家,我国的科技仍然是较为落后,与各大发达国家存在着较大的距离。
高分子材料于一九三零年问世,至今已经发展了将近九十年的时间。但是一直到二十世纪末期,高分子材料才正式收到人类的重视和研究。科技处于不断的进步当中,人类对新型高分子材料的需求也在不断增加。例如大家都熟知的纳米材料,纳米高分子材料是一种聚合物基材以及纳米微粒的复合材料,这种材料具有独特的优良性质,在研究纳米材料的时候,要以其潜在的性质为依托,寻找最有效、迅速的开发方式。
2.新型高分子材料的应用概述
高分子材料作为材料市场的后起之秀,发展速度十分迅速。并且在整个材料市场上的应用十分广泛,在各行各业,在我们生活中的各个角落都能见到高分子材料的身影。例如在功能材料方面随处可见高分子材料,在结构材料方面高分子材料也表现出其难以比拟的优势。新型高分子材料的主要分类为:光功能材料和高分子分离膜,高分子复合材料以及该分子磁性材料。所谓光功能材料即是指这种材料能够对光进行吸收和转换,或者透射和储存。所谓高分子分离膜材料,其本身是一种薄膜性质的材料,即是利用高分子材料来制作成的一种具有半透性质的过滤膜,它的典型特征是选择透过性。这种材料对环保工作等做出了重要贡献,并且分离效率高,使用条件好。所谓高分子复合材料是指有多种具有不同的性质的物质所复合而成的多相材料。这种材料聚集了多种材料的特征,优势十分明显,例如复合材料能够同时具备耐高温和高强度等多种优点。所谓高分子磁性材料是指磁性材料于高分子材料的一种复合形式,也属于高分子复合材料的一种。这些新兴的高分子材料已经渗透进了人类生活的各个领域,在医疗行业以及工业行业都做出了重大的贡献
3.举例说明新型材料在农业领域的应用
科技的进步无疑大大促进了农业的发展,我国是一个农业大国,新兴材料在农业领域的应用,对促进农业的发展发挥了很大的作用。
在我国农业以及工业的生产领域,木塑复合材料的应用十分常见,木塑复合材料大多应用在农业领域,这种高分子材料具有以下优点:韧性好,较高的强度,可再生性好并且能够耐腐蚀。因此,木塑复合材料能够在一定程度上取代传统的钢铁材料,故在我国农业领域具有广泛的应用前景。在我国大片的庄稼地中,大量存在着秸秆这种新型材料,我国对秸秆加以利用的研究已经投入了很大的精力。秸秆用于沼气发电,秸秆用于提取纤维素制作高能燃料等,将秸秆作为一种重要的新型材料仍然需要研究。部分农作物的生长需要在温室中进行,因此温室大棚便是农业领域当中的必需品。新型温室大棚保温材料能够在白天充分吸收阳光,并自动进行恒温工作的处理,在夜晚能够使大棚内维持同样的温度和空气中的湿度。这种采用新型温室大棚保温材料的温室能够使植物自然生长,提高了农业产量和质量。对于温室材料的研究,最主要的研究性能便是其保温性能。新型温室保温材料的研究意义重大。
4.新型材料的发展前景
我们现在共同的目标是可持续发展,新型材料的开发能够满足人类对可持续发展目标的推进,新型材料能够凭借其优良的性能以及可重复利用的特点为人类社会的发展做出重要贡献。但是,我们要时刻铭记,新型高分子材料的发展要坚持以下原则:首先,新型高分子材料的使用不能对环境产生污染,其次,新型高分子材料要尽量追求成本低廉,能够满足大部分人的需求。目前我国所研究出的新型高分子材料大多价钱昂贵,因此,寻找廉价的基础材料作为高分子材料的生产成本至关重要,原材料的选取和加工工艺的选择都是未来新型高分子材料的研究重点问题之一,人类也从未停止过对新型高分子材料的探究工作。同时,要对新型高分子材料进行宣传,让大家都有所了解,才能提高高分子材料的利用率。最后再次强调,不能以牺牲环境为代价去发展新型高分子材料,才能让这种高分子材料对我们的社会发展发挥重要的作用。
参考文献:
[1]谭志坚,王朝云,易永健,等.可生物降解材料及其在农业生产中的应用[J].塑料科技,2014,42(2):83-89.
