电气自动化的认知范文
时间:2023-12-18 17:47:34
导语:如何才能写好一篇电气自动化的认知,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:电气自动化;人工智能;控制
电气自动化技术作为新时期的科学技术发展的重要产物,其主要是电子信息自动化、信息处理自动化、系统运行自动化、实现分析、电力电子技术以及计算机科学技术的综合技术。电气自动化运行的过程中主要是让控制的机器能够自行运行,且不受到人工的实时控制,用人工智能技术代替人工控制机器。人工智能技术应用到电气自动化生产过程中,使得人工智能技术与电气自动化技术相互交融,使得电气自动化技术出现了很大的飞跃。本文针对电气自动化控制过程中对于人工智能技术的应用研究,分析人工智能技术对于自动化控制的影响情况。
一、人工智能技术概述
随着计算机科学技术不断深入发展,计算机的运算速度较之人脑更加快速和准确,而且可以承担大量的重复性计算工作,因此计算机代替人工进行工作也就应运而生[1]。人工智能技术产生于1956年,其涉及到计算机科学。心理学、数学。、哲学、认知科学等多门学科。人工智能技术的主要研究目标就是控制机械进行自动化生产,在人工智能技术下完成实时控制,能够完成大量的重复性工作,解决人类的劳动强度问题。人工智能技术主要是基于计算机技术,通过计算机来实现人脑仿真,使得计算机能够满足更高层次的应用。
人工智能技术在发展的过程中存在着很大的差异,不同的人工智能技术其具有的优点也不一样。人工智能化技术可以具有社会能力、自治性、响应性以及能动性等几个重要的人工智能特色,复杂的人工系统之中运用人工智能技术实现建模,并且完成对人类的仿真。人工智能技术通过自身复杂的系统完成机械之间的融合和交流,并且形成了其基本元素的结合。另外人工智能技术对于自身的状态和行为具有一定的控制能力,完成相应的建模和仿真任务之后就不需要人类给予实时干预,所以人工智能技术具有一定的自治性。当然人工智能技术对于周围的环境还具有一定的响应能力,对于环境之中的事物作出相应的反应。
二、电气自动化中人工智能技术的应用
(一)数据采集和处理。电气自动化控制过程中人工智能技术可实现对系统的数据采集和处理,此项过程均属于智能化处理过程,在具体的应用中人工智能系统完成了对电气设备、系统运行的实时监测和响应。人工智能技术在电气化自动控制系统中针对全部开关量、模拟量等进行智能数据采集,并按照相应规则完成对所有数据的甄选,然后将数据进行保存或者对数据做出响应执行另外指令。人工智能技术还可对采集的数据进行整理,完成分类、筛选、备份以及垃圾数据删除等[2]。
(二)图像层次管理。对于电气自动化控制企业往往存在着图像管理流程,尤其是对于一些大型的电气企业或者运行比较复杂的系统,很多类型的设备都需要进行图像层次管理。那么人工智能技术则实现了对系统中的图像层次管理,利用计算机技术实现对系统的图像层次管理,为工作人员提供方便,使得他们能够及时查看图像并且作出选择。通过人工智能技术实现对系统的图像层次管理,有效的提升了对电气自动化系统的管理效率。
(三)可输出自动化控制过程。在电气自动化控制过程中,人工智能技术可以实现对控制过程记录,并且可以图像记录的方式来呈现出整个控制过程。人工智能技术实现了对电气自动化控制中的某一阶段或者是全部过程的运行管理,通过对控制过程中的图片输出来反应控制的成果,方便工作人员能够准确、完整的掌握电气自动化过程中人工智能技术控制情况,方便查看以及及时了解系统运行信息。
(四)保存系统运行各项资料。电气自动化控制过程中采用人工智能技术可以有效、完整的保存系统的运行资料,为寻找故障问题源提供相应的信息情报。电气自动化控制过程中,采用人工智能技术实现精细化管理,可以导出各个时间段、生产区间中自动化生产的各项资料。人工智能技术为相关记录工作者减少了麻烦,提高了工作的效率,同时人工智能技术可极大限度的节约人力、物力以及财力,对电力企业降低成本加强管理具有非常重要的作用。
