高分子材料特性范文
时间:2023-12-18 17:56:42
导语:如何才能写好一篇高分子材料特性,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:高分子材料;功能;研究现状;发展前景
前言
在我们的日常生活中,材料随处可见,材料的发展水平直接影响我们的生活质量。高分子材料在我们日常生活的应用中拥有很多的优势,与现代化生产非常吻合,同时它也产生了很高的经济效益等,因此它在工业上发展的十分迅速。在过去,20世纪60年展起来的功能高分子材料是属于那时的一个新兴领域,这个新兴领域同时渗透到能源和电子以及生物三大领等。而如今,21世纪的科技不断创新,也有了新型有机功能高分子材料,它们在人们的生产和生活中扮演着一个越来越重要的角色。
1 功能高分子材料的定义
功能高分子材料是指同时兼顾有两种性能的复合高分子材料,性能一:传统高分子材料的所体现出来的性能,性能二:某些特殊功能的基团所体现出来的性能。一般说来,具有传递信息、转化能量和贮存物质作用的高分子及其复合材料为功能高分子材料,或者还可以理解为具有能量转换的特性、催化特性、化学反应活性、磁性、光敏特性、药理性、导电特性、生物相容性、选择分离性等功能的高分子及其复合材料,同时还具有原有力学性能的基础。
2 功能高分子材料的工程实际应用
目前,在工程上应用较广泛而且具有重要应用价值的一些功能高分子材料主要分为以下几种:光功能高分子、液晶高分子、电功能高分子、吸附分离功能高分子、反应型功能高分子、医用功能高分子、环境降解功能高分子、高分子功能膜材料等。下文中具体从这几方面阐述:
(1)光功能高分子材料。指在光的作用下能够产生物理变化,如光导电、光致变色或者化学变化,如光交联、光分解的高分子材料,或者在物理或化学作用下表现出光特性的高分子材料。光功能高分子材料主要应用在电子工业和太阳能的开发利用等方面。
(2)液晶高分子材料。液晶高分子是一种新型的功能高分子材料,它是分子水平的微观复合,由纤维与树脂基体在宏观上的复合衍生而来,也可以理解为在柔性高分子基体中以接近分子水平的分散程度分散增强剂(刚性高分子链或微纤维)的复合材料。强度高、模量大是液晶高分子材料的主要特点,它在复合材料、纤维和液晶显示技术等方面的应用非常广泛。
(3)电功能高分子材料。电功能高分子材料主要表现为在特定条件下表现出各种电学性质,如热电、压电、铁电、光电、介电和导电等性质。根据其功能划分,主要包括导电高分子材料、电绝缘性高分子材料、高分子介电材料、高分子驻极体、高分子光导材料、高分子电活性材料等。同时根据其组成情况可以分成结构型电功能材料和复合电功能材料两类。电功能高分子材料在电子器件、敏感器件、静电复印和特殊用途电池生产方面有广泛应用。
(4)吸附分离高分子材料。吸附分离功能高分子按吸附机理分为化学吸附剂、物理吸附剂、亲和吸附剂,按树脂形态分为无定形、球形、纤维状,按孔结构分为微孔、中孔、大孔、特大孔、均孔等,吸附分离功能高分子主要包括离子交换树脂和吸附树脂。
(5)反应型功能高分子材料。反应功能高分子是有化学活性、能够参与或促进化学反应进行的一种高分子材料。它是将小分子反应活性物质通过共价键、离子键、配位键或物理吸附作用结合于高分子骨架,主要用于化学合成和化学反应。
(6)医用功能高分子材料。在生物体产生生理系统疾病时,一些特殊的功能高分子材料有对疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的作用,此类特殊的功能高分子材料称为医用功能高分子材料。一般来说,医用功能高分子材料多用于对生物体进行疾病的诊断和疾病的治疗以及修复或替换生物体组织或器官和合成或再生损伤组织或器官,具有延长病人生命、提高病人生存质量等作用,在医疗方面被广泛应用。
(7)环境降解高分子材料。高分子材料在发生降解反应的条件有许多,如机械力的作用下发生的降解称为机械降解,此外在化学试剂的作用下可发生化学降解,在氧的作用下可发生氧化降解,在热的作用下可发生热降解,在光的作用下可发生光降解,在生物的作用下可发生生物降解等。具有此类功能的高分子称为环境降解高分子材料。
(8)高分子功能膜材料。高分子功能膜是一种具有选择性透过能力的膜型材料,同时也是具有特殊功能的高分子材料,一般称为分离膜或功能膜。使用功能膜分离物质具有以下突出的优点:具有较好的选择性透过性,透过产物和原产物位于膜的两侧,便于产物的收集;分离时不发生相变,同时也不耗费相变能。从功能的角度,高分子分离膜具有识别物质和分离物质的功能,此外,它还有转化物质和转化能量的其它功能。利用其在不同条件下显出的特殊性质,已经在许多领域获得应用。
3 功能高分子材料的发展前景
人类赖以生存和发展的物质基础离不开材料,材料的发展关系到社会发展和国民经济以及国家的安全,同时也是体现国家综合实力的重要标志。高新技术和现代工业发展的基石离不开高分子材料,国民经济基础产业以及国家安全不可或缺的重要保证同样也离不开高分子材料。而功能高分子材料由于其优越性,使得其在材料行业中发展迅速。
未来材料科学与工程技术领域研究的重要发展方向离不开功能高分子材料,材料、信息和能源理所当然的被评为新科技革命时代的三大根基,信息和能源发展离不开材料领域中功能高分子材料作为它们物质基础所起到的重要作用,新型功能高分子材料的研究与发展主要取决于现代学科交叉程度高这一特点。在传统的三大合成材料以外,陆陆续续又出现了具有光、电、磁等特殊功能的高分子材料以及功能高分子膜,同时也出现了生物高分子材料,隐身高分子材料等许多具有特殊功能的高分子材料,与此同时功能高分子材料的发展速度依然保持着加快的状态,显然它们对新技术革命影响非常之大。这些新型的功能高分子材料在我们的尖端科学技术领域和工农业生产以及日常生活中扮演着越来越重要的角色,21世纪人类社会生活必将与功能高分子材料密切相关。
4 结束语
功能高分子材料是一门研究高分子材料变化规律以及实际应用技术的一门学科,在高分子材料科学领域中的发展速度是最快的,同时也是与其它科学领域交叉最为密切的一个研究领域。它是以高分子物理、高分子化学等相关学科为基础,同时与物理学和生物学以及医学密切联系的一门学科。因此学习这门学科能让我们很好的将高分子学科的知识综合运用起来,进而使我们对高分子学科有更深刻的认识,让我们受益匪浅。
参考文献
[1]张青,陈昌伦,吴狄.功能高分子材料发展与应用[J].广东化工,2015,42(06):119-120.
[2]武帅,鲁云华.功能高分子材料发展现状及展望[J].化工设计通讯,2016,42(04):82.
[3]赖承钺,郑宽,赫丽萍.高分子材料生物降解性能的分析研究进展[J].化学研究与应用,2010,03(01):1-7.
