继电保护的发展范文

时间:2023-12-18 17:48:20

导语:如何才能写好一篇继电保护的发展,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

继电保护的发展

篇1

关键词: 继电保护广域保护

1 前言

随着时代的不断进步,电力系统的发展也随着扩大,继电保护技术是随着电力系统的发展而发展起来的。电力系统在运行中, 可能发生各种故障和不正常运行状态, 最常见同时也是最危险的故障是发生各种形式的短路。在电力系统中, 除应采取各项积极措施消除或减少发生故障的可能性以外, 故障发生时,必须迅速而有选择性地切除故障元件,这是保证电力系统安全运行的最有效方法之一。

2继电保护技术发展趋势

2. 1 计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能, 强大的通信能力, 与其它保护、 控制装置和调度联网以共享全系统数据、 信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC 机的功能。该类装置的优点有: ( 1) 具有 486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。( 2) 尺寸和结构与目前的微机保护装置相似,工艺精良、 防震、 防过热、 防电磁干扰能力强,可运行于非常恶劣的工作环境, 成本可接受。

(3)采用 STD 总线或PC 总线, 硬件模块化, 对于不同的保护可任意选用不同模块, 配置灵活、 容易扩展。继电保护装置的微机化、 计算机化是不可逆转的发展趋势。

2. 2网络化

因继电保护的作用不只限于切除故障元件和限制事故影响范围, 还要保证电力系统的安全稳定运行。这就要求每个保护单元都能共享整个电力系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将整个系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。保护装置实现计算机联网, 能提高保护的可靠性,同时可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

2. 3 保护、 控制、 测量、 数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、 多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据, 也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此, 每个微机保护装置不但可完成继电保护功能, 而且在无故障正常运行情况下还可完成测量、 控制、 数据通信功能,亦即实现保护、 控制、 测量、 数据通信一体化。

2. 4 智能化

近年来, 人工智能技术如神经网络、 遗传算法、进化规划、 模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。人工智能技术在继电保护领域的应用, 可以解决用常规方法难以解决的问题。

3广域保护

3. 1 广域保护研究的理论背景

继电保护装置以判断被保护对象内部故障,及时可靠地切除故障为己任。但是目前的安全自动装置都是在检测到系统产生不正常运行状态以后再采取控制措施,例如低频、 低压减载装置是在系统频率或母线电压降低、 偏离正常值一定程度且持续一定时间后才执行切负荷或切机操作,属于事故后控制措施。在特殊情况下如果频率或电压下降速度过快,可能安全自动装置来不及动作,系统已经发生严重的崩溃事故。此外, 目前使用的安全自动控制判据大都是基于本地量构成, 反映的只是系统某点或很小一个区域的运行状态, 不能反映较大区域电网的安全运行水平,装置之间缺乏相互协调和配合, 难以做到对系统进行优化控制。这样将会导致系统某点发生故障后安全水平下降, 造成继电保护和安全自动装置相继动作。由于这些装置之间缺乏相互的配合协调,可能进一步扩大故障影响范围,引起系统发生连锁跳闸等严重事故。去年北美以及世界范围内的几次大停电事故让人们认识到: 事故的发生并不是因为继电保护和安全自动装置误动作, 恰恰相反,它们都能正确动作,但是仍然不能避免大规模停电事故的发生。其原因就在于它们之间缺乏相应的配合协调, 基于本地量的装置难以反映区域电力系统的运行状况。

3. 2 广域保护系统概述

广域保护是在电网互联趋势下提出的对继电保护系统更高的要求,这是一个新的研究方向,国外早在1997 年开展了相关研究探讨;国内在这一领域的研究起步较晚,直到最近一两年才陆续有相关的。

广域保护系统可以分为两类: 一类是利用广域信息,主要完成安全监视、 控制、 稳定边界计算、 状态估计等功能,其侧重点在广域信息的利用和安全功能的实现;另一类则是利用广域信息完成继电保护功能。但是目前多数研究进行的只是概念性的讨论,对于具体问题如系统结构、 通信网络配置、 广域信息的采集和利用、 广域保护和控制算法等方面并没有进行详细深入分析,尚未形成完整的理论体系。

3. 3广域保护系统基本结构

广域保护系统是一个复杂的系统,如果以广域信息的采集、 传送、 分析和使用为主线,整个系统的构成基本上可以分为三大部分。第一部分是电力系统实时动态监测系统,即对电力系统动态过程进行监测和分析的系统。由安装在各变电站的同步相量测量装置( PMU) 之间相互通讯, 及与安装在电力系统调度中心、 变电站或发电厂的主站( main s tat ion)通讯,构成电网广域测量系统(WAMS) , 实现对地域广阔的电力系统运行状态的监测和分析。第二部分包括广域继电保护算法和广域自动控制策略( 基于广域信息切负荷、 切机等) , 安装在各变电站的 CDE相互通讯,就地实现常规保护功能,且主站根据采集到的电网中分布的各变电站PMU 实时测量数据, 检测故障,分析扰动, 提出投切线路、 负荷和机组等控制策略。第三部分是电力系统实时控制系统, 由安装在各变电站的自动控制装置与安装在调度的控制中心联网,实现广域自动控制策略。广域保护系统功能结构: 该系统由相量测量( PMU)、 安全稳定控制装置、 厂站安全稳定监控子站、 通信线路、 电网安全稳定监测与控制主站、 网络服务器及资料分析站等组成,具体功能如下:

( 1)相量测量装置( PMU )。GPS 同步采样记录电压电流相量、 功率和开关量动作情况,计算正序电压电流等相量,通过安全稳定监控子站和通信线路将各种数据上送到安装在调度的电网安全稳定监测与控制主机。

( 2)安全稳定控制装置。在电网故障条件下, 安全稳定监控子站根据厂站运行状态,查找预先整定的控制策略表,控制变电站安全稳定控制装置, 直接进行切机和切负荷操作;电网频率或电压变化后,安全稳定控制装置自动进行无级切机和调负荷控制;也可由调度人员远方操作,维护电网安全稳定运行。

(3) 厂站安全稳定监控子站。安全稳定监控子站安装在变电站,向上通过光纤与电网安全稳定监测与控制主机通信, 向下通过以太网与相量测量装置( PMU)及安全稳定控制装置通讯, 是发电厂变电站安全稳定监测与控制系统的决策中心和通讯桥梁。可就地实现一些广域保护算法, 安全稳定监控子站之间可以相互通讯。

(4) 电网安全稳定监测与控制主站。电网安全稳定监测与控制主机安装在调度室内, 与安全稳定监控子站通讯, 获取各种数据, 进行广域保护计算,及对多站间的实时功角及各站模拟和开关信号进行在线监测,记录有关数据,并存入数据库。并将实时监测到的电压电流相量和功角传送到EMS 系统,供EMS 系统进行静态和动态安全稳定分析, 并把EMS系统的安全稳定控制命令传达到发电厂变电站的安全稳定控制装置,进行投切机组和负荷控制。

4 广域保护应用

广域保护的应用总的来说还处于起步阶段, 目前国内外还没实现大规模应用,典型应用如:华东电网公司研发了一套针对华东电网的广域动态监测系统, 目前该系统已进入运行阶段。在试运行中, 该系统成功捕捉了2006年桑美 台风登陆浙江、 福建造成的电网短路故障、 浙江乌沙山电厂60万千瓦机组的甩负荷试验状况,并经历了华东电网电力市场第二次调电试验考验,为华东电网安全稳定动态监视、预警和在线决策提供了技术手段, 为运行方式的研究、 电力交易的稳定校核和离线事故分析提供了技术支持。

5总结

由于微机保护具有强大的逻辑分析、 判断和数值计算的能力,并可以利用网络进行通信, 通过广域保护和电网的信息交换来提高保护装置的性能的自适应、 基于多agent 的保护以及广域保护引起了国内外电力界学者和工程技术人员的广泛重视, 经过长期不懈地努力,已取得初步的成果。

[参考文献]