(五)实时跟踪控制。人工智能技术属于人类一项先进的研究成果,其具有一定的智能化,能够自行完成生产工作。当然,人工智能技术最为重要的作用还是对于电力企业的自动化生产实现了跟踪控制。利用人工智能技术实现对引进的先进电子设备进行控制,通过输出的图像、保存的录像以及相关记录等来完成对相应设备的评估。
结语:随着科学技术的快速发展,人工智能技术正在不断的创新和进步之中,尤其是当前人工智能技术在电气自动化企业中的应用越来越广泛,使得人们对于人工智能技术的研究需要进一步加强,同时对于其工作的原理以及具体的应用应该具有更深层次的认识。这样电气自动化企业才能够及时跟上时代的步伐,及时调整企业的战略目标,利用人工智能技术提升企业的生产效率,利用人工智能技术降低企业的生产成本,利用人工智能技术实现企业强化企业核心竞争力。
参考文献:
篇2
关键词:人工智能化;电气自动化控制;应用
中图分类号:TB文献标识码:A文章编号:1672-3198(2013)07-0194-01
1引言
在计算机技术极大普及的科学技术背景下,智能化和自动化控制技术的应用也越来越广泛。这一新兴的科技相比于传统的电气方面的技术具有工作效率高、规范程度高、出错率低等优点。目前这一科技的应用还没有全面覆盖企业和工厂,但是其广阔的发展前景决定智能化和自动化技术将成为未来各个领域内的发展方向。同时,随着这一技术越来越普及,应用越来越广泛,专业技术也越来越成熟。
2人工智能控制的优点
人工智能化控制主要是依赖计算机的操作系统,利用在计算机的程序内设定好的函数公式和计算法则自动对机器进行操作,与传统的人工控制技术相比人工智能化控制技术有以下几个优点。
(1)智能化设定的程序会提升产品的规范性保证相同产品的性能的一致性。由于智能化的技术是依靠智能机器内的同一个运算程序进行生产的产品,所以产品的模式和性能不会出现差别,都是按照统一标准制作出来的,规范性也很高。
(2)误差小。由于人工智能化的技术在运行的过程中很少有工作人员的参与,所以其之前设定好的参数一直不会发生人为地变动,数据的显示一直是理论上的真实数据,所以在操作时如果不是机器性能出现问题,一般不会出现实际数据和理论数据差别太大的现象。
(3)减少人力资源的使用。在传统的电气操作中要涉及到很多的电气设备,机器、线路、变压器等,甚至是一个车间布满了各种性质的电线或电缆等,杂乱无章,这每台机器都有需要工作人员的看管和调制才能正常的发挥功能,这些线路也只有梳理才能各尽其能,是一个很复杂的整体,所以这就需要大量的人力资源,而人工智能化技术,机器的本身就具有数据分析能力不用外接很多线路利用其他设备来检测其性能,并且在技术人员的控制下都是自动化运行省去了很多繁琐的工作,所以解放了人力资源。
3人工智能化在电气自动化中的应用
(1)人工智能技术在电气设备中的应用。电气设备的合理安装是一个复杂而有技术含量的工作。由于涉及到很多的电气设备,机器、线路、变压器等,往往是一个车间布满了各种性质的电线或电缆等,显得杂乱无章。这里的每台机器都有需要工作人员的看管和调制才能正常的发挥功能,而这些线路也只有梳理才能各尽其能。电气设备安装是一个很复杂的整体,其中要综合运用到各种专业的知识,还有大量的计算和数据分析,对工作人员的专业能力也是一种挑战,所以这就需要大量的人力资源。通过应用人工智能化技术,因机器的本身就具有数据分析能力不用外接很多线路利用其他设备来检测其性能,并且计算速度快,计算准确率高,可以是人工作效率的几十倍甚至几百倍。那么这种人工自动化技术就省去了大量的工作人员做的很多繁琐的工作,大大的解放了人力资源。