篇2
关键词:高分子材料;发展;前景
一 高分子材料的发展现状与趋势
高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。
二 高分子材料各领域的应用
1高分子材料在机械工业中的应用
高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。
2 高分子材料在燃料电池中的应用
高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。
3 高分子材料在现代农业种子处理中的应用及发展
高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。
4 高分子材料在智能隐身技术中的应用
智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。自动调节自身电磁特、自我指令并对信号作出最佳响应功能的材料/系统。区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。
三 高分子材料的发展前景
1高性能化
进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。
2高功能化
功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。
3复合化
复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。
4智能化
高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。
5绿色化
虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。
四 结束语
高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。
参考文献:
[1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997
篇3
关键词:高分子材料新型材料市场应用农业领域
1.前言
随着社会的发展,我国的科技有了崭新的发展机会以及广阔的发展平台,高分子材料科学也处速发展的状态。经过多年的发展,高分子材料已经在我国市场上的多个领域得到了十分广泛的应用。值得一提的是,合成高分子材料凭借着其独特的优良性质以及相对良好的使用性能,在市场上已经占据了比较重要的地位。伴随着时代的持续发展,人们对新型高分子材料也相应的提出了更高的要求,因此,为了适应人类的需要,对新型高分子材料的研究便十分重要。
2.高分子材料简述
高分子化合物是高分子材料的组成基础,构成高分子化合物的基本成分是聚合物。所以,高分子材料所具有的性质便是其构成基础聚合物所具有的性质了,其含有的主要材料所具有的特性,便是这种高分子材料的特征性能。目前,高分子材料和无机非金属材料以及金属材料是在当前的市场上应用的材料主体,是应用性材料科学的主要内容。在三者当中,属高分子材料最受欢迎,由于其优良的性能得以广泛的应用,在整体的新型材料的市场上都占据着重要的地位。在全球范围内的材料市场上,高分子材料的发展一直都没有停止,反而是以高速的发展形态展现在人类的面前。例如,合成树脂的数量在十年之内几乎增加了一百倍,高分子材料的飞速发展,给人类的生活带来了极大的便利以及翻天覆地的变化。塑料便是一种典型的高分子材料,塑料的用途广泛,传统的木材和水泥的年产量加起来也远远没有塑料的产量高。合成橡胶的产量也大于天然橡胶的产量,合成纤维一年的产量几乎达到了羊毛和棉花等人造纤维或者天然纤维总产量的二倍之多。还要合成树脂的发展等等。但是,即使高分子材料在我国取得了很大的研究进展以及生产应用,但是相比于世界上的发达国家,我国的科技仍然是较为落后,与各大发达国家存在着较大的距离。
高分子材料于一九三零年问世,至今已经发展了将近九十年的时间。但是一直到二十世纪末期,高分子材料才正式收到人类的重视和研究。科技处于不断的进步当中,人类对新型高分子材料的需求也在不断增加。例如大家都熟知的纳米材料,纳米高分子材料是一种聚合物基材以及纳米微粒的复合材料,这种材料具有独特的优良性质,在研究纳米材料的时候,要以其潜在的性质为依托,寻找最有效、迅速的开发方式。
2.新型高分子材料的应用概述
高分子材料作为材料市场的后起之秀,发展速度十分迅速。并且在整个材料市场上的应用十分广泛,在各行各业,在我们生活中的各个角落都能见到高分子材料的身影。例如在功能材料方面随处可见高分子材料,在结构材料方面高分子材料也表现出其难以比拟的优势。新型高分子材料的主要分类为:光功能材料和高分子分离膜,高分子复合材料以及该分子磁性材料。所谓光功能材料即是指这种材料能够对光进行吸收和转换,或者透射和储存。所谓高分子分离膜材料,其本身是一种薄膜性质的材料,即是利用高分子材料来制作成的一种具有半透性质的过滤膜,它的典型特征是选择透过性。这种材料对环保工作等做出了重要贡献,并且分离效率高,使用条件好。所谓高分子复合材料是指有多种具有不同的性质的物质所复合而成的多相材料。这种材料聚集了多种材料的特征,优势十分明显,例如复合材料能够同时具备耐高温和高强度等多种优点。所谓高分子磁性材料是指磁性材料于高分子材料的一种复合形式,也属于高分子复合材料的一种。这些新兴的高分子材料已经渗透进了人类生活的各个领域,在医疗行业以及工业行业都做出了重大的贡献
3.举例说明新型材料在农业领域的应用
科技的进步无疑大大促进了农业的发展,我国是一个农业大国,新兴材料在农业领域的应用,对促进农业的发展发挥了很大的作用。
在我国农业以及工业的生产领域,木塑复合材料的应用十分常见,木塑复合材料大多应用在农业领域,这种高分子材料具有以下优点:韧性好,较高的强度,可再生性好并且能够耐腐蚀。因此,木塑复合材料能够在一定程度上取代传统的钢铁材料,故在我国农业领域具有广泛的应用前景。在我国大片的庄稼地中,大量存在着秸秆这种新型材料,我国对秸秆加以利用的研究已经投入了很大的精力。秸秆用于沼气发电,秸秆用于提取纤维素制作高能燃料等,将秸秆作为一种重要的新型材料仍然需要研究。部分农作物的生长需要在温室中进行,因此温室大棚便是农业领域当中的必需品。新型温室大棚保温材料能够在白天充分吸收阳光,并自动进行恒温工作的处理,在夜晚能够使大棚内维持同样的温度和空气中的湿度。这种采用新型温室大棚保温材料的温室能够使植物自然生长,提高了农业产量和质量。对于温室材料的研究,最主要的研究性能便是其保温性能。新型温室保温材料的研究意义重大。
4.新型材料的发展前景
我们现在共同的目标是可持续发展,新型材料的开发能够满足人类对可持续发展目标的推进,新型材料能够凭借其优良的性能以及可重复利用的特点为人类社会的发展做出重要贡献。但是,我们要时刻铭记,新型高分子材料的发展要坚持以下原则:首先,新型高分子材料的使用不能对环境产生污染,其次,新型高分子材料要尽量追求成本低廉,能够满足大部分人的需求。目前我国所研究出的新型高分子材料大多价钱昂贵,因此,寻找廉价的基础材料作为高分子材料的生产成本至关重要,原材料的选取和加工工艺的选择都是未来新型高分子材料的研究重点问题之一,人类也从未停止过对新型高分子材料的探究工作。同时,要对新型高分子材料进行宣传,让大家都有所了解,才能提高高分子材料的利用率。最后再次强调,不能以牺牲环境为代价去发展新型高分子材料,才能让这种高分子材料对我们的社会发展发挥重要的作用。
参考文献:
[1]谭志坚,王朝云,易永健,等.可生物降解材料及其在农业生产中的应用[J].塑料科技,2014,42(2):83-89.
[2]祁春媛,方东辉,任小杰.木塑复合材料在农业机械上的应用
[J].黑龙江水利科技,2014,42(5):149-151.
篇4
【关键词】高分子材料成型加工 教学改革 课程设计
【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)14-0010-02