[2]祁春媛,方东辉,任小杰.木塑复合材料在农业机械上的应用
[J].黑龙江水利科技,2014,42(5):149-151.
篇6
电子结构计算的有限元方法
气体信号分子的荧光小分子探针
铂类抗肿瘤药物的设计开发进展
全钒液流电池碳电极材料的研究进展
锂离子动力电池隔膜的研究及发展现状
靶向雌激素受体荧光探针及其生物应用
T形微通道中气泡分散流的传质性能
纳米颗粒-蛋白相互作用及其生物效应研究
同步辐射技术研究汞的环境健康效应与生态毒理
间苯二甲酸自组装形成的人工跨膜离子通道
化学生物融合转化反应研究的最新进展及挑战
无黏结剂复合孔分子筛催化烯烃裂解制丙烯技术
基于绿色前驱体制备高质量硒/碲化物纳米晶
聚苯乙烯分子链构象与其薄膜的玻璃化转变行为
页岩气滑溜水压裂用降阻剂研究与应用进展
非对称加外给电子体调控聚丙烯分子链结构
化纤单体生产的绿色化进程回顾与量化
超分子有机膦大环化合物研究进展
多孔甲烷水合物样品导热系数的测定和模拟
新型低带隙聚合物结构和性质的理论研究
适应多种原料的生物航煤生产技术的开发
基于小分子的核酸结构探针最新研究进展
氮杂糖应用于溶酶体蓄积症治疗的研究
反应性挤出加工制备无卤阻燃高分子材料
叶酸高分子纳米胶束在小鼠体内的靶向分布
稠油中饱和烃复杂混合物成分解析及其意义
油页岩固定床热解反应器中内构件强化作用
钌多吡啶配合物与DNA相互作用研究新进展
室温钠离子储能电池电极材料结构研究进展
不同粒度八面体纳米钼酸镉的表面热力学性质
利用双水相分离回收离子液体的研究进展
基于分子催化剂光驱动水氧化器件的研究进展
富勒烯和富勒烯衍生物中的Stone-Wales旋转
南京夏季大气有机气溶胶老化过程在线观测研究
面向资源和环境的石油化工技术创新与展望
氯化胆碱/尿素和氯化胆碱/甘油的性质与应用
基于质谱技术的代谢组学研究及其在中国的发展
基于微流控芯片-质谱联用的细胞分析研究进展
穿插和缠绕结构配位聚合物的合成与性能研究
有机金属配合物控制的活性自由基聚合研究进展
稀土在机动车尾气催化净化中的应用与研究进展
稀土/L型沸石主-客体发光功能材料的研究进展
钠离子取代对气相分子氢氘交换反应的影响
由可控聚合反应直接制备不同形貌的聚集体
环境友好的选择性催化还原氮氧化物催化剂
酸性溶液中二硫甲脒水解和氧化的动力学研究
二氧化铈表面氧的活化及对氧化反应的催化作用
篇7
关键词:高分子材料; 专业英语; 教学改革
中图分类号:G642 文献标识码:A 文章编号:1006-3315(2013)11-153-002
高分子材料相对于传统材料如玻璃、陶瓷、金属等而言是后起的材料,但其发展的速度及应用的广泛性却大大超越了这些传统材料,已成为工业、农业、国防和科技等领域的必不可少的材料。高分子材料除了作为通用材料使用外,同时向着功能化、智能化和复合化发展,这些都要求高分子材料专业的学生及时了解国内外研究进展和发展趋势,具备阅读英语专业资料的能力。
高分子材料专业英语作为高分子材料专业开设的一门专业基础课,是大学英语教学的一个重要组成部分。学生毕业后无论在企业、科研机构或高校进一步学习或工作,只要从事科技开发,需要大量查阅英文科技信息资料,这些信息多存在于当前发表的专利、期刊等专业文献中。因此,培养高分子材料学生的专业英语技能是科学研究和实际工作的迫切需要。针对目前高分子材料专业英语的实际教学状况,本文从高分子材料专业英语的特点着手,对于词汇教学、课堂教学内容,教学方法,考核方式等方面进行了研究和教学实践。
一、专业英语词汇教学