篇2

关键词:继电保护;电力系统自动化;继电保护技术;发展趋势

中图分类号:X77 文献标识码:A

1 电力系统继电技术的现状

随着我国电力系统的不断完善,我国继电保护技术也进入了微机保护的时代。计算机技术、电子技术等现代化技术的飞速发展为继电保护技术注入了新的活力,因而在电力系统的几点继续方面要求不断提高。从上世纪70年代,我国便开始了对继电保护技术的研究和发展,各个高校也相继开始了对不同原理和不同型式的微机继电保护装置的研究。最先通过鉴定并在系统中获得应用的是在1984年原华北电力学院研制的输电线路微机保护装置,保护装置的应用为我国继电保护发展揭开了新的篇章。

随着现代化科学技术的广泛应用和科技的的创新,使得电力系统继电保护技术不断强化。继电保护技术的不断强大,为电力系统的维护和发展发挥着巨大的作用。

2 继电保护自动化的性能要求

继电保护装置的工作职能和工作方式决定了自动化装置必须遵循可靠、灵敏、快速、及有选择性的特性。当电力系统和设备发生故障时,要求继电保护装置能最大限度的降低故障对设备的损坏程度;同时继电装置好要根据电气系统在非正常工作运行维护中采取发出的不同的信号,自动将运行设备进行调整或切除容易引起事故的电气设备,及时对系统进行提醒、规范和预防在操作中故障的出现,使其设备处在正常的工作状态下运行。

2.1 可靠性

当电力系统在正常的运行状态下,保护装置实施对装置进行监督,在发生故障的情况下采取正确的防护措施。必须严格要求继电保护装置的可靠性,才能发挥继电保护装置的保护功能。因此可见,继电保护装置的可靠性是衡量电气系统能否正常运行的最基本的标准,在任何电力设备在无继电保护的状态下都不能运行。

2.2 灵敏性

灵敏性是整个电力系统安全运行的保障,只有在运行中减轻设备的故障率和受损程度,才能将受损范围缩小到最低值,从而提高继电保护系统的稳定性与灵敏度。灵敏系数的标定通常体现在设备在保护范围内不正常运行状态继电保护装置的应变能力,通过灵敏度的保护从而提高设备自动投入的效果,是生产过程中的设备和经济损失比降到最低。

2.3 快速性

快速性是指在设备发生故障后的修复能力,在设备运行中发生故障后能及时对故障进行修复,保持电力系统的继电能高效稳定的运行。电力系统的机电保护系统在处理和防范系统故障方面要求迅速切断短路故障线路,降低线路受损程度和系统中存在的其它危险系数。

2.4 选择性

电力系统在运行过程中发生故障时,继电保护装置对故障进行分析和数据分析,对发生故障的设备和线路进行定位切除,保护电力系统的稳定供电和用电需求。在处理故障的过程中,保护装置应根据故障点最近的断路器进行线路切除,只有被故障设备和线路本身的保护拒绝时,才允许由临近的线路或故障设备进行故障切除。

3 继电保护自动化的发展趋势

计算机化,智能化,网络化,保护、控制、测量和数据通信一体化发展是电力系统继电保护自动化未来发展的趋势。

3.1 计算机化

随着电力系统对继电保护的要求不断提高,除了基本的保护职能外,还需要对故障信息和数据的整理和存储。强大的通讯能力和快速的数据信息存储以及保护装置与其他控制装置和调度设备的信息需要数据信息和网络资源联网,这就要求继电保护装置不仅仅是保护还要具备计算机的功能。继电保护装置的计算机化和微机化是电力系统发展的总趋势,在满足电力系统要求的前提下,企业应该在考虑经济效益与社会效益的同时,思考如何提高继电保护装置的计算机化和微机化,从而提高继电保护的可靠性。

3.2 智能化

人工智能技术与继电保护相结合,在一定程度上能加快电力系统的计算速度。人工智能网络的神经网络是运用一种非线性映射的方法,在很多难以列出方程式的复杂的非线性问题上利用神经网络的方法,解开这些线性问题十分简单。其中如遗法算法、模糊逻辑和进程规划等在求解复杂问题的能力上也都有其独特的方法,因此人工智能技术在电力系统继电保护的自动化技术上发挥着重要作用,为继电保护技术中一些常规方法难以解决问题提出了确实可行的办法。

3.3 网络化

计算机网络为各个工业领域提供了强大的通信手段,影响着各个工业领域的发展。继电保护的作用指是切除和预防故障,缩小故障带来的损耗,几点保护装置在处理故障信息时,受到的故障信息数据越多,对故障的性质、位置及和故障位置的距离才能判断的更准确,这是相对于一般非系统保护下,实施保护装置的计算机联网的最大好处。在实现了计算机联网化后,继电保护能根据系统的运行方式和故障数据的数据分析,自动生成保护原理和规律,从而实现保护装置的自适联网设备,提高保护的可靠性与准确性。微机保护网络化在未来的发展趋势上可以大大提高保护设置的性能与可靠度,实现这种微机保护的条件就是将全系统的各个设备的保护装置用PC机进行网络连接,从而实现各个主要设备间的数据共享和分析比较,用这种保护网络化对电力系统的几点保护进行自动化管理和监督。

3.4 保护、控制、测量和数据通信一体化

将保护、控制、测量和数据通信一体化的计算机装置就地安装在保护设备的旁边,将保护设备中所有的数据进行整理和分析,通过计算机网络传送到电脑主控室,从而实现对系统的保护和对运行中出现的故障进行数据分析和控制。实现了继电保护装置的网络化、计算机化和智能化,继电保护装置就相当于是一套多功能的、高性能的PC机,是整个系统运行的智能终端控制和监督平台,因此,每一个保护装置都可以直接从网上获取系统运行中的故障和信息数据,并且将这些数据和信息从送到网络监控中心和其它保护装置系统中去。

结语

继电保护装置作为电力系统安全运行的关键,随着电力系统的安全威胁问题的利益突出,以及继电保护问题的内涵的不断扩展,继电保护自动化与智能化的必要性越来越明显。

继电系统自动化发展的实现在保护装置性能的同时,也大大提高了装置的可行性,降低故障对保护装置的损坏度。在社会日益进步的今天,我们要充分的利用计算机和网络技术对几点保护装置的自动化发展进行改革和创新,通过对故障数据的分析和实际工作中的实践,利用计算机和网络中强大的数据分析能力、运行能力和匹配能力来推进电力系统的自动化的建设与发展,提升电力系统保护装置的质量和对故障处理能力的准确性能。

参考文献

篇3

【关键词】继电保护;任务;现状;发展

1 电力系统继电保护技术的任务和要求

(1)当电力系统发生故障时,有选择性的将故障元件从系统中快速自动切除,使其损坏程度减到最轻,以避免故障元件继续遭到破坏。保证系统其它非故障部分能继续运行。

(2)反应电力系统的不正常工作状态,一般发生报警信号。提醒值班人员进行处理,无人值班情况下,继电保护装置可视设备承受能力作用于减负荷或延时跳闸。

对继电保护的基本要求是:

(1)动作的选择性:当出现故障时。继电保护动作时应该首先将故障的设备切除,让出现拒动的现象时,才允许相邻设备保护、线路保护等动作。电网之间的继电保护要遵循逐级配合的原则,保证当继电保护装置切断系统中的故障部分后,其他非故障的设备仍然可以可靠的进行供电;

(2)动作的速动性:指的是继电保护装置在允许时间内以最快的速度切除故障元件,针对短路故障时尤其重要。从而缩小故障导致的范围,降低设备和线路的损坏情况,提高自动投切设备的效果;

(3)动作的灵敏性:指的是继电保护装置在保护范围内,保护装置应该具备的灵敏系数,即应当故障时的能力,。

(4)动作的可靠性:可靠性是对对电力系统继电保护的基本要求。任何电力设备都不允许在没有继电保护的状态下运行,同时继电保护在保护范围内需要动作时应可靠动作,不应该动作时应可靠的不动作。

2 电力系统继电保护的现状

我国继电保护起步于50年代,此时的技术人员主要是对国外先进的继电保护技术进行引进和吸收,从而来培养自己的专业队伍。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代。从60年代中到80年代中的晶体管式继电保护蓬勃发展的时代,到了80年代末期时集成电路保护已形成完整系列,形成了90年代中期的集成电路式继电保护时代。

