流体力学知识点范文
时间:2023-12-18 17:56:35
导语:如何才能写好一篇流体力学知识点,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
一、流体力学课堂的教学方法
流体力学是工程技术专业的基础课程,其课程性质决定了其课堂教学的内容理论性知识多、记忆量大,比较枯燥。学生在进行学习的过程中,容易产生乏味感和懈怠感,导致流体力学的课堂效果不佳,学生对知识点的掌握情况不好等问题。在课堂上学生无法做到全神贯注地学习和理解,也就使学生无法做到对知识点的有效掌握,就会使学生的学习兴趣下降。特别是流体力学与其他学科和行业都有一定的联系,学生在学习过程中如果不能理解所学的知识点,对其在其他相关学科中的学习也有一定的阻碍。由于流体力学是一门基础性学科,学生在进行学习时,其基本的任务是要将流体力学的理论知识与重点深入地理解和掌握,但学生往往忽视了基础知识以及理论知识的重要性,过分地关注在例如方程推导等内容上,使学生的学习出现断层,无法做到整体的理解和掌握。针对这些问题,教师可以在课堂中进行一定的改革和变化。首先,教师可以在每日上课前对本次课程所要讲解的内容进行引导。通过精彩的引言,将本次课程所讲的内容与前后知识点相结合,使学生能够得到具有极大吸引力以及趣味性的课堂形式。在进行讲解过程中可以将流体力学知识与生活中的自然现象以及科学原理进行阐释,从生活中带入,使学生产生共鸣,进而做到有效的学习。而在课堂结束后,为了保证学生的学习效果,检查学生的记忆效果,则可以为学生进行别致的课后作业,在课后作业的帮助下,使学生能够有效地记忆知识点和概念,使学生能够改善知识点掌握不良的情况,为学生在其他学科的学习中增添助力。而教师在教学过程中,对学生的引导也十分重要。学生在学习过程中,容易出现学习内容理解偏颇、学习方法不当以及学习的重点掌握不明等问题,这时教师应对学生进行积极有效的引导,特别是在概念的记忆方面,引导学生以记忆概念为主的学习方法,防止学生过分追求解题而导致的知识点记忆断层。教师在每章节的教学后,应对学生进行一定的复习教学与指导,帮助学生明确每一章节的重要内容,并对学生的知识理解做到有效的掌握和补充。
二、多媒体教学与传统教学相结合
多媒体教学作为当前较为先进的教学方式,对丰富教学内容,增添教学形式都有重要的地位和作用。多媒体教学目前也成为流体力学教学过程中重要的教学形式之一。多媒体教学与传统教学不同的地方在于,教师不需要在课堂上利用板书进行教学内容的展示和讲解,在教学过程中,能够加快教师的教学进度,使学生能够轻松地完成繁重的教学任务,并通过多媒体教学形式,在较为复杂且理解性较强的知识点的学习过程中,能够通过动画、图像、视频以及声音等内容进行辅讲解,使学生更好地理解所要掌握的内容。但多媒体教学也存在着一定的缺陷,例如在多媒体教学的模式下,教师不需要通过板书进行讲解和推导,学生理解和记忆的时间短,无法保证所有学生都能够做到对所讲知识有效地理解和掌握,而多媒体教学在师生互动方面也存在一定的缺陷,学生与教师的互动减少,教师则无法通过学生的反馈调整教学的进度和速度,使学生在高压高速的课堂氛围下进行学习,长时间就会造成学生注意力不集中,教学效果大打折扣。可见,多媒体教学与传统教学,在教学过程中缺一不可。可以通过对二者的结合,将多媒体教学与传统教学的优势与劣势互补,以做到最有效最积极的课堂教学形式和效果。
三、结语
篇2
关键词:地方高校;流体力学;理论;实践
0引言
以航空为特色的滨州学院的航空专业学生,流体力学是后期学习气体动力学、航空发动机构造、航空发动机原理等等课程的基础课程,航空发动机分为活塞式和喷气式,目前大型飞机多采用喷气式发动机产生飞机向前运动的推力,其原理是从外部大气中吸入大量的气体经压气机压缩后部分气体流入燃烧室和燃油充分混合燃烧后形成高温高压的热气流入涡轮,最后所有吸进发动机的气体由尾喷管喷出,吸入前和排除的气体发生了变化变为高压高温高速气体,根据力的反作用,由尾喷口喷出的气体可在发动机上产生强劲的推力,先进的喷气式发动机在设计阶段会根据相应的流体力学原理设计不同管径的流道,设计压气机和涡轮的叶片,因此理顺流体力学的知识点及学习思路至关重要。流体力学的研究方法可分为理论方法、实验方法、数值方法[1-2]。因此在教学时,可将3种研究方法贯穿流体力学的教学过程中。课程学习目标有如下4项:①了解流体力学与其他力学的本质的区别;②掌握最基本的流体力学理论知识点,如静力学、动力学、运动学等;③具有应用流体力学的知识,分析、处理基本流体力学问题的能力;④利用数值方法和实验方法,培养学生分析数据、整理数据、撰写实验报告的能力。
1理论方法
理论知识的学习是学生学习时的基础环节,而流体力学理论知识的学习过程中,多注重公式的推导。本文以流体力学的三大方程之一的连续性方程为例,讲解该公式学习的具体的过程,连续性方程式是质量守恒在流体力学中的表达式。首先学习连续性微分方程。需要建立流体的模型,在空间坐标系下选取一个微小的直角六面体A,并假设六面体内流体的密度ρ有梯度,六面体内流体的流动沿着x、y、z轴向,速度为ux、uy、uz,如图1所示。dt时刻内微小的直角六面体A的质量流量该变量驻M可分解为在x、y、z方向上质量流量的改变量驻Mx、驻My、驻Mz。以x方向为例,dt时间内,流进六面体A的流体质量流量Mx为ρuxdxdydt,流出六面体A的流体质量流量Mx′为。因此,dt时刻内在x方向上的流出的质量流量驻Mx可表示为:根据上述推导,可知dt时刻内在y、z方向上流出的质量流量驻My、驻Mz的大小表示为:因此,dt时刻内流出微小的直角六面体A的质量流量驻M:结合质量守恒定律,可推出dt时刻内直角六面体A的质量流量的变化量的变化关系。质量流量与密度、体积、速度的变量有关,又因为体积及速度没有变化,因此只和密度有关。控制体内密度的减小而减少的质量流量:然后学习恒定总流的连续性微分方程对总流的积分。从恒定总流A任意截取出来的细微的一段管道称为控制体[3-4]。其控制面如图2所示。过流断面截面积为A1、A2,平均流速为u1、u2。在单位时间内,经控制面流进流出控制体积内的液体质量流量应相等。因此可得:u1A1=u2A2即可知截面处的速度与面积成反比关系,截面积越大速度越小,反之亦然。
2实验操作
理论知识的学习,离不开强力的逻辑思维能力,但是地方高校学生普遍缺乏此能力。而结合现有的设备,适当的跟进实验,便于学生理解理论知识,及时互动。因此设计了基于截面积改变,流体流速变化情况的基础实验。本实验室采用了气体动力学试验台模拟风速,斜压计测量截面处的动压强,斜压计顾名思义就是液压管倾斜放置的测压仪器,与桌面存在夹角,因压强变化量相对较小,倾斜放置可比竖直放置的管路读取的压强数值更为精确。如图3所示。根据斜压计的读值,由下列公式计算流速。试验前先做好准备工作,如连接好皮托管与斜压计的橡胶管,皮托管可感受来流总压和静压,从而得到动压差,皮托管如图4所示。把斜压计根据基座上的校正气泡调成水平放置,在斜压计内适当的放入部分无水乙醇,纯度为99.7%,它的密度为0.790*103kg/m3。液面和斜压计0点重合。静止时斜压计读数为0mm。实验过程中,可通过调整出风口截面积的大小,观测斜压计内读值(流速)与试验段截面积的关系,截面形状示意图如图5所示,实验数据如表1所示。结合试验结果,分析可知,在模拟风速不变的情况下,流速与截面积的大小成反比,截面积越大流速越小。而在日常生活中,我们能看到很多的现象和此原理有关,如河道突然变窄的区域水流速度很大,山谷里的风比平地上的风大。
篇3
关键词:材料科学与工程专业;流体力学教学;实验教学
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)48-0039-02
流体力学是一门研究流体的受力与运动规律的严密科学,是一门材料科学与工程专业中理论性和实践性都较强的专业基础课程。在流体力学的教学过程中,涉及到的数学公式很多,过程较为复杂。历年来,学生们普遍认为流体力学课程枯燥无味,难以学懂,兴趣不大,导致教学效果较差。分析材料科学与工程专业现状可知,目前,该课程体系教学中存在着较大弊端:一方面,太偏重于数学推导与公式的理解,忽视了课程理论的物理意义与工程应用的有效结合;另一方面,忽视了课程的基础作用,片面强调课程的专业性。为此,本文结合材料科学与工程专业的课程设置,对课程的教学环节进行了改革探索。课堂教学是提升学生认知的重要手段。笔者认为可以从以下几个方面来提高流体力学的教学质量。
一、优化教学内容