在高分子科学的学科构架中,形成了高分子化学、高分子物理、高分子工程三个基础性分支学科,以及功能高分子及高分子新材料两个综合性研究领域。高分子材料成型加工属于高分子工程研究的范畴,高分子工程的主要研究线索是,研究在外场(剪切力、振动力、温度、压力等)作用下,高分子的链运动、相态及结构的变化规律和控制条件,从而发展聚合物成型的新方法和新技术。
高分子材料是材料领域的后起之秀,它具有许多其他材料不可比拟的突出性能,在尖端技术、国防建设和国民经济各个领域已成为不可缺少的材料。大多数高分子材料需要经过成型加工才能形成制品,无论金属、陶瓷、玻璃还是天然材料,没有哪一种材料能像高分子材料那样,其最终结构与性能都强烈依赖于加工过程。高分子材料加工过程是控制聚合物制品结构和性能的中心环节,内容涉及高分子物理、高分子化学、聚合物流变学、机械、计算机模拟等多学科,其任务是了解高分子材料的加工特性,确定最适宜加工条件,制取最佳性能产品,为合成具有预期性能的高分子材料提供理论依据。
高分子材料成型加工是高分子材料与工程专业最重要的专业核心课程之一。高分子材料成型加工的工程本质决定了它是一门多学科交叉、科学与工程紧密结合的学科。为使学生建立起大工程的观点,理解其精髓,本课程的讲授会涉及以上诸多学科的内容,要使学生在有限的学时内掌握这门课的基本内容,并且通过对高分子材料成型加工课程的学习,具有高分子材料及其制品设计、生产和研究的科学思维以及创新研究素质,无论对授课老师还是学生而言都是一个新的挑战。笔者结合自身讲授高分子材料成型加工课程的教学实践,在课程体系、教学内容、教学方法等方面提出以下几点看法。
一 加强课程的横向联系
高分子材料的生产有三大关键要素:适宜的材料组成、正确的成型加工方法、配套的成型机械及成型模具。要生产出一个有使用价值,能够利用现有成型设备进行加工的高分子材料制品,必须同时满足以上三个要素。高分子材料生产三个要素之间相互联系、相互影响,是一个不可分割的有机整体。从这个意义上来看,高分子材料成型加工与成型机械的联系应是非常密切的。
高分子材料成型加工与高分子材料成型机械是高分子材料与工程专业的两门专业基础课,这两门课程在本质上有密切的联系,高分子材料成型加工课程包括原材料树脂、助剂、配方设计、成型设备、成型模具、工艺条件及控制等方面,高分子材料成型设备课程主要讲述不同加工方法所采用的成型设备,如开炼机、密炼机、挤出机、注塑机、压延机、中空吹塑机等,从其包括的课程内容看,成型加工和成型机械相互渗透、相互联系,也有交叉重叠的内容,因此有必要对这两门课程的教学内容从整体的高度重新进行规划。
在这个原则的指导下,教师在教学中可以按照原材料、设备、工艺这三大要素组织教学内容,从而把两门课的知识点有机地融合起来,加强课程的横向联系,打破传统的教学模式,培养学生的大工程观。如在讲授聚氯乙烯(PVC)管材挤出成型工艺这部分内容时,教师首先讲授挤出所用的原材料配方(PVC树脂、各种助剂),由于PVC树脂牌号众多,不同牌号的树脂制备方法不同,树脂的性能也不同,在加工过程中所选用的工艺也会有所差异,因此,教师在开始讲授成型工艺时,有必要使学生具备原材料选择这个意识。然后介绍管材成型所需的设备(包括挤出机类型、机头口模、螺杆结构、螺杆组合、传动系统、控制系统、辅机)。如在讲解螺杆时,可分析各种螺杆结构参数对成型加工的影响,各种不同混合、混炼元件的螺杆组合所具有的加工特性,并结合PVC管材生产工艺特点,讲解生产PVC管材所用螺杆的选用原则。在讲解挤出机机头口模时,可将机头口模流道的设计、口模类型等涉及成型机械的内容引入课堂中,使学生掌握有关机头口模设计的基本原则。最后,讲授PVC管材生产的工艺条件及控制方法(螺杆转速、牵引速度、挤出机及机头温度)及其对制品性能的影响。
教学内容改革是21世纪高等教育教学改革的重点,将高分子材料成型加工与成型机械有机结合起来,重新组织课程内容既有利于教师的教学与学生的学习,增强理论教学的课堂教学效果,同时节约下来的理论教学课时可用于实践教学环节,培养学生的动手能力和创新意识,提高在社会上的竞争力,也符合高分子材料加工行业对本专业毕业生所提出来的越来越高的要求。
二 按课程主线组织教学内容
本课程以“材料―成型加工―制品性能”这条高分子材料成型加工的主线组织教学内容,重点了解和掌握高分子材料、成型加工工艺、制品性能三者的关系;材料的不同与成型加工方法的关系;同样的材料用不同的加工工艺方法或加工工艺条件,所得制品的性能为何不同;制品的性能
――――――――――――――――――――――――――
* 基金项目:广东石油化工学院教育科学研究基金项目
与材料本身的性质有何关系等,强调了成型加工对制品性能的重要性,即高分子材料最终的结构与性能强烈依赖于加工过程这一独特之处,这是本课程的主题思想――高分子材料的工程特征,教师在教学过程中,将这一主题思想贯彻始终是本课程教学的首要目标。
在教学过程中,任课教师应将高分子科学基础理论与实际生产和日常用品的例子相结合,与学生进行分析和讨论,启发学生在学习过程中牢牢抓住本课程的主题思想。对于聚合物来说,具体结构决定了它的性能,同一种链结构的聚合物,由于成型加工条件的不同,分子链的排列与堆砌方式会有所不同,从而形成不同的聚集态结构,聚集态结构不同,制品性能也大不相同。如生产聚丙烯注塑件时,聚丙烯注塑制品最终的物理性能不仅与本身分子量和结晶性等有关,而且与注射工艺条件的控制有关。不同的工艺条件导致聚丙烯具有不同的微观结构,而微观结构又直接影响聚丙烯注塑制品的强度、韧性、硬度以及成型加工等性能。如聚丙烯注塑件的光学性能会受到注射成型条件的影响,聚丙烯注塑件在冷却过程中,由于塑件不同部位的温度场、应力场的分布不同,从而会造成注塑件内不均匀的体积收缩和密度分布,因此严重影响了塑件的光学性能和力学性能。这些例子很好地体现了“高分子材料―成型加工―制品性能”这条高分子材料成型加工的主线。
三 对教学方法进行改革
1.多媒体教学
高分子材料成型加工属于专业技术课,教学内容具有很强的理论性和实践性,许多内容涉及成型机械的结构以及具体的操作过程,在学生大多缺少实际感性认识的情况下,单纯依靠文字的板书进行课堂教学,学生难以理解,教学效果不理想。因此,课堂讲授可借鉴国内一些院校的聚合物成型加工精品课程网站的教学资源来制作多媒体课件,通过结合所用的教材,有选择性地将多媒体动画仿真和图片资料补充到电子课件中,不断修改完善课件内容,增加课堂信息量,提高教学效果,激发学生的学习兴趣。为了加深学生对实际生产过程各种机械设备、操作工艺的认识,教师可通过收集各种高分子材料成型加工厂的生产视频,然后在课堂上进行播放讲解,可增加学生对高分子材料成型加工工艺的感性认识。如在讲薄膜的中空吹塑时,大多数学生对旋转机头的工作方式比较陌生,笔者通过给学生播放带有旋转机头口模的中空吹塑生产过程,学生在录像中可以很直观地看到旋转机头在工作中的运行情况,以及旋转机头如何调整薄膜厚度的工作原理,这些都使学生感受到课本的理论知识并不是枯燥的,它来源于生产实际,并对生产实际起到指导作用。
除了在课堂上引入多媒体课件外,教师还可向学生推荐一些著名的专业网站,包括美国塑料工程师学会(SPE)、美国塑料工业协会(SPI)、中国注塑技术论坛、聚合物技术网等,鼓励学生了解加工工程的前沿发展,从而提高学生的学习兴趣。
2.案例教学
为了提高学生分析问题和解决问题的能力,经常以日常生活中常用高分子材料制品进行案例教学,帮助学生认知高分子材料成型加工的整个过程,如日常用到的笔记本外壳、空调外壳、排水管、薄膜、泡沫塑料、汽车轮胎等,启发学生去思考,然后进行讨论,针对常用制品分析所用的原材料、成型方法和工艺,使学生在看得见、摸得着的实例中体会所学知识,这样的教学方法提升了学生学习效率和学习效果。在实际教学中,教师可给学生提供一些案例,如某个工厂某批次的注射件出现了应力开裂现象,试让学生讨论分析其中的原因,并提出解决方案。通过课堂讨论,学生从这一案例中可学到包括原材料、成型方法、成型工艺条件(温度、压力)、制品性能(应力开裂)在内的许多知识点,很好地将高分子材料基础理论与生产实际相结合,学生可以充分理解“高分子材料―成型加工―制品性能”这一课程的主题思想。