随着社会现代化步伐的加快,发电机组的容量不断增大,各种大型的设备和人民的生活对电力系统的需求越来越大。不同原理、不同机型的微机线路和主设备保护为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。现在的继电保护处于微机式继电保护时代。目前,我国建设的变电站等电力设施都已经实现了综合自动化,无人值守的变电站已经得到了广泛的应用。

3 电力系统继电保护的发展趋势

3.1 网络化 现在,继电保护的目的不只是要切除故障设备和降低故障的影响区域,更主要的是确保整个系统的安全可靠的运行。这就需要每个保护单元都能共享整个系统的运行和故障信息, 每个保护单元与重合闸装置在分析系统数据的基础上可以进行有效的协调。这样,继电保护装置对故障性质、故障位置的判断和故障距离的检测会更加的准确。实现这种系统保护的条件就是对信息的有效传输,这就要求用计算机网络将各主要电气设备的保护装置进行连接。因此,计算机网络作为信息和数据通信工具已成为继电保护未来发展的一个重点。

3.2 智能化 近年来,人工智能技术如神经网络、遗传算法、模糊控制等在在继电保护领域应用的研究已经起步。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。

随着各种技术和智能软件的不断完善。可以预见人工智能技术在继电保护领域一定会得到广泛的应用,以解决对电力系统更高的需要。将智能技术和故障诊断技术进行结合在一起,分析和处理不确定因素对电力系统的影响,是今后电力系统继电保护的新的发展空间。 3.3 综合自动化 微机继电保护装置可以在线获取电力系统的运行和故障信息和数据,并将得到的信息传输到监控中心进行显示和分析,从而为工作人员提供实时的现场数据。继电保护系统在完成继电保护功能的同时,还完成了保护、控制、测量、数据通信等方面的综合自动化。 综合自动化系统的发展打破了常规保护装置不能与监控中心进行实时监控的不足,给电力系统自动化赋予了更新的含义和内容,代表了电力系统自动化技术发展的一种潮流。

4 总结 随着我国电力系统的不断完善和发展,计算机技术、网络技术、通信技术和微电子技术等方面的进步,继电保护技术有着新的发展机遇。其发展内容将突破原有的原理和应用范围,由数字时代跨入信息化时代,发展到微机智能综合自动化水平。这同时对我们的工作来说也是巨大的挑战,一定要把握机会,为我国继电保护的发展开阔更广泛的空间。

参考文献:

[1]王维俭著.电力系统继电保护基本原理[M].清华大学出版社, 1991.

[2]刘岳松. 电力系统继电保护的现状与发展趋势[J]. 黑龙江科技信息. 2008(07).

[3]宁磊,陈涛. 电力继电保护现状及展望[J]. 科技信息. 2010(20).

篇4

关键词:电力微机系统发展研究

继电保护技术是随着电力系统的发展而发展的,电力系统对运行安全性与可靠性的要求不断提高促进了继电保护技术的不断进步与创新,两者密切相关。熔断器就是最初出现的简单过电流保护,时至今日仍广泛应用于低压线路和用电设备。由于电力系统的发展,继电保护装置已成为电力系统的重要组成部分,它在保证系统安全、稳定和经济运行等方面起着非常重要的作用。由于电力系统的发展,用电设备的功率、发电机的容量不断增大,结线不断复杂化,电力系统中正常工作电流和短路电流都不断增大,熔断器已不能满足选择性和快速性的要求,出现了作用于专门的断流装置的过电流继电器。

本世纪初可认为是继电保护技术发展的开端,第一代机电型感应式过流继电器(1901年)在电力系统应用以来,继电保护已经经历了一个世纪的发展。在最初的二十多年里差动保护(1908年)、电流方向保护(1910年)、距离保护(1923年)、高频保护(1927年),这些保护原理都是通过测量故障发生后的稳态工频量来检测故障的。尽管以后的研究工作不断发展和完善,其基本原理并没有变,继电保护装置是保证电力系统安全运行的重要设备。满足电力系统安全运行的要求是继电保护发展的基本动力。快速性、灵敏性、选择性和可靠性是对继电保护的四项基本要求,为达到这个目标,继电保护专业技术人员借助各种先进科学技术手段,继电保护装置经历了机电式、整流式、晶体管式、集成电路式、微处理机式等不同的发展阶段。

1967年澳大利亚新南威尔士大学的L.EM0rriosn预测了输电线路计算机控制的前景。1969年美国西屋公司与GE公司合作研制成功一套输电线路的计算机保护装置。这是世界上第一套比较完整的用于现场的计算机保护装置,它具备了计算机保护的基本组成部分。在整个70年代,专家学者围绕算法理论作了大量的工作,为计算机继电保护的发展奠定了基础,出现了单片微型计算机,微处理器和单片机的出现使计算机应用电力系统继电保护更加成为现实。1979年,国际电子电气工程师学会教育委员会织了一次世界性的计算机继电保护研修班,对20世纪70年代以来的计算机保护研究成果进行了总结和交流。通过80年代的努力,计算机保护的算法己比较完善和成熟,到20世纪80年代中期计算机保护在电力系统中获了广泛的应用。

我国的继电保护技术是在吸收消化进而掌握了国外先进技术的基础之上形成的,并在此基础上建立了我国自己的继电器制造业。集成电路保护在80年代末逐渐取代晶体管技术,并形成完整系列,到90年代初集成电路保护一直处于市场的主导地位,直到微机继电保护技术的出现。1984年我国第一套微机距离保护样机在试运行后通过鉴定并批量生产,4月,华北电力大学研究的以MC6809CP构成的MDP一1型微机线路保护装置在河北马头电厂投入运行,这是我国研究成功第一套微机线路保护装置。1990年第二代微机线路保护装置正式投入运行。目前,高压线路、低压网络、各种主电气设备都有相应的微机保护装置在系统中运行,特别是线路保护已形成系列产品,并得到广泛应用。我国在2000年220kV及以上系统的微机保护率为43.99%,线路微机保护占86%,到2003年底,220kV以上系统的微机保护已占到70.29%,线路的微机化率达到97.6%。实际运行中,微机保护的正确动作率要明显高于其他保护,一般比平均正常动作率高0.2~0.3个百分点。国产微机保护经过多年的实际运行,依靠先进的原理和技术及良好的工艺已全面超越进口保护。从80年代220KV及以上电压等级的电力系统全部采用进口保护,到现在220KV系统继电保护基本国产化,反映了继电保护技术在国产继电保护设备的明显优势。

微机继电保护技术的成熟与发展,具备自检功能,逻辑处理能力、数值计算能力和记忆能力,数字通信能力,这一切都是电磁继电器、晶体管继电器所难以匹敌的。计算机技术的进步,更高性能、更高精度的数字器件的采用,一直是微机继电保护不断发展的强大动力,微机保护的发展从硬件上看大体可分为三个阶段:

①以单CPU的8位微处理器构成的微机保护装置。

②以多个8位单片机组成的多微机系统。

③以16位单片机组成的多微机系统。

由于我国继电保护工作者的努力, 2001年我国220kV以上电网的继电保护动作的正确动率达到了99.13%,元件保护的正确动作率达到了90.3%。微机继电保护的主要特点是充分利用了计算机技术上的两个优势:高速的运算能力和完备的存贮记忆能力,以及采用大规模集成电路和成熟的数据采集,改善和提高继电保护的动作特征和性能,正确动作率高。可以方便地扩充其他辅助功能。如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。工艺结构条件优越。体现在硬件比较通用,制造容易统一标准;装置体积小,减少了盘位数量;功耗低。体现在数字元件的特性不易受温度变化、电源波动、使用年限的影响,不易受元件更换的影响;且自检和巡检能力强,可用软件方法检测主要元件、部件的工况以及功能软件本身。使用灵活方便,人机界面越来越友好,同时还可以进行远方监控。

微机保护经过近20年的应用、研究和发展,已经在电力系统中取得了巨大的成功,其未来趋势向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

(1)微机继电保护的计算机化

计算机硬件技术的飞速发展,使得微机继电保护的硬件技术不断发展更新。从其发展阶段来说,已从8位的单CPU发展到了多CPU及至总线不出模块的大模块结构(原华北电力学院研制),还有就是以工控机为核心的32位微机保护(华中理工大学研制)。

