继电保护选择性的含义范文
时间:2023-12-18 17:48:45
导语:如何才能写好一篇继电保护选择性的含义,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
【关键词】 继电 保护 趋势
我国自上世纪90年代后期开始也开展了配电自动化研究与应用工作,目前,经过十几年的探索与实践,配电自动化技术已经比较成熟,为故障的快速和科学处理奠定了良好的基础。长期以来,在配电自动化系统的故障处理功能研究领域,国内外开展了大量卓有成效的研究。
1 继电保护的发展现状
1.1 继电保护的现状
继电保护技术是随着电力系统的发展而发展起来的。几十年来,随着我国电力系统向高电压、大机组、大电网发展,继电保护技术及其装置应用水平获得很大提高。在20世纪50年代以前,继电保护是用电磁型的机械元件构成的。随着半导体器件的发展,利用整流二极管构成的整流型元件和由半导体分立元件组成的保护装置得到了推广利用。20世纪70年代以后,利用集成电路构成的装置在电力系统继电保护中得到广泛应用。到80年代后,计算机技术发展很快,利用计算机强大的计算分析能力来分析电力系统的有关电量,判定系统是否发生故障。目前,在电力系统中,微机型继电保护及自动装置得到了广泛应用,它与传统保护相比有明显的优越性。
继电保护技术与其他技术不同的是,新技术不能完全取代老技术。电力系统中运行的继电保护可以说是“四世同堂”。由于计算机网络的发展和其在电力系统中的大量采用,给微机保护提供了无可估量的发展空间,微机硬件和软件功能的空前强大,变电站综合自动化的提高,电力系统光纤通信网络的逐步形成,使得微机保护不再是一个孤立的、任务单一的、消极待命的装置,而是积极参与、共同维护电力系统整体安全稳定运行的计算机自动控制系统的基本组成单元,进入20世纪90年代以来,它在我国已得到了广泛应用,受到电力系统运行人员的欢迎,已经成为继电保护装置的主要形式,从而使得继电保护成为电力科学中最活跃的分支。电力系统的快速发展又给继电保护技术提出了艰巨的任务,电子技术、计算机技术、通信技术又为继电保护技术的发展不断注人新的活力。
1.2 继电保护技术的发展趋势
继电保护技术的未来趋势是向微机化、网络化、一体化的方向发展。电力系统对继电保护的要求不断提高,除了实现基本功能外,还应具有故障信息和数据的存储、对数据的快速处理、与其他继电保护联网、共享信息和网络资源等能力。因此,继电保护的微机化是保护技术的必然发展趋势。
保证系统安全稳定运行,就要求各个继电保护共享全系统的运行和故障信息的数据,各个继电保护在分析这些信息和故障的基础上协调动作,才能确保系统的安全稳定运行。实现这种功能的基本条件是将全系统的继电保护全部用计算机网络连接起来,实现继电保护的网络化。计算机网络作为信息和数据的通信工具,已成为当前的技术支柱,那么实现继电保护的网络化,在当前的技术条件下是完全可能的。
如果实现了继电保护的微机化和网络化,继电保护可从网上获取电力系统运行和故障的任何信息和数据,也可将自身所获得的信息和数据传送给网络控制中心或任一终端。因此,各个继电保护不但可完成本身基本功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,即实现了保护、控制、测量、数据通信一体化。
2 继电保护的目标
2.1 继电设备的故障
电力系统继电保护是电力系统安全、稳定运行的可靠保证。电力系统中的电气设备在运行中,受自然的(如雷击、风灾、机械损伤等)外力破坏、内部绝缘击穿、人为的(如设备制造上的缺陷、误操作等)原因等,不可避免地会发生各种形式的短路故障和不正常工作状态。
电气设备故障最常见的是短路,其中包括三相短路、两相短路、大电流接地系统的单相接地短路及电气设备内部线圈的匝间短路。在大电流接地系统中,电气设备短路故障以单相接地短路的机会最多。
最常见的异常运行状态是电气元件的电流超过其额定值,即电气元件处于过负荷状态。长时问的过负荷会使电气元件的载流部分和绝缘材料的温度过高,从而加速设备的绝缘老化,或者损坏设备,甚至发展成事故。故障和异常运行状态都可能发展成系统中的事故。事故是指整个系统或其中一部分的正常工作遭到破坏,以致造成对用户少送电、停止送电或电能质量降低到不被允许的地步,甚至造成设备损坏和人身伤亡。在电力系统中,为了提高供电可靠性,防止造成上述严重后果,要对电气设备进行正确的设计、制造、安装、维护和检修;对异常运行状态必须及时发现,并采取措施予以消除;一旦发生故障,必须迅速并有选择性地切除故障元件。
2.2 继电保护装置的任务
继电保护装置是一种能反映电力系统中电气元件发生故障或异常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务有以下两方面:
(1)当电力系统中被保护元件发生故障时,继电保护装置应能自动、迅速、有选择地将故障元件从电力系统中切除,并保证无故障部分迅速恢复正常运行。