3.课程设计
作为大工程观教育理念的一部分,培养具有敏锐工程师意识的学生是工科教学的一个重要目标,高分子材料成型加工课程作为一门实践性很强的学科,可为学生将来走进企业站稳脚跟打下良好的基础,因此,在教学中引入项目教学的理念,让学生利用各种校内外的资源及自身的经验,通过完成给定的工作任务来获得知识与技能。本专业的课程设计是以高分子材料生产流程为主线,实现项目教学,以培养学生的创新能力。
设计内容可以典型的通用高分子材料(如聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯等)的生产任务为依托建构、设计出一个高分子材料产品生产项目(包括厂址的选择、原料选择、配方设计、高分子材料加工方法、设备的选型以及生产成本的核算等)。它有效地解决了传统教学中理论与实践相脱离的弊端,使理论教学内容与实践教学内容通过课程设计紧密地结合在一起。在设计的过程中,学生通过互联网查找大量的资料、数据,通过到企业调查,掌握了许多第一手资料,在这个过程学生可以概括性地知道所学专业的主要工作内容及其在整个生产过程中所起的作用。
四 结束语
高分子材料成型加工是一门实践性很强的专业技术课程。结合该门课程自身的特点,通过采取加强课程间的联系,抓住课程主线教学、改革教学方法等措施,力图改变该课程课堂讲授效果不高、学生学习积极性普遍较低等现象。
在不断深化教学改革的过程中,要想使学生学有所得、融会贯通,首先应提高学生在高分子材料产品的设计、生产和研究等方面的综合应用能力,从而培养具有卓越工程师意识的高分子材料专业技术人才。
参考文献
[1]申长雨、关绍康、张锐.加强课程建设 培养创新人才――“高分子材料成型加工”课程建设随想[J].中国大学教学,2008(3):52~54
[2]胡杰、袁新华、曹顺生.《高分子材料成型加工》课程教学中的几点思考[J].科技创新导报,2010(4)
[3]李宝铭、张星、郑玉婴.高分子材料成型与加工课程建设初探[J].化工高等教育,2010(3):39~41
篇5
1 基于工作过程教学简介
基于工作过程的课程体系,是一种以任务为驱动,以项目为载体的教学模式。高等教育的人才培养目标需突出学生综合职业能力的培养。高校更应该结合各类企事业单位对人才的需求,参照基于工作过程的课程体系,构建基于工作过程的课程体系建设的改革发展之路。
目前,课程设计方法越来越被高职院校所重视。所谓工作过程,是指为完成工作任务并获得工作成果而进行的一个完整的工作程序,包含若干个既相对独立又相互联系的工作环节。由于毕业生所对应的相关职业的工作过程特征不同,各院校的情况和办学条件也不同,因此,引进这种课程设计方法时,在强调这种课程设计方法优点和有利条件的同时,一定要注意不同类型院校和专业存在的各自特点及不利因素。我院在进几年的课改过程中积累了一定经验,对课程改革有一定研究。基于工作过程的教学,以工作过程为参照系,以完成职业工作应具备的专业技术能力项目为依据,针对行动顺序的每一个工作环节知识、能力要求传授相关的课程内容,组织技能训练,突出学生在校学习与实际工作的一致性,实现理论知识与实践技能的整合。
2 高分子材料加工专业“工作过程”内容设计
高分子材料加工的职业能力是一种综合能力,要求教师在教授的同时要将高分子材料常见的各种加工方法、加工手段以实践的方式教给同学,这就需要为学生模拟真实的工作情景,通过以项目任务为依托的教学使学生置身于真实的或模拟的学习工作世界中。在教学中,每个学生会根据自身的知识结构与实际经验,会给出不同的解决任务的方案与策略,产生的学习效果不是唯一的,而是多样化的。让同学在正确认识高分子材料结构和组成以及合理的配方设计基础上,能够选择合适的加工设备、加工工艺和加工方法制备高分子材料制品的过程。
教学内容可以以实际的“工作任务”为依托项目。“工作内容”的设计要结合本学科前沿研究领域和发展动态,介绍重点科技成果,增加教学信息量,使课程教学内容满足时代的要求,使学生掌握更多、更新的专业知识。教学过程通过不同的高分子材料产品项目、确定合适的加工技术及其方法。理论教学内容与实践教学内容通过项目或者是工作任务紧密地结合在一起。课程涉及到的高分子制品成型加工典型工作任务如下图所示:
主要是根据制品使用需求、选择出合适的高分子材料,并进行合理的助剂选择,进行配方设计,如不合适提出改性办法等,为生产开发决策提供完整依据。
通过项目任务的实施,使学生能针对产品的具体要求合理的设计成型加工方案,能对所设计方案进行合理的性能分析与测试,进而掌握塑料、橡胶制品加工设计的原理与方法。为将来从事高分子材料、复合材料的生产打下坚实的基础。
通过以下项目:“市政用木塑复合栅栏材料的成型加工”、“冰箱抽屉专用料加工设计”、“抗冲击阻燃电视机壳专用料成型加工”、“低成本鼠标垫加工”、“聚乙烯发泡鞋底设计”、“霓虹灯管专用料设计”、“PP汽车保险杠专用料设计”、“奥运志愿微笑圈手环配方设计与制作”的实施,让同学能够通过能够设计塑料产品的配方,能找出成型加工方案设计难点,提出解决方法的能力。能够设计橡胶产品的配方,能找出成型加工设计难点,提出解决方法的能力,能够分析测试塑料材料配方的基本性能,能够分析测试橡胶材料的基本性能。
配合上述8个项目及相关拓展任务的训练,组织学生讨论、总结、归纳如下相关知识:了解塑料的物理性能、流动特性、成型过程中的物理、化学变化情况。了解橡胶的物理性能、流动特性、成型过程中的物理、化学变化情况。掌握常用通用塑料和通用工程塑料塑料的特性、分类以及塑料配方的组成和对应的成型加工工艺。掌握常用天然橡胶和合成橡胶的特性、分类以及橡胶配方的组成和对应的相关成型加工。 转贴于
通过训练让同学以下能力得到提高:(1)培养学生自我学习,寻求探索物质之本性的兴趣与能力;(2)对事物性质的分析方法—内外因分析法;(3)培养学生信息获取的素质与能力(图表查阅、专利、手册、网络资源等);(4)逐步形成综合分析问题的素质与能力;(5)增强环境保护意识、经济意识、安全意识;(6)专业外语单词的学习与筑固;(7)团队合作意识的形成。
3 “基于工作过程”教学对教师的要求
(1)专任教师实践能力的提高。作为一线教师,在实行相关实践教学过程中,一定要具有高分子材料加工生产的职业经验,清楚高分子加工企业的工作过程和经营过程,只有这样才能找出高分子材料生产的工作任务作为具有教育的项目。
(2)专业教学团队的建立。基于工作过程的教学法涉及多学科教学内容,高分子材料加工生产需要有机械设备、加工工艺、原料配方、制品材料测试、产品检验等一系列知识,因此对绝大多数教师而言,很难独自一人很好地完成教学工作。这就要求教师具有跨学科的能力,团队协作的能力,不仅要娴熟本学科的专业知识与技能,还要了解相邻专业、相关学科及跨学科的知识与技能。
(3)学习情境设计能力的掌握。在本教学法中,学习情境的设计好坏决定了传授知识结构的合理性、能否激发同学学习的兴趣。如何在项目教学中合理有效的利用学习的资源和协作学习的环境是教师最主要的工作,这要求教师熟悉项目内容中所用的高分子材料的基础知识,并准备好项目开展过程中可能涉及到的有关知识。
4 结束语
在专业课程体系中,高分子成型加工是门重要的核心课程,是高分子加工专业学生必须掌握的专业知识和技能。在老师的指导下,用工厂的管理模式,让学生亲自动手设计和制造相关高分子产品,加深领会和掌握材料加工过程工艺设计的要点以及生产工艺与实际生产之间的联系。但以往教育方式存在着一定的不足,且与当前工厂的需求相脱节,于是笔者根据自己的教学经验,在新的基于工作过程的教学理念指导下对高分子成型加工课程进行改革,以提高学生的学习兴趣和求知欲望。
基金项目:教育部高等学校高职高专化工技术类专业教学指导委员会2009年度规划课题,课题编号HJKT-2009-034Y;常州工程职业技术学院教育研究课题《“基于工作过程的项目化教学方法”在高分子成型加工课程改革中的应用》,课题编号:10JY022
参考文献
[1]应力恒.基于工作过程的课程项目化教学改革[J].中国职业技术教育,2008(22).
[2]虞丽娟.深化课程体系改革提高人才创新能力[J].中国高等教育,2008(15).
