纳米技术的利弊范文

时间:2023-12-18 17:56:33

导语:如何才能写好一篇纳米技术的利弊,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

纳米技术的利弊

篇1

关键词:纳米,中医药,经济,技术

引言:通过现在的问题反映,首先提出一些纳米技术的需求,再而阐述了纳米中医药的现状接着提出纳米中药化的好处和现在存在的一些问题,通过笔者的分析,一步一步的摄入了纳米技术在当前中国的国情来说要发展,提出一些相对的解决方法。引入纳米技术是社会的要求。最后说明自己的观点(总结)。

随着经济的发展,环境问题变得越来越严重。从而导致发病率变得越来越高。如果还是单靠过去的一味中药很难把病情完全治好。加上现在环境问题的特为严重和社会的需求量增多。很多中药材都是靠人工培育,但人工培育的功效始终比不上天然的。虽然实行了中医药的政策,解决了老百姓的看病难,看病贵的问题。但始终是不能从根本解决问题。加上纳米技术的进一步发展,因此将纳米技术融入中医药是社会的要求,社会的主流。纳米技术使中医药的药效得到更好的发挥。

那先由我们看看纳米中医药的发展

纳米中药制备技术的研究现状

医学上的发展就目前来说,提出最多的是中西合作和中医药现代化,但我们在中医药的现状中发现很多问题,例如上面所提的民生问题,为此我们要想一下有没有更好的方案解决目前的问题,随着经济的发展我,我国的纳米技术已达到一定的程度,并取得一定的成效,为使中药面向世界,并形成医学科新的经济增长点,应将现代的高新技术引入到中药制剂之中。随着科学技术的飞速发展,中药的现代化生产已成为现实。纳米技术的出现使得超微粉碎成为全世界各个生产领域的先进技术,日益显现出它强大的生命力和蕴藏的无穷财富。对于中国的国药—中草药尤为如此。可以说中药超微粉碎是中药的一次飞跃性革命。如果中国能胜利的打完这场“革命”,在医学生又是一个新的焦点。纳米技术是如何引进中医药中呢?首先注意的是纳米粒制备的关键是控制粒子的粒径大小和获得较窄且均匀的粒度分布,减小或消除粒子团聚现象,保证用药有效、安全和稳定。

根据目前的科技情况。纳米药物粒子的制备技术可以分为三类,机械粉碎法、物理分散法和化学合成法。通过宏观到微观的转型,实现了微观世界的并且是医学界的狂飙式发展。

中医药的理论基于对宏观的自然界,而纳米技术科研研究则是微观技术,现在把宏观与微观技术的有机组合能不能在医学上形成一们崭新的“宏微”中医理论学科呢?至于宏观中医药大家对它有了一定的了解,现在我只是对微观进行阐述。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米技术的引入是医学微观化,一方面由于纳米技术的引入为携带提供了一定的方便,以前,无论什么看一次病总要大袋小袋的提着,这只是对病者,如果像医院或一些医护机构,当他们想购买大量药物时不是很麻烦。引入纳米技术在这里就起了相当重要的作用,比如运输大量的药物,现在只须小盒便能搞定;另一方面,害怕吃药吗?害怕打针吗?不用怕,纳米技术中药话可以帮助你,把纳米级药物制成药膏然后贴于患处,可以通过皮肤直接接受不需要注射。由于纳米技术是对药物的微观化,比如将药物磨成粉状,加大了与病菌的接触面积,例如中药超细后的产品除用于散剂、颗粒剂、胶囊剂、片剂、中药口服散剂、胶囊剂、微囊外,把药物微化,这样可以提高药物在体内的生物利用度。增强中药的疗效,再者,纳米技术在中药加工方面的应用能保持中药原有成分的基础,使药效充分析出。另外,纳米粒子包裹的智能药物进入人体后,可主动搜索并攻击癌细胞或修复损伤组织。在人工器官移植领域,只要在器官外面涂上纳米粒子,就可以预防器官移植的排异反应。使用纳米技术的新型诊断仪,只需检测少量的血液,就能通过其中的蛋白质和DNA诊断出各种疾病。在抗癌的治疗方面,德国一定医院的研究人员将一些极其细小的氧化铁纳米颗粒,注入患者的癌瘤里,然后将患者置于可变的磁场中,使患者癌瘤里的氧化铁纳米颗粒升温到45-47摄氏度,这温度足以烧毁癌细胞,而周围健康组织不会受到伤害。同时,配合使用纳米药物来阻断肿瘤血管生成,饿死癌细胞。纳米中药化不知那些好处,据了解,纳米中药化将药物加工成纳米级的微细粒子,病人服药时,首先减轻病人的痛苦,有些病人怕吃药,如果制成了粒子状,病人一般是比较易接受,药物的真对性特别的强,药物就可能针对性地直达病灶,激活中药细胞活性成分,直接攻击病毒、细菌、重金属、毒质,细胞壁或细胞膜等障碍将不复存在,这样中药疗效可大大速率,尽快的减轻病人的痛苦,如治疗消化道疾病的药品“思密达”经纳米化处理后其药效提高了3倍。中药药效的加大、加快,使中药可与西药相媲美,为今后中药的发展创造了条件。使中药具有新的功能将中药加工至纳米尺寸之后,其细胞内原有不能被释放出来的某些活性成分由于破壁而被释放出来,有可能使纳米中药具有新的功能。此外,由于其给药途径,药物吸收方式等的改变,可能在药代动力学、药效学、药理学、药物化学等方面产生新的作用。并且中药有没有西药那样很多副作用,发展纳米中医药看来是必然的事了。特别的,一些科学家预言:由于纳米微粒的尺度一般比生物体内的细胞、红血球小得多,所以,有可能把含有计算机功能、人机对话功能和有自身复杂能力的纳米机器人送入体内而又不严重干扰细胞的正常生理过程。通过体外控制操作,获取体内多种生化反应的连续的动态信息,从而破解中药复杂的作用机制。