微机继电保护计算机化主要是指系统除基本的保护功能外,还可以提供大容量故障信息及数据信息长期保存的功能,除此之外,为了应对电力系统要求的不断提高,还具有强大的通信能力以及与其它保护、控制装置兼容以共享数据信息的联网功能,实际上已经具备了一台微型计算机的所有功能。用成套工控机做成继电保护装置,其功能、速度、存储容量足以应对电力系统日益提高的功能要求,这将是微机保护的发展方向之一。

(2)微机继电保护的网络化

计算机网络作为数据传输及信息传递的有效途径已经深刻的影响到了社会的方方面面,在工业领域亦然,其强有力的通信手段为实现系统保护提供了一种可行的技术方案。通过计算机网络技术来实现电力系统各单元微机保护装置的网络化,将会使得继电保护的作用不止局限于切除故障元件,缩小事故影响范围,还将能够保证全系统的安全稳定运行,系统各单元的保护装置都能够共享全系统的运行和故障数据,可大大提高系统的保护性能和可靠性,这是微机继电保护发展的必然趋势。

篇5

关键词 智能电网;特点;继电保护;影响因素

Abstract:With the continuous economic and social development, the complexity of the network also increases, and also accompanied by the power system voltage level rise, which is the power system needs a new challenge. The modern smart grid in keeping with the original made ​​more on the basis of reliability, and flexibility of the protection system. This paper analyzes the national grid smart grid company characteristics and main features, and further pointed out that the development of smart grid significant impact on the protection.

Key words: smart grid; characteristics; relay; influencing factors

中图分类号:TM773文献标识码:A

作为世界上的电力系统的发展改革新动向,智能电网被各个国家追认为二十一世纪的重大的电力系统的科技创新以及其未来的发展趋势。智能电网从刚兴起时的模糊概念,到现在的具体应用实施阶段,指导发展成为如今现代化信息时代下的电力系统的发展变革新动向。国家大力开展电网公司的智能化建设,不但使智能电网特征给予网络重构、微网运行和分布式的电源接入等高新技术,还在此基础之上建立了新的要求体制。现在,智能电网面临的最大困难就是在本地测量信息和少量的区域信息基础上所进行的常规保护和解决措施。智能电网以最大限度的改变方式进行电力系统的深化改革,运用电子式的互感器、测量新技术、交直流的灵活输电和技术的控制等广泛的应用,这对继电保护的发展有着重要的影响价值。

一.智能电网的概况分析

(一)智能电网中继电保护组成要素

智能电网中继电保护对于电力网络化,以及相应的设备监测和保护来说是一项重要的技术实现方式,面向计算机化、智能化、网络化和保护、测量以及控制数据等通信一体化的发展是现阶段继电保护的新发展趋势。智能电网分布式的发电和交互式的供电对于继电保护来说提出了高标准的要求,第一,信息技术以及现代化的通信技术立足于长远发展的目标,数字化的新技术发展给继电保护配置提供了更广泛的发展空间和条件。在智能电网的使用过程中,可以使用传感器,对输电配电、发电和供电等关键性的设备运行进行了实时的监控,利于系统管理。第二,对于收集到的数据信息通过智能化网络的系统进行统一的整合和分析。并且信息是可以运用到运行状况的监测方面,实现继电保护的功能以及保护定值远程的动态的监控与修正。除此之外,对于继电保护装置来说,其保护功能在保护信息的基础之上进行运行,与之关联的还有相关设备运行信息。因此,智能电网的继电保护装置的保护对象不是唯一的,而是根据变化的对象进行连跳命令,跳开其他的关联节点。

(二)继电保护发展的新动向

现在,我国正处于大规模的建设阶段,预计直到2020年会基本建成。电力系统中的继电保护,其根本性的研究就是对电力系统的故障排除、预防以及安全运行系统的异常操作研究,以便进行下一步的对策研究中的反事故的自动化监控措施,这是保障电网运行的基本安全技术。并且,现代化的智能电网在保持着原有的基础上提出了更具有可靠性,以及灵活性的继电保护系统,还会伴随着电力系统中电压等级的升高,这是电力系统需要面对的新挑战。不但如此,智能电网同时也在最大程度的改变电力系统的组织形态,这也会对智能电网中的继电保护的发展带来深远的影响。

二.智能电网的定义和特点

(一)智能电网的定义

智能电网,简单理解就是智能化的电网(也被称作“电网2.0”),它的建设基础是集成和高速的双向通信的网络上,通过现代化技术中的测量和传感,先进控制方法和设备,以及科学化的决策支持的技术应用系统,以此达到电网的高效、安全、可靠、经济、和谐环境和安全使用目标。

智能电网的概念到现在已经发展了三个里程碑。虽然各个国家的相关专家对智能电网的水平提高的等级达到了共识,但是由于智能电网的发展依然处于萌芽阶段,因此还没有明确定义可追寻。在智能电网的发展环境以及推动的影响因素的差异性上,各个国家电网企业和各个组织部门会根据特有的思路和思考方式理解智能电网。在进行智能电网的实践和研究方面,各个国家对智能电网的发展阶段的着重点也会有所不同,所以,智能电网的定义仍然处于更新发展的阶段。

(二)智能电网的特点

国家电网的相关公司在基本特征定义的基础之上,对智能电网的技术所体现出来的信息化、自动化、数字化和互动化。在技术关系上所体现出来的集约化、标准化,以及最重要的集团化等。信息化是智能电网基础的坚强后盾,实现了实时和非实时的信息之间的高度集成化,资源的共享和利用;数字化对于智能电网的实现形式起到了坚实作用,定量定向的对电网的结构、特性和状态等进行描述,实现电网信息采集和运输过程中的高效性和精确性;智能电网的自动化对于坚强电网来说,是一项重要的实现手段,主要通过现代化的自动控制策略,来完成智能电网在运行控制中的自动化的水平等级,对于全面提高公司的管理水平具有重要的地位;智能电网的互动化是指在满足电网的内在要求下,实现电网、电源和用户三者之间的互动和协调关系。概括智能电网的基本内涵就是:坚强可靠性高、经济高效智能化、环保清洁、友好互动,以及透明开放。

三.智能电网对继电保护的重要影响

继电保护是电力系统的中的重要性的安全稳定的防线,并且是第一道安全防线,按照传统的电网设计以及配置是不能适应智能电网的。继电保护的影响条件就是智能电网所表现的技术特点,并且其对继电保护的应用具有深远的意义。

(一)智能电网的数字化

智能电网有一个重要性的特征是数字化,相对于继电保护来说:第一,数字化表现在测量手段;第二,在信息传输方面表现的数字化。伴随着国家大力建设智能电网的建设和智能化的仪器和设备的应用推广,传统形式的互感器将会逐渐的走出现代化技术的视线。电子式的互感器是采用网络技术中的接口,通过智能网络的保护装置与智能化的断路器之间的连接,简化了二次回路接线的复杂程度,同时也方便于维护工作的开展。

(二)智能电网的网络化

对于继电保护而言,智能网络化的数字化的变电站网络的重大变革主要包含两个方面:第一,信息的获取。继电保护主要保护功能就是自行管理,但是网络的数据传输特点是共享性,在全站的相关设备元件信息的方面有很大的突破性,即电气量信息。第二,信息的发送。智能化的断路器是应用数字接口进行的,其中,跳合闸等设备所控制的信号传输方式有二次电缆更改为数字信号的网络化传输。

(三)智能电网的广域化

近几十年来,我国的电网信息化的发展进程在不断的推进,专用化的几点保护信息现在也初步建成了,这会成为智能电网的重要控制环节。继电保护的服务环节中虽然几点保护信息和WAMS网络影响作用力较小,但是二者所提供的广泛的信息来说,提高了后备保护性能指标,安全自动装置的提高上有很高的价值研究。

(四)电网输电的灵活性

输电效率的智能化改变使智能电网的特点之一,输电的灵活性是智能电网的有效控制手段。智能电网也会采用大量的装置进行交流灵活的输电技术,例如:可控串联补偿装置、电能质量控制装置、统一潮流控制器、STATCOM和静止无功补偿装置等。除此之外,我国输电电网所进行的直流和交流相结合的输电特征也导致电网的非线性的可控电力原件的数量也会大大的增多。