专业词汇是用来专门描述某一学科、某一领域中的具体事物或者过程的词汇,一般其词义较单一,应用范围仅限于专业领域。专业英语词汇是学习专业英语的基础,因此要求学生必须掌握大量的专业英语词汇。经过大学英语的学习,学生积累了丰富的普通词汇,对于浩繁复杂的专业词汇还知之甚少。这些专业词汇看似难识别和难记忆,但实际上大多数专业词汇的构成是有规律的,不少是由一些含有具体意义部件,即词根、前缀、后缀等所构成的组合体。如高分子材料专业中常见的表示元素的词缀有hydro-(氢),-oxy(氧),thio-(硫),chloro-(氯),fluoro-(氟);bromo-(溴)等;表示数量的词缀有poly-(聚,多),mono-(单);di-(二),tri-(三),tetra-(四),penta-(五)等;表示化学基团的词缀有methyl-(甲基),ethyl-(乙基),propyl-(丙基),butyl-(丁基),vinyl-(乙烯基),phenyl-(苯基)等;烷烃多以-ane结尾,烯烃多以-ene结尾,醇类多以-ol结尾等;表示属性的词缀有thermo-(热),electro-(电),cyclo-(环),opto-(光)等。以polytetrafluoroethylene(PTFE,聚四氟乙烯)为例分析,该词汇是由poly-,tetra-,fluoro-,ethyl-,-ene五个词缀构成,取前四个词缀的首字母就构成PTFE,记忆起来就简便多了。课堂上讲授这些规律对于学生专业词汇的掌握就会收到事半功倍的效果,同时也激发了学生学习的兴趣。
二、以教材内容为基础,适当补充教学内容
目前高分子材料专业英语的教材有不少,覆盖了高分子化学、高分子物理和高分子材料加工等课程内容。但这些内容大多摘选自国外早期的原版专业书籍,不少内容陈旧,体裁单一,一方面不能反映高分子材料专业发展现状,同时让学生感到应用性不强,缺乏学习兴趣。针对以上教材内容的缺陷,笔者在有选择的讲述教材内容的同时,精心选择一些著名国际高分子专业期刊,如《Macromlecules》、《Polymer》、《Macromolecular Rapid Communications》等期刊的部分相关内容作为教材的补充,同时鼓励学生上网搜索一些相关资料,如美国化学会下的Chemical & Engineering News下有关高分子材料方面的报道,这些内容反映当今高分子材料发展的前沿,拓宽了学生的知识面。同时考虑到学生毕业之后在工作中或进一步深造中会接触到专利、说明书、技术标准、市场报告等多种体裁的专业文献,在课堂教学中适当增加这部分实用性的内容,起到学以致用的效果。
三、课堂理论教学方法的革新
专业英语教学内容一般为专业知识的论述,具有很强的逻辑性和学术性。为提高学生的专业英语阅读、翻译、初步写作的能力,笔者采取的方法如下。
1.师生互动是专业英语教学的重要手段
传统专业英语的教学模式是先讲解词汇,再阅读和翻译课文,这样的课堂单调且冗长,学生学习兴趣不高。考虑到语言教学的特殊性,为达到好的教学效果,需要学生在课堂中的积极参与,尝试改变以往教师讲学生听的简单教学模式,采用多种形式与学生互动交流。通过提前布置作业,学生做好预习工作,每次带着问题上课,在课堂上再随机指定学生朗读并讲解翻译,其他同学进行补充或修正,最后教师结合专业内容进行点评,并讲解相关的重要知识点和专业词汇。这样,充分调动每个学生的学习积极性,使之从被动学习变成主动学习,加深了学生对教学内容的理解和认识。
2.适当进行多媒体教学,丰富课堂教学内容
现在多媒体及网络等教学手段已广泛引入到课堂教学中,这些教学手段使课堂教学更加直观生动,增大了课堂的信息量,提高课堂效率,激发了学习兴趣。为此,在每次课文内容讲解结束后,笔者播放一些相关内容的科普性英文短片,比如介绍高分子材料合成、成型、应用等方面。由于刚学完相关内容,所以学生表现出浓厚的兴趣,通过看、听、讲述,留下了直观的知识,同时也锻炼了学生的听说能力。把一些信息量大、实用性强的专利、论文、技术标准等专业资料制作成多媒体课件进行课堂讲解,在有限的课堂时间内给学生传递了较多的信息内容,提高了课堂效率。
3.教学效果的检验