但是在电气设备的设计中要注意不同型号的机器,不同的算法适用于不同的实际情况,不能把一个计算公式生搬硬套到其他的机器和产品上,这样就会使得人工智能化的技术起到反作用。
(2)人工智能化在电气控制中的应用。自动化技术全是依赖于计算机的预设程序的控制来进行正常的工作,所以说,控制是自动化技术的核心部分。在智能化的机器内部会根据各个环节的要求同时有几个不同编程的程序来控制整个成产过程,所以各个环节的控制掌握要严谨,及时对运行中显示的数据进行分析和与正常情况下的情况对比,不能出现一点差错,在控制系统内如果出现差错就会使得一大批的产品都按照错误的数据生产,造成产品的批量不合格。
(3)人工智能化在电气控制故障诊断中的应用。人工智能技术中的专家系统、模糊理论在电气设备故障诊断中应用较广泛,尤其是在变压器发电机和电动机故障诊断中。传统的诊断方法是利用变压器分解出来的油气体来诊断故障,准确率低,人工智能智能化监测是利用专家系统、模糊理论两个系统的结合来综合诊断变压器的故障,准确率高。
4结语
人工智能化在电气控制中的应用技术是一种现代化的高科技计算机控制技术,它会在未来的短时间内快速的应用到电气控制中,并为这一领域的发展和改造带来一些新的想法和改革的理念以及在技术改进方面提供理论和实际的支持。这一现代化技术的应用将有效提高工作的质量和效率,规范操作流程。但是这一新兴的技术在应用方面还有很大的提升空间,这就有有赖于在未来的实践工作中不断地发现问题总结问题,来更好地指导以后人工智能化在电气控制中的应用。
参考文献
[1]石磊,李国栋.电气自动化控制系统及设计[J].黑龙江科技信息,2011,(20).
篇3
关键词:高职教育,电气自动化,专业人才培养
中图分类号:G712;TM76-4
引言
传统的高职教育人才培养不能使得学生在毕业后在最短的时间内适应工作岗位,达不到适应企业的需求,这是我国高职教育存在的突出问题。所以高职院校必须以就业为指导,以职业能力培养为中心,提高人才培养的质量,符合企业模式的发展,造就一批高技能性人才,从而能够更好地适应经济的发展。
1 我国进行电气自动化人才培养的依据
1.1 根据专业特点
电气自动化专业是一个动手操作特别强的理工科专业,它是符合市场要求的。在教学过程中,应该将教学与工作相互进行相互融合,在实践中学习理论知识,在理论知识的学习中进行动手操作,让理论与实践紧密结合在一起。
1.2 适应高职电气自动化专业课程的需求
高职课程的内容是与学生工作后真实的职业情境相符合的,所以对于课程的设置应该增加与职业关系紧密的内容,提高学生的学习兴趣,增强实践能力,让兴趣与实践伴随着学生使他们在学校获得更多的知识,同时提升学生的素质与能力,从而使得学生毕业后更够更好地满足职业岗位的需求。
1.3 适合高职学生自身特点
高职学生的特点就是动手能力比较强,理论基础较弱,所以针对这点,我们要在教学中增加实践操作环节,充分发挥其优势,提高学生学习专业理论知识的积极性,从而能够更加主动学习。
2 高职电气自动化专业人才培养的模式分析
2.1 教学模式的改革
在教学过程中,应该实行一种教师为导,学生为体的教学模式,将企业真实的工作项目作为引领,教学内容以典型的工作任务为主,让学生在项目中完成工作,形成一个工作过程与教学过程融为一体的教学模式。这可以说是一种采用情景教学的模式,在此过程中,可以安排学生才加校外实践,或者聘请校外有经验的技术人员到学校与学生进行交流。我们还可以采用现场教学的模式,将实验教学基地作为上课的主要场地,充分利用现场的仪器设备进行教学,发挥其作用,将理论教学与实践教学有效结合起来,打破传统的将实验室和教师场地分开教学的教学模式,让学生在学习到专业知识的同时还能在对应产品生产的过冲中得到更深刻的理解,进而提升学习的动力与兴趣。