(2)当电力系统被保护元件出现异常运行状态时,继电保护应能及时反应,并根据运行维护条件,动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据电力系统及其元件的危害程度规定一定的延时,以免不必要动作和由于干扰而引起的误动作。
继电保护装置的功能,就是将检测到的电气量与整定值或设定的边界进行比较,在越过整定值或边界时就动作。这里的越过有两层含义:①对于反应被测量的增加而动作的保护装置,是指测量的量大于整定值或越过边界到界外;②对于反应被测量的减小而动作的保护装置,是指测量的量小于整定值或越过边界进入界内。
3 对继电保护的要求
继电保护的种类有很多,按保护基本工作原理不同归类:有反映稳态量的常规保护和反应暂态量的新原理保护两大类。其中,根据所反应参数不同,常规保护有过电流保护、低电压保护、距离保护、差动保护、高频保护、方向电流保护、零序保护及气体保护等;新原理保护有工频变化量保护和行波保护等。按保护动作原理不同归类:有机电型保护、整流型保护、晶体管型保护、集成电路型保护及微机型保护等。实际上继电保护的动作原理也表明了继电保护技术发展的进程,目前通常把微机保护之前的保护称为传统保护或模拟保护,与此相对应,微机保护还可称为数字保护。
为了能正确无误而又迅速地切除故障,要求继电保护具有足够的选择性、快速性、灵敏性和可靠性。
3.1 选择性
系统发生故障时,继电保护装置应该有选择地切除故障部分,非故障部分应能继续运行,使停电范围尽量缩小。
继电保护动作的选择性,可以通过正确地整定上下级保护的动作时限和电气动作值的大小来达到配合。一般上下级保护之问的时限差取0.5~0.7s,即同一故障电流通过时,上一级保护的整定时间应比下一级保护整定时间长0.5~0.7s,故下一级开关比上一级开关先动作。
3.2 快速性
快速切除故障可以提高电力系统并列运行的稳定性,减少电压降低的工作时间。理论上讲,继电保护装置的动作速度越快越好,但是实际应用中,为防止干扰信号造成保护装置的误动作及保证保护问的相互配合,继电保护不得人为地设置动作时限。目前最快的继电保护装置的动作时间约为5ms。
3.3 灵敏性
灵敏性是指继电保护装置对其保护范围内的故障的反应能力,即继电保护装置对被保护设备可能发生的故障和不正常运行方式,应能灵敏地感受和很灵敏地反应。上下级保护之间灵敏性必须配合,这也是保证选择性的条件之一。
3.4 可靠性
为保证继电保护装置具有足够的可靠性,应力求接线方式简单,继电器性能可靠,回路触点尽可能减少。除此之外,还必须注意安装质量,并对继电保护装置按时进行校验和维护。
以上四个基本要求贯穿整个继电保护内容的始终,要注意四个基本要求间的矛盾与统一,例如强调快速性时,可能会影响到可靠性和选择性;强调选择性时可能会影响到快速性。可以想象,同时满足四个基本要求的继电保护装置,其造价一定昂贵。所以对具体的保护对象,装设怎样的继电保护装置,在满足技术条件的同时,还要分析其经济性。
继电保护发展到今天,它的构成原理已形成了两种逻辑:一种为布线逻辑,另一种为数字逻辑。布线逻辑的继电保护装置,其功能靠接线来完成,不同原理的继电保护装置其接线也不同;数字逻辑的继电保护装置其功能由计算(程序)来完成,不同原理的装置计算方法(程序)不相同,但硬件基本相同。布线逻辑的装置要实现一种完善的特性(如四边形阻抗边界),接线将十分复杂,有些边界还不可能实现。数字逻辑的装置其原理是由计算(程序)来实现的,因此,可实现特性完善的装置。
4 结语
继电保护技术的发展先后经历了机电型、晶体管型、集成电路型和微机型,从初期的机电型发展到今天的微机型,已经历了四代的更新。继电保护的种类虽然很多,但就其基本组成而言,整套继电保护装置是由测量部分、逻辑部分和执行部分三部分组成。
篇2
【关键词】保护装置;校验;运行维护;状态检修
1.引言
当电力系统中的电力元件发生故障时,向运行值班人员及时发出警告信号,或者向所控制的断路器发出跳闸命令,以终止这些事件发展的一种自动化措施和设备。实现这种自动化措施的成套硬件设备,用于保护电力元件的一般称为继电保护装置。变电站的保护装置等,对电网的稳定运行都起着重大的作用,是电力系统重要的组成部分。随着人们对供电质量及电力系统运行效率的要求越来越高,继电保护的任务也就越来越重,要想有效保障电网运行的安全经济,就必须重视对变电站继电保护的运行与维护。
2.电力系统对继电保护的基本要求
2.1 可靠性(可信赖性和安全性)
可信赖性―要求继电保护在设计要求它动作的异常或故障状态下,能准确地完成动作,即要求不拒动。安全性―要求继电保护在非设计要求它动作的其他所有情况下,能够可靠不动作,即要求不误动。可信赖性与安全性是一对矛盾。实际应用中它与接线方式与电网结构有关。对于220kV电网以可信赖性为主,重点防止保护拒动。对于500kV电网以安全性为主,重点防止保护误动。
2.2 选择性
选择性是指期望能在电力元件发生故障时,由最靠近故障元件的继电保护装置动作断开故障。继电保护选择性是通过合理的动作值整定来完成。选择性整定原则:越靠近故障点的保护装置的动作灵敏度越大,动作时间应越短。