纵观材料科学与工程专业的流体力学课程体系,可将之分为基本理论知识、基本应用、实验部分、与其他学科的交叉内容、工程实际应用等方面。在教学过程中,笔者认为采用模块化教学方式能够达到较好的效果。所谓模块化教学是指根据学科或专业的不同需求选择学习内容,将每个内容或环节定义为模块。每个模块的目标明确,针对性强,而且学时数相对较少,容易提高学生的学习效率。当然,各个模块之间并不是孤立的,在教学实施过程中,模块是相对独立的,但从课程的整体架构上来说又是有机关联的,步步为营,内容丰富,难度螺旋式上升,使整个流体力学课程具有较强的系统性和完整性。目前,国内材料科学与工程专业的流体力学课程体系基本按照如下形式贯穿:流体静力学理想流体运动动力学实际流体运动:一元流体相似理论泵与风机。每部分的研究方法较为统一,所形成的体系由简到繁、由易到难,并且很容易实现模块化处理。例如在讲授流体运动学基础、动力学基础时,可以先从实际流体流动的基本方程入手,使学生在本门课程开始就接触到流体动力学的总的轮廓和最基本的理论方程,后面的理想流体动力学及一元流体动力学问题作为其特殊情况处理,将理想流体、一元流动的条件代入有关方程,即可得到理想流体、一元流动的动力学方程。建立的这种模块体系具有由一般到特殊的特点,条理清楚。这样一来,教师在讲完一般形式的方程组后再来讲具体一元流体动力学及理想流体动力学问题,就可略去大量的公式推导过程,节省了大量的课时,内容组织层次感较强,讲起来重点更突出,教学过程却相对简化。
二、更新教材结构
同时,考虑到材料科学与工程专业的特色与应用范畴,非常有必要对教材内容进行优化处理,根据材料科学与工程的课堂要求,淡化一些理论推导过程,以工程应用为根本。从学生的学习规律来看,一般学生刚学习课程的时候积极性和重视程度都比较高,在学习时花费时间较长,但随着课堂内容的推进,学生们的兴趣减弱,教学内容和教学方法的改革与优化势在必行。材料科学与工程专业的流体力学课程内容并不包括本领域的全部专业知识,主要讲授流体流动的基本原理与基本思路,并侧重于工程应用。因此,教材的选取要更具科学性,要根据专业特点和需要,结合学生兴趣与学习层次,有针对性地选取讲义,教材要更侧重于基本原理与基本公式的讲述与应用,做到简单易懂,实用性较强。
三、激发学习兴趣
在流体力学教学的开始,教师就应该紧紧抓住学生们的学习兴趣,在紧扣教学计划的基础上,以当前热点问题为引导,充分调动学生们的学习积极性。因此,在流体力学教学的过程中,如何将教学内容与工程实践相结合,与热点问题相结合,激发学生的学习兴趣是提升教学效果的重要措施之一。比如在给学生上绪论课的时候,可以通过一些生动的图片、视频、动画给学生形象地展示大自然与人类生活密切相关的流体力学现象,增强学生对流体力学的感性认识与兴趣,如汽车为什么要做成流线型的;高尔夫球为什么在表面有很多坑;火箭为什么能够上天;海岸为什么是弧形;战斗机为什么头部是尖的等。这些问题是日常生活中经常见到的,通过这些问题的设计与引导,可以让学生们知道本课程的主要学习目标是什么,能解决什么样的实际问题,让学生们带着疑问和兴趣去学习,效果将事半功倍。
四、改革教学手段
目前,流体力学教学过程中教学手段较为丰富,但仍以板书和多媒体教学两种方法为主。更多采用“多媒体为主,板书为辅”的方法。多媒体教学较为直观、形象,所传输的信息量巨大。同时,伴随着信息网络化大形势的进一步深化,网络电子资源更加丰富,这样大大缩短了教师们的备课时间。但这种方式也有不足之处,最主要表现在多媒体授课速度偏快,学生尚未形成知识结构体系就一带而过,课堂上考虑的时间不足,很难形成师生之间的互动。相对而言,板书备课时间较长,课堂上书写时间也较长,对于一些较难理解的内容,可以给学生们足够的思考空间,并在课堂上按照既定授课思路进行,这样能够涵盖较为琐碎的知识点,易于形成师生间的“一问一答”式的互动关系。因此,在流体力学授课过程中宜采用二者结合的方式,对于系统性较差的知识点来说采用多媒体方式,而对于重点、难点内容则主要采用板书的形式,真正做到对该知识点的侧重讲解,疏而不漏。只有这样才能使学生对课程既有充足的知识量,又有重点突出,进而提高学生的学习效率。
五、重视实验与工程教学
流体力学课是一门与工程实践结合紧密的学科。因此,在课程开展的过程中应该对实验课与工程教学进行重点关注。实验教学目前可以分为演示型和验证型,但教学方法单一,限制了学生分析问题、解决问题的能力;同时,由于长期以来实验教学从属于理论教学,实验教学与工程教学的课程建设与发展受到了严重制约。因此非常有必要对实验与工程教学进行改革来适应目前高校的培养模式。首先,实验与工程教学要注重同专业知识相结合。传统的实验教学较多适用于试验台环境下,是国家根据课程规划以及人才的知识结构需要设立的,这严重阻碍了学生们与工程实践的有效沟通,因此,可以针对学生所学专业逐步设立既符合本专业又具有工程背景的可操作性较强的实验项目,用以适应学生对专业领域知识的理解与创新需求。其次,有效利用高校科研优势,促进实验与工程教学的发展。以学科为依托,实现科研与教学互补,将科研成果引入实验教学,这样可以开阔学生视野,激发学生的创新思维。第三,实现基础实验与个性实验的互补。在基础实验训练的基础上,开展一些更具有研究性和综合性的实验,这样对理论知识的学习有一个较为有利的补充,同时也可以锻炼学生们实验设计、整体规划的能力,积极调动学生们的学习积极性。
参考文献:
[1]曾立云.流体力学课程教学方法研究[J].甘肃农业大学学报,2002,1(37):123-125.
篇4
论文关键词:高职院校;流体力学;学习兴趣
“流体力学”课程是我国高等院校工科专业的一门主干专业基础课,涉及土木、能源、医学、环境、化工等许多领域。该课程是联系前期“高等数学”、“理论力学”等基础课程和后续专业课程的桥梁和纽带,在学生能力培养和知识体系构建过程中起着“承上启下”的作用。流体力学因曾经在20世纪五六十年代对航空航天事业的巨大推动而倍受世人瞩目。近年来,流体力学广泛深入地向边缘学科交叉渗透,这就要求相关领域的工作者要善于从错综复杂的工程实际中独立地提出问题和解决问题。
民办高职院校的学生入学成绩较差、自主学习的能力较差。很多学生对流体力学现象认识模糊,学生普遍感觉流体力学概念抽象,难以理解,对“流体力学”产生畏难情绪和厌学现象,学习积极性不高。2011年,江苏省高职院校招生实行注册入学,更意味着生源素质的良莠不齐,这对工科专业的民办高职院校的“流体力学”课程教学是个严峻的挑战。
一、民办高职院校学生的特点
1.入学成绩较差
民办高职院校在高等院校中处于较低的地位,这尤其体现在招生中,往往是录取批次的最后一批。这就意味着入学的学生往往入学成绩较差,从这几年金肯职业技术学院(以下简称“我校”)的录取成绩来看,从90分~330分都有,大多是在180分左右。因此民办高职院校的学生往往数学物理基础较差,计算能力较差,影响他们对工科课程的学习。
2.自主学习的能力较差
从和学生的交流情况来看,学生在课后很少主动学习、看相关的书籍,甚至连作业都有不能按时保质完成的时候。
二、如何调动学生学习“流体力学”的主观能动性
民办高职院校和公办本科院校以及公办高职院校有很大的区别,使得在“流体力学”课程教学中不能照搬上述公办院校的方法,而要根据民办高职院校的特点来实行教学。
陶行知在《中国教育改造》中指出:“大凡选择职业科目之标准,不在适与不适,而在最适与非最适。所谓最适者有二,一曰才能,二曰兴味。才能足以乐业。”学习最有兴趣的专业,因其兴趣,才会有乐趣,才会安于学习。托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的兴趣。”对民办高职院校的学生更应注重兴趣的培养。
1.教学内容优化,降低难度
(1)教学内容精简,理论够用为度。鉴于高职院校学生的特点,再结合高职专业所实现的目标——技能性人才,根据各专业的侧重点,对教学内容进行优化。理论难度够用为度,不求理论的系统性和完整性。以给排水工程专业为例,流体静力学经优化后,保留静压强及其特性、静力学基本方程的应用、平面和曲面的静水总压力的内容,侧重基本概念、基本定律和方程式,取消了平衡微分方程的内容。对我校学生而言,难以听懂,不如加强基本知识的介绍,如能透彻理解,对工作和生活更有用。
(2)教学内容体现职业特点。应该在教学内容中体现本专业的专业内容。对于面向给排水工程专业开设的“流体力学”课程,其专业和自来水、污水的运输和输送紧密相关,都离不开管、泵的设计与使用,这就涉及到流体力学的许多方面。例如,分析流体在管道内的流动规律、压力、阻力、流速和输量的关系时,应向学生指出此处知识点的学习是为了根据流动规律和各参数关系来设计管径、校核管材强度、布置管线以及选择泵的大小和类型、设计泵的安装位置等,把知识点融入到职业特点中,编成例题进行讲解。有些概念和理论是学生首次在“流体力学”里学到的,并且会贯穿到整个专业知识的学习过程中,例如雷诺数、水头损失、沿程水损等,所以,对于此类知识的反复强调也是非常必要的。把“流体力学”和“泵与风机”、“管道工程”、“水处理工程”等专业课联系在一起,相关知识点能做到心中有数,为以后专业知识的学习打下坚实的基础。优化内容的同时,也不同程度地降低了学习内容的难度,这在客观上为提高学生的学习积极性铺平了道路。
2.活跃教学课堂气氛,营造轻松的学习环境
(1)用重大事件激发学生学习“流体力学”的自觉性、主动性和积极性。在教学中适当地穿插讲述一些有关的重大事故、重大灾害和重大建设项目(统称“重大事件”),对于学生认识现在的学习与未来工作之间的关系、提高学习自觉性、培养热爱专业的思想和严谨的科学作风很有帮助,同时也有助于活跃课堂气氛。