2.2 专业课程体系的改革
教学改革的重点和难点就是教学课程和内容模式的改革,这也是实现人才培养模式的一个转折点。电气自动化专业应该摆脱传统的教育束缚,以实用实践为原则,以实践能力的培养为重点,结合电气自动化专业自身的特点进行课程体系和内容的改革,切实做到理论与实践相结合。我们应该设计出一种新的教学方法,改变传统在教师占主要地位的模式,不是教师一直将知识主动传播灌输给学生,而是学生能够积极主动学习知识。通过更新教学观念来激发学生学习的兴趣,全面提高学生的素质,突出他们的主体地位。将职业技能的培养作为核心来提高学生的实践技能,合理选择教学任务,重点培养学生的技能,使他们在最短时间内达到国家职业资格的要求。教师在教学过程中,应该学会取舍知识的传授,同时通过开设一些素质课程来使学生树立正确的人生观、价值观以及世界观。还有一点就是注重过程的考核,加强学生对学习过程的重视,教师应该根据学生自身情况灵活采取考核方式来测试,通过每个阶段,每个学期的不断的考核来促进学生的学习。对于考核没有通过的学生,教师应另安排时间对其进行授课,让每一名学生都能跟上教师的步伐,同样教师也不能放弃任何一名学生。通过考核可以让教师及时发现学生的问题并且及时解决。
2.3 加强校企合作
教学体系主要分为基础技能训练、专业技能训练以及专业综合技能训练三部分,以专业技能培养为核心进行分层实施教学体系的三大部分。应该充分发挥运用学校、社会以及企业等资源,签订一些校企培训协议并且建立一些实训基地,实现校企的深度合作。将课堂与生产连接起来,从而提高学生的技能。
结合社会用人的原则来进行对学生的培养;结合企业生产环境来对学校的实训环境进行合理改造;共享校内资源与校外资源;将理论学习与实践结合在一起,这是加强校企合作的主要途径,也是培养现代高职教育人才的关键所在。企业与学校共同参与到高职电气自动化专业人才培养的过程中,将培养出来的人才高度符合行业岗位的要求。
2.4 建立企业顶岗实训基地
学生可以在顶岗实习的过程中熟练运用所学到的知识技能,积累工作经验,有效提升技能水平,通过在学校学到的知识来解决工作中遇到的实际问题。在顶岗实训过程中,刚开始学生可能不会接线,干活较慢,工具的使用不到位等,慢慢的在现场师傅的带领磨练下就能基本胜任电工的操作,这也就会在顶岗过程中大大激发了学生的积极性和职业能力,增加了学生的就业竞争能力,从而能够充分得到企业的肯定,受到企业的好评,成为企业的骨干。
2.5 强化教师企业实践教学能力
目前高职电气自动化专业的教师大部分都是毕业生或者学科型教师,对企业的实际生产过程缺乏了解和相应的工作经历。我们应该通过定期派教师参加企业的挂职锻炼来提升教师的实践能力,让他们能够真正的参与到企业的生产实践去中去。对教学进行改革,带着任务去企业,通过将在企业中学到的知识与教授的专业课进行结合从而真正实现工作中的课程教学。
2.6 对作业进行严格把关
很多同学在学习过程中没有意识到作业的重要性,从而让自己的学习越来越困难,并且严重影响了考试结果。作业通常需要学生自己独立完成,它是检测学习效果,巩固学习内容和提高动手能力的有效途径,具有重要的地位。所以在高职电气自动化专业学习的同时,教师应该严格把关作业质量,加大对学生的课余辅导力度来度过学习难关,得到最好的学习效果,为人才的培养打下坚实有力的理论知识基础。
3 结语
我国工业现代化技术水平的提高必然要求出现一批技术应用型人才,这就尤其需要我们加大对高职电气自动化专业人才的培养。目前我国的高职电气自动化专业在课程体系,教学方法等方面都进行了一些改革与完善,以培养人才为目标,推动了电气自动化专业的建设,从而也为推动我国的经济发展打下了基础。
参考文献
[1]黄宽,纪静波.高职电气自动化专业人才培养方案研究与探索[J].中国电力教育 ,2013(2)