2.3 快速性
继电保护快速性是指继电保护装置应以允许的可能最快速度动作切除故障。继电保护快速跳闸,一方面可以减轻故障设备的损坏程度,另一方面是提高电力系统暂态稳定的重要手段。
电力系统对继电保护快速性的要求与电网的电压等级有关。220kV系统要求:近区故障 100ms、远区故障120ms切除除障,含开关动作时间;500kV系统要求:近区故障80ms、远区故障90ms切除故障,含开关动作时间。
2.4 灵敏性
继电保护灵敏性是指继电保护装置对设计规定要求动作的故障及异常状态能够可靠地动作能力 。在规程中规定每种保护元件的具体灵敏系数。继电保护对动作的灵敏性是出于保护装置可靠动作需要。
3.继电保护运行维护的基本原则
对继电保护的运行维护原则主要有三个方面:
一是保证设备的安全运行。在实施设备检修的过程中,以保证设备的安全运行为首要原则,加强设备状态的监测和分析,科学、合理地调整检修间隔、检修项目,同时制定相应的管理制度。二是宏观规划、逐步落实。对继电保护的运行维护是系统而复杂的,尤其是装置的状态检修还没有形成成熟系统的完整体系,因此,需要在总体的宏观规划下,分层逐步实施推进,确保继电保护运行维护的每一步实施都合理稳妥,通过先行试点累计必要的经验并进一步推广应用。三是充分运用现有的技术手段,适当配置监测设备。
4.继电保护装置的校验内容与周期
要想提高继电保护的可靠性,有效保障电力系统运行的安全稳定,并且在故障发生时能及时作出可靠动作,就必须定期对继电保护装置与其二次回路做有效检查与校验。
4.1 继电保护装置的校验周期
对运行中或准备投入运行的微机继电保护装置,应按电力工业部颁布的《继电保护及系统安全自动装置检验条例》和有关微机继电保护装置检验规程进行定期检验和其他各种检验工作,检验工作应尽量与被保护的一次设备同时进行。
新安装的保护装置1年内进行1次全部检验,以后每6年进行1次全部检验(220kV及以上电力系统微机线路保护装置全部检验时间一般为2~4天);每1~2年进行1次部分检验(220kV及以上电力系统微机线路保护装置部分检验时间一般为1~2天)。
4.2 继电保护装置的校验内容
继电保护装置的校验内容主要有测量绝缘、检验逆变电源(拉合直流电流,直流电源缓慢上升、缓慢下降时逆变电源和微机继电保护装置应能正常工作)、检验固化的程序是否正确、检验数据采集系统的精度和平衡度、检验开关量输入和输出回路、检验定值单、整组检验及用一次电流及工作电压检验。
5.对继电保护运行的具体维护
运行人员必须了解微机继电保护装置的原理及二次回路,按继电保护运行规程,对保护装置及其二次回路进行定期巡视、检查。负责与调度人员核对微机继电保护装置的整定值,负责进行微机继电保护装置的投入、停用等操作。负责记录并向主管调度汇报微机继电保护装置(包括投入试运行的微机继电保护装置)的信号指示(显示)及打印报告等情况。掌握微机继电保护装置打印(显示)出的各种信息的含义。根据主管调度命令,对已输入微机继电保护装置内的各套定值,允许现场运行人员用规定的方法来改变定值。现场运行人员应掌握微机继电保护装置的时钟校对、采样值打印(显示)、定值清单打印(显示)、报告复制、按规定的方法改变定值、保护的停投和使用打印机等操作。在改变微机继电保护装置的定值、程序或接线时,要有主管调度的定值、程序及回路变更通知单(或有批准的图样)方允许工作。
6.提高继电保护可靠性的有效措施
(1)加强对继电保护运行的日常维护。电力系统运行中发生故障的现象是具有随机性的,并不能准确定,这就要求变电站值班员在日常运行中多加注意与监测,尤其是对能有效防止故障或事故发生与扩大的继电保护的日常监测,对于及时发现运行异常状况并实时采取处理措施排除故障以恢复电力系统的稳定运行,有着极其重要的意义。
(2)强化对检修人员的素质与业务技能的培训。高素质检修人员是保护装置检修能否取得成功的关键,检修人员掌握较高的检修技术并具有丰富的检修经验,能及时对系统故障作出准确分析,能对继电保护装置的健康状态做综合评价,还能作出合理的检修决策,有效优化检修工艺与计划等,这些都是检修人员技术素质的体现,是确保检修质量的基础与关键。
(3)健全设备管理体制,完善的检修质量管理体系,开展状态检修。随着新技术、新工艺在电力设备制造业中的广泛应用,电力设备的质量和性能已经大大提高。开展状态检修可以做到有的放矢,减少检修工作的盲目性,大幅度减少检修时间,提高了设备的可用率。
7.结束语
随着电力网规模的扩大,变电站作为电能输送及分配的枢纽,其设备故障对系统安全运行的影响越来越大。随着电力系统的在线监测技术和计算机通信技术的进步,继电保护技术逐渐向计算机化、网络化、一体化、智能化方向发展。对变电设备进行状态监测及故障诊断,改传统的计划周期性检修为状态检修,对继电保护装置进行定期和按需相结合的检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,方能提高供电可靠性。
参考文献
[1]邱家忠.论继电保护状态检修技术[J].科技创新与应用,2012.