篇6
关键词: 聚合物材料 成型加工 教学改革 课程建设
聚合物的成型加工是获取高分子材料制品、体现材料特性和开发新材料、新产品的重要手段,是高分子学科的重要组成部分,已形成独特的理论体系和技术方法[1]。因此,聚合物成型加工课程与高分子化学和高分子物理课程一起,成为高分子材料专业学生最重要的专业基础课程。为使学生以大工程的整体观来了解和掌握聚合物的成型加工,这门课程将涉及诸多内容,包括影响聚合物性能的物理化学因素、添加剂的分类和作用、配方设计方法、聚合物流变学、成型加工设备、成型工艺条件及控制等。如何使学生通过本课程的学习,具备高分子材料科学的专业知识和专业素养;培养学生解决实际问题和创新科研的能力,为以后从事高分子材料制品的研发、设计和生产工作奠定坚实的理论与实践基础,一直是广大高分子专业教师在教学过程中关注的重点[2]。这需要我们在多方面进行改革。
1.课堂教学改革
1.1明确培养目标,强化理论基础。
江苏大学高分子材料与工程专业成立于2002年,最初聚合物成型加工课程主要围绕塑料和橡胶的主要品种及其制品的生产原料、成型工艺、加工方法、材料、性能和产品质量控制等内容开展教学。我们在总结前几届毕业生从事工作的实际情况和企业对本专业毕业生在知识结构、能力要求的基础上,于2012年再次修订了本科生培养计划。本科院校需要培养既有一定理论基础,又具备较强实践能力的高素质应用型人才,这与高职类院校主要培养服务于生产一线的操作型、技能型人才不同。具体到聚合物成型加工这门与实践联系紧密的课程,在教学过程中,仍然要重视对基础理论知识的讲解,让学生不仅“知其然”,更“知其所以然”。除了高分子物理、高分子化学及聚合物流变学等聚合物成型加工的基础理论外,成型加工技术本身也存在系统的原理知识,不容忽视。教师在课程教学中应注意结合本学科前沿研究领域和最新研究动态、介绍重点科技成果,丰富和活化教学内容,使教学跟上时代的步伐,让学生能够掌握更多、更新的专业知识。
1.2围绕课程主线,精心组织教学内容。
在成型加工课程学习中,学生需要系统学习和掌握聚合物的加工流变性能、聚合物加工过程中的物理化学变化、助剂的作用及配方设计原理、各种物料的混合和分散机理,以及成型加工的设备和工艺等。与其他课程相比,聚合物成型加工的课程内容较为庞杂而分散,理论知识的半经验性较强,这给课堂教学带来了一定的困难。因此,抓住课程内容的主线,突出理论重点就显得尤为重要。
根据聚合物成型加工涉及的主体内容,本课程主要围绕“高分子材料—成型加工—制品性能”这条主线来组织教学内容。教学过程中,要着重讲明高分子材料的成型加工不是简单的工艺操作,高分子材料、成型加工、制品性能这三方面是相互关联的,制品的性能取决于高分子材料和成型加工方法及工艺的选择,而制品的性能又反过来指导聚合物的改性、应用及加工,优化成型工艺。因此,如何抓住教学主线,让学生全面掌握高分子材料、成型加工及制品性能各自特性及相互关系,使学生融会贯通、举一反三,是这门课程教学的重点。
在教学过程中,始终围绕教学主线,从高分子材料的结构与性能和材料的加工原理出发,以成型加工的工程观点为着眼点,剖析各种高分子材料成型加工的共性和区别,这样可以使原本较为分散的理论知识相对集中并系统化,让学生更为清楚地了解和掌握抽象概念和半经验理论所反映的实质问题。比如在讲解聚合物材料的压制成型时,分别介绍了适用的热固性塑料、橡胶及复合材料的特性及成型工艺性能,不同加工方法和成型工艺条件生产制品的特点及控制条件,并通过具体的例子说明了成型加工工艺与制品性能的相互关系。这样的讲解生动地体现了“高分子材料—成型加工—制品性能”这条高分子材料成型加工的主线,使教学内容由庞杂繁多变得简单易懂,通过理论结合实际,强化了学生的专业知识,教学效果良好。
1.3结合课程特征,采取灵活教学方法。
聚合物材料制品的性能既与聚合物本身的性质有关,同时又在很大程度上受到成型加工过程的影响。这其中不但涉及很多高分子化学和物理的理论问题,而且与生产实际密切相关。因此,本课程是一门理论性和实际性都很强的课程,如何在教学过程中将基础理论和生产实际结合起来,用理论知识来解释具体生产中遇到的实际问题,或以实验和实际生产中的具体例子来说明基础理论,使学生在学习过程中掌握专业知识,是本课程教学的核心问题。
因此,我们根据聚合物成型加工课程具有很强的综合性和实践性的特点,借助于江苏大学目前多数教室都安装了多媒体教学设备的优势,将图像、声音、动画和视频等各种多媒体信息引入到教学过程中,利用工厂和车间的场景图像、成型设备的实物照片、加工工艺过程的动画仿真模拟等信息对授课内容进行补充和深化。这样不但可以丰富课堂内容,增加信息量,而且可以大大加深学生对基础知识的理解和印象,使学生对成型加工原理和工艺获得理性和感性的双重认识,从而提高教学效率。
为进一步将课堂教学与实际生产结合起来,在教学中紧密贴近工厂实际,江苏大学高分子材料与工程专业专门安排了两门为期各两周的课程设计,即高分子材料生产工艺设计和聚合物反应工程及设备设计。让学生在专业教师的指导下,针对具体的通用或特种高分子材料(如聚乙烯、聚丙烯、聚氯乙烯、聚氨酯等)及其制品,设计出相关聚合物材料及其产品项目内容,包括原料品种、型号选择、工艺流程及设备确定、产品质量检测,以及厂房布局和规模,等等。通过课程设计,可以有效地让学生系统地掌握所学知识,并获得一定的灵活应用的能力,为后期的毕业设计乃至毕业后走上工作岗位打下基础。
2.实验实践教学改革
前面已经谈到,聚合物材料成型加工是一门实践性很强的专业课程,仅凭课堂教学是难以真正实现教学目标的,并且容易使学生学习时感觉枯燥,实际工作时不能学以致用。因此,这门课程的实验是不可缺少的。只有让学生在实验室和工厂中实地了解和直观认识成型设备、工艺控制和生产线管理,对聚合物成型加工的整个工艺流程进行整体和全面的认知,他们才有可能创造性地利用学习的理论知识来真正解决生产中遇到的具体问题[3]。
目前江苏大学高分子材料与工程专业建有约200m2的专业实验室,购置有注塑机、挤出成型机、高速混合机、平板硫化仪等成型加工设备,以及拉伸实验机、冲击实验仪、硬度仪、紫外老化仪、高低温实验箱等各种材料及制品性能检测仪器。利用这些仪器设备,我们围绕课程主线,将聚合物材料的制备、成型加工、结构表征及性能测试等方面有机地联系起来,开设了一系列的综合性实验。比如,在聚合物的注射模塑成型实验中,要求学生从原料的选择开始,分析原料的结构和性能特点,有针对性地设定成型加工工艺参数,并在注塑成型得到制品后,对其熔点、熔融指数、热变形温度及力学性能等进行表征和测试。通过对这些聚合物原料—成型加工工艺—制品性能数据之间关系的分析与总结,使学生形成科学研究的思路,掌握解决实际问题的方法。
此外,聚合物材料成型加工具有很强的工程应用性,需要学生建立起大工程的整体观。要达到这样的教学水平和目标,仅靠课堂的学习和实验室实验是不够的,还应该让学生到工厂、车间参观实践,实地了解成型设备、工艺控制及生产线管理等,使学生对工业化生产有具体、直观的感受。
针对这样的问题和现状,本专业积极与周边高分子材料企业加强联系和交流,目前已建成近10个实习实践基地,涉及聚合物成型加工领域的各个方面,包括模压发泡成型、压延成型、注射成型、挤出成型等。通过与这些企业的合作,学生可以现场实地对各种成型加工涉及的原料准备和处理、设备、工艺流程、质量控制等实际生产过程进行近距离的感受。在此基础上,组织学生针对成型过程中的某一感兴趣的内容,或参观实践中发现的具体问题进行资料查阅和文献调研,对涉及该内容和问题的基本原理和基础知识进行更深入的学习,在此基础上提出解决问题的思路和方案并验证。这样就使学生真正将基础理论与实际应用结合起来,掌握科研的方法,培养科学的思维,成为真正有创造力的人才。
参考文献:
[1]周达飞,唐颂超.高分子材料成型加工(第二版),北京:中国轻工业出版社,2006.
[2]李宝铭,张星,郑玉婴.高分子材料成型与加工课程建设初探,化工高等教育,2010,3:39-42.
[3]程丝,王新波.高分子材料专业聚合物加工实验的改进与探索,高校实验室工作研究,2009,2:50-51.