纳米中医药也存在一定的问题,那是值得我们深虑:

1.成分的混乱;由于纳米中药化加大了药的效用,但同时也是所需药的成分难以把握,例如你本来是需要的是5两A药材6两B药材4两C药材,但当你纳米化时,你会使药用发生了变化,使得吸收的药的分量不同,可能导致A多了或少了。纳米技术中药化使得生物利用度、溶出度较低等得以纠正,疗效得以增强。这种改变性质的作用使得传统中药所含的有效成分及其药效变得面目全非。严重的会造成安全隐患。为此对研究和发展纳米中药化造成了巨大的压力。

2.由于纳米技术是一种微观的世界,如果科学家对药物不是有充分的了解,当实行微观处理时可能会导致一些药物的分量不够或减少了别的分量,另外,需要谨慎地掌握纳米粒度与相关中药所含有效成分分子组成和分子量的关系,以防为获得纳米微粒而损坏了药物的有效成分。纳米级的研究并不像宏观的研究那么简单,如果一些技术错误了,结果可能要重做。

3.纳米中药因其粒度超细,表面效应和量子效应显著增加,使得药物的有效成分获得了高能级的氧化或还原潜力,从而影响药物稳定性,增加了保质和储存的困难。

4.加大了鉴别的难度,即超细状态下的中药是否还具有普通粉碎时所有的显微特征?如果原有的显微特征发生了改变,则又应建立何种更精细的鉴别方法?这是个重大的问题,对于纳米级的研究,考的是先进的技术。

5.纳米尺度的物质存在着生物安全性威胁问题,如果不能够有效地防止纳米尺度物质的接触或者摄入,可能会引起多系统的复杂病变。

所谓万物都有双面性,纳米中医药的引入一定上给我们带来了很多好处,但也有一些负面的影响,综合中国现在的情况,许多专家都认为发展纳米中医药是利大于弊。那就根据我国的国情出发,如何将纳米技术中医药引入。何如加大对纳米技术中医药的发展呢?

1.由于各级的懒散性比较强,如果国家不统一制定完全的行业技术标准,可能会导致某些地方的药用不高或某些地方的纳米中药技术只是一个梦想。如果国家有了一定的机构管理,一定的技术标准,那样可以使纳米药物统一化,安全化。所以国家应成立你执迷中医药的研究中心,一方面集中科研相关的技术连接,另一方面可以组织协调科研机构,高校试验室以及产业界的公共参与,进行重点攻关。

2.国家政府必须认真重视纳米医药的发展,毕竟市场是一个充满“利润”式的社会,很多时候,如果国家不重视药物的安全管理,可能不导致药物市场混乱,同时国家有必要组织一定实力和特色的中药类高校与纳米研究机构进行强强联合,通过集大家之智慧来进行纳米中医药化。这就是国家要加强宏观调控对纳米药物的管理。