四.继电保护的其他相关问题

随着现代化技术的应用和发展,电子和信息技术也得到了更大的发展空间,因此,继电保护装置的可靠性和功能性也逐渐完善,并且系统的操作方式也比较简答方便,符合当代技术的人性化原则。我国的继电保护已经在技术原理上满足了电网运行的基本要求。

根据智能电网发展以及规划,改变了电网中电能传输某些方面的特点,数字化与信息化导致了智能电网和传统的电力系统之间的差距,所以,从根本上讲应该从继电保护相关工作入手,使其适应当代技术的发展现状。

(一)影响继电保护配置形态

智能电网的网络化会在发展阶段不断的改变继电保护配置形态,在数字化的电站基础上,其改变传统形式的继电保护的信息获取以及信息发送媒介,并且运用现代化网络的资源共享性,汲取站内的相关电器元件信息,在性能方面有了很大的提高,共享控制信号网络对继电保护配置进行了简化,这是智能电网的继电保护的下一研究阶段的问题。

(二)数字化对继电保护性能的影响

提高互感器的传输性能,以及减少互感器发生的故障频率,对于继电保护配置来说可以取消电流互感器的饱和与二次回路的相关问题的因素影响。电气量的信息传输,其真实性对于继电保护装置的性能提高基于了可行性实施的条件。在简化智能电网中继电保护的附加功能,是可以利用现代化的数字手段,即传感器进行继电保护整体性能的提高,这也是继电保护在未来几十年里需要面临的研究问题的核心价值。

(三)影响安全自动的装置性能的提升

智能电网对我国的电力系统的防御与经济紧急的控制提供广域的信息量,利用现在已经形成的网络,提高时间控制的敏感性很弱的保护装备与安全自动装置性能,在现在成熟的保护安全的自动装置原则基础上,进行几点保护的系统的诊断分析,避免突然性的停电导致的安全事故的发生。

(四)继电保护的新原理和新技术发展

新型的自然能源的使用具有环保等特点,但是电网的接入安全问题也逐渐的被提到日程当中,调度方式也会随着智能电网发展的速度加快,以及其灵活性的提高而进行传输方式与潮流发展趋向的调整。主要讲电力电子控制作为载体的智能电网的灵活控制将会对传统的电网故障特征进行跟踪,并研究出来使用智能电网的灵活控制中的继电保护的新原理和新技术演变成了智能电网的继电保护的研究中的关键性的问题。

(五)在线方式的整定技术

继电保护的思想已经广泛的应用于智能网络发展中,在传统的自适应保护的限定条件很多,又只能根据被保护的线路运行情况进行定值的自主性的调整。智能电网的未来发展展望会改变继电保护的这种复杂性,实现统一的在线方式的整定技术。

结束语:

建设智能电网是现代化的电力系统中非常重要的技术变革,同时也是未来电网发展的最新趋向。现在,建设智能电网工作已经开展,建设发展中的新技术与新设备的实际应用会给继电保护这个领域基于新的革命性突破和质的变化。推进现代化的智能电网,对于相关研究的不断深入,继电保护这个重要专业也会随着社会的发展而面向智能化电网方向迈进,阶段性的推动智能电网的建设,为智能电网的基础建设提高可靠的、安全的、便捷的技术支持。

参考文献:

[1]邵宝珠;王优胤;宋丹.智能网对继电保护发展的影响[J].东北电力技术.2010(02-20).

[2]胡磊.浅析智能网对继电保护的影响[J].无线互联科技.2011(04-15).

篇6

关键词:智能变电站;继电保护;方法分析

一、智能变电站中的继电保护

电网系统中,智能变电站继电保护配置主要分为智能变电站过程层继电保护与变电站层继电保护。首先,在电网系统中,智能变电站过程层继电保护配置主要是根据智能变电站过程层的一次设备情况,独立对于一次设备进行主保护的配置。在根据智能变电站过程层一次设备情况进行继电保护配置时,对于智能变电站过程层一次设备主保护的配置需要分为两种。一是在进行电网系统中,智能变电站过程层一次设备本身就是智能化设备的保护配置时,变电站的一次设备保护装置安装在变电站智能设备的内部;二是如果变电站的一次设备是老设备改造的,对于这样的变电站一次设备的主保护配置应该将保护设施以及合并器、测控等功能设备在一次设备附近进行就近安装,以保证智能变电站设备运行与维护工作便利。在电网智能变电站中,过程层继电保护配置中的电网信息的采集与传输,整个智能变电站系统中都是通过以太网实现。

二、智能站继电保护技术发展研究

目前智能变电站继电保护信息的集成和共享给继电保护调试、检修工作带来了诸多的困难和不确定性,其调试检修工作量也完全不亚于常规变电站。如智能站调试除了常规的保护功能测试外,增加诸多延时和同步性能的测试、软压板功能测试、检修机制测试、丢帧断链测试、光衰耗和光功率测试和网络测试等,且目前很多功能没有较好的测试手段或者无法测试,如网络风暴、交换机性能、涉多间隔保护装置数据同步测试。对全站系统配置的验证,需要SCD配置文件离线审查和现场调试相结合,很可能因某一参数设置没审查到或某一细微项目没调试到位而导致保护装置误动或拒动,另可能因人为原因导致最终保存的SCD配置文件与现场装置实际配置不一致,给后期检修、改扩建带来隐患。因此未来智能变电站继电保护技术应重点研究全站配置在线/离线反校验和更好的调试验证技术、方法。

全站配置在线反校验是利用镜像技术将继电保护系统设备及相关辅助设备实例配置信息镜像备份,经网络独立传输至集中分析系统,由集中分析系统进行反组态形成SCD配置文件,再与最终保存的SCD文件进行对比分析,检测实际运行的配置信息与最终确认的配置是否一致,一方面防止人为因素导致配置不一致发生,一方面可检测设备配置是否遭遇外界破坏或网络冲击而修改。离线反校验是通过工具将各设备配置镜像备份,离线进行反组态和比对分析,缺点是无法及时发现配置文件的任何变动。

三、提高智能变电站继电保护可靠性的措施

(一)在变压器继电保护配置方面的措施

在电力系统中,配电线路的电压是额定的,即便是电压过高和电压过低,均会给配电系统的运行带来影响。而智能变电站调控电压的状柱主要是变压器,所以是促进配电保护的主要装置。因而在通过变压器开展配电保护时,应采取分步的方式进行配置,从而确保变压器能有效的实现差动继电保护,而在变压器后备保护过程中,主要是采取集中的方式进行配置,同时还能利用独立安装技术对非电量实施继电保护,也就是在电缆与断路器接通之后达到继电保护的目的,从而促进其可靠性的提升。

(二)利用电压限定延时对电流量进行测量

当智能变电站的电力系统处于高效的运行状态时,在电流因素的影响下,经常会发生外部短路故障,进而导致过负荷电流的问题出现,从而形成过负荷电流,即便是电流量处于正常情况,其电流量也不会存在较大的差异,这就会在变电站的系统发生外部故障而出现跳闸的情况,最终影响继电保护的可靠性。为了确保其可靠性得到有效的提升,对变电站所有线路中的电流量,采取电压限定延时的方式进行,这样即便是在出现过负荷电流的情况下,能及时的发出警报,下达执行保护的命令,最大化的确保继电保护的可靠性得到提升。

(三)线路保护设置

为了提高智能变电站的测控和保护水平,实现操作控制和站内保护功能的一体化,对智能变电站利用间隔保护配置方式进行各个单套配置,在很多智能保护线路中,多是通过断路器直接阶段或者数据信息采样等方式来实现保护功能,通过GOOSE网络,导致断路器失灵,发挥重合闸保护功能,在智能变电站控制电路中,不同线路控制装置和间隔保护测量通过GOOSE网络实现信息交换,还可通过点对点连接来控制智能终端设备,实现单元合并、信息传输等功能,完成直接跳闸和数据采样,不用通过GOOSE网络实现智能变电站断路保护。同时,智能变电站母线和主干电路中电子式互感器可以通过相关电压信号,连接各个合并单元以后,通过数据打包形式来处理智能变电站数据,被保护测控装置和SV网络通过通信光纤来传输信号,并且通过GOOSE网络来传输测控装置接入间隔信息。

(四)母联保护

智能变电站的母联分段保护设置和线路保护设置有很多相似之处,在设置分段保护装置时,将智能变电站终端设备和合并单元连接起来,不利用相关网络数据进行保护跳闸和直接采样,这样可实现智能变电站的母联保护跳闸。同时,结合智能变电站的运行特点和设计要求,智能变电站的分段保护必须采用单套配置方式,从而实现对智能变电站的准确测控和安全保护。当前,智能变电站的分段保护跳闸主要采用点对点直接跳闸方式,利用GOOSE网络对各个保护分段实现母联保护。

总之,智能变电站是我国变电站系统未来发展的重要趋势,和传统变电站相比,其内部结构形式更加复杂,电力设备更加多样化,因此必须高度重视继电保护配置,结合智能变电站的实际运行特点,优化和改进继电保护配置方法,加强继电保护配置管理和控制,提高智能变电站的安全性、可靠性和稳定性。

参考文献:

[1]李宝伟,倪传坤,李宝潭.新一代智能变电站继电保护故障可视化分析方案[J].电力系统自动化,2014,05:73-77.