考核方式是教学中的重要环节,是检验教学效果和巩固学生所需知识的重要手段。考核主要涉及两个层次,平时考核与期末考试。平时主要考核学生以英语为工具进行专业信息交流的能力,期末考试则通过试卷形式检验学生对专业词汇的掌握情况,以及快速阅读科技论文并从中获取信息的能力。在完成每一阶段的教学环节后,教师要不断总结,了解学生对所授知识的掌握程度,确定考核指标,根据考核结果来修正下一阶段的目标,设计下一阶段的教学内容。平时的阶段性考核可以有多种方式,如根据教学内容,学生抽签选择一个题目用英语讲述,考察听说能力。或针对知识点,把常见的错误总结出来,引导学生纠错,考察语法知识的掌握情况。在课堂教学将结束的时候,我们对学生进行分组合作完成一次科研课题的汇报,学生自行分工,查找资料、设计制作多媒体课件、上台汇报讲演。在这个过程中,学生不但提高了自己的专业英语水平,还培养了团队合作的能力。
四、结束语
综上所述,对于高分子材料专业的学生而言,高分子材料专业英语是继大学英语后非常重要的英语教学课程,教学应培养学生以英语为工具解决专业学习中的实际问题的能力,为学生今后毕业设计、实际工作或进一步深造学习奠定良好的基础。为此,从教学内容、教学方法及考核方式及内容等方面改革高分子材料专业英语的教学是很有必要的。
参考文献:
[1]曹同玉,冯连芳,张菊华.高分子材料与工程专业英语[M]北京:化学工业出版社,2011
篇8
关键词:导热高分子 复合材料 研究 应用
中图分类号:TB332 文献标识码:A 文章编号:1007-3973(2013)011-070-02
从上世纪40年代以来,人类对于高分子复合材料的研究已经有将近70年的历史,并且在工业材料应用领域得以普遍应用。但是,随着经济的发展、科技的进步,人们在导热材料应用程度与范围方面提出了更高的要求,不仅仅是满足于传统材料的单一性能,而是对材料优良的综合性能寄予了更高的期望,如用在化工生产以及废水处理的热交换器一方面要有良好的导热能力,另一方面又要能够耐化学腐蚀、耐高温;相应地在电子电气领域,随着集成技术以及组装技术方面的迅猛发展,电子元件以及逻辑电路的占地空间也越来越小,所以传统的高分子复合材料就不仅仅是需要良好的导热的功能,还要能够具备一定的绝缘能力。但是,由于受到传统工艺的限制,复合材料大部分属于导热性能良好的金属材料,往往不耐腐蚀,当前的技术为了克服导热材料的耐腐蚀性而采用了合金技术以及进行防腐涂层的技术,同时,复合材料的耐热性却降低了。由于传统导热材料无法满足人们对于工业生产中的应用,因此,新型导热高分子复合材料应运而生,人们更多地将其应用于各个领域。如何提升导热高分子材料的综合功能成为了工业领域乃至社会各界的重要研究课题。
1 对于导热高分子复合材料的课题研究现状
1.1 导热高分子复合材料的运作原理
声子、光子以及电子是固体形态内部的导热介质。由于聚合物往往是以饱和体系的状态呈现的,不存在电子导热的可能性,只能通过声子这一介质进行导热,要想到达传导热能,就要通过晶格振动的方式。聚合物的导热性能较差,这是由于聚合物往往具有较大的相对分子质量,分散性较强,分子链之间不能够缠结无规则方式存在,达不到结晶的条件,同时分子链会产生振动,声子受到振动,就会产生散射,大大降低了聚合物材料的导热性能。从理论上来说,要想达到提升聚合物材料导热性能的目的,可以从两个方面对其进行改进,一方面是在聚合物材料中填充进具有高导热率的物质,制成具有以聚合物为基础的导热复合材料,例如可以将环氧树脂填入碳纤维以及氮化铝材料中,增强高分子复合材料的导热性能;另一方面是利用最新的科技,将高导热率的材料进行聚合。如可以利用聚苯胺导热性能良好的优点,采用导热机制达到更佳的导热能力。
增强聚合物导热性能的方法中,在实践工作中,主要使用的是填充入高导热性能的材料来达到增强导热的目的,以复合成导热高分子复合材料,这也是当前工业上制备导热高分子复合材料的主要途径。但是,导热高分子复合材料传导热能的效率受到了湿度、分子链取向密度、结晶度、温度以及填充材料种类多方面的影响。