篇4
关键词:人工智能;电气工程;自动化
引言
我国电力行业发展迅速,为人们的生产生活提供了便利,随着人们生活水平的不断提升,人们对于电气工程自动化的要求也越来越高。在电气工程自动化中引入人工智能技术,由机器人代替人工完成电气工程操作工作,能够实现智能控制,不仅节省了人力,也有效减少了电气工程运行中产生的误差,其良好的技术优势获得了一致好评。由此,在电气工程自动化中应用智能技术,有效满足了人们对于电力的需求[1]。
1人工智能技术及电气工程自动化含义
1.1人工智能技术
在传统的电力行业中,所有工作都是依靠人力完成。人工智能技术出现后,替代了手工劳动,减少了工作量。人工智能技术借助编程对人类的行为和思维模式进行模仿,使机器拥有人类相同的行为、思维和感知能力,利用机器完成人类的劳动任务。人工智能应用领域较多,如语言学、计算机科学等,其属于思维科学技术,发展中离不开数学的支持,只有将数学与人工智能联系起来,才能够促进人工智能技术的不断发展和进步[2]。
1.2电气工程自动化
电气工程需充分利用电能、电气技术和相关设备改善并维持一些限定空间、环境,主要研究方向是如何转化利用电能。电气工程及自动化技术在很多领域都有应用,如电力电子技术、计算机技术和网络控制技术、信息技术等,综合性较强。电气工程自动化技术常应用在电气设备制造公司或者供电、发电企业中,对人民生活质量和国民经济水平有一定影响[3]。
2电气工程自动化中人工智能技术的优势
2.1误差小
人工智能技术在电气工程运行中的应用,能够促使电气工程控制器抗干扰能力得到有效增强,最大化避免电气工程运行误差的出现,对于与电气工程相关产品的规范性和一致性的提升有一定帮助。人工智能技术在应用过程中,需要将相关的参数和数据一起输入到控制器中,机器就能够实现自动化生产,避免了电气工程运行中许多干扰因素的影响。此外,人工智能技术也能够科学有效地评估电气工程,促使电气工程获得更为长远的发展。
2.2强化控制效果
人工智能技术在电气工程运行中的应用,能够有效提升电气工程的控制效果,保证电气工程能够规范性、一致性地运行。当前,我国电气工程自动化水平相对较低,传统电气工程控制上,需要将电气工程控制对象预先设计好,根据实际情况开展控制策略,虽然取得了一定效果,但是无法准确地控制对象,影响电气工程的运行效果。情况严重时,还会对电气工程的操作水平产生影响。而人工智能技术的应用,能够促使电气工程设备的运行效果得到显著提升[4]。
2.3不会过多受到外界因素限制
传统的电气工程在运行中会因外界因素的变化而产生影响,不仅电气工程的运行质量会受到影响,且会对设备安全造成威胁。基于此,在电气工程中,需要重点应用人工智能技术,借助机械手段完成人工操作难以完成的工作,甚至代替人工工作,电气工程自动化水平就会得到全面提升[5]。在实际应用过程中,可以借助控制器操作电气工程,建立电气工程自动化模型并完成计算工作,确保电气工程能够顺利完工。在传统的电气工程运行中,仍然使用低端的控制器,因数值计算类型与模型的参数出现问题,导致数值计算产生错误,引发电气工程出现多种问题。而人工智能技术在应用后,有效减少了电气工程故障,自动化模型的准确性也有了显著提升,且对模型参数和自动化模型的要求也相应有所降低。
2.4操作流程有所优化
传统的电气工程中,自动化控制器在操作上较难掌握,且要求操作人员具备专业的知识,一旦工作人员出现操作失误,会导致电气工程无法正常运行。而人工智能的应用,能够有效简化操作流程,且不需要操作人员掌握更多的专业知识,只需要按照操作程序和语言完成相关操作即可,能够有效避免工作人员在操作上的失误。
2.5减少了后续维护工作