[2]王同文,谢民,孙月琴,沈鹏.智能变电站继电保护系统可靠性分析[J].电力系统保护与控制,2015,06:58-66.

篇7

关键词:电力系统 继电保护 发展现状

中图分类号:TM63 文献标识码:A 文章编号:1672-3791(2013)01(c)-0120-01

继电保护作为电力系统中的重要组成部分,其核心作用在于被保护的电力系统元件出现故障时,该元件的继电保护装置能够第一时间给最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,将电力元件自身的损坏程度降到最低,以此来减小电力系统安全供电的影响,满足电力系统稳定运行的要求。由此可见,完善继电保护装置的性能,是提高电力系统安全运行的关键所在,在分析继电保护技术发展现状这一问题上,本文从以下几个方面出发进行分析。

1 继电保护的作用

结合当前国民生产的实际趋势,对电力资源的需求量越来越大,电力供应紧张导致多地出现供电危机,部分地区在缓解这一现象时,多数选择停电、限电措施。鉴于此,维护电力系统安全就显得格外重要。作为电力系统安全维护方式中的一种,继电保护能够在电力系统出现故障时,第一时间将出现故障的设备进行自动切除,并及时的发出警报信息,维护人员在接到警报信息后及时的对故障设备进行修复,将电力损失降到最低。

在实现电力系统继电保护的过程中,其基本条件在于继电保护装置,要想从根本上提高继电保护的安全性,其保护装置除了具备科学先进、行之有效的特点外,还应具备一定的灵敏性,一般来讲,针对继电保护装置的特点,主要体现在以下几个方面:首先,灵敏性。电力系统在运行中,一旦出现故障,轻则浪费大量的电力资源,重则引起严重的安全事故。保护装置只有具备高度的灵敏性,才能在设备出现故障时,第一时间切断电源,将报警信息传递给相关部门的维修人员,使其及时的采取措施进行维修。其次,可靠性。继电保护装置在日常运行中,不会发生拒动或误动等不正常现象,尤其在继电器回路接点与接线上,应确保其简练有效。最后,选择性。针对出现故障的电力系统,多数继电保护装置会结合着故障的大小有选择的进行切除,以此来确保系统其他正常部分的安全运行。

2 继电保护技术的现状

继电保护技术在我国的应用,具体可以分为以下三个阶段:20世纪70年代开始研究集成电路保护技术;80年代末集成电路保护基本上已经形成了完整系列,并逐渐取代了晶体管保护;而到了90年代,我国的继电保护技术进入了微机保护时代。至此,我国继电保护学科、技术、继电器的制造以及科技人才的队伍,才逐渐在吸取国外先进技术的基础上,形成了一只具备深厚理论功底和丰富运行经验的继电保护技术人才;在长时间的探索、研究中,形成了具备一定规模的继电保护装置研究体系,为我国继电保护技术的应用发展做了铺垫。

在21世纪网络技术迅速发展的实践,计算机控制技术在电力系统继电保护中的应用,大大提高了继电保护装置的使用性能,但同时也对继电保护技术提出了新的要求。针对原理、机型不同的微机线路及设备,都需要与之相符、性能优良的继电保护装置。只有这样才能发挥出继电保护装置的使用性能,为电力系统的安全运行提供可靠保证。

3 继电保护技术的发展

网络技术的普及应用,推动信息化社会发展及改变人们生产活动的同时,也进一步推动了微机继电保护技术的发展,使其在原有的基础上更加网络化、智能化,针对继电保护技术的发展,本文从以下几个方面进行分析。

3.1 计算机化

结合当前我国计算机的发展趋势,其硬件设备及软件设施也在原有的基础上取得了突破性进步。微处理机中的单片化及相关功能都在原有的基础上大大增强,其片内硬件资源也得到了相应的扩充,而单片机与DSP芯片的融合,大大提高了系统的整体运算能力及网络通信芯片的应用能力。这些技术在继电保护装置上的应用,提高了继电保护设备的可靠性与灵敏性,在提高设备信息化的同时,还推动了继电保护装置的计算机化。一般来讲,随着电力系统的迅速发展,在很大程度上提高了对微机保护的要求,微机系统除了具备基本的保护功能外,还应具备大容量的数据存放空间,确保故障信息及相关数据能够顺利储存、翻阅;与此同时,微机系统的数据处理功能、通信功能,都关系着整个保护装置的运行状况,这些都需要设计人员结合着电力系统的实际状况,有针对性的进行设计,确保电力系统的安全运行。

3.2 网络化

面对当前信息社会的发展趋势不难看出,计算机网络已成为这一时代的主要潮流,在影响各个领域发展的同时,还给各个工业领域提供了强有力的通信手段。继电保护网络化,能够凭借网络的优势,将故障部件信息及时的传递给电力系统的总控制台,技术人员在接到报警信息后,第一时间对故障部件进行处理。与此同时,继电保护技术的网络化,除了传递、接收信息快之外,还能形成一定的网络交流平台,方便不同地区的电力部门进行沟通、交流。

3.3 智能化

随着计算机网络技术在电力系统继电保护领域中的应用,各种控制原理及方法应运而生,在提高计算机继电保护性能的同时,还大大改善了继电保护装置。近年来,在技术人员的研究、探索下,各种各样的人工智能技术被应用到电力系统的继电保护中,如人工神经网络、小波理论等等,在提高继电保护研究层次的同时,进一步提高了继电保护技术的智能化,从而为继电保护技术的指明了发展方向。

4 结语

综上所述,随着我国用电量的逐渐增大,电力资源的安全运行已经成为相关部门急需完善的问题之一。继电保护技术是确保电力系统安全、稳定运行的核心因素,在整个电力系统中有着极其重要的作用。这就要求相关技术人员能够结合着我国电力系统的实际发展状况,完善继电保护技术,为我国国民经济的发展奠定坚实的基础。

参考文献

[1] 韩殿龙,程志武,周晓东.电力系统继电保护技术的发展方向[J].中国新技术新产品,2010(3).

[2] 马顺绪.浅谈电力系统继电保护技术的发展趋势[J].科技经济市场,2010(4).

[3] 孙爱军.论电力系统继电保护技术的现状与发展[J].现代商贸工业,2010(9).