在讲授“流体静力学”这一章节内容时,可举1993年青海沟后水库垮坝事件。1993年8月27日夜间,库容为330万m3的青海省海南藏族自治州沟后水库在库水位低于设计水位0.75m3的情况下突然垮坝失事,造成288人死亡,40人失踪,直接经济损失1.53亿元。水利部专家组调查认定,沟后水库在设计上有缺陷,施工中又存在严重质量问题,运行管理工作薄弱,这次垮坝属于重大责任事故。结合流体静力学讲述这一事件时指出:不管在什么岗位,责任心和专业技术素质也许会关系到千百人生命财产的安全。
(2)用工程或生活实例让学生感受到科学很奇妙,身边处处有科学。兴趣是学习的最大动力,教师应该让学生直观形象地了解流体力学的广泛应用性以及内容的趣味性,将与日常生活或生产实际有关的例子介绍给学生。“流体力学”的理论性较强,公式较多,学生理解比较困难。如果教师在课程的讲解过程中,多穿插一些实际生活中的现象,与课本中的理论结合起来讲,一定会大大提高学习兴趣,使学生更好地熟记和应用知识。在静力学章节的学习过程中,可举“人能下潜多深?”的例子,帮助理解静力学基本方程。小时候经常玩的一个游戏——吹纸条。拿出一个小纸条,让它自然下垂。沿水平方向在它上面吹气,纸条就会飘起,这是由于流动气体的压强小。而解释流动气体压强为什么小,要借助伯努利方程来解释。“站台安全线的由来”,“神奇的香蕉球”是如何踢出来的?这也要用伯努利方程来解释。身边的科学无处不在,只要仔细观察,便能从中领悟到许多道理。
从奇妙的鱼缸、小鸟喝水的杯子到饮水机的原理,介绍静力学基本方程的应用及等压面的概念。简单的原理,小小的发明,却给生活带来极大的方便,这就是创造发明的价值所在。
(3)增加语言的艺术性,让枯燥的流体力学变得优美和富有哲理。子曰:“学而时习之,不亦悦乎?”学习应该是快乐轻松的事。从幼儿园到小学,都倡导素质教育、快乐教育。高等教育也应该贯彻这一思想,学习才能持久。
传统的课堂教学极容易枯燥乏味,使学生听课索然无味,这必将不利于教学质量的提高。如果我们的授课语言优美,讲述形象生动,把美的气息、哲理的意味注入“流体力学”的教学,使学生学得轻松、自由,甚至浪漫,营造出轻松、快乐的学习氛围。
在绪论中,可以谈谈流体力学中的人文文化。水与空气都是流体的典型代表,是一切生命不可缺少的物质,自古至今人们对它的了解、探索和应用创造了丰富的文化物质成果。“楚天千里清秋,水随天去秋无际”。秋风,天水一色,是大自然的美景,也是流体的流动现象。它们赋予我们灵感,承载着我们的喜怒哀乐。古圣人喜欢从哲理上描述水性,歌颂水德。老子说“智者乐水,仁者乐山”。老子的名言是“上善若水”。通过此类讲述,使流体力学增加美的气息,使力学融入人文,既说明我们的生活与其息息相关,又轻松了课堂气氛。
在讲授粘性流体流动存在着两种流态时,可以借用古代文学中相关的名句,如描述湍流的有李白的“飞流直下三千尺,疑是银河落九天”,描述层流的则有“半亩方塘一鉴开,天光云影共徘徊”等佳句。这样可以帮助学生建立对流态十分形象而深刻的印象,从而有助于学生理解、掌握相关知识。
在教学过程中,还可穿插着向学生介绍定律知识背景的形成过程,以及相关科学家的工作,让学生领悟科学思想,轻松接受相关知识。“牛顿粘性定律”是牛顿对流体力学的主要贡献之一,是流体力学教学的重点内容。我们不仅仅要教给学生科学知识的本身,还应重视如何使学生感悟科学精神。此时穿插介绍牛顿的哲学思想和科学方法。牛顿用引力理论和运动三定律把天上行星和它们的卫星运动规律,同地上重力下坠的现象统一起来,实现了天上人间的统一,这是牛顿在自然哲学上的伟大贡献。
3.突出实验教学的特殊地位,让学生乐在其中
突出实验教学的特殊地位,使教学贴近实际,贴近生活。通过演示实验、学生验证性实验、竞赛型的设计性实验、实验录像、照片、仿真实验教学等多种方式贯穿教学的全过程,让学生看到各类实验最深刻、真实的一面,从而丰富学生的经验,增强学生的见识,培养职业意识和实践能力。
(1)开发课堂演示教具和演示实验。开发一系列课堂教学演示教具,可以使学生耳目一新,课堂气氛变得活跃起来。课堂演示教具和演示实验的使用,必须简单易行,价廉物美,且能解决教学问题,这对民办高职院校的教师提出了较高的要求。讲授表面张力和毛细管现象时,可演示毛巾浸湿的现象,顺带告诉学生如何在无人时给花草自动滴灌的方法;演示移液管移液凹面的现象时,告诉学生如何读数,如何避免毛细管现象引起的误差,同时可教学生化学实验操作的细节。讲述“流体静力学”章节时,演示倒扣水杯的实验,让枯燥的方程变得形象,易于理解。从废弃饮水机上拆下的“聪明头”,介绍静力学基本方程的实际应用。这些教具都非常简单,也易于获得,甚至无需额外花钱,学生也非常感兴趣。
(2)应用多媒体教学演示。并不是所有的教学内容都能找到适合课堂演示的案例。随着多媒体在教学中应用的普及,一些复杂的演示实验和昂贵的演示教具可以通过多媒体教学来实现。如雷诺实验、水跃实验、水击现象,在生产实践中所应用的各种堰,都可一一演示,远胜贫乏的语言描述。
(3)用设计性实验让学生参与其中,乐在其中。设计性实验围绕职业特色专题,依据学生的实际情况而设,如:“自动虹吸管的改进与应用”。指导教师根据学生对所学知识的掌握及兴趣度,将他们分成几个不同的实验小组,然后指导和协助学生自己设计实验方案,动手组装,最后依据实验结果给出实验成绩。
该实验教学模式的优势体现在以下几个方面:激发学生的求知欲望和培养学生的创造能力;加深学生对理论知识的理解并向外延展;节省高校实验室资金投入。
文中所提到的方法,最终需要教师来完成,这对教师提出了较高要求。虽然高职院校的教师的教学任务很繁重,尤其是民办高职院校的教师,但这些方法都可以在平时的积累中完成,只需平时阅报、听新闻、上网浏览、注意周遭事物,多和同行交流就可以做到。
篇5
关键词:流体力学;理论教学;实验教学
一、流体力学课程特点
流体力学是水利工程、环境工程、给水排水等专业的一门学科基础必选课,与后续专业课联系紧密。如对于给排水专业来说,后续的水泵与水泵站、建筑给排水等课程的学习都需要用到流体力学方面的知识。流体力学具有较强的理论性和实践性,该课程理论抽象,理论公式推导和基本概念比较多,学生需要在掌握基本概念及理论公式推导的基础上,清楚了解公式的应用限制条件,才能灵活运用所学知识来解决实际问题。另外,实验是流体力学课程的一个重要环节,与所学理论知识紧密相关,是验证理论、数值计算结果的重要途径,是学生获得感性认识的主要手段,对于培养学生的实际动手能力,加强对所学理论知识的掌握方面起着重要作用。根据笔者多年的教学经验,目前,在流体力学课程的教学过程中存在着一些问题:课堂例题和课后习题与工程实际脱节,理论与实际联系不够紧密,学生对所学知识在实际工程的应用不甚了解,只会机械照搬公式解题;教师主要采用课堂灌输、学生被动接受的教学模式,与学生的互动比较少;所开设的实验多为验证型和演示型实验,学生自己设计实验并加以验证的机会甚少,不利于学生思考问题、分析问题和解决问题能力的培养,更不利于学生解决实际工程问题能力的培养。因此,流体力学课程教学需要采用多元化教学模式、加强理论与实际的联系、对实验教学环节进行改革,以取得较好的教学效果。
二、教学方法探讨
(一)理论教学方法探讨
1.重视绪论的作用。
绪论对于讲好一门课是非常重要的。通过对绪论的学习,学生可了解本课程涉及的主要内容,在学科领域中的地位,发展历史、现状及发展方向,与后续专业课程的联系,在社会经济发展中的地位与作用等。通过对绪论的学习,可以让学生了解学习本学科的意义、目的及重要性,激发学生对该门课程的学习兴趣,安排好学习计划,为学好该门课做好充足的准备。
2.采用启发式教学手段。
现代教学论中的启发式教学思想的特点是:强调学生是学习的主体,教师要调动学生的学习积极性,实现教师主导作用与学生积极性相结合;强调学生智力的充分发展,实现系统知识的学习与智力的充分发展相结合;强调激发学生内在的学习动力,实现内在动力与学习的责任感相结合;强调理论与实践联系,实现书本知识与直接经验相结合[1]。因此,将启发式教学思想应用于流体力学课程教学,把学生放于主体地位,可充分调动学生的学习积极性,提高学生对本门课的兴趣,增强学习效果;教学中通过理论与实践的紧密联系,便于将理论知识应用到工程实践中,要使学生对知识的掌握更加灵活牢固,并为以后课程的学习及工作打下坚实基础。
(1)采用对比法。授课时,将相近或相反的定义、概念进行对比,加强学生对概念的理解和掌握。如讲解流线和迹线、恒定流和均匀流、层流和紊流等概念时,采用比较法授课,避免学生对学习内容的混淆。另外,还可将新旧知识进行对比,使学生在复习旧知识的同时,加深对新知识的掌握。如在讲动量方程时,可将动量方程与能量方程的应用前提条件、所能解决的问题进行比较,从而加深学生对这两大基本方程的理解和掌握。
(2)采用联系法。在讲概念之前,先引入实例。如在讲卡门涡街概念之前,先介绍电线在风中发出声响的原因;通过介绍汽车外形设计,讲解绕流阻力的问题;在讲表面张力的时候,联系露珠是球形的现象;在讲毛细现象的时候,联系当毛巾部分浸在水中时,未浸在水中的部分也会变湿的生活现象。通过对这些与生活紧密相关的流体力学问题的思考,使学生的学习兴趣大为增加,并且要加深对所学知识的理解和掌握。另外,还可联系新旧知识,如有压管流的水力计算其实就是能量方程在实际工程中的应用,同时联系后续的专业课学习和日后所从事的工作,引导学生对所学知识温故知新,达到融会贯通的效能。