3.由于纳米中药化是刚刚引进来的一个新学科,很多方面还没有完善,特别是纳米对技术的要求高,所以国家应增加国内纳米重要的博士研究站,在较高会议上培养和吸引综合性的科研人才投身到这个领域中去

4.加强国内研究基地的建设。改善基础设施条件,增加专项的投入,并重视知识产权的保护,加大纳米中医药的财政支出,因为外国对这方面有了一定的认识,由于他们的技术含量高,纳米技术早就名噪一时,所以,国家可以加大中外的合作,另外还有派人到外国学习先进的技术,通过只是的交流,国与国的合作,进一步提高中医药的纳米技术的发展。

总结:纳米技术是2l世纪最具发展前景的领域之一,它给中医药的现代化提供了新的思路和方法。通过对比中国的利弊,实行纳米中药化的转型不但可以促进经济的发展和提供取药的方面,在历史上也是一次伟大的改革,在一定的程度上提高了医学家纳米中医药的定位,而且在国外也是中医的地位提得更高。科学技术的迅猛发展,中医药也逐步走向世界,面临着前所未有的机遇和巨大的发展空间—纳米技术中药化,然而,基于其独特的理论体系,现代科学技术尚难与之有机地结合起来,这也成为阻碍中医药发展的最主要因素。随着纳米技术在中药研究开发领域的一些应用基础研究上获得突破,它必将极大地促进中药现代化的进程。在中医理论的指导下,中药纳米化技术作为实现中药现代化的关键技术,必将推动我国的中药尽可能快地走向国际市场。

参考文献:

1杨祥良基于纳米技术的中药基础问题研究[J].华中理工大学学报,20一104—105

2赵宗江,胡会欣,张新雪.中药归经理论现代化研究[J].北京中医药大学学报,2002年25

3.徐辉碧,杨祥良,谢长生,等.纳米技术在中药研究中的应用[J].中国药科大学学报,2001年32

篇2

1 医用金属材料

骨科生物金属材料是指能够植入人体,治疗骨骼疾病、替换骨组织,恢复骨骼的正常生理功能的一种生物惰性材料,由于具有较高的强度和韧度,金属材料是骨科中应用最多的植入材料,广泛用于骨科的各类疾病的治疗,金属作为一种植入材料一般要求是:①有足够的力学强度和抗疲劳性能;②有极好的耐腐蚀性能,无磁性;③材料必须无毒、无致癌性与过敏反应;④应具有良好的光洁度[1]。现在常用于临床的医用生物金属材料主要包括医用不锈钢、钴基合金、医用形状记忆合金等。

1.1医用不锈钢:根据临床对硬度,韧度的要求,医用不锈钢的材料有多种,最好的不锈钢合金是316L型,一直作为器具材料广泛使用。具有较好的机械性质,易于加工制造且价格便宜,但同钴基合金相比有较大的局部腐蚀敏感性[2],主要用于接骨板、骨螺钉、人工关节等。

1.2 合金类:主要包括①钴基合金:钴基合金具有良好的耐磨性和抗蚀性,适于长期应用于体内承载条件苛刻的植入,是目前医用金属材料中最优良的材料之一,已列入ISO国际标准,但缺点是机械性能低于不锈钢,而且加工困难、产量低、价格贵,常被选择为永久性植入材料。多用于骨折固定和制作人工关节。②钛合金:具有优于前两种材料的机械性能,质轻,组织相容性良好,生物界面结合牢固,在机体内有极高的惰性和抗腐蚀性,是理想的植入材料,缺点是耐磨损性差和难以加工。钛合金微型钢是颌骨骨折复位内固定的首选内固定物[3],目前对膝、髋等大的人工关节多使用钛合金。③如钴、镍、铬及钼合金,是通过多步骤精制而成的一种新型植入材料。其抗腐蚀性和生物相容性与锻造的钴铬合金相似,机械强度大,具有不锈钢和钴铬合金的许多优点,作为骨折内固定物有广阔的应用前景。④镍钛记忆合金:该材料有形状记忆效应,其理化性能表现为强度高,耐磨、耐腐蚀、无磁、无毒等特点,而且其硬度和刚度跟人体骨组织最接近,被认为是最理想的生物内固定植入材料。