篇8

关键词 电力系统;继电保护;发展现状

中图分类号TM6 文献标识码A 文章编号 1674-6708(2013)84-0065-02

1 我国继电保护技术的发展历程

自建国以来,我国的继电保护技术借着电力行业不断发展的东风,也得到了很大程度上的发展。在新时代电子技术、计算机技术在各行各业的广泛运用。继电保护技术在最近的40余年里的发展可以总结为四步。

第一步,传统继电保护技术的起步时代。在50年代的以前,我国的电力系统中继电保护技术基本上属于真空阶段。在50年代的期间,我国技术人员以国外先进的设备和技术为学习内容,建成了一支不仅有着深厚理论知识并且有这丰富运行经验的继电保护的技术队伍。随后,还引进国外的继电器的制造技术,并且结合国内实际情况,建设出了我国自主的继电器制造业。

第二步,晶体管继电保护技术时代。在60到80年代之间,晶体管被继电保护技术中广泛的采用。其间,天津大学和南京电力自动化设备厂开展合作,研究出了500kV晶体管方向高频保护,同时南京电力自动化研究院也研制出了晶体管高频闭锁距离保护。两大成果成功的运用于葛洲坝500kV的线路上。从此我国在500kV线路保护上突破了完全依赖进口的局面。

第三步,集成电路继电保护技术时代。70年代,集成运算放大器的集成电路运用于继电保护技术的研究课题已经开展。到80年代末,集成电路保护技术已经形成了一个完整的系列。晶体管保护技术都逐步的取代。到90年代初期。集成电路保护技术无论是在研究还是生产与运用上,都牢牢的占据了主要地位。

第四步,计算机继电保护技术时代。1984年华北电力学院研制出的了输电线路的微机保护装置第一个通过鉴定,并且成功的运用于电力系统中。从此我国的继电保护技术又迈进了一个新的阶段。微机保护从此进入了业内人士的视野。到90年代的时候。我国的继电保护技术就开始进入到微机保护的时代。丰富多样的微机线路和主设备保护为电力系统提供了新的一批性能优良、功能齐全的可靠机电保护装置、

2 我国现阶段微机保护技术的优点介绍

我国继电保护技术在最近半个多世纪得到了很大的发展,由学习国外的传统技术到现在所使用的微机保护技术可以说是一个巨大的历史跨越。无数的人为继电保护技术的发展呕心沥血,付出都是值得的,我国现阶段所使用的微机保护技术相对于传统继电保护技术以及晶体管和集成电路继电保护技术来说,在各方面的性能都是有着成倍的提升的。

继电保护的动作特征级性能得到了很大的改善和提高,正确动作率高。这个优势主要体现在微机保护技术能够得到常规保护不易获得的特性。因为微机保护有很强的记忆力。所以就能更好的实现故障的分量保护。同时微机保护还可引进自动控制、新的教学理论和技术,运行正确率也很高。

其它的辅助功能能够更加方便扩充进来。比如可以方便的将低频减载、故障录波、自动重合闸以及故障测距等功能附加上来。

工艺结构条件优越。当今社会电脑被广泛的运用,所以硬件相对来说也就比较通用。而且制造非常容易来实现标准的统一。并且装置的体积比较小,盘位数量得到了减少,耗能比较低。

可靠性容易提高。这个优势主要表现在数字元件的特性上,数字原件不易受到温度变化、电源波动以及使用年限等因素的影响。元件更换也不易影响到它。并且数字原件的自检和巡检能力很强,可以通过软件方法来实现主要元件、部件的工况和功能软件本身的检测。

使用灵活方便。能够方便能维护调试,缩短维修时间,还可以根据运行经验通过软件方法在现场就实现改变特性、结构的操作。

能够进行远方监控。微机装置相比其他装置而言,具有串行通信的功能。通过与变电所微机的监控系统的通信联络来实现微机保护的远方监控。

3 我国继电保护的发展展望

通过社会网络技术的发展,我国继电保护很可能在未来几年内走上网络保护的阶段。首先网络保护在理论上是可行的,它是将计算机技术、通信技术以及网络技术和微机保护相结合而诞生的一种新兴的继电保护的技术手段,也可以将之理解为微机保护的强力升级版。

网络保护必然是通过计算机网络来实现其各项保护的功能。比如谁变压器保护和母线保护。网络保护最大的优势就在于数据的共享,这样就可以实现本来由高频保护、光纤保护才能实现的众联保护。电力系统网络型的电力保护作为一种新型的继电保护类型,是继电保护继微机保护技术发展的必然趋势。

计算机技术的发展以及计算机在电力系统中的运用,继电保护也必将采用计算机技术。这些年来,人工智能技术在各个领域中都得到了广泛的运用,在电力系统的各个部分也得到了应用。继电保护技术在现在微机保护的基础上在慢慢的往网络保护上开始研究,网络保护也必将带来智能化在继电保护上的运用,从而继电保护会不断的向更高的层次不断发展。可以大胆的猜测一下,继电保护在现今微机保护的发展上,迎来的会是网络保护,在网络保护全面应用之后就会向智能保护来发展。

4 结论

我国继电保护这半个多世纪的发展,技术的更新是值得我们骄傲的。继电保护技术从最原始技术到现在的微机保护,并且我们也为下一步网络保护的发展提供了一个展望的平台,但是这些成就并不代表着继电保护技术的发展已经值得我们满足了。在21世纪高科技的快速发展上,特别是计算机技术和网络技术的黄金时间。这些科技也必将带动继电保护技术的快速发展,继电保护的发展在21世纪也将是一个必然的结果,这就对技术工作人员提出了更高的挑战。

参考文献

[1]王梅义.高压电网继电保护运行技术[M].北京电力工业出版社,1981.

[2]杨奇逊.微型机继电保护基础[M].北京水里电力出版社,1988.

篇9

关键词:电力系统;继电保护技术;措施;发展趋势

中图分类号: TM77 文献标识码:A 文章编号:

引言

近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术问题。

1.继电保护发展现状

上世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建立了继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。60到80年代,晶体管继电保护技术蓬勃发展。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面某电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,从90年代开始我国继电保护技术已进入了微机保护的时代。目前,继电保护技术发展迅速,正向计算机化、网络化方向发展,实现保护、控制、测量、数据通信—体化和智能化。

2.线路的继电保护技术

电压等级高的输电线路一般按双侧具有电源考虑,所接电网为大电流接地系统,断路器一般采用分相操作,通常采用综合重合闸方式。故障的形式包括:三相故障、两相故障、两相接地故障、单相接地故障共有不同相别的十种故障类型,同时要考虑非全相运行的问题、同杆并架双回线的跨线故障问题等。高电压等级输电线路在电力系统中占据着十分重要的地位,对其继电保护有较高的要求,微机保护后,线路保护一般均设计为成套保护,即一套保护完成所有的主保护和原理上的后备保护功能,为了实现设备上的后备,通常采用双重化配置或多重化配置。

2.1输电线路的距离保护

距离保护是通过反映故障点到保护安装处的距离而动作的继电保护装置,通常应用于110kV及以上电压等级的输电线路,其原理也可以应用于35kV及以下电压等级的配电线路。构成距离保护的核心就是测量故障点到保护安装处的距离,并与一个事先整定的距离相比较,测量距离小于整定距离时保护动作。测量故障距离的方法包括阻抗法、行波法和雷达法,其中应用最多的是阻抗法。

2.2输电线路的纵联电流差动保护

基于基尔霍夫电流定律的纵联电流差动保护,是到目前为止最为完善的继电保护原理,在发电机、变压器、母线、电抗器、大容量电动机和输配电线路等电气设备中都得到了应用。其基本工作原理如下:

正常及外部故障时即流入差动继电器KD中点电流为0,继电器不会动作。被保护设备发生故障时(区内故障时)流入KD的电流为故障电流的二次值,KD动作。

可见,在理想情况下,根据KD中是否有电流,就能够区分出是否有内部故障,是否应将被保护设备从系统中切除。

3.继电保护安全运行的措施

3.1定值区问题。微机保护的一个优点是可以有多个定值区,这极大方便了电网运行方式变化情况下的定值更改问题。但是还必须注意的是定值区的错误对继电工作来说是一大忌,必须采用严格的管理和相应的技术手段来确保定值区的正确性。采取的措施是,在修改完定值后,必须打印定值单及定值区号,注意日期、变电站、修改人员及设备名称,并重点在继电保护工作记录中注明定值编号,避免定值区出错。

3.2做好继电保护装置检验。在继电保护装置检验过程中必须注意,将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区、改变二次回路接线等工作。电流回路升流和电压回路升压试验,也必须在其它试验项目完成后最后进行。

3.3一般性检查。不论何种保护,一般性检查都是非常重要的。首先清点连接件是否紧固焊接点是否虚焊机械特性等。其次是应该将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,还必须将各元件保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。

3.4工作记录和检查习惯。工作记录必须认真、详细,真实地反映工作的一些重要环节,这样的工作记录应该说是一份技术档案在日后的工作中是非常有用的。继电保护工作记录应在规程限定的内容以外,认真记录每一个工作细节、处理方法。工作完成后认真检查一遍所接触过的设备是一个良好的习惯,它往往会发现一些工作中的疏漏,对于每一位继电保护工作人员来说都应该养成这一良好的工作习惯。