(3)采用“问题式”教学法。在授课过程中,针对某些易混淆、易理解错误的知识点和难点,适当地提出一些诱导性问题,以提出问题、分析问题、解决问题为线索,达到学生掌握知识的目的。有些问题先提出来,留出适当时间,再让学生回答;有些问题提出来为引起同学注意,教师可自问自答。如在推导作用在平面壁上静水总压力公式时,公式得出后,可向学生提问“公式推导过程中所涉及的水深h和y值是否相同,若不同,它们之间有何关系”,让学生回答,以加深学生对公式中各项符号的理解,避免应用公式时混淆出错;在讲液体作用在曲面上的静水总压力时,先提出问题“能否用液体作用在平面上的静水总压力的求解方法来求解”,然后分析曲面和平面所受压力的不同点,最后得出液体作用在曲面上的静水总压力的求解方法。
3.充分利用现代多媒体教学手段。
在教学过程中,采用板书和现代多媒体技术相结合的方式,充分利用现代多媒体教学手段,将声音、图形和动画等与授课知识灵活结合,提高学生的注意力和学习兴趣。教师可以在讲授偏重于推导过程的内容时采用传统授课方式,而讲授需要直观形象的内容时采用多媒体教学方法。如在讲局部损失时,通过流体力学模型局部障碍处漩涡的形成演示,加深学生对造成局部水头损失影响因素的理解;在讲压力体和静水压强分布图绘制时,利用多媒体演示图形的叠加、抵消过程,使学生一目了然,起到事半功倍的效果。
4.加强理论与实际的联系。
由于学生缺乏对实际工程的感性认识,对抽象的理论在理解上有一些困难,因此在讲课时要加强所讲授的理论知识与工程实际的联系。例如,在讲流线时,可让学生在实验室观看流体力学模型的水流现象,或做成动画演示,使学生对实际的水流现象有直观的认识,从而加深对流线概念的理解;对工程中常用到的流体力学知识,如能量方程,应在推导及应用条件等方面深入讲解,并举例讲解该方程在实际工程中能解决的问题,如在城市给水管网中管道埋深确定方面的应用等,加强学生对该方程的理解,做到灵活运用,增强学生解决实际工程问题的能力。在授课时,还应尽量将流体力学的有关知识与后续专业课相结合,使教学内容更加充实,并可激发学生的学习兴趣,提高学习效果。如将有压管道的水力计算与后续课程给水管道的设计相结合;将无压管道的水力计算与排水管道的设计相结合;将水头损失计算与建筑给水系统中水箱的设置高度、水泵扬程选择等相结合。
5.重视课堂习题和课后作业。
流体力学课程中的理论公式和概念比较多,为加强学生对基本概念的掌握,熟练运用理论公式解决问题,要重视课堂习题和课后作业对知识巩固的作用。教师在讲完理论知识后,应选择有代表性的例题,通过对典型例题的剖析,启发学生举一反三,达到灵活掌握所学知识的目的。另外,通过适量的课堂习题检查,巩固学生对知识的掌握程度,给学生提供课堂讨论的机会,加强对学生思维的锻炼。给学生布置适量的课后作业也非常重要。通过课后作业,可促使学生复习学过的知识,加深对所学知识的掌握。另外,教师通过对作业的批改,发现学生学习过程中存在的弱点和不足,再加以重点讲解,从而在教学过程中可做到有的放矢,增强教学效果。
(二)实验教学方法探讨
流体力学课程具有很强的实践性,其实验教学效果对整个课程体系产生着直接的影响。实验教学可以弥补理论教学的不足,增强学生对基本知识的理解和掌握,如雷诺实验的演示,可加深学生对层流和紊流概念的理解。另外,实验教学还可培养学生分析问题、解决问题的能力及创新能力。目前流体力学实验内容多为验证型和演示型实验,综合创新性实验很少,基本上是学生按照实验指导书的实验步骤,一步一步做,而不是自己动脑设计并加以验证,这样就无法培养学生分析问题和解决问题的能力。为更好的培养学生的实验操作能力,应多开设一些综合创新性实验,由学生自己提出问题、设计实验步骤、实验操作、整理实验成果、得出结论。学生在自主完成实验的全部环节时,能够将课堂上所学的理论知识和学过的实验技能有机地结合起来,动手能力、分析解决问题的能力均得到综合训练。另外,在条件允许的情况下,实验室可全天开放,学生可根据自己的时间安排完成实验任务,教师负责答疑。学生的实验成绩应由实验操作和实验报告综合得出,以一定比例计入本门课的总成绩。这样可激励学生对实验的重视,调动其积极性。
三、结语
在流体力学课程的教学过程中,应充分利用启发式教学和现代化教学手段,加强与工程实际的联系,改革实验教学方法,从而激发学生的学习兴趣,增强学生的动手实践能力和思维能力,提高本门课程的学习效果。
参考文献:
[1]李晖“.流体力学”课程的启发式教学[J].教育研究,2011,28(2):79-81.
[2]高亚萍.基于消防的流体力学教学改革模式探讨[J].武警学院学报,2013,29(9):56-59.
[3]薛红琴,林子增.提高流体力学教学质量的研究探讨[J].科技资讯,2010(1):196.
[4]陈正寿,孙孟.流体力学多元化教学模式改革与探讨[J].中国水运,2011,11(12):57-58.
篇6
关键词:能源与动力工程;网络教学平台;混合式教育
作者简介:代乾(1981-),男,河北沧州人,天津城市建设学院能源与安全工程学院,讲师;王泽生(1964-),男,天津人,天津城市建设学院能源与安全工程学院,教授。(天津 300384)
基金项目:本文系天津城市建设学院2012年度教育教学改革与研究项目(项目编号:JG-1207)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)05-0074-02
2012年9月,教育部颁布实施新的《普通高等学校本科专业目录(2012年)》,热能与动力本科专业更名为能源与动力工程专业。由专业名称可见该专业的内涵更加广阔和深远,从而也说明随着能源动力科学技术的飞速发展和新问题地提出,社会对人才的培养提出了新的要求。目前,大约有170多所高校设置了热能与动力工程专业。[1]随着经济的发展,能源与环境逐渐成为世界各国所面临的重大科技和社会问题。培养高素质的具有创新意识的能源工程专业人才是本学科义不容辞的责任。而热工系列课程作为重要的专业基础课程,其重要性不言而喻。合理的课程体系是体现教育教学理念的重要载体,是实现专业培养目标、构建学生知识结构的中心环节,建立适应社会主义市场经济发展需要、体现热能动力技术学科内在规律、科学合理的课程体系极为重要。[2]为了使该课程适应新的要求,非常有必要对其进行一定的改革,以培养适应21世纪社会发展需要的人才,同时对推动我国可持续发展战略具有重要的意义。
一、实施混合式教育方式
开发混合式学习方案的关键因素在于确定适当的时机,使用适当的混合方式,为适当的学生施行教学。而教师想要运用适当的混合方式需要考虑学习地点的设置、信息传输技术及时间的安排、教学策略和绩效援助策略等。[3]混合式教学模式一般可分为以下几个阶段:[4-6]
1.前期分析
学生作为学习活动的主体是有认知、有情感的,学生本身的知识水平、学习能力和社会特征都对学习的信息加工过程产生影响,教师进行学生特征分析有助于了解学生的学习准备和学习风格,从而为后面的学习环境设计和媒体的选择提供依据。
2.混合式教学的组织与管理
教师应按照教学进度有针对性地选择和设计教学活动,同时要参照已经设计好的课程目标、课程内容及其呈现形式,将其与具体的章节知识点相关联。教学活动的作用在于为学生创造具体的学习情境,并加强师生、生生之间的交流互动,因此恰当的教学策略对于教学活动的顺利展开尤为重要。
3.网络教学平台及教学资源建设
网络的对于教学来说不应当只是教学内容,而更多的应该是支持教学交互、教学评价和教学管理,教学交互、教学评价和教学管理是保证教学质量的重要环节,这就需要有一个集教学内容与管理、课堂教学、在线教学交互、在线教学评价、基于项目的协作学习、发展性教学评价和教学管理等功能于一体的网络教学平台来支撑混合式教学。本校对“工程热力学”、“传热学”、“工程流体力学”原有的教学网站进行了全面改版,并于2010年先后投入运行。其中“工程热力学”课程教学网站主页如图1所示。网站按照省部级精品课程的要求制作,网上教学内容详实,包括课程的概况、教学文件、习题及答案、实验实践教学等各种资源。学生可通过浏览网站学习更多的知识,这对课堂教育来说是一个非常有益的补充,并有助于实现教与学的互动。
二、教学内容优化
“工程流体力学”是理解能源动力系统工质流动与流量、能量分配的基础。“工程热力学”是研究如何充分和有效利用能量的学科,其基本内容是热力学基本定律和工质热物性、热过程的研究,是理解能源动力系统中能量转换基本规律和提高系统能源利用效率的理论基础。“传热学”研究热量传递的基本规律,是理解和控制能源动力系统热量传递过程的理论基础。“热工学”集成了“工程热力学”、“传热学”的基本理论和核心内容,为能源动力类安全工程专业等提供必要和少量学时的热工理论基础教育,也是其他非能源动力类专业节能技术及应用的理论基础课程。“热工测量技术”和“流体热工基础实验”课程则是关于“工程流体力学”、“工程热力学”、“传热学”的实验理论的技术基础课程,旨在揭示相关课程的实验研究目标、原理、方法以及应用。