在实际工业的操作中,导热高分子复合材料传导热能的效率主要受到了所填充材料以及材料在复合材料中分布情况的影响。如果填充的材料过少,复合材料的导热性能就很难达到要求,如果填充的材料过多,那么复合材料相应的力学性能就会有所降低。只有找到填充材料和复合材料之间较科学合理的比例才能达到导热高分子复合材料最好的导热性能、最小的热阻。
1.2 常见导热高分子复合材料的实际研究成果
(1)应用聚乙烯复合导热材料。
聚乙烯由于其具有价格低廉、综合性能良好的优势,无疑成为了我国所有合成树脂中应用范围最广泛、进口量最大以及产能最大的一种塑料品种。在传统聚乙烯基础上改造而成的线性低密度聚乙烯,拥有热封性能良好,成膜性优良,脱模容易,抗蠕变能力,刚性良好,拉伸强度、撕裂强度以及冲击强度方面较好,适应环境能力好,导热性能较好等一系列的优点,正成为当前最新的塑料产品投入使用。
(2)应用硅橡胶复合导热材料。
当前研究导热硅橡胶的方面大都是围绕着填充型硅橡胶而进行,由于填料、加工工艺以及硅橡胶基体三方面是硅橡胶材料能够具有良好导热性的关键性因素。填料是通过自身的导热性能情况来决定复合材料的导热性能,工厂的加工工艺是否精良很大程度上也影响着硅橡胶导热的能力。
硅橡胶自身具有优秀的减震以及绝缘性能,但是在热导效能方面却比较差,一旦在硅橡胶中填充入具有高导热性能的材料,硅橡胶复合材料在导热性能上达到十几甚至是几十倍的提升。同时,填料在复合材料中的分布情况和填料在导热性能方面的表现也影响着复合材料导热性的程度好坏。如果填料在材料基体中的填充量不够的时候,就会导致填料之间的粒子接触面积过小,那么填料应有导热性就没有得到充分的发挥,无法形成导热良好的导热网链,大大提升复合材料的导热性能。
2 导热高分子复合材料在实践中的应用以及开发前景
目前,导热高分子复合材料的应用于潜艇蓄电池当中的冷凝器、导热绝缘材料、太阳能热水器以及导热管等方面,应用的领域涵盖了很多的方面,如化工生产、电子电器、航空航天以及军事等方面,并在其中发挥了重大的作用。由于导热高分子复合材料不但具有导热性能良好的优点,而且在自身独特的优势方面更是有着其它材料难以比肩的优势,导热高分子复合材料已经得到了人们越来越多的青睐,在市场上的接受度也是不容小觑的。相信随着人们在发展纳米复合技术方面的进展,日益完善关于导热高分子复合材料的模型,对于导热原理的研究更加深入,那么导热高分子复合材料的性能将会得到更大程度的发掘,应用的范围也会更加宽广,作用也会越来越大。
高分子材料的关键研究领域之一就是实现导热高分子复合材料从理论概念到形成产品,开发其经济效益的目的。尤其是在近十年的研究中,关于研究导热高分子复合材料的数学模型已经取得了很大的进步与发展,但是也受到了来自纳米复合技术的挑战,也可以说是带来了进步的机遇。当前对于导热高分子复合材料提升导热性能的研究一直仅仅停留在基础层面的共混复合,得到的复合材料在传导热能方面效果并不理想,复合材料在应用开发、导热机理方面的探索以及开发具有高导热性能的聚合物方面的研究还是停留在比较表面的层次,没有进行深入的探索。另外,预测热导性能的理论模型还是没有充分有力的理论基础支持,同时对于理论验证还是停留在根据经验来模拟的层次。因此,可以预见不管是现在还是在接下来更长的时间里,导热高分子复合材料领域都会围绕着制备高导热聚合物材料、建立复合高导热材料的运作模型、改变聚合物树脂基体的物理特性、开发与研究复合材料的新型技术等方面来进行,成为其重要的研究方向。导热高分子复合材料的相应研究也增强了高新技术领域进一步发展与进步的可能性。
参考文献:
[1] 王亮亮,陶国良.导热高分子复合材料的研究进展[J].工程塑料应用,2013,9(31):70-72.