3.5接地问题。继电保护工作中接地问题是非常突出的,大致分以下两点:首先,保护屏的各装置机箱屏障等的接地问题,必须接在屏内的铜排上,一般生产厂家已做得较好,只需认真检查。最重要的是,保护屏内的铜排是否能可靠地接入地网,应该用较大截面的铜鞭或导线可靠紧固在接地网上,并且用绝缘表测电阻是否符合规程要求。

4.电力系统继电保护技术的发展趋势

随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,出现了一些引人注目的新趋势。

4.1网络化。计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。

4.2计算机化。随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力。与其他保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力、高级语言编程等。

4.3一体化技术。一体化技术说到底,就是实现继电保护装置在数据处理上的一体进程,始终把单一的继电保护装置作为整个电网运行系统的一个终端设备,它可从网上获取电力系统运行和故障的任何信息和数掘,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。

4.4变电站综合自动化技术。现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护、故障录波、紧急控制装置和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。继电保护和综合自动化的紧密结合已成为可能,它表现在集成与资源共享、远控制与信息共享。

4.5智能化。由于人工智能的逻辑思维和快速处理能力,人工智能已成为在线状态评估的重要工具,越来越多地应用于电力系统的多个方面中,特别是继电保护方面,其在控制、管理及规划等领域中也发挥着重要作用。

4.6自适应控制技术。自适应继电保护的概念始于20世纪80年代,它可定义为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。

5.结束语

电力系统继电保护能够快速、有效的切除故障设备,保证保证非故障设备的安全运行,能够有选择性的发出故障报警信号,维护电力系统的畅通。电力系统的发展也对机电保护提出了更高的要求,继电保护装置容易出现故障,只有对继电保护装置定期检查并维护,及时发现故障并处理,保证电力系统正常运转,保证供电的可靠性。

参考文献:

[1]周培华.浅谈电力系统中继电保护的发展趋势[J].科技咨询导报2007

篇10

【关键词】继电保护;发展方向

引言

在现阶段,电力系统继电保护装置之中广泛采用微机保护方式,这种继电保护措施和常规继电保护相比具有许多优点。随着现阶段通信技术、计算机技术和信息技术的高速化发展,各种新的技术方式和技术流程成为继电保护装置探索和分析的重点,也成为继电保护研究的首要任务和重点模式。特别是在最近的IE61850为发展目标以及数字化变电站技术的高速发展,这种技术的应用更是日益广泛,为继电保护的发展和创新带来了深刻的变化,与目前现有的其他设备相比较而言系统的安全性的要求也不断扩大,内容也不断复杂。

1、继电保护产品技术发展新特点

1.1统一硬件平台

在目前的厂家生产过程中,对于生产的所有保护产品通常都是采用统一的硬件平台,在工作之中采用这种硬件平台作为独立式的保护方式是目前工作探究的重点,也是可以实现在不改变硬件的条件下,以配置文件可以改变类型的保护。目前有许多制造商使用统一的硬件平台,但也存在一些问题,如硬件无法完全替代,置换可能需要改变一些硬件,可以更换,但也因为参数配置太复杂,缺乏可操作性。是否能完全替代?这将大大减少维护工作量,降低工作难度。

1.2IE61850技术,

随着IEC 61850标准的与61850产品的发展,继电保护也会发生一些变化,如何在新的体系结构和技术实现继电保护功能,以保持可靠,稳定的继电保护工作需要考虑的问题。使用数字铂,电脑断层,会给我们带来什么改变的保护,保护方案应如何适应新的通信结构,保护信号交换符合要求的分布式的保护等问题,我们需要一一个澄清。也就是说,当继电保护界面的变化,在原来的基础上的原则,根据不同的界面设计方法的不同保护方案,以适应新的技术在继电保护用。

1.3广域保护

随着时代的发展同步技术,出现了广域测量系统(广域测量系统),也有相应的广域保护的概念。同时在工作研究的过程中一般都是以时间同步技术为核心内容进行深入研究和广域测量,将各种保护技术将逐步应用于系统的稳定性。时间同步能力测试已成为一个非常重要的内容,也是目前继电保护测试发展的主要方式和关键模式,对于未来的继电保护发展而言有着重要的指导意义。

1.4保护和自动化功能更紧密的联系

在目前的阶段,低电压输电线路保护是保护,控制集成,随着技术的发展和61850使用,保护和控制功能将更加紧密地结合在一起,逻辑可以区分,但在物理学中,在同一装置,使其他功能保护作用的影响将是一个需要研究的课题。

2、数字化继电保护应用特点

数字三的主要特征是“以智能设备为基础,通过结合网络技术,进而做到符合IEC 61850标准的数字化变电站信息”,即在全数字化,信息传输网络通信模式,实现了标准化,使各种设备和功能共享的统一的信息平台。这使数字化变电站系统的可靠性,经济,方便维修的问题比传统变电站有大幅度提升。是未来的发展方向。

结合数字保护装置和数字化变电站的测试应用,数字测试仪与传统仪器具有以下特点:

输入/输出设备发生变化。数字测试仪的输出值和输入数据报采样值和接收消息,传统的测试仪器的模拟和开关量输出连接中的变化。数字测试仪和被测设备连接到光纤的光纤以太网中,与被测设备的交互式数据,传统的测试仪器和被测设备连接介质硬布线硬件实现更为简单。与输入输出和连接介质的变化,数字测试仪的硬件实现也发生了根本变化,输出值可以完全由软件计算,不再需要数/回路,电源支持,开放到开放电路的简化,甚至取消。实现更复杂的。数字测试装置许多以前用硬件实现的功能可以有软件,软件可靠性改进处理复杂性的增加。数字测试仪与传统仪器,硬件的数量大大减少,从而减少了硬件成本减少错误的概率。由于硬件实现发生了根本的变化,测试成本大大降低空间。软件开发的成本虽然会上升,但软件可以复制,也降低了软件成本,并以测试的可靠性提高,维修成本会下降。

3、继电保护检测需要增加的内容

在原有继电保护测试项目的基础上,根据继电保护装置发展的新特点,需要增加如下方面的测试内容。

3.1基于61850技术的继电保护产品检测

随着61850技术的开发和应用,原有的一些测试项目将不提供这些产品,如下:装置测量精度,因为61850的过程总线,保护装置能接收过程层。数字信号,而不是先前的PT/CT交流采样,采样数据的准确性评估过程层铂或PT/CT光学或电子。国有企业的分辨率测试,因为国家数量的时间标签的处理模块,以评估对象的继电保护装置为一层对应的数字模块。

3.2时间同步能力检测

全球定位系统时间同步技术的采用,有效地解决了不同继电保护装置的时间同步问题,故障分析中的应用带来了帮助,但目前在时间同步检测主要用于时间同步装置,继电保护装置的同步能力测试需要加以考虑,如整体把握时间的同步效果。特别适合广域测量和保护装置/系统时间同步,效果会对测量结果的影响比较大,最终影响系统分析和保护作用。

3.3产品通信协议检测

通讯协议测试的实践中过去式继电保护测试中的产品,不包含具体的网站通信协议测试要求,造成的过程中,系统集成,产品[互连存在许多问题,针对这一情况,中国电网2005组织继电保护及故障信息系统通信协议的一致性测试和互操作性测试。其他各网局,局电力用户协议一致性测试的要求,表明该继电保护产品协议一致性测试已成为重要内容的继电保护测试。在新修订标准iec60255,明确指出,为保证通信协议的继电保护产品符合有关标准或规范,需要一致性测试,具体测试方法需要参考具体的通信协议标准要求的内容。

3.4软件测试

随着软件在微机型继电保护中的应用,软件承担了越来越多的重要工作,由于软件设计本身存在的缺陷可能会导致继电保护装置运行异常,甚至出现误动、拒动现象。尤其是针对装置内的程序,其程序逻辑难以进行完整的测试,因此当运行过程中,在某些条件下程序进入到不正常工作状态,导致保护装置工作出现问题,对电力系统安全、稳定运行可能会带来破坏。