1.热工系列课程间内容关联性分析
(1)“工程流体力学”与“工程热力学”在教学内容的关联性之处主要体现以下两个方面:“工程流体力学”中的一维无粘性重力流体流动能量方程(伯努利方程)与“工程热力学”中的热力学第一定律稳态稳流能量方程式具有相同的理论基础,后者是普遍适用的能量方程式,而后者是前者在一维无粘性重力流体条件下的特例和不同的表达方式;“工程流体力学”中的可压缩流体流动基础与“工程热力学”中的气体和蒸汽的流动研究对象及理论基础完全相同,只不过研究的侧重点不同,前者强调流动特性,后者注重能量传递与转换过程。
(2)“工程流体力学”与“传热学”课程在教学内容方面具有紧密的关联性和延续性,主要体现在“工程流体力学”中粘性流动方面与“传热学”中对流换热方面的相关内容,具体为:
1)研究对象均为传递现象,“工程流体力学”研究的是动量的传递,而“传热学”研究的则是热量的传递,其规律及分析方法具有类比性。首先,传递驱动力分别为速度差和温度差;其次,传递方式均为分子扩散和对流扩散,其中对于分子扩散基本规律两者具有类似的形式,即牛顿摩擦定律及傅里叶定律,也均有描述传递能力的物性参数,即运动粘度(m2/s)和热扩散系数(m2/s),而且流动边界层与热(温度)边界层具有相似的定义和相同的边界层结构;最后,描述传递现象的控制方程,即动量微分方程式(N-S方程)和能量微分方程,也具有相似的形式。这也是“传热学”中动热类比分析方法(类比律,即将阻力实验结果直接用于表面传热系数的计算)的理论基础。
2)如果粘性流体流经壁面且具有与壁面不同的温度时,就会同时发生动量传递和热量传递现象。此时“工程流体力学”与“传热学”研究的是同一现象的不同方面的特性,即阻力特性和传热特性。一般阻力特性是传热特性研究的基础,某些特殊情况(流动及对流换热具有耦合特征)下两者相互影响,如流体外掠平板的层流与紊流流动及对流换热、圆管内层流与紊流流动及对流换热、外掠圆柱的层流与紊流流动及对流换热、各类自由流动及对流换热等等。显然在此类教学内容中,“工程流体力学”是“传热学”的基础。
3)具有相同的分析、计算方法。正是由于动量方程和能量方程具有相似的形式,理论分析法(包括微分方程组求解及积分方程组求解)、模化实验方法(相似原理)、数值计算方法均可应用于阻力特性和传热特性的研究,甚至同一数值计算商业软件(如FLUENT、ANSYS、PHINICS等)可同时分析求解同一现象的阻力特性和传热特性。因此在研究方法上,“工程流体力学”与“传热学”是并行的或者说是相同的。
(3)“工程热力学”与“传热学”课程在教学内容具有关联性之处主要体现以下两个方面:“工程热力学”中有关热量传递只是讨论热力过程中热量传递的量,而“传热学”研究的是热量传递的机理、方式、影响因素、计算方法。在“热力学”中热量的单位是q(J/kg),而“传热学”中热量(热流密度)单位是q(W/m2),可见后者强调的是热量传递的速率及能力,而后者以前者的理论(即热力学第一定律—能量守恒规律)为基础;“工程热力学”中有关湿空气焓及含湿量变化规律与“传热学”中的热质交换有着内在联系。如电厂冷却塔中,“工程热力学”讨论了其工作原理及状态参数的变化,而“传热学”则讨论了其热湿交换的具体方式和传递速率。
2.热工系列课程教学内容体系优化原则
依据培养方案,流体热工系列课程时间安排顺序是“工程流体力学”—“工程热力学”—“传热学”(或“热工学”)—“热工测量技术”,“流体热工基础实验”课程与上述课程并行安排。因此,热工系列课程教学内容体系优化按照以下原则进行:
(1)安排在前的课程。教师除完成本课程教学内容外,须根据上述各课程之间知识点的关联性,有意识地为后续课程涉及的内容打下牢固的理论基础。“工程流体力学”课程的教师需要向“工程热力学”、“传热学”课程任课教师了解相关的内容,如一元绝热稳定流动的能量转换规律、相似原理等等,在“工程流体力学”的教学中兼顾这些内容的教学需求。
(2)安排在后的课程。教师依据上述各课程之间知识点的关联性分析,在相关内容的教学过程中,须了解前面课程任课教师的授课内容和方法,精选授课内容,避免不必要的重复,使该课程与前面课程有机衔接,且注意采取比较教学法,让学生更容易掌握课堂知识。
(3)“热工测量技术”和“流体热工基础实验”课程。课程任课教师应了解和引用其他理论课程相关教学内容,使实验教学与理论教学内容有机结合。如温度测量,教师除加强温度测量原理、仪表、标定及使用方法教学外,对于高速气流温度测量,需引用“工程热力学”中气流一维绝热流动能量方程以及滞止温度和气流温度的关系等相关理论知识,说明气流速度对温度测量误差的影响;而对于高温气流温度测量,需引用“传热学”的辐射换热相关理论,说明辐射对测温误差的影响以及消除误差的措施;而对于铠装热电偶或在加温度计套管情况下,还需引用“传热学”的通过肋壁导热的相关理论,说明套管的存在对温度测量误差的影响以及消除误差的措施。
三、结束语
经过一定时间的教学体验和学生的反馈表明,该教学模式使教学效果得到很大提高。笔者认为在以后的教学当中,要把这种模式继续深化并推广到其他课程的教学当中,热工系列课程的教学改革也必然会取得成功。
参考文献:
[1]宋文武,符杰,李庆刚,等.关于构建“热能与动力工程”大专业多方向课程体系的思考——基于培养复合型应用人才的视角[J].高等教育研究,2011,28(4):44-48.
[2]战洪仁,张建伟,李雅侠,等.热能与动力工程专业人才培养模式及课程体系探讨[J].化工高等教育,2008,99(1):19-21.
[3]Matt Donovan,Melissa Carter.Blended Learning:What Really Works[J].CLASTD,2004,(2).
[4]Driscol1 M.Blended learning:Let’s get beyond the hype[J].learning and Training Innovations[R].2002.
篇7
超空泡流场创新实验的教学目的有如下几方面。(1)加深学生对超空泡理论及应用技术的认识。(2)掌握超空泡模型水洞实验模型安装、测试系统、通气系统使用等实验技术。获得超空泡流场实验数据,了解不同实验参数情况下,超空泡流场的变化规律及特殊物理现象。(3)使学生完整参与包括前期设计在内的整个超空泡问题科研实验过程,培养学生创新开拓的能力。该创新实验工作量很大,涉及多相流体力学、实验相似理论等学科知识,以及多个大型实验设备及模型系统。如果由学生完成整个实验过程,则应将其作为大学生科技创新选题,或本科生毕业设计题目,选题方向为超空泡航行体的理论研究、应用技术或水洞实验技术,可以是教师在科研中遇到的具体问题,也可以是学生在文献学习中想到的问题。视题目设计难度的不同,整个周期2~4个月。该创新实验的准备工作也可以由教师完成,学生只完成一次现场实验。这种情况下,可将该实验设计为流体力学理论课程中的创新实验学时,一次现场实验约需4学时。无论采用哪种教学模式,其基本的实验准备工作和现场实验设计是类似的。下面以4学时创新实验为例,介绍具体的实验设计。2.1实验前准备工作如不进行LDV测速和天平测力,前期准备工作包括以下几个部分:(1)水洞实验模型设计和加工;(2)通气控制系统调试;(3)高速摄像系统调试;(4)水洞循环水过滤,水洞电气系统、控制系统调试。其中水洞实验模型设计和加工工作周期很长,无法在教学实验中实施。在实际教学实验中,预先设计和加工了多套模型,每套模型中又加工了尺寸和几何形状不同的多套可更换部件。在课上实验工况确定过程中,学生根据其掌握的文献资料和计划实现的空泡效果,对模型和部件进行选择和组合。水洞本身的工作,如循环水过滤、电器系统调试等,因其周期较长以及安全等因素,由教师在实验前完成,学生不参与。通气控制系统和高速摄像系统的硬件设备由教师在实验前准备,操作规程需要学生提前预习。2.2创新实验教学设计前期准备完成后,即可安排现场创新实验。整个实验过程中,需教师2名(一名操作水洞设备,另一名现场指导与安全保障),直接参与实验过程的学生8名,其中2名学生负责组装模型,并将模型安装到水洞工作段;2名学生负责操作通气控制系统,并记录通气参数;2名学生负责操作高速摄像系统,并调整摄像照明;2名学生负责协调各系统工作,并发出控制口令。其他学生现场观摩,也可以根据情况临时调换。完成整个实验约需4学时,前两个学时为现场学习和准备实验阶段,首先由指导教师现场提问,考察学生预习情况确定直接参与实验操作的8位同学,然后由同学们讨论完善实验大纲,主要包括模型及可更换部件的选择、实验工况确定等。接下来需要同时开展的工作有:通气控制系统和高速摄像系统现场调试、模型安装、熟悉实验流程、实验过程预演等;模型安装完毕后,需20分钟使水位上升至汽水分离罐中部(实验水位高度)。第3学时为正式实验阶段。工作段流速分别调整至实验大纲设计的流速,每个流速状态稳定后,调整通气量,分别得到无通气自然空化、局部空泡初生、局部空泡发展、超空泡等各状态,待各自状态稳定后,手工记录通气参数、水洞参数、模型参数;同时启动高速摄像机记录流场状态,观察并分析空泡稳定性、尾部回注射流等流场特性。该阶段需特别提醒学生注意观察生动的超空泡流场现象。第4学时为整理阶段。填写实验数据记录表格,整理实验数据,拆卸模型,保养实验设备。课后每位学生独立完成数据处理(主要内容有:实验现象解释分析,典型空泡形态测量,形成实验曲线,分析获得实验规律等),撰写实验报告。某次实验过程中,观测到的空泡形态随通气参数变化规律如图6所示,超空泡的溃灭过程如图7所示。从图6中可以看出,当无通气情况下,航行体表面无空泡,只在其头部有雾状自然空化产生;当通气率达到1.563时,头部局部空泡尺度增加,但是仍处于不透明状态,其后部有雾状气团脱落;当通气率达到2.813时,生成了透明的,覆盖航行体大部分表面的超空泡,只有尾部部分区域仍处于沾湿状态;当通气率继续增加,超空泡尺度进一步增大,覆盖包括尾翼在内的全部表面。从图7可以看出,当停止通气后,超空泡没有马上溃灭,而是伴随着强烈的回注射流,空泡长度逐渐减小;当仅余一半长度后,突然破灭,退化到雾状空化状态。