金属材料普遍的缺点是植入人体后,长期存在人体,金属中某些元素离子进入人体组织液、血液、器官,如铬、镍离子对人体具有致敏作用,甚至诱导机体发生癌变,另外长期受力的金属还会发生金属受力疲劳和内部结构的改变,从而引起远期手术的失败等问题。是其普遍缺陷。

2 医用高分子材料

2.1非生物降解型高分子材料,如聚乙烯、聚丙烯等,具有稳定性好,不发生降解,交联或物理磨损等,而且有良好的机械性能,对机体不产生明显毒副作用,主要用于制作组织工程软、硬组织,人工器官等。如硅橡胶是含有硅原子的特种合成橡胶的总称,无毒、无味、通气性能好,能耐高温低温,具有良好的生理惰性和抗凝血性能,有弹性,宜清洗、灭菌,在骨外科可作引流管、人工腱鞘等。利用辐射接枝改性技术可制成医用硅橡胶水凝胶膜,该材料具有高纯度、亲水性、吸水后形成稳定的水凝胶及生物相容性优良等特点。在治疗骨关节损伤疾患和肌腱断裂手术中植入该膜,可预防组织粘连[4]。高密度聚乙烯:其用于制造人工髋臼的分子量多在200~500万左右,其摩擦系数低,约为0.03~0.06,抗冲击性强,耐磨性强,年磨损率约为0.1~0.2 mm,是目前国际上普遍用于制造人工关节的较好材料。

2.2 生物降解型高分析材料 有聚酯类、胶原、甲壳素、纤维素等,其中最主要的是聚乙交酯(PGA)、聚丙交酯(PLA)及其混聚物,聚酯类似一类亲水性非常强的高分子降解材料。聚酯类能在体内降解,最终被分解代谢成CO2和H2O2从人体排出。PLA具有一定机械强度和良好的加工性能。PGA可支架诱导促进成骨细胞的黏附增殖和分化,但其降解过快,且降解产物积聚会造成局部PH值下降,导致细胞中毒死亡。PGA与PLA形成的混聚物可通过二者的比例来调节其机械强度和降解速率[5]。聚酯类生物降解材料可以制成棒、针、螺钉、接骨板等,受其降解速度限制,固定部分在愈合期间不能承受较大的应力。是目前组织工程中广泛应用的支架,临床上多用于固定骨折愈合相对较快的骨骼,亦可用于关节镜下膝前十字韧带的损伤后重建、半月板损伤的修复,在骨组织工程学领域也是一种很有前景的细胞培养支架材料[6],但不适于长骨干骨折固定,因其临床愈合所需时间较长,骨折断端应力大。生物降解材料作为内固定材料,在手术操作过程中不易割伤软组织,即使在加压情况下也不会损伤松质骨[7],在所固定的组织愈合之前能够保持足够的强度,可随着骨组织的愈合机械强度适当衰减,使骨折断端得到正常的应力刺激,没有金属材料存在的应力遮挡、腐蚀反应等缺点,可使患者避免清除植入物的第2次手术,亦不影响MR或CT等影像学复查,使用起来比金属制品要安全和方便。但如果内植物的降解产物超过组织的清除能力,可发生迟发性无菌性炎症,局部突然发红、疼痛、肿胀、有波动感,反应严重者,可发生广泛性皮肤坏死[8],降解速度快的PCA比降解速度慢的PIA炎症发生率高,血运不佳的部位更易并发炎症反应[9],因此应权衡利弊,谨慎选择。

3 医用无机非金属材料

3.1生物活性陶瓷,主要有磷酸钙陶瓷、生物活性骨水泥及生物活性玻璃等,生物活性陶瓷具有骨传导性,它作为一个支架,成骨在其表面进行,还可作为多种物质的外壳或填充骨缺损。目前最常用的主要有羟基磷灰石(HA)、磷酸三钙(TCP)及两者结合使用3种。HA与TCP的复合物既保存了单纯HA的优点,又可根据需要通过调整两者的复合比例来控制其植入后的降解速度,是较理想且具有较大临床应用前景的骨组织工程细胞载体[10]。骨水泥很少引起免疫反应,系统毒性也微不足道,具有良好的生物相容性,并能和骨直接融合,在骨科临床上已经应用于股骨颈骨折的内固定增强和桡骨远端骨折内固定等[l1]。由于此类材料在生物学上缺乏有效的骨诱导性,脆性较大,抗张、抗扭和抗剪力差,为保证固化正常进行,应用时要求受区相对干燥,因此单纯此类材料临床应用较少,仍需进一步改进。