[2]周培华.浅谈电力系统中继电保护的发展趋势[J].科技咨询导报,2007.
篇3
【关键词】 电力系统 微机继电保护 应用研究
1 继电保护技术概述
近年来,电力系统得到了飞速的发展。提高系统的运行效率和运行质量成为需要迫切解决的技术问题。而继电保护技术是解决问题的核心技术之一。继电保护技术是指在系统正常用电过程中,可以对电路故障发出警报信号,并能够有效防止事故发生的一种自动化技术。继电保护技术的原理是通过检测系统中电气元件发生异常情况时电气量(频率、电压、电流)的变化,并完成继电保护动作。其核心是继电保护装置。近些年,继电保护装置从原来的机电整流式向集成微机式发展。将计算机技术融入到继电保护装置,使继电保护技术得到进一步的发展,同时使继电保护性能进一步的增强(如图1)。
微机继电保护技术的主要特点:(1)提高运行正确率,计算机的数据处理技术使得继电保护装置具备十分强的记忆能力,同时运用自动控制等技术,使继电保护装置可以更优的完成故障保护功能,提高了系统运行的正确率。(2)良好的监控管理操作性,该技术中运用的一些核心器件不受外在环境的影响,可以带来良好的功效。而且保护装置利用计算机保护装置,具备了可监控性,从而大大降低了成本。(3)增强辅助功能和兼容性,继电保护装置在制造上采用通用兼容的原理,易于统一标准,而且保护装置的体积较小,可以减少盘未的数量,在此基础上可以扩展其他辅助功能。
2 继电保护技术的历史与现状
20世纪中期,基于晶体管的继电保护技术得到蓬勃发展和广泛应用。随后,专家学者对基于集成运算放大器的集成电路保护技术进行了研究,到80年代末集成电路保护技术趋于成熟,逐渐替代了晶体管保护技术。直到90年代,基于集成电路的保护技术一直占据着主导地位。在此期间,我国对基于计算机的保护技术开始了研究,取得了辉煌的成果。相继研制了不同型式、不同原理的微机保护装置。在主设备方面,关于微机相电压补偿方式高频保护、微机线路保护装置、发电机保护和发电机-变压器组保护技术都获得巨大进展。至此,不同原理和机型的微机保护装置为电力系统提供了性能优良、可靠地继电保护装置。同时,在微机保护算法等方面也取得了大量的理论成果。我国继电保护技术进入微机化时代。
3 继电保护技术的配置和应用
3.1 继电保护装置的任务
继电保护装置利用系统中电子器件发生短路等异常情况时电气量的变化完成继电保护的动作。其主要任务在于:(1)供电系统正常运行时,安全地监视各个设备的运行状况,为工作人员提供可靠的运行依据;(2)在系统发生故障时,快速。自动地选择性屏蔽故障部分,从而保证系统其它部分继续正常运行。(3)供电系统出现异常运行工作时,能准确地及时发出警报,通知工作人员进行处理。
3.2 继电保护装置的基本要求
(1)可靠性。保证装置能够反应正确的动作,且随时处于监控状态。不具备可靠性的保护装置或许成为直接造成故障或矿大事故的根源。为保障保护装置具备可靠性,要求组成装置的各个元件质量可靠,运行维护得到。同样要求装置的设计原理、整定计算和安装调试正确无误。保护系统应尽可能简单有效,提高系统保护的可靠性。
(2)选择性。指当供电系统发生故障时,保护装置能够有选择的将发生故障部分切除。即保护装置首先断开离故障点最近的断路器,保障系统中非故障部分可以继续正常运行。
(3)速动性。指保护装置能够快速地切除电路故障部分。缩短故障的切除时间,可以减轻短路电流对设备的损坏程度,加快系统的恢复,为电气设备自启动创造有利条件,同时提高了发电机并列运行的稳定性。
(4)灵敏性。指继电保护装置对异常工作的反应能力。保护装置的灵敏度用灵敏系数衡量。在装置的保护范围之内,不管短路性质如何,不管短路点位置如何,保护装置应都能够实现保护动作。但在保护区外,该装置不应该构成任何错误动作。