实验效果、经验与改进思路
实验教学是高校教学中非常重要的组成部分。实验教学有利于提高学生的实验实践能力,培养学生的学习兴趣和创新意识[9]。流体力学是一门抽象、复杂且基于实验的科学,其知识点繁多,难于理解和掌握,流体实验是观察流体现象、促进理解和掌握理论知识的重要方法和手段[10]。本创新实验采用大型流体实验设备———超空泡循环水洞,将国际上流体研究热点方向———超空泡问题引入教学环节,取得了很好的教学效果。该创新实验处于探索阶段,发展成熟后拟作为研究生课程“流体动力学基础理论”的试验部分。该课程授课学时36学时,选课同学为一般力学与力学基础及流体力学专业研究生。本创新试验计划4学时,目前只在课题组内部研究生中进行尝试,参与实验的学生体现出极高的学习热情,快速掌握了大量实验技术,并直接接触前沿科技成果。在实验过程中,学生们还锻炼了动手能力,增强了团队合作意识。该创新实验作为大学生科技创新或本科生毕业设计选题,无论是工作量、创新性,还是动手能力的培养等方面都比较合适。而做为流体力学理论课程中的创新实验部分时,则遇到一些实际困难,最直接的问题有两个。一是教师实验准备工作量大、周期长、成本高。每4学时现场实验需要2位教师,2天左右的准备时间,而每次只有8名同学可以参与实验,教学推广成本高。二是对于学生而言,实验前需要学习的理论和实验知识量大,后期数据处理工作量也较大,除了本专业的研究生之外,其他学生选做该实验,负担偏重。对于第一个问题,需注意科研工作与教学工作的配合,将超空泡水洞科研试验安排在创新课程之前,这样二者的准备工作重合,有效减小了工作量。也可以考虑由选择该创新试验作为本科毕业设计及科技创新选题目的学生完成部分试验准备和组织工作。对于学生需补充学习的知识过多的问题,可以结合流体力学理论课程和力学试验方法课程,先期让学生接触部分专业知识。该创新实验课程开课时间以研究生期间为宜,如果是本科期间开课,则应选在四年级,先修课程完成之后再开课。
篇8
关键词 知识背景 水力学 教学实践
中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdkz.2015.01.042
0 引言
作为流体力学的一部分,水力学主要以水为研究对象,分析其平衡和运动规律的具有较强理论性和实际工程意义的一门课程。在土木工程、市政工程、水利工程等专业中,水力学作为一门专业基础课程对其他专业知识的学习影响深远。
曾经有一位电子工程师谈到他在大学学习数字信号课程时遇到一大堆数学公式,但只有在多年后的应用中才真正懂得什么是数字信号,水力学课程的学习也有类似之处。①水力学教师一般习惯于将教案中水力学理论知识按照其推导过程进行设计,在课堂讲授时则一步一步详细介绍其推导过程,其目的是让学生清楚知道该理论的来源和数学依据,整个形式似乎是 “完美”的。但是,这样的教学过程容易让学生感觉水力学课程是“微积分的应用题”,不利于水力学课程“物理本质”的理解。
当然,水力学课程和其他力学课程一样,与高等数学等基础课程联系密切,很多理论知识是利用数学知识推理而来,但是它又不同于数学,是一门具有实际物理意义的课程,这就是水力学和其它工程类专业基础课程共同所具有的重要特点之一。为了让学生在课堂学习的过程中能够最高效地理解水力学课程的“物理本质”,而不是仅仅停留在“数学层面”上,这就要求水力学教师在教学过程中帮助学生实现从读懂数学到理解流动过程物理本质这一转变。笔者通过与学生的密切交流,在了解学生有关水力学知识背景的前提下开展了基于学生水力学知识背景的课堂教学实践。通过在两届土木专业学生水力学课程上的课堂教学实践,立足于水力学知识背景的教学方法在帮助学生课堂上加强对水力学物理本质的认识上取得了很好效果。下面就立足于水力学知识背景的教学方法举两个具体的例子进行阐述。
1 立足于知识背景的教学实践举例
我们在对“重力作用下流体静压强的分布规律”②一节进行教案设计时,往往习惯开始于欧拉平衡微分方程的综合式表达式 = ( + + ),随后分析作用在流体上的质量力只有重力情况下的单位质量力,将各方向单位质量力代入该式,经过缜密的微积分推导得到重力作用下流体静力学基本方程 + = 。这个过程理论性强而且流畅,是许多教师习惯的课堂讲授过程。其实,对学生而言,在中学物理课中就已经知道静水的压强表达式为 = 和 = + 。如果我们从学生已掌握的水力学知识背景出发,在教案设计中首先开始于 = 和 = + ,分析对比后得到重力作用下流体静力学基本方程 + = ,如图1所示。这样的过程将更有利于学生对 + = 背后所代表的物理意义的理解。同时,这也是一个由已知到未知的过程,符合学生对知识的认知规律。这一过程弱化了微积分推导过程,让学生学习的重点不在推导过程,而是在对水力学概念及其物理意义的认知上。显然,立足于知识背景进行水力学教案设计和课堂讲授更有利于加强和加速学生对水力学知识物理本质的理解。
水力学知识背景不仅仅局限于我们生活中的水力学常识,水力学课程前部分所学知识即为后部分知识学习过程中的知识背景。教学过程中充分利用已学的水力学知识,融会贯通,前后知识的比较和分析,可加深学生对新知识的理解,特别是对水力学问题物理本质的理解。例如,我们在对“伯努利方程”一节进行教案设计时,将其与前面静力学知识建立类比关系进行分析,如图2所示。显然,通过与静力学知识物理意义的类比更加加深了学生对伯努利方程背后所代表的物理意义的理解。
将新学知识建立在已学知识的基础上,新知识和已学知识进行类比的教学设计,不仅帮助学生将整个水力学课程所需要掌握的知识内容贯穿起来,形成一张相互关联的知识网,有利于了解各内容内在的本质联系,而且通过这种类比更加有利于快速高效地掌握新知识背后所代表的物理本质。
2 实践效果与思考
多年来,许多教师开展了有关水力学课程教学的研究工作,通过一系列的教学方法和教学模式的改进和创新,使得教学效果有了显著的提高。基于学生的水力学知识背景开展课程教学实践,对课程内容的讲授灵活变通,一方面不仅有利于节约课堂教学时间,适应高校教学体制变革和学分制深入开展过程中水力学课堂学时缩减的实情,同时也丰富了教学方式,对改变课堂沉闷状态、调动学生课堂积极思考有一定的促进作用;另一方面也更加有利于帮助学生实现从读懂数学到理解流动的物理本质这一转变,加强学生对水力学知识点的掌握及其物理意义的理解。
但是,在以水力学知识背景为出发点的教学过程中也需要注意一些问题。一方面,教师要在开课之前必须对学生所掌握的知识背景进行深入细致的了解,只有了解了学生的知识背景程度才能设计好课程教案;另一方面,教师必须全面而准确地把握水力学课堂内容,吃透教材,将课程内容巧妙地与学生的知识背景联系起来。
基金项目:南昌大学教改基金项目(项目编号:NCUJG LX-13-1-88)
注释
篇9
关键词:圆柱绕流;卡门涡街;压差阻力
工程流体力学是机械、农工及能源动力等诸多学科的重要专业基础课程,在理工科课程体系中占有重要地位。工程流体力学理论性强、公式繁杂,仅通过教师的语言描述和公式推导来阐述问题,学生容易感到抽象,难以理解复杂流动问题的本质,因此在工程流体力学课程体系中,均设有不同比重的实验内容,帮助学生理解理论教学中难以形象描述的问题,加深对基础知识和各种流动现象的认知。其中圆柱绕流是一个既基础又复杂的流动问题,对学生流体力学基础知识和相关流动现象的学习与理解有重要的帮助。
1圆柱绕流现象描述