篇7
【关键词】高分子材料 阻燃技术 无机阻燃剂 卤系阻燃剂
1 高分子材料的阻燃机理
高分子材料的阻燃机理是破坏原有高分子成分,形成新的保护膜或隔离层,达到抑制分子燃烧的效果。一般阻燃性质从两个原理中进行分析,分别为隔氧及温度,隔氧采用凝聚相阻燃机理,高分子阻燃材料在燃烧过程中,形成阻燃细微分子,中断该链式反应。链式反应中断后,分子热分解的温度较高,所以燃烧后期会形成水蒸气,阻燃材料高分子中含有大量的氢氧元素,与空气接触后,便会形成水雾覆盖在材料表层。其次便是能隔断与空气的接触,形成的水雾除了降低表层温度外,还能堵塞阻燃材料的气孔,形成密闭环境,隔断与空气的接触。凝聚相在作用机理中有4种阻燃模式,阻燃材料在燃烧过程中,会产生惰性气体,延缓阻燃材料的燃烧;燃烧期间会产生多碳气孔,使其阻燃材料难以燃烧;反应过程中会吸收大量的热量,降低反应温度;其次无机比热容较大的分子,在燃烧过程中,通过分子之间的氧化还原反应,使分子发生质变,促使反应中断停止。该两种反应在作用机理中大致相同,但在反应中作用的机理很多,所以在划分高分子阻燃体系结构上仍十分复杂。
2 高分子材料阻燃剂的类别
2.1 无机阻燃剂
无机阻燃剂作用机理便是通过无机化合物的热分解,产生保护膜或水蒸气,隔断与空气接触及降低燃烧温度。无机阻燃剂在燃烧过程中会产生结晶水,温度升高后,吸收周围热量,降低其燃烧温度,阻断其物质的燃烧;另一种便是通过阻燃剂燃烧形成保护膜,例如:Al(OH)3燃烧过程中,产生致密的氧化层薄膜,隔断物质与空气的接触面积。无机阻燃剂化学性质稳定,不会产生较为污染有害气体,一般常用作防火无机阻燃剂。
2.2 卤系阻燃剂
在元素周期表中,卤系元素包括:氟、氯、溴、碘,该元素形成的化合物具有高效的阻燃效果。化合物中含有氟利昂,该化合物易散发,破坏臭氧层。在该物质中分别添加氯元素及氟元素,然后对标准沸点进行比对。其中添加氯元素标准沸点升高,化合物中含有3个氯分子时,标准沸点为61.2℃;其中添加氟元素标准沸点降低,化合物中含有3个氟分子时,标准沸点为-128℃,具体数据量如表1所示。含氯化合物阻燃剂具有良好的阻燃性,化学性质稳定,能与多种高分子化合物相融,不影响化学反应。溴元素阻燃化合物包括:十溴联苯醚、四溴苯酚、六溴环十二烷等,化学稳定性位于氯和碘元素之间,具有良好的阻燃性。卤系元素虽然具有良好的阻燃性,一般阻燃剂内都添加少量的卤系元素,保证达到阻燃效果。
表1 氟、氯化合物标准沸点比对表
2.3 磷系阻燃剂
磷系阻燃剂包括:红磷、白磷、磷酸氢二铵以及亚磷酸酯等化合物,磷系化合物在燃烧过程中会形成性碳膜,该膜除了降低温度外,还能起到隔断空气的作用,达到理想的阻燃效果。其次红磷与白磷的混合,也能起到良好的阻燃性。红磷在空气中燃烧发出淡蓝色的火焰,并产生大量白烟;白磷燃烧性质与红磷相似,最终产物都是五氧化二磷,两种磷在制备次磷酸阻燃剂中,能够提升与液体水的混合比例。次磷酸(H3PO2),分子量60,与强氧化剂反应时,产生磷酸氢及氢气等,不会产生助燃气体成分。针对磷系阻燃剂的配比关系,其中次磷酸中磷含量占有比例在35%,亚磷酸中磷含量占有比例在27%,保证磷系元素达到理想的阻燃效果。
3 高分子材料阻燃技术的发展
3.1 纳米技术
随着科学技术的不断发展,纳米技术也逐步应用于高分子材料阻燃技术中,日本曾研发出纳米硅酸盐黏土纳米材料,这种材料具有优异的阻燃特性。纳米材料在燃烧过程中,产生抑制剂,改变燃烧物质的内部结构,使其发生质变。研制出的纳米硅酸盐黏土分子直径在0.4-0.5nm,产生的凝聚产物能够封闭其气孔,隔断与空气的接触面积。其次在热释放速率上也具有延缓效应,保证有效时间内散发的热值最小。
3.2 接枝和交联改性技术
接枝和交联改性技术利用的是光敏技术与化学接枝,将多种无机化合物交织在一起,使其形成共聚化合物。共聚化合物在燃烧过程中会产生无机绝缘层,吸收易燃物质内的高分子,减少助燃物质内的有效成分。其次该技术也可用于减少燃烧物质后的产物,提高其阻燃性,最终达到理想状态。
3.3 膨胀技术
膨胀技术般采用发泡剂作为阻燃物质,发泡剂具有三个优点,包括:无排烟量、无毒气、无滴落。原有技术在做阻燃处理工艺中,产生大量的有毒气体,例如四溴苯酚在阻燃处理工艺中,产生大量的有毒气体,不但会污染环境,而且还对人体健康造成伤害。无滴落主要体现在该阻燃剂不会产生腐蚀性液体,导致局部腐蚀。
4结语
通过对高分子材料阻燃技术的应用分析,使得笔者对此该技术有了更为深刻的认知。这种技术不但能够对物质燃烧起到阻燃特性,而且也不会污染环境。
参考文献:
[1]王建祺.无卤阻燃聚合物基础与应用[M].北京:科学出版社,2005,34(17):33-34.
[2]张军.聚合物燃烧与阻燃技术[M].北京:化工工业出版社,2008,38(24):58-59.
篇8
关键词:分子材料;医疗器械制造;应用
0引言
分子材料对疾病的治疗和健康保健领域的发展起着重要的推动作用。本文主要从生物惰性高分子材料和可降解性高分子材料中阐述分子材料在医疗器械制造中的应用。
1惰性分子材料
惰性分子材料是指能长期存在于体内的材料,主要指硅橡胶、聚氨酯、PVC、聚酯等。下面我们就以聚氨酯和硅橡胶材料在医疗器械制造中的应用进行简单说明。
1.1聚氨酯弹性体
聚氨酯弹性体具有一定的拉伸度和硬度,能够和生物相融合,和血液的融合性也较好。这种弹性体在医疗制造中已经得到了广泛的应用,并且因其优越的性能,应用前景很广阔。聚氨酯弹性体在医疗中主要应用于植入体内的制品和导管类的制品、膜类制品和其他类制品等。植入类制品主要有人工心脏、输精管栓塞、人工心脏瓣膜、人造血管、人造颅骨等。导管类制品主要是导入体内的一些物质,主要包括J型和微型导管、血液透析中的插管、胃肠、肝胆等的养护作用的导管。膜类制品顾名思义就是指一些医用的手套、防护服、血浆袋等膜质的用品。随着现代医学的进步,高分子材料也在不断被研制成新的产品,聚氨酯弹性体在医疗器械中的应用将会越来越广泛。
1.2医用硅橡胶
硅橡胶是在酸或者碱的腐蚀作用下,二甲机硅氧烷单体和其他有机硅单体结合形成的一种高聚合物质。橡胶硅的生物特性很显著,具体特征表现为:无毒、抗老化、生理惰性等,根据其特性,当植入人体后,硅橡胶对人体器官和组织不会产生副作用,其周围的组织也不会出现感染或者其他不良反应,在理论上对人体不会产生危害。硅橡胶的使用寿命随着温度条件的变化而发生改变,一般在20℃下能够长期工作,120℃左右的温度下可以使用10年,150℃温度下使用5年,到260℃的高温条件下,仅能使用三个月。硅橡胶作为医学界的重要医疗材料,在理论和临床上都取得了重大的成就,获得了医学界的一致肯定,其制成品已经达到上百种之多,在医学各个领域应用广泛。例如导管制品、消化系统、泌尿系统制品、心脑和颅脑外科制品等等。其中导管制品的用途最广,发展速度更快,像我们常见的体外各类泵管、连接各种器械的导管,用于输液的输液管等,还包括各类体内的插管、导管和引流管等,都有硅橡胶制品。消化系统使用的制品大多数是一次性产品,例如胃管、十二指肠导管、胃造瘘管、洗胃和灌肠的导管等等。颅脑外科制品主要包括各种脑器官的人工制品,人工颅骨、脑膜导管等,脑积水的引流管、脑室引流管等等。心外科制品主要包括体外循环机泵管,人工肺硅胶膜和胸腔隔离膜、人工心脏尖瓣等。耳鼻喉科使用的制品有各种人工鼻梁、耳朵、上下颌骨、鼻腔止血气囊、治疗中耳炎导管、鼻孔治疗架等等。泌尿和生殖系统的制品使用硅橡胶材料非常多,例如皮埋装置避孕设备、子宫预热治疗器材、前列腺治疗仪、假体、膀胱造瘘管、导尿管等。腹外科制品只要包括各种引流设备,引流管、腹膜透析管等各种类型的导管。另外,硅橡胶材料在皮肤科中用于皮肤的扩张器、人工假体、人工关节等医疗设备中也得到了应用。在医疗美容事业的发展下,人工假体的用量也呈现出逐年上升的趋势。
2可降解高分子材料
二十世纪六十年代晚期,人工合成能够进行分解的高分子材料开始应用在临床中。随着生物医学技术的进步和药物工程的发展以及基因技术在医学上的广泛应用,促进了医学再生技术和生物纳米技术的发展和完善,这些新型医疗技术和科研成果促进了可降解高分子材料的发展。以下就以聚乙交酯和聚乳酸作为典型代表,分析其在医疗器械中的应用。
2.1聚乙交酯
聚乙交酯是利用水解达到降解的目的。通常一到两个月,其力学特性会有一定程度的下降。半年到一年,其质量会受到一定程度的损害。聚乙交酯在体内会被分解成甘氨酸,随着尿液被排出,同时转变成二氧化碳和水。在医学上比较实用的是缝合线的使用,因为其能够被降解,所以患者也不会再受到拆线的痛苦。无纺布的支架材料也在临床上开始使用。
2.2聚乳酸
这是一种半结晶体,聚合物呈现无规则性。这种材料拉伸的强度和弹性较大,广泛应用于医学上的承重材料中,例如固定骨头的设备方面。
3结语
本文主要分析了分子材料在医疗器械制造中的应用,通过分析可知,分子材料的应用很广泛,具有众多的优势,我们要正确发挥其优势,认识其不足,更好促进我国医疗器械的进步。
参考文献:
[1]孔庆香.高分子医疗器械的发展对人类生命质量的提高[J].中国高新技术企业,2013(11)
[2]刘亚军,黄华.医用高分子材料在医疗领域的应用及前景[J].医疗卫生装备,2012(6).