3.3 继电保护技术的应用
在电力系统建设与运行中,高压线路、低压网络及各种电气设备均装载了相应的微机继电保护装置,其主要用于高压线路保护、主变保护、电容器保护等。高压供电系统应用包括母线继电保护装置的应用,对非并列运行的分段母线装载电流速断保护。另外,还需装置过电流保护。对等级较低的配电所可以不装设电流保护。
继电保护装置在变电站中的应用包括:(1)主变保护:包含主保护和后备保护,主保护通常是差动保护和瓦斯保护,后备保护通常是过负荷保护或过流保护;(2)母线保护:需同时装载限时电流速断保护和过电流保护;(3)电容器保护:其主要包括过压保护、失压保护以及过流保护;(4)线路保护:通常采用二段或三段式电流保护,其中一段是速断电流保护,二段是速断限时电流保护,三段是过电流保护。微机继电保护技术的快速发展推动了继电保护装置的广泛使用。根据不同的需求,研发出不同原理、不同机型的保护装置。
4 继电保护技术的发展方向
4.1 智能化
随着计算机技术在电力系统继电保护领域中的广泛应用,许多新的计算机控制方法不断被应用于继电保护当中。比如专家系统、人工神经网络、遗传算法、小波理论、模糊逻辑等人工智能技术,从而对继电保护的研究向智能化方向发展。如利用人工神经网络来实现故障的类型判别;或将过渡电阻短路归为非线性问题。人工智能技术的不断发展推动了继电保护技术的智能化发展。结合不同的智能技术,分析不确定因素对系统的影响,以提高系统的可靠性,是智能保护的主要方向。
4.2 计算机化
系统运行中微机继电保护装置的动作准确率明显高于其他保护装置。继电保护装置的计算机化是绝对的发展优势。微机继电保护装置以中央处理器为核心,依据数据采集系统到的系统的实时状态数据,根据选定算法来检测系统是否发生故障以及故障的范围、性质等,做出是否切断或报警等判断。微机继电保护由计算机程序实现,其中CPU是计算机系统自动控制的指婚中心,计算机程序运行在CPU上。所以CPU的性能在很大程度上决定了计算机系统性能的好坏。
4.3 网络化
网络型继电保护是一种新型的继电保护技术,是微机保护技术发展的趋势。它建立在网络技术、计算机技术、通信技术基础之上,利用计算机网络实现各种保护功能,包括线路保护、母线保护、变压器保护等。网络型继电保护的优点是共享数据,能够实现本来由光纤保护、高频保护才可以实现的纵联保护。此外,通过分站保护系统采集到所有断路器的电流量、母线电压量。所以易于实现母线保护,且不需要其他的母线保护装置。网络保护系统的拓扑结构采用简单的环形结构、星型结构、总线结构。因为继电保护的重要性,需要采取可靠的网络安全控制策略,来确保网络保护系统的安全。
4.4 自动化
现代网络技术、计算机技术为改变电力系统监视、保护、控制提供了系统集成和优化组合的技术基础。高压变电站经历着技术创新,即实现自动化和继电保护的结合。其体现在远程控制与信息共享、集成与资源共享。以远方终端单元、微机保护装置为核心,将变电所的控制、测量等融入计算机系统,提高系统的可靠性。综合自动化系统打破传统二次系统设备划分原则,克服了常规保护装置不能与控制中心通信的缺陷,赋予了变电所自动化新的含义和内容。
5 结语
微机继电保护技术在电力系统中发挥着重要的作用。继电保护装置为提高电力稳定性与安全性、保护电力设备提供了技术保障,为电力需求提供技术支持。随着电力系统的发展和计算机技术、通信技术的进步,继电保护技术向着智能化、计算机化、自动化、网络化方向发展,进一步提高保护装置的性能。
参考文献:
[1]刘静.发电机组继电保护技术应用[J].电力科技,2010.5.