实际流体的圆柱绕流与理想流体有很大差异,随着雷诺数Re的变化,可能出现附面层的转捩和分离、旋涡的生成和脱落、旋涡相互干扰等现象。在不同的雷诺数下,圆柱绕流的流动特点及阻力的组成如下[1]:Re<1时,流场与理想流体圆柱绕流类似,流动左右和前后对称,圆柱阻力仅有摩擦阻力。当雷诺数增大到2<Re<30时,在粘性和逆压梯度的综合作用下,圆柱背面附面层发生分离并产生旋涡,诱发压差阻力。但由于粘性力较大,圆柱背面的旋涡是对称的。圆柱的阻力由摩擦阻力和压差阻力组成,两种阻力同等重要。雷诺数40<Re<90时,流动的惯性力增大,圆柱背面的旋涡开始变得不稳定,对称涡开始摆动。此时摩擦阻力和压差阻力仍都不能忽略。雷诺数继续增大时,摆动的旋涡开始周期性地脱离圆柱表面,形成两排向下游运动的涡街,即卡门涡街。当90<Re<150时,整个流场为层流状态,而当150<Re<300时,圆柱背后的尾流开始从层流向湍流过渡,圆柱的阻力仍由摩擦阻力和压差阻力构成,但压差阻力开始逐渐占据主导地位。当300<Re<2×105时,卡门涡街变得不稳定,逐渐失去其规律性和周期性,开始随机性脱落,随着雷诺数的继续增大,旋涡脱落的随机性也逐渐增大,最终形成混乱的回流区,圆柱背面的尾流为湍流状态,而边界层内的流动为层流状态。在这个雷诺数范围内,随着雷诺数的增加,圆柱表面的流动分离点逐渐前移,最终分离点可从圆柱背面移动到圆柱迎流面,圆柱的阻力主要是压力阻力。当Re>3×105时,流动分离点前边界层由层流状态转捩为湍流状态,湍流边界层能够抵抗较高的逆压梯度,抑制了流动分离,分离点从圆柱迎流面向下移动到背流面,尾迹区的宽度变窄,压差阻力迅速减小。虽然湍流边界层的摩擦阻力较大,但由于摩擦阻力只占总阻力的一小部分,圆柱的总阻力出现突然下降。通常把阻力下降的点称为临界点,临界点之前的状态称为亚临界状态,临界点之后的状态称为超临界状态。研究表明,粗糙表面圆柱体的临界点比光滑表面圆柱体要小得多,因此可通过将物体表面粗糙化来达到减阻的目的,如高尔夫球。当雷诺数继续增大到Re>3×106,卡门涡街又会自动出现。
2圆柱绕流实验教学设备
学者们采用粒子图像测速(ParticleImageVelocime-try,PIV)等实验方法[2-3]以及基于大涡模拟(LargeEddySimulation,LES)和直接数值模拟(DirectNumericalSimu-lation,DNS)的计算流体动力学方法(ComputationalFluidDynamics,CFD)对圆柱绕流进行了详细研究[4-5],得到了不同雷诺数下圆柱绕流流场特性,以及圆柱的阻力系数随雷诺数的变化特性。但PIV方法实验设施昂贵、实验条件复杂,而基于LES和DNS的数值模拟则要求较高的计算资源,均难以在教学中应用。目前,针对圆柱绕流在实验教学中的开展,主要有以下几种方式。(1)圆柱绕流流线显示实验。流线显示实验侧重于借助各种流场可视化技术,例如气泡法、烟流法、油流法等方法,呈现出圆柱绕流的流线分布、边界层转捩与分离、旋涡生成与脱落等流动现象。流线显示实验的雷诺数一般较小且调节范围有限。目前的实验设备主要针对流场驻点、源、汇等知识点的势流流谱显示,以及发生卡门涡街时圆柱体两侧会周期性地脱落出旋转方向相反、规则排列的双列线涡,一般采用流谱演示仪、流线仪及烟气流线演示仪等完成演示实验。(2)圆柱绕流阻力测试实验。阻力测试实验侧重于通过压力计、多管差压计和压力传感器等压力测量设备测量流动分离时圆柱表面不同角度的压强分布特性,观察流动分离引起的圆柱前后压强不对称,以及旋涡生成、脱落过程中圆柱表面压强分布特性,并通过积分得到圆柱的压差阻力。实验的雷诺数较大,一般采用小型教学风洞或者小型气动成相关测量。(3)圆柱绕流虚拟仿真实验。圆柱绕流现象可利用CFD方法进行数值模拟而得到,且能借助处理软件形象呈现出圆柱绕流的流场特性。但数值模拟过程较为复杂,要求学生有一定的计算流体动力学基础和求解相关问题的经验,不适合在教学中直接应用。因此,可借助CFD软件的二次开发功能,搭建圆柱绕流虚拟实验平台[6],学生输入雷诺数等关键参数后,即可直观获得数值模拟的计算结果,帮助学生分析不同雷诺数下圆柱绕流的流场分布及旋涡形成的机理。总的来说,目前的圆柱绕流实验教学一般是针对某一雷诺数区域特定流动现象的验证性实验,而圆柱绕流随着雷诺数的变化会相继呈现出对称涡区、摆动涡区、卡门涡街,以及附面层分离等现象,目前的实验方法和内容不够全面,现有实验设备无法满足不同的实验目的;而基于CFD方法二次开发的虚拟仿真实验中,学生的参与度不够,且流动现象不如实体实验生动形象。因此针对雷诺数范围内的圆柱绕流问题,自主开发了圆柱绕流实验设备,观测不同雷诺数下圆柱绕流的流动特征,并测量圆柱表面的压强分布。
3实验设备设计开发
3.1工作流体的选择
目前的圆柱绕流实验一般选择空气或液体作为工作介质。采用空气作为工作介质时,无需排水设施,设备结构简单易于实现,一般采用烟流法实现流场可视化,并采用压力传感器测量圆柱表面的压强分布。但研究表明,烟气发生器产生的油烟不够稳定,空气流速调节范围有限,流场可视化效果不够理想;而且由于空气的密度较小,圆柱表面的压强变化也不大,不利于测压装置的测量。此外,采用空气作为工作介质时,为保证空气流动的均匀性等品质,实验一般需采用小型风洞或气动成,实验设备的成本较高,不利于在教学中推广应用。因此本实验选择液体作为工作介质。
3.2流场可视化及测压方法
工作介质为液体时,常用的流场可视化措施有油流法、染色剂法等,为了实验简单方便,选用水作为工作流体,并采用在圆柱前方添加染色剂的方法实现流场可视化。染色剂随周围流体一起运动,通过观测染色剂形态的演化,可分析圆柱背面发生的附面层分离和旋涡生成、脱落等现象。流体力学教学实验中,常用的压力测量方式有电测式和液柱式,测压仪器包括压力传感器和测压管、差压计等,其中压力传感器使用较为方便,可实现远程大范围测量,而测压管的精度较高,适用于低压实验场所。在圆柱绕流实验中,圆柱背面的流场本身是非定常的,而压力传感器的读数一般会在基准值附近漂移,无法分辨旋涡形成和脱落过程中的流场非定常效应。因此,选择采用多管测压计进行压力测量。
3.3实验设备结构方案设计
根据所确定的工作介质、流场可视化方法和压力测量方案,设计循环式圆柱绕流实验装置,如图1所示。实验装置由储水箱、水泵、稳压水箱、示踪剂、试验件、测压计、水槽、集水器和排水管等组件构成。实验过程中,水在水泵的作用下从储水箱流入稳压水箱中间部分,液面到达额定高度后从左侧溢流并流回储水箱,同时通过稳压板流入稳压水箱的右侧,水箱中间和右侧部分的液体高度保持不变。水从水箱右侧下方的圆孔匀速流出后进入水槽,并通过稳压板对水流进行整流后流入水槽试验段。水流流过试件后,再经稳压板到达水槽出口段并从水槽底部的出口流出,进入集水器,最后经排水管流回储水箱,构成流动循环。为了清楚地观察圆柱两侧旋涡生成、脱落及其相互干扰现象,在试验件前方两侧分别布置一个示踪剂加注口,通过细管连接上方的示踪剂储存罐。实验过程中,在两个示踪剂储存罐中分别加入染色剂,染色剂通过加注口流入到水中,并随周围流体一起流过圆柱试件。通过染色剂形态和位置的演化过程,即可直观地观察到圆柱背面发生的流动分离、旋涡生成和脱落等现象,同时通过观察不同颜色染色剂的相互掺混,可以分析圆柱两侧旋涡之间的相关干扰作用。圆柱试件为中空结构,安装在水槽的中间位置。为测量圆柱表面的压强分布,在圆柱表面0°~180°范围内每隔45°布置一个测压孔,测压孔通过试件内部的软管连接到测压计,试件设计为可旋转结构。实验过程中,记录多管测压计中不同测压管的读数,并通过旋转圆柱试件,使圆柱表面的测压孔指向不同的角度,即可得到圆柱表面的压强分布。通过观察圆柱背面压强的动态变化,并结合流场可视化现象,分析旋涡生成和脱落过程中圆柱背面流场两侧压强的变化特性。
4实验效果及改进设计
4.1实验效果
按照上述圆柱绕流实验装置的整体结构方案、流场可视化方案和压力测量方案加工各组件,其中试验台采用铝合金结构,储水箱和排水管采用PVC塑料,稳压水箱、圆柱试件、集水器和水槽的侧壁采用透明亚克力玻璃,水槽底面采用白色亚克力,方便观察流场中染色剂形态的变化。将各组件按照整体结果方案组装得到了圆柱绕流实验设备。实验结果表明,水槽中流量较小即流动的雷诺数较小时,流动较为稳定,在圆柱背侧可较为清晰地观察到流线的分布以及旋涡的生成和脱落等现象,实验效果明显,如图2所示。而在大流量及雷诺数较大时,圆柱背面的流态变为湍流,可以明显观察到杂乱无章的回流状态。在大流量下,多管测压计中不同测压管的读数有一定的差别,圆柱前后的压强分布不对称,表明圆柱背面发生了严重的流动分离现象,并产生了压差阻力。图2圆柱绕流实验流场特性
4.2不足与改进设计
实验过程中发现,本文所设计的圆柱绕流实验设备满足实验教学的基本需求,但仍有一定的不足,可通过改进设计优化实验效果,主要体现在以下方面。(1)大流量下流动不稳定。实验中水从稳压水箱的圆形小孔口中流出进入面积较大的方形水槽,流道形状和面积的突然变化会在局部产生旋涡,造成流动不稳定,影响流场可视化效果。可通过在出口和水槽试验段之间增加过渡段,改善流动品质。(2)圆柱表面压差显示效果不够明显。采用多管测压计进行压强测量时,圆柱表面的压强用液柱高度来表示,由于水的密度较大,在流量不大时,测压计中的液柱高度差并不大,读数不精确。为了方便读数与观察,可采用微压计放大读数,改善实验效果。
5结束语
针对圆柱绕流在工程流体力学课程教学中的重要性以及现有实验设备不能满足教学需求的问题,设计了圆柱绕流实验装置,通过在圆柱两侧添加不同颜色的染色剂观察圆柱绕流的流态,并利用多管测压计测量圆柱表面的压强。结果表明,实验装置实现了设计目标,但仍存在一些不足,可通过优化流道和采用微压计改善实验效果。
参考文献:
[1]刘宏升,孙文策.工程流体力学[M].大连:大连理工大学出版社,2015.