[3]柏保东.医用PVC非邻苯化在国内市场的推进[J].中小企业管理与科技(上旬刊),2015(6).
篇9
关键词:可降解高分子材料;光降解;生物降解;光-生物降解
随着经济的发展和人们生活节奏的加快,塑料饭盒、塑料袋等一次性产品开始频繁出现在人们的日常生活中,它们在给人们的生活带来便利的同时,也因其非自然降解性造成了极大的环境问题,即“白色污染”。“白色污染”既是一种视觉污染,也会影响土壤、空气、水体等的质量,因此努力合成并推广使用可降解高分子材料成为当务之急。按照降解机理,可降解高分子材料可分为光降解高分子材料、生物降解高分子材料和光-生物双降解高分析材料三大类。
1.光降解高分子材料
光降解高分子材料的特征是含有光敏基团,可吸收紫外线发生光化学反应,在太阳光的照射下,发生分子链的断裂和分解,由大分子变成小分子。
向塑料基体中加入光敏剂是目前使用比较多的制备光降解塑料的方法。光降解引发剂可以是过渡金属的各种化合物,如:卤化物、脂肪酸盐、酯、多核芳香族化合物等。很多学者都发现TiO2对聚丙烯的光降解有明显的催化作用,等人[1]分析了加有锐钛矿型纳米二氧化钛的聚丙烯纤维在人工加速紫外光降解和自然光降解过程中拉伸断裂伸长率和表面形态的变化情况,得出锐钛矿型纳米TiO2可作为聚丙烯的一种高效光敏剂的结论。除了TiO2,还有很多其它光敏剂,如硬脂酸铈、硬脂酸铁、N,N-二丁基二硫代氨基甲酸铁、硬脂酸锰等均对聚乙烯薄膜有显著的光敏化作用效果。
在高分子中添加光敏剂制得改性高分子虽然能降解,但只是部分降解,而化学合成的羰基聚合物、Et/CO等,则能完全降解。一氧化碳和烯烃的交替共聚产物——聚酮,因为分子链中含有大量以酮形式存在的羰基,容易在紫外光的照射下发生光降解,羰基键附近的碳链断裂生成酮类、烯类及一氧化碳等低分子物质并返回到物质循环圈中,不存在环境污染,是一种新型的环境友好材料[2]。且有实验证明,分子量大、结晶度低的聚酮光降解性能更好。
2.生物降解高分子
生物降解材料包含完全生物降解高分子和生物破坏性高分子,前者是指在微生物作用下,在一定时间内能完全分解成二氧化碳和水的化合物;而后者在微生物作用下,仅能被分解成散落碎片。
2.1 淀粉降解塑料
淀粉是天然高分子化合物,具有可再生、价格便宜、生物降解性等优点,成为近年来研究的热点。淀粉降解塑料泛指组成中含有淀粉或其衍生物的塑料,发展至今已经过了四个时期:填充型淀粉塑料,光/生物双降解型塑料,共混型塑料和全淀粉热塑性塑料。
填充型淀粉塑料一般是烯烃类聚合物中加入廉价的淀粉作为填充剂,其中淀粉含量在10%30%,仅淀粉能降解,被填充的PE、PVC等塑料需要几百年才能达到完全生物降解。光/生物双降解型是由光敏剂、淀粉、合成树脂及少量助剂等制成,其降解机理是先降解的淀粉可使高聚物母体变得疏松,增大表面/体积比,同时光敏剂、促氧剂等物质被光、热、氧引发,发生光氧化和自氧化作用,导致高聚物分子量下降并被微生物消化[3]。接下来人们发现,通过共混能解决淀粉粘性高、抗湿性低及与一些聚合物不相容等缺点,于是开始将淀粉与聚烯烃类等一些不可降解聚合物混合来提高淀粉的强度,但这类产品不能完全降解;后来便试图将其与PCL、PEG等可降解聚合物共混,制得了很多可完全降解材料。全淀粉热塑性塑料含淀粉70%-90%,其余组成是一些可光降解的加工助剂,使用后能在环境中完全降解,但天然淀粉不具有热塑性,必须先利用物理场作用使其分子结构无序化后才能在塑料机械中加工成型。
2.2 化学合成型生物降解高分子[4]
酯基在自然界中容易被微生物或酶分解,所以常采用含有酯基结构的脂肪族聚酯来合成生物降解高分子材料,工业化的有聚乳酸和聚己内酯。
聚乳酸是以淀粉、糖蜜等为原料,发酵制得的易生物降解的热塑性材料,因乳酸存在一个羟基和一个羧基,可通过缩聚反应直接转换成低分子量聚酯,再通过选择适宜的聚合条件来合成目标分子量的聚合物。聚乳酸具有良好的生物可降解性、相容性、透明性、机械性能及物理性能等,被视为新世纪最有发展前途的新型包装材料。聚己内酯也是脂肪族聚酯中应用较为广泛的一种可降解高分子材料,通过己内酯的开环聚合制得,是一种半结晶型聚合物,室温下为橡胶态,具有很好的柔韧性、加工性和生物相容性,土壤中掩埋一年后能被微生物降解掉95%左右,降解产物是二氧化碳和水,被认为是环境友好包装材料。
2.3微生物合成的完全生物降解高分子[21-26]
微生物合成高分子材料是通过用葡萄糖或淀粉类喂养,微生物在体内发酵合成的一类有机高分子材料,主要包括微生物多糖、微生物聚酯和聚氨基酸等。
γ-聚谷氨酸就是利用微生物发酵生成的一种多功能生物高分子,具有生物相容性、可降解、无毒副作用等特性,可用于制备高吸水性树脂,作为一种治疗骨质疏松的重要载体、药物缓释材料,吸附重金属等,具有广泛的应用前景[5]。聚羟基脂肪酸酯是一类由很多细菌在非平衡生长条件(如缺氧、磷等)下合成的线性聚酯,可作为碳源和能源的贮藏性物质,增强细菌的生存能力,在自然界中可被微生物和特定的酶降解为二氧化碳和水,并且具有热可塑性、生物可再生、生物相容性、光学异构性等,可作为生物医用材料、日常消费用塑料制品、生物可降解包装材料、生物能源,已成为可降解生物材料领域研究的热点。
3.光/生物双降解高分子材料
顾名思义,光/生物双降解高分子材料同时具有光、生物双降解功能,将光降解机理与生物降解机理结合起来,可以使二者优缺点互补,达到更好的降解效果。其制备方法主要是在通用高分子材料中添加光敏剂、自动氧化剂、抗氧剂和生物降解助剂等。目前研究比较多的有淀粉和光敏剂光降解树脂合成的光/生物双降解淀粉塑料及可控降解剂共混改性法制得的改性可控光/生物双降解聚丙烯纤维制品等。光/生物双降解淀粉塑料前面已提过,此处不再赘述,而可控双降解聚丙烯纤维制品凭借着其可控降解性、存放性、无毒性等众多优点,必将具有巨大的发展前景。
4.结语
随着“白色污染”的日益加重和石油资源的日益枯竭,加大对高分子废弃物的回收利用率和研制出高效的降解技术都是有效的解决途径,但只有研究出可自然降解的高分子材料才能从根本上解决这些问题,且光-生物双降解高分子材料凭借着其独特的优势将会成为今后的研究重点之一。(作者单位:郑州大学材料科学与工程学院)
参考文献:
[1] ,严玉蓉,赵耀明.纳米二氧化钛催化光降解聚丙烯纤维的研究[J].合成材料老化与应用,2005,34(1):8-12.