[2] 马传国,容敏智,章明秋.导热高分子复合材料的研究与应用[J].材料工程,2012,8(7):40-45.
篇9
>> 硬质聚氨酯泡沫塑料在建筑中的应用 聚氨酯泡沫塑料无卤阻燃技术的研究进展 沥青聚氨酯硬质泡沫塑料在建筑节能中的应用探究 沥青聚氨酯硬质泡沫塑料在建筑节能中的应用 聚氯乙烯,环氧树脂改性硬质聚氨酯泡沫塑料的研究 聚氨酯自结皮泡沫塑料在汽车饰件上的应用及研究 微晶纤维素填充硬质聚氨酯泡沫塑料力学及生物降解性能的研究 聚氨酯硬质泡沫塑料垂直燃烧性能的影响因素 硬质聚氨酯泡沫塑料尺寸稳定性的影响因素及控制方法 浅析软质聚氨酯泡沫塑料的自燃 塑料在农田灌溉排水中的应用研究进展 聚乙烯泡沫塑料片材在防水保护层中的应用 现酵工程技术在食品领域的应用研究进展 “治未病”在妇科领域的应用研究进展 气象集合预报在水文领域中的应用研究进展 遥感技术在水文水资源领域中的应用研究进展 UPLC―MS/MS法在药物成分分析领域的应用研究进展 水性聚氨酯的改性研究进展 探讨阻燃喷涂硬质聚氨酯泡沫的制备及在建筑工程的应用 酚醛泡沫塑料防火保温材料的性能和应用 常见问题解答 当前所在位置:l,2005-02-20.
[3] 胡爱军.泡沫夹芯型吸波隐身结构复合材料的发展趋势[J].宇航材料工艺, 2009(1):1-4.
[4] 丁文皓,朱洪立.含有短切导电纤维聚氨酯泡沫塑料的吸波性能研究[J].工程塑料应用,2007,35(11):20-22.
[5] 贾莉莉,毕红.聚氨酯泡沫复合材料的制备及其吸波性能研究[J].安徽大学学报,2007,31(5):66-68.
篇10
关键词:纤维素 化学改性 热塑性加工
0 引言
石油基高聚物由于其良好的使用性和加工性,在工业生产和日常生活中占据有重要地位,但是由于其难降解性对环境造成的危害以及石油资源的日益枯竭,人们愈加重视开发可再生的替代材料。纤维素是自然界最丰富的可再生资源,广泛存在于绿色植物以及海洋生物中,具有可再生性,生物可降解性和天然的生物相容性,并且具有低密度、高强度和刚度好的特性,这已使它成为最重要的天然高分子材料。
1 纤维素的化学结构
纤维素是由D-吡喃型葡萄糖单元(AGU)通过β-1、4糖苷键以C1椅式构象连接而成的线型高分子。纤维素的一个结构单元中在第2、第3、第6位碳原子上有3个活泼的羟基基团,其中C2、C3位上的羟基是仲羟基,C6位上是伯羟基。由于大量羟基的存在,使纤维素分子之间与纤维素分子内部形成了密度很高的氢键,导致纤维素在受到高温作用时在融化之前就分解了,因此无法直接用注射、挤出等传统的热塑性加工方法生产纤维素制品。为了可以使用热塑性加工的方法生产纤维素制品,必须对其进行化学改性,利用与羟基有关的一系列化学反应,如酯化,醚化,接枝共聚等反应合成纤维素衍生物,则有可能实现热塑性加工。
2 纤维素酯类
纤维素酯类包括有机酸酯与无机酸酯。纤维素无机酸酯中比较重要的是硝化纤维素。硝化纤维素是由纤维素在25-40℃经过硝酸和浓硫酸混合算硝化而成的酯类,混合酸中,硝酸参与酯化反应,浓硫酸则起着使纤维素溶胀和吸水的双重作用。不同取代度的硝化纤维素应用于不同的地方,高硝化纤维素可用作火药,低硝化的纤维素可用作塑料、片基薄膜等。纤维素有机酸酯中比较重要的是醋酸纤维素。醋酸纤维素是以硫酸为催化剂经冰醋酸或者醋酐乙酰化而成的酯类,理论上可以得到取代度为3的醋酸纤维素,但是由于纤维素的高结晶度的影响,产物的取代度往往在2.2-2.8之间,可以用作塑料、纤维、薄膜等。现在作为商品使用的纤维素酯类有一个普遍的缺点:其融化温度和热分解温度之间的温度间隙太小,在加工的过程中,经常需要加入增塑剂来加宽加工温度,但是增塑剂在材料的使用和加工过程中泄露和挥发比较严重,使材料的使用性能受到了影响。