3.2 生物惰性陶瓷 氧化铝:氧化铝是一种生物陶瓷,其硬度大,耐磨,生物相容性好,单晶氧化铝可用于骨折内固定,多晶氧化铝即刚玉,可制作人工关节。研究发现将氧化铝晶体纳米化合物团块浸在与生物体液相似的溶液中,其表面可生成骨样磷灰石层,提示在活体内可能形成生物陶瓷如HAP、TCP等[12]。此外还有氧化锆陶瓷被做成人工股骨头用于全髋关节置换。最近还报道研制出一种结合了氧化铝的生物特性及铠氧化锆的机械特性的新型物质,这种混合陶瓷比氧化铝陶瓷的磨损率低,在模拟人上进行的初步实验结果具有一定的应用前景[13]。

3.3碳素材料:碳纤维有利于生物组织攀附生长,可用于人工肌腱和韧带的置换[14]。低温裂解碳又称各向同性碳,是将烃类气体在高温下炭化,可以直接蒸镀在人工关节的运动磨损表面,作为减磨涂层。类金刚石膜(DLC)亦称金刚石样碳素膜,是一种非结晶的碳氢化合物,具有良好的细胞相容性、血液相容性及高耐磨性高硬度等特点,可以沉积于人工关节表面。作为聚乙烯的对抗面,DLC同氧化铝、钴基合金的耐磨相当,可显著改善矫形装置的磨损[15]。是一种很有发展前景的膜材料。

近年来,随着生物医学工程、材料科学、纳米技术的的迅速发展,对于生物材料的研究也日益深入,各种复合材料以及更加与各类型骨折愈合相适应的可降解性生物材料在骨科领域应用日趋广泛。人工骨不仅具有良好的组织相容性,而且能诱导正常骨的形成,最终达到完全的骨修复,。随着医学分子生物学和基因工程及组织工程学的快速发展,利用不同的生物材料复加工,组配成理想中具有多种生物活性的人工骨将成为现实。

参 考 文 献

[1] 胥少汀,葛宝丰,徐印坎.实用骨科学.第2版.北京:人民军医出版社,2003.357-360.

[2] 梁成浩,牟战旗.模拟体液中316L不锈钢和Co-Cr合金生物材料腐蚀行为研究.中国生物医学工程学报,2000,19(4):432.435.

[3] 李青.钛合金表面涂层应用生物骨的研究.生物骨科材料与临床研究,2004,3(4):46-49.

[4] 方月娥,史天义,梅宝珊,等.硅橡胶水凝胶膜预防骨外科手术组织粘连的临床应用.生物医学工程学杂志,1998,15(3):228.230.

[5] Valentin J E,Badylak J S,McCabe G P, et al.Extracellar matrix bioscaffolds for orthopaedic applications. A comparative histologic study [J]. J Bone Joint Surg Am,006,88(12):2673-2686.

[6] Jeon O.Song S J.Kang S W Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly (l-lactic-co-glycolic acid) scaffold [J].Biomaterials, 2007,28(17):2763-2771.

[7] Barber FA.Tripled semitendinosus-callcellous bone anterior cruciate1igament reconstruction with bioscrew fixation.Anhroscopy,1999,5(4):360-367.

[8] Bostman OM.Osteoarthritis of the ankle after foreign-body reaction to absorbable pins and screns:a three-to nine year follow-up study.J Bone Joint Surg(Br),1998,80(2):333-338.

[9] 王立.可吸收内固定器的炎性异物反应.国外医学:骨科分册,2002,23(2):101-103.

[10] Oreffo RO,Tnffitt JT.Future potentials for using ostegenic stem cells and biomaterials in orthopedics.Bone,1999,25(2suppl):5-9.

[11] Goodman SB,Bauer TW,Carter D,et aI.Norian SRS cement augmentation hip fracture treatment labomtoryand initial clinical results.Clin Orthop,1998,348:42-50.

[12] Ozturk A.Yetkin H.Memis L Demineralized bone matrix andhydroxyapatite/tri-calcium phosphate mixture for bone healing in rats[J].Int Orthop,2006,30(3):147-152.

[13] Kim H.Camata R P.Vohra Y K Control of phase composition in hydrox-yapatite/tetracalcium phosphate biphasic thin coatings for biomedical applications [J].J Mater Sci Mater Med, 2005,16(10):961-966.