篇4
关键词:继电保护;检修;继电器;“状态”把握
中图分类号:TM774文献标识码:A文章编号:1009-2374(2009)24-0036-02
随着微机继电保护应用的普及,提高设备的安全运行水平已成为一种共识。继电保护构成的是一个系统,不仅仅是装置本身,如交流、直流、控制回路等,由于部分回路还没有监测手段,对设备状态无法进行实时的技术分析判断。如由于操作回路一直由硬件实现,除少量的硬件信号可通过远动或综合设备上传以外,回路无在线监测手段,形成了保护监控回路中的空白点。因此,就继电保护装置的应用现状而言严格意义上讲大多数保护并不具备状态检修的条件。
其实,状态检修并不是简单意义上的减少检修次数就可以的。而是要根据设备的实际状态,有针对性地进行检修,应考虑其使用环境和条件,不能盲目地将“状态检修”运用到所有的电力系统一、二次设备上。笔者认为“状态检修”的关键是作业人员对电力设备“状态”的把握,而实际工作中对电力设备“状态”的实时把握是较为困难的。
在电力系统中,继电保护装置起着及时切除电力系统故障和反映电力系统设备不正常工作状况的作用,同时最大限度地降低故障对电力系统的影响。因此,继电保护装置动作的正确对电力系统的安全稳定运行起着极其重要的作用。
一、电力系统中的继电器
电力系统保护中继电保护装置运行时可靠性指标的定义和计算与电力系统可靠性指标计算、继电保护装置的评价、使用、完善与发展等密切相关。我国现行的统计方法是沿用前苏联的“正确动作率”统计方法,这种方法是用一定期限(例如一年)内被统计的继电保护装置的总动作次数和其中的正确动作次数来定义:正确动作率=(正确动作次数/总动作次数)×100%。这种评价方法在被保护对象的故障频率很低,或在这一统计期限内根本没有发生过内部故障时,其正确动作率就会很低,甚至只能为零。
继电保护状态检修就是在电气二次设备状态监测的基础上,根据监测和分析诊断的结果,科学地安排检修间隔时间和检修项目的检修方式,它包括三层含义:设备状态监测;设备状态诊断;设备检修决策。设备状态监测是实施状态检修的基础;设备状态诊断则以设备状态监测为依据,综合设备的历史信息,利用神经网络、专家诊断系统等技术来判断继电保护设备的健康状况。继电器检修的目标是:减少设备停电时间,延长设备使用寿命,提高设备使用率和安全可靠性,改善设备运行性能,降低设备运行检修费用,提高经济效益。
二、继电保护装置的“状态”把握
继电保护装置在电力系统中具有独特的地位和作用,一旦电力系统出现故障,全靠它快速准确地将故障隔离,防止事故进一步扩大,保证事故以外的电力设备正常运行。继电保护装置进行“状态检验”,其基本思路是依据继电保护装置的“状态”安排检修和试验,基准点是继电保护装置的“状态”。笔者长期从事继电保护装置检验,曾多次参与继电保护装置的检验及继电保护装置的拒动、误动事件的处理,积累了一定的经验,但在这些事故处理的过程中仍需进行一些必要的试验进行验证。因此,在实际操作过程中存在较大的难度,需要长期的经验积累才能准确判断电力设备的“状态”。
继电保护装置在电力系统中通常是处于静态的,只有在电力系统故障或异常时,才会根据检测到的系统故障或异常的电器参数而启动,然后通过自身的逻辑回路加以识别,灵敏地、可靠地、有选择性地将故障快速切除或给出相应警示,这一动作时间往往只有几毫秒到几秒。操作人员对继电保护装置状态的了解,一般是对它静止状态的了解,如果电力系统无故障,保护装置不动作,对它动作特性的了解就无从谈起。在电力系统中,需要了解的恰巧是继电保护装置在电力系统故障时是否能快速准确地动作,即要把握继电保护装置动态的“状态”,而继电保护装置的动态特性只有在以下3 种情况下才能表现出来:设备故障保护动作;保护装置误动;继电保护装置试验和传动。
三、继电保护检修
根据《继电保护及电网安全自动装置检验条例》的要求,目前,我国继电保护装置的校验主要分为以下三类:(1)新安装装置的验收检修;(2)运行中装置的定期检验;(3)运行中装置的补充检验。其中,继电保护装置在设备投产后一年进行一次全面校验,以后每六年进行一次全面校验,每一至两年进行一次部分检验。目前,常规的电磁型保护装置已经全面被微机继电保护装置取代,传统的继电保护与微机保护相比较,微机保护具有以下优点:
1.微机保护所有的保护数据采样,逻辑功能都由CPU完成,采用规范化硬件,出口继电器均采用了先进的全密封型继电器,极大地降低了二次回路的复杂性也提高了可靠性,减少了由于继电器接点问题和二次回路接触不良导致保护装置不正确动作的可能性。