3 纤维素醚类
纤维素醚是由纤维素与NaOH反应后,与各种功能单体如单氯甲烷、环氧乙烷、环氧丙烷等进行醚化反应,经水洗副产物盐及纤维素钠而得到。纤维素醚一般根据其离子性分为4类[1]:非离子纤维素醚:主要是纤维素烷基醚,包括甲基纤维素醚、甲基羟乙基纤维素醚等。阴离子纤维素醚:主要是羧甲基纤维素钠、羧甲基羟乙基纤维素钠。阳离子纤维素醚:阳离子纤维素醚主要有3-氯-2-羟丙基三甲基氯化铵纤维素醚。两性离子纤维素醚:两性离子纤维素醚的分子链上既有阴离子基团又有阳离子基团。
4 纤维素接枝改性
接枝改性方法可以引入不同的支链聚合物,在纤维素材料固有的优点的基础上,得到同时具有纤维素主链和支链聚合物双重性能的功能材料,从而大大扩展了纤维素的应用范围。但由于纤维素分子中存在大量的氢键导致纤维素材料的高结晶度,使需要接枝反应底物通常无法进入纤维素内部,反应只发生在材料表面部分,这大大增加了反应难度,纤维素的接枝改性也很难以实现工业化。因此,更多的是使用熔化性好的纤维素衍生物进行接枝改性。例如,在二醋酸纤维素(CDA)引入生物高分子基团不仅可以降低加工温度,而且还可以使CDA的接枝共聚物具有一定的生物学性质。聚乳酸是一种无毒,具有优良的加工性能,生物降解性能、力学性能和生物相容性的高分子材料。Teramoto[2]的合成一系列不同接枝率的醋酸纤维素-聚乳酸接枝共聚物,发现该共聚物的玻璃化转变温度Tg和聚乳酸的摩尔取代度(MS)有关系,当0<MS≤8 时玻璃化温度大幅上升,当MS≥14时聚乳酸侧链开始结晶。因为聚乳酸是可降解材料,聚乳酸短链引入纤维素分子将得到可以完全降解的高分子材料,乙基纤维素(EC)当第一个工业化非离子纤维素醚,其质地坚韧,在很宽的温度范围也可以把机械强度和灵活性。乙基纤维素为疏水型聚合物,引入亲水性高分子短链后将得到两个亲密型共聚物。Shen等[3]采用原子转移自由基聚合(ATRP)方法,引发了苯乙烯(St)核甲基丙烯酸甲酯(MMA)接枝乙基纤维素的反应,分别合成了高接枝率的共聚物EC-g-PSt,EC-g-PMMA,发现刷状接枝物能被云母吸附,并且分子呈棒状,TEM和AFM结果显示了接枝物能在丙酮中形成核-壳结构的球状胶束。
5 结语
纤维素是自然界最丰富的自然资源,在未来石油资源越来越匮乏的情况下,纤维素必将成为重要的工业原料。本文总结了几种纤维素热塑性加工的化学改性的方法,在未来的能源形势下,将会有更多针对纤维素化学改性的方法从而获得更加丰富的纤维素衍生物产品。同时,考虑到化学改性的方法环境污染大,生产周期长,以不进行化学改性而通过其他方法对纤维素直接进行塑性加工的方法也会有较大的发展。
参考文献:
[1]张光华,朱军峰,徐晓凤.纤维素醚的特点、制备以及在工业中的应用[J].纤维素科学与技术,2006,14(1):61~65.
[2]王彦斌,苏志锋,赵耀明. 纤维素及其主要衍生物接枝改性的研究进展[J].合成材料老化与应用,2009,38(4):35-39.
[3]Shen D W ,Yu H,Huang Y.Synthesis of graft copolymer of ethyl cellulose through living poly-merization and its self-assembly[J].Cellulose,2006,13:235-244