[2] 邹丽萍.绿色高分子材料聚酮的合成研究[D].昆明:昆明理工大学,2007:1-5.
[3] 范良兵.淀粉降解塑料的制备及性能的研究[D].广东:华南理工大学,2010:1-8.
篇10
[关键词]水箱内胆 集热器 太阳能转换材料 防老化涂料
中图分类号:TU822+.2 文献标识码:TU 文章编号:1009914X(2013)34052601
前言
太阳能热水系统是太阳能利用技术中商业化程度最高、推广普及应用最普遍的技术之一。以色列80%的家庭、日本20%的家庭使用太阳能热水器。据了解,2000年我国太阳能热水器总销量在600万m2以上,年产值超过50亿元人民币,全国太阳能热水器保有量约2500m2,成为全世界太阳能热水器年产销量及保有量最大的国家,但目前我国家庭太阳能热水器的普及率仅为4%。
在最简单的太阳能热水器中,它的吸收层材料、封闭式热水器的透明盖板材料、绝热材料以及其他许多方面,多已采用了高分子材料。
1、外壳材料
目前,我国使用的太阳能热水器外壳多为金属材料,壳体结构同保温材料相分离,既存在容易腐蚀、寿命短、造价高、工艺繁杂等问题,又常使保温材料脱落,失去保温性能,影响热水器整体性能的提高。
为此,有人研发了新型非金属的复合材料外壳,外壳的表层以镁质凝胶物为主,并加入玻璃纤维等增强材料。据太阳能热水器外壳不同温区、不同部位的结构要求,选取了高分子材料聚苯泡沫板(或颗粒)为保温材料,同镁质凝胶物复合制成不同性能的保温层。
2、内胆
太阳能热水器储水箱内胆普通采用不锈钢薄板(厚度约为0.3mm~0.6mm)焊接加工而成。在制造过程中,材料经冲压、拉伸、焊接等工序,导致水箱表面存在缺陷和焊缝处材质发生变化,长期使用中,缺陷处、焊缝部位及其周围易被腐蚀,尤其是在水质较差的地区腐蚀更加明显,造成穿孔漏水,从而导致整个热水器水箱损坏。
为了解决不锈钢内胆存在的缺点,根据太阳能热水器内胆的工作条件,有人选择了PPR、PEX、ABS三种材料作为内胆的原材料进行实验。通过对该三种材料制成的内胆进行一系列的性能测试,发现PPR作为太阳能热水器水箱材料更有优势。
3、太阳能集热器
用高分子板材和染料制成的集热器,当太阳光穿过大面积的板材并为底下的染料吸收时,染料会发出相应的光辐射,并通过内部反射被收集在板材内,然后再聚集到吸热器上。
巴斯夫Basotect三聚氰胺泡沫目前应用在太阳能集热器制造商Heliodyne生产的产品中。Heliodyne选择了高分子复合材料制造商瓦克来完成Basotect绝缘部件的合成。将巴斯夫Basotect泡沫材料应用于太阳能集热器,该泡沫具有优良的绝缘能力以及长期耐高温能力。Basotect泡沫可以承受超过350°F的温度,有别于其他聚合物绝缘材料。
4、高分子太阳能集热器盖板
对于双层盖板的集热器,要求外层盖板能抗冲击,内层盖板能耐高温。抗冲击是高分子材料的主要优点之一,所以可用透明的高分子材料来代替玻璃盖板。
用轻质塑料取代玻璃和铜制造有关零部件,可以降低太阳能热水器的成本,在太阳能加热游泳池水的太阳能集热器上已取得了商业化成功。有关专家已试验过许多种太阳能热水系统高分子盖板材料:聚对苯二甲酸乙二醇酯(PET,一种聚酯)薄膜的透光度很高、成本低、机械性能亦较好,但连续使用温度只有90℃左右,抗紫外线能力也比较差。近年加入紫外线吸收剂以后,抗紫外线能力有所提高,但毒性问题有待解决。
聚萘二甲酸乙二醇酯(PEN)虽然成本高于PET,但热性能和机械性能均有提高,不过抗紫外光透过率还有问题。很多含氟高分子材料有优良的抗紫外线和抗热性能,不过成本很高,只能做成薄膜形状使用。
丙烯酸类材料也有优良的抗紫外线能力,但做太阳能集热器盖板时经受不住工作温度的考验,并且很脆,即使作成板状,也经不住冰雹打击。Korad虽有这样的缺陷,抗紫外性能却极好,可在层压型盖板中做抗紫外层,与基板有很好的结合效果。Tedlar也是一种含氟聚合物,把它和Korad都同玻璃基板作成层压结构,做加速暴露试验,结果表明Korad的紫外线过滤性能优于Tedlar,做成Korad/玻璃层压盖板有很好的抗紫外线特性。
聚碳酸酯类材料的透光性较好,强度亦高,只是在紫外线照射下会变黄、变脆。Bayer公司已开发出两种聚碳酸酯材料,名叫APEC5391和APEC5393。APEC5391热稳定性好,连续使用温度可高达180℃,而APEC5393的热稳定性和抗紫外线能力都很好。
5、高分子太阳能转换材料
日本京都大学研制出一种高分子太阳能贮能材料,即一种能大量吸收太阳能的有机高分子物质,是一种黄色的晶体,在阳光下可以大量吸收热量(每公斤可吸收92千卡热量)。当热量吸足后,它就从黄色变为白色。需要使用时,只需要添加进一些银做催化剂,就能把热量释放出来。热量释放完毕,白色的晶体又变为黄色的晶体,可重复使用。
在PP中添加炭黑等助剂,共混复合制成太阳能光热转换材料,并制出太阳能塑料热水器,具有较高的平均日效率(54.3%)和较低的平均热损失系数2.34 w/(In ・℃),耐老化性优良,可使用9年以上,且不会结硬水垢。
6、高分子太阳能透光材料
国内常用的太阳能透光材料是普通平板玻璃,其含铁杂质约0.1-0.14%,可见区域透光率较高,而紫外区域和近红外区域存在较大的吸收。为了获得性能优良的透光材料,有人通过对高分子材料PVA与纤维状材料的预处理,复合得到一种增强透光材料,具有透光率高、重量轻、易运输和不易破碎、抗拉和抗震强度大等优点。
确定单体PVA、醋酸纤维的比例后,与交联剂在水溶液中混合搅拌一定时间,再加压过滤,成型后得到PVA透光材料。在相同的测试条件下,尽管有机玻璃具有较高的透过率,可是它的软化湿度低(约60-75℃),拉伸强度小,韧性差,使用温度范围窄。普通玻璃含铁量高,吸收率大,其平均透光率只有70-75%,容易破碎,不能使用过薄的平板玻璃。
美国杜邦公司的F-46薄膜,是一种集热器盖层材料,其太阳透光率达90%以上,且入射角修正系数也很小,很适合房屋的采光、保温。
结语
高分子材料以其低成本、易成型、种类多样,纤维强度高、橡胶弹性好、塑料强又韧,其功能化后可用于许多拓展领域。高分子材料应用在太阳能热水器上,能在一定程度上解决现有太阳能热水器存在的问题,并能降低成本、提高产品性能。在日益强调节能的今天,太阳能作为一种清洁、环保能源,受到越来越多的重视。通过在材料、工艺、结构设计上不断完善和发展太阳能热水器,必将使太阳能热水器走入千家万户。
参考文献
[1] 郭廷玮,刘鉴民. 太阳能的利用. 北京:中国科学技术文献出版社,1987;78-94
- 上一篇:流体力学重要概念
- 下一篇:小学数学应用意识的培养