2.当检测到装置出现异常或故障时,微机保护都能通过先进的自检功能及时发出信号并闭锁相关保护。
3.软件编程可标准化,模块化,灵敏性高,互换性好;具有可靠的通信接口,接入厂站的微机可使信息分析处理后集中显示和打印。
鉴于微机保护继电装置的可靠性和性能与电磁型保护相比在各个方面都有大幅度提高,因此,没必要根据传统的定检周期对二次设备进行定期检修。传统的定期检修(计划检修),单纯按固定的时间间隔对设备进行检修,不考虑设备的实际情况,因此这种检修方式存在着很大的强制性和盲目性。
状态检修与定期检修相比,改善电网安全,减少线损,提高了供电可靠性,因为状态检修更有针对性;可以使检修具有实效性,能及时解决问题;减少了维护工作量,降低检修成本,提高经济效益,节省了企业经营成本;减少了倒闸操作,提高了人身和设备安全。实施状态检修减少了大量的停电检修和带电检修工作量,降低了发生事故的概率;改善设备安全、延长设备使用寿命,这是因为有效避免了失当维修、不必要的维修和不解决根本问题的维修。
设备的检修与设备的可靠性紧密相关,设备可靠性低必然导致可用性的降低和检修的频繁发生。事实上,检修工作也只能使设备维持或接近于由设计和制造所决定的固有可靠性,而状态检修就是要在了解设备健康状态的前提下通过检查、维护、修理乃至更新,以最小的代价保持或恢复系统及设备的固有可靠性水平。
四、结语
状态检修并不是简单意义上的减少检修次数就可以的。而是要根据设备的实际状态,有针对性地进行检修。文章从对继电保护状态检修有实际指导意义的出发点出发,结合继电保护状态检修的现状,利用长期的现场检修管理中积累的经验,对继电保护状态检修的实际问题进行了深入讨论,希望对以后的相关工作有借鉴意义。
参考文献
[1]杜延令.推行状态检修探讨[J].山东电力技术,1999,(2).
[2]邓云球.推行状态检修的几项重点工作[J].电力安全技术,2001,(6).
[3]申|,陈晋龙,丁霞.成功实施发电设备状态检修的要素[J].中国电力,2002,(3).
[4]李从国,杨晓梅,吕文九.电厂状态检修的现状及发展探析[J].山东电力高等专科学校学报,2004,(4).
[5]张晓忠,曾建国.变电实行状态检修 企业社会双增收[J].电力安全技术,1999,(2).
篇5
【关键词】微机保护;动作;可靠性;稳定性;应用
1 电力系统对继电保护的要求
电力系统对继电保护的四项基本要求:(1)选择性:发生故障时,保护动作,只是将发生故障的元件切除,脱离电力系统,使停电范围能够尽可能缩小,确保电力系统中非故障部分能够保持安全稳定的运行;(2)速动性:快速切除故障能够有效提高电力系统运行的稳定性,减少所带用户的低电压异常工况的运行时间,降低故障引发的破坏程度,所以,在故障发生时,保护装置应以最快速度动作切除故障,缩小故障波及范围,减轻短路对用户造成的影响,提高系统的安全与稳定;(3)灵敏性:灵敏性就是指对保护范围内所发生的故障以及不正常运行情况的反应程度与能力,保护的灵敏性一般用灵敏系数来表征,灵敏系数如果越大,反映保护的灵敏度就越高,反之灵敏度越低;(4)可靠性:可靠性指保护装置在预先规定保护范围内发生属于保护应动作的故障时,保护装置不应拒绝动作,同时保证,不属于它动作的情况不误动,可靠性主要决定于保护装置本身的产品质量以及运行维护水平的高低,保护装置组成元器件的质量越高越好,接线越简单,中间环节越少,保护装置的运行情况就越可靠,同时,保持良好的维护对提高保护的可靠性也有着重要影响。
传统的继电保护装置存在较多弊端,已经不适用于现代企业的高速发展;其占地空间比较大,安装很不方便,调试和检修较为复杂,使用年限短,继电器本身没有监控与自检功能,运行及维护的工作量大等缺点,已无法满足快速发展的电力系统高稳定性的要求。
随着计算机技术,通信技术的迅猛发展,微机型继电保护技术获得了显著的发展和进步,微机保护在电力系统中的应用已越来越广泛。
2 微机保护在电力系统中的应用
2.1 微机保护的组成
微机保护的组成分为硬件与软件两大部分,硬件系统是构成微机保护的基础;软件部分是微机保护的核心。