[2]余英俊,胡晓,石小涛,等.基于简易PIV的圆柱绕流压力场重构[J].长江科学院院报,2019,36(6):42-48+53.
[3]张文杰,马国印,魏新利.圆柱绕流的数值模拟与PIV测试研究[J].河南化工,2007(5):27-29.
[4]郝乐,陈龙,倪明玖.流向磁场作用
下圆柱绕流的直接数值模拟[J].力学学报,2020,52(6):1645-1654.
[5]闵强利.基于LES方法的三维瞬态圆柱绕流模拟[J].水雷战与舰船防护,2010,18(4):28-31+36.
篇10
关键词 液压与气压传动;工程实例;教学改革
中图分类号:G642.0 文献标识码:B
文章编号:1671-489X(2016)24-0159-02
Reform and Practice of Hydraulic and Pneumatic Transmission Course Teaching Integrated with Engineering Practice//ZHANG Guoqing, LIU Baojun, LU Manhuai
Abstract Combining practical undergraduate cultivation target and
hydraulic and pneumatic transmission course characters, reforms and
practice are made in teaching contents, methods and experiments. The teaching process Integrated more and more engineering practice,
stimulates the students’ learning interest, and leads to the comprehen-
sive course study and practice, further improves the course teaching quality.
Key words hydraulic and pneumatic transmission; engineering prac-
tice; teaching reform
1 前言
液河肫压传动是机电工程应用专业的专业基础课程,与机械、电子等学科有着密切的联系。它作为一门具有很强工程应用背景的专业必修课,目的在于培养学生在掌握液压传动与控制理论的基础上,能分析和设计液压系统,切实做到理论联系实际、学有所用。
我国开展液压与气压传动课程的教学已有多年,其已成为机电专业的传统课程,很多大学对该门课程建立了自己的课程教学体系。但是从教材、教学内容和方式上综合来看,国内对液压与气压传动技术的教学大多还是着重于液压与气压传动基本原理和元件的讲解,且有些知识点偏于陈旧,同时对系统的应用设计讲解过于抽象。反观国外的情况,从相关培训教材和高校教学资料看来,其对液压与气压传动知识点的讲解多从实际系统设计角度出发,引发学生思考,同时讲解的内容配合比较形象的多媒体资料,减少了知识点的抽象度,使得学生真正能学以致用[1]。
德国教授乌尔里希认为,工程学科的教学着眼点应从教师教转向学生学习,培养大批有研发能力的青年人,比教学者自身直接从事研发更有价值。因此,如何根据专业课程特点和培养目标,科学地选取教学内容并进行有机整合,开发新的教学方法,是改进液压与气压传动课程教学的重要内容。
2 液压与气压传动课程教学内容与工程实例的结合
传统的液压与气压传动课程教材内容编排多以流体力学理论教学作为课程入门的初始章节,且内容较为独立,和液压系统应用结合较少,多以抽象的概念和公式为主。这与早期高等教育以精英教育为培养目标和培养群体的因素相关,而随着高教规模的扩大,高等教育逐渐向着普及性教育方向发展,受教育的群体不再局限于少数精英群体,教学培养的目标也针对群体需求逐渐多样化,大学教育培养的不再仅仅是研究型人才,更多的是应用型人才。
对于研究型人才,教学内容可着重放在课程的理论和推导部分,而对于应用型人才则应把教学内容重点放在工程应用上。前者的自学能力相对较强,其培养目标在于学科课程的继续深造和学科理论知识的研究;后者的培养目标在于实际工程应用系统设计和操控能力的培养[2]。因此,在液压与气压传动课程教学内容的选择上应对此区分。
目前,在液压与气压传动课程内容的编排上,大部分传统的教材内容都是从介绍流体力学的理论内容开始,然后介绍液压与气压传动元件和系统。这种编排方式虽然符合课程教学知识架构,但是对于以系统应用为目的的学生学习来说,在内容上却存在知识点抽象、与应用脱节的问题。在传统课本中,这部分内容照搬流体力学教材的内容,和液压气动传动实际系统关联不够紧密,因此造成学生在学习过程中感觉枯燥,对这一部分学习内容的重要性认识不足。因此,在引入流体力学基本理论教学内容时,需要配合实际系统的工况进行渐进式教学,引导学生从实际工况到理论基础进行转换。如在讲授缝隙流量和小孔流量时,可以引入实际的液压或气压阀结构,结合阀的控制特征来讲解流量的计算。
3 基于工程实例的教学方法改进
液压与气压传动课程是一门交叉学科课程,与机械设计、电工电子技术、自动控制原理、数控技术等机械类电气控制类课程紧密相关,把这些课程贯穿起来,成为一条线的系统教学。这样既有利于液压传动技术与先进控制技术有机地结合起来,又有利于学生创新能力和工程观点培养的同时,促进基础理论教学,有利于教学与科研相结合。一个液压与气压传动系统通常会涵盖多门课程的主要内容,涉及机械原理机电传动控制可编程控制器等多门课程的综合问题。结合工程实例,通过数字化技术将典型的液压与气压传动运用实例形象生动地展示给学生,可使得学生将多门知识融会贯通,掌握知识间的联系,锻炼学生综合运用所学知识解决工程问题的能力,培养出适应社会发展需求的复合型应用人才[3]。
如在讲解液压系统的基本特性时,首先引入一个实际的传动应用系统,通过直观计算和对比讨论来发现液压系统的优势所在,使得学生对液压系统有个清楚的认识,激发对液压系统设计的兴趣[4]。如让学生利用已学的机械设计知识,设计驱动一个图1所示常见升降平台。
按照结构特点,学生能理解若要使得平台工作,只需在箭头所示位置施加外力,使得连杆端部产生平移即可。要实现这个目标,如果采用传统的电机机械驱动结构,需要设计一个蜗轮―蜗杆或齿轮―齿条结构,把电机输出机械转动转换成线性移动;而如果采用液压驱动,其执行元件液压缸直接就能实现直线的驱动,在结构上就简化了许多。同时,如果升降台的载重量非常大的话,对蜗轮―蜗杆或齿轮―齿条的结构强度要求就非常大,而且这种传动是刚性的,如果在升降过程中发生抖动或冲击,对结构就是一种很大的损伤。因此,现有升降平台的设计都采用的是液压驱动。
经过上述对比,学生就能对液压传动系统的特点和优势有直观的了解,在后续的学习中能结合实际系统和所学课程知识进行类似的分析与对比,学习的目的性更强,保证了学习的积极性。
4 基于工程实例的液压与气压传动课程实验教学
目前大部分高校的液压与气压传动课程的实验内容分为两个部分:认知型实验和验证式综合训练型实验。认知型实验主要是通过对液压与气压传动元件进行拆装实验,进而了解其工作原理及性能;综合训练型实验主要是搭建液压与气压传动系统的几个典型回路,进行性能验证性实验。对于后者,目前采用的实验平台只提供了有限的液压元件,只能搭建几个固定常规的液压系统回路,而且平台提供的搭接方式基本为油管搭接接头,该接头可靠性和耐用性不高,使得学生耗费太多时间与精力在管路的拼接上,而且使得实验平台的损坏率较高,最终令实验效果并不理想[5]。
针对当前本科学生的教学目标,教学的重点并不在于学生对液压与气压传动系统设备的操作能力,而是在于学生对整个系统的设计与分析能力。因此,实验内容不能将大部分时间耗费在系统模块的搭接上,而应重点放在系统的设计与性能分析上。目前主流的液压实验平台的设计都只能提供有限的元件和有限的回路连接,不能满足对学生系统设计与分析能力的训练要求。因此,将行业中具有代表性的系统仿真和设计软件引入实验教学,开展虚拟仿真性实验,依靠其灵活性可以对此进行补充和加强。
同时,液压与气压传动系统的完整工作除了构建系统实现能量的传递外,另一个重要的方面就是自动化控制,完成系统的各项预定功能。这一部分需要结合工业控制方面的课程知识,尤其是PLC控制系统的相关知识。因此,在开展课程实验时,可以在其中增加PLC控制系统设计知识的回顾或介绍,并在实验项目中不再把重点放在液压气压传动系统回路的搭建上,而是增加自动化控制系统实例的设计内容,从系统整体控制的角度对学生进行综合性训练。
5 结束语
结合现在高校机电工程专业应用型人才培养目标和液压与气压传动课程的特点,从教学内容、教学方法和实验教学等方面,结合实际工程应用进行相应改革和调整,激发学生的学习兴趣,引导学生进行思考型学习,熟悉交叉课程知识的应用,达到比较好的教学效果,进而提高教学质量。
参考文献
[1]胡玉文.液压与气压传动课程改革探索[J].中国校外教育,2012(21):221-222.
[2]梅怡,梁贵萍,林芸,等.CDIO教学模式在“液压与气压传动”课程教学改革中的实践[J].贵阳学院学报:自然科学版,2014(4):71-77.
[3]张平,贺利乐,吕刚.机械类本科《液压与气压传动》课程教学改革探索[J].装备制造技术,2011(4):230-232.
- 上一篇:高分子材料工程的就业方向
- 下一篇:住宅人居环境设计