硬件方面:在设计保护产品时,要充分考虑保护装置的可靠,可维护,可拓展性,同时,软件版本的升级不应该变更硬件,微机保护硬件方面主要由以下几个部分组成:(1)数据采集单元,即模拟量输入系统,对模拟量进行测量和数字量转化,微机保护中CPU通过模数转换器将采集到的输入的原始电压,电流等模拟量转换为数字量;(2)微机主系统,即数据处理单元,它是以中央处理器(CPU)为核心,负责对数据的处理、硬件白检和保护功能的计算,由它对数据采集系统输入的各种原始数据进行计算,分析,处理,判断,从而实现各种继电保护功能;(3)数字量输入/输出接口;(4)通讯接口;(5)人机对话接口;(6)电源部分:将站内的直流电压变换为微机保护装置所需要的稳定可靠的不同幅值的直流电压,提供给微机保护的不同单元使用。
软件方面:软件设计属于技术的核心部分,简单可靠的硬件配置是依托好的软件设计,软件设计通常按照其功能进行划分,实现标准化以及模块化,并应便于功能的拓展。对于现场信息参数应编制相对独立的参数模块,方便在运行中修改。有滤波功能的微机保护装置,其模拟量数据文件,需能转换为标准格式输出。微机保护固有特性以及对实时电力系统特殊的应用工况,使它对实时性的要求和对抗干扰能力容错设计的要求极为严格。这同样需要相适应的软件来支持。软件设计使微机保护在正常运行时对采样值自动零漂调整及运行状态进行检查,包括:交流电压断线,开关位置状态等。不正常时发告警信号,信号分两种,一种是运行告警,不闭锁保护装置,仅仅提醒运行人员及时进行相应处理,另一种是闭锁告警信号,发告警的同时将保护装置闭锁,保护退出运行,以免发生保护误动。故障时,故障计算程序进行各种保护的算法计算,跳闸逻辑判断以及事故报告,故障报告,电流电压波形整理及分析处理。
2.2 微机保护应用的优点
微机保护应用了计算机技术领域的先进性能:高速强大的运算力和完备可靠的存贮记忆力,以及大规模集成电路,A/D模数转换、数字滤波技术和抗干扰技术,使微机保护在速动性、可靠性等方面均远远优于电磁型等传统保护,显示了强大生命力,相比与传统保护,微机保护装置有以下优点:(1)由于微机继电保护系统采用各种电力逻辑运算,通过软件算法来实现保护功能,所以只需要采集被保护单元的电流电压等少量信息,就可以实现很复杂的保护功能,大大降低电气二次接线的复杂性。(2)微机保护技术采用了计算机控制功能,保护定值设定、保护功能投退等均采用程序逻辑,这样可以随系统实际情况修改保护参数,投切保护功能。(3)微机保护系统的通讯功能,可以通过网络把用户所需要的各种数据传输到监控中心,进行集中调度。(4)微机保护的使用寿命长,由于保护装置在正常状态下处于休眠待机的状态,只有程序部分在实时运行。(5)方便于信息的管理与交换。微机保护能够提供各种动作时序、故障类型、故障相别及故障前后电压、电流的跟踪采样记录等信息,对于线路保护,还可以附加测距功能。(6)维护与调试方便,微机保护的调试量很小,定检周期也可以放长,既减少了维护调试工作量,也大大减少了保护退出运行的时间,可以更好地保证生产的连续运行;(7)具有极高的可靠性和良好的抗干扰能力,微机继电保护装置具有自诊能力,能够对其自身的硬件和软件进行连续的实时检测,如遇有异常情况发报警信号,以利于及时处理,避免保护的误动作,微机保护在硬件上采用电磁屏蔽、光电隔离等技术手段使微机保护的可靠性大大提高,增强了抗干扰能力。
3 微机保护在应用中需注意的关键点
微机保护的确有着传统保护远远无法比拟的优越性,但在应用中也有一些需注意的关键点:(1)微机保护功能完善,界面显示汉化,操作方便,但应避免非专业人员进行操作,以免误改定值套数、定值内容、或其关键参数,保护专业人员一定要设置有效密码。(2)温度、电磁干扰、日照的影响。相对湿度的适应范围为5%~95% ,环境温度的适应范围为-5℃~40oC,超出此范围应装设空调。微机保护装置采用CPU芯片,其极限工作温度为75℃左右,若长时间超高温,运行时间长,死机也就成为必然。同时,如果温度过高,CPU芯片应采用降频技术实现散热的自我保护措施,但是这样会大大降低CPU运算的速度和数据处理能力,进而可能使微机保护出现严重错误,保护可能失去作用,所以微机保护在其工作环境温度方面必须引起极大的重视。(3)微机保护的功能插件板容易受静电等因素的影响而损坏。其中电源板插件极易受散热问题的影响而损坏,需要配备有一定经验的维修人员对设备进行良好的维修。(4)目前不同厂家的微机保护在个别保护装置的定值及功能的含义设置不尽相同,应依据具体的保护技术说明书设置,不可进行类推式设置。(5)对保护专业人员及相关运行人员要提升基本专业学习和培训,快速判断,准确处理。(6)通讯协议问题:需要将不同的微机保护、故障录波、以及现场的其他智能采集设备间的通讯规约、协议进行很好的衔接。
4 结语
- 上一篇:化学品泄漏应急方案
- 下一篇:消防备用电源设计要求