传统的电气工程运行涉及变压器和线路等多种电气设备,多种设备同时运行会加大工作负担,同时也对后期的维护工作造成不良影响。如果电气设备长时间未得到维护,会导致设备老化,影响正常运行。在维护、保养过程中,需要聘请多名专业人员同时操作,这会直接增加维修维护成本。如果电气工程自动化中加入人工智能技术,就能够有效减少设备的使用数量,后期的维护工作压力也会减小,对于企业提升经济效益、减少成本有一定积极意义[6]。
3电气自动化中人工智能技术的实践应用
3.1人工智能与电气设备的融合
人工智能技术在电气工程中的应用,能够改变传统电气设备的设计和运行方法,满足电气工程的实际需求,代替传统电气设备完成更复杂的程序,全面提升电气设备的稳定性、可靠性,电气维修的成本也会显著降低。电气工程中电气设备与人工智能的结合,能够提升工作效率,降低运行成本,简化操作流程,保证满足人们的各项需求。人工智能技术通过简化电气工程操作界面,利用各项指令指挥电气设备完成工作,工作效率和查询效率得到显著提升。
3.2能够有效排除故障
如果发电机和发动机等电气设备长期处于运行中,会加重设备运行负荷,出现安全隐患。在电气设备运行中,需要根据实际运行情况进行分析,避免安全事故出现。在排除故障问题上,传统方法不仅耗费大量时间,且需要利用变压器油气体进行故障查找,在收集和检验环节耗费大量的人力、物力和财力,检验准确率也相对较低。人工智能的应用,可以借助模糊理论技术和神经网络诊断出电气设备存在的安全问题,并进行自动诊断,能够有效排除各项故障[7]。人工智能技术也能够对设备运行故障问题进行诊断,当前常用的诊断方法主要包括三种,分别为基于案例诊断、基于故障推理和利用故障树模型进行诊断。三种方法可以联合使用,也可以只使用一种。在诊断上,积极开发了人工智能算法,并充分结合数据采集技术和传感技术,设计出了故障诊断系统,能够及时并精准地找到故障点。诊断系统包括故障诊断规则库、故障推理机、故障诊断过程解释机、故障诊断数据库等,相比于传统查找方法,人工智能系统的应用有效缩短了查找时间,降低了维修成本。案例库收集与故障相关的知识和案例,可以直接提取相关参数,参考案例特征对案例进行归纳整理,为系统推理提供参考基础。故障诊断阶段提取故障特征,利用人工智能敏感特征对比方法进行诊断,能够有效发现设备存在的故障,并做出有效的处理[8]。
3.3在产品设备中的实践应用
电气设备的设计工作涉及多种学科和内容,对设计人员的专业水平有较高的要求。为了保证设计的电气产品具有科学性、可靠性特点,需要在设计中积极融合科学设计和知识、经验。人工智能的应用有效解决了以上问题,不仅能够代替人脑解决繁琐的计算工作,也能够模拟程序,有效提升工作效率,缩短设计周期,最终设计出的产品也具备科学性特点,实用性较强。但是,其对设计工作有一定要求,要求设计人员对于智能软件的应用和设计有丰富经验,设计出符合不同需求的产品[9]。
3.4能够实现电气工程的保护功能
利用人工智能技术控制电气工程时,操作人员采取特殊的控制工具能够远程控制电气设备的运行情况,确保电气设备实现停止和复核操作。在人工智能技术的控制上,需要技术操作人员设置好数据,确保数据设置的科学性,从而有效管理电气工程。在设备运行中,操作人员收集并整理好电气工程相关的运行数据,为了保证软压板在运行中不会受到影响,使用时需要修改相关参数。在电气设备运行过程中,人工智能技术能够依据运行日志自动制作成表格和曲线,通过查看曲线和表格,工作人员就能够对设备的运行情况有一定了解,从而高效地管理设备运行状况。人工智能技术也能够实时检测电气设备的运行情况,一旦数据出现异常,能够第一时间作报警处理,并记录好异常的数据。电气工程运行过程中,会有多种故障出现,导致电气工程自动化水平受到影响,也会影响电气工程的正常运转。应用人工智能后,电气工程的整体工作流程能够得到优化,并实时追踪设备的运行情况,保障设备能够实现良好运转。为了能够共享电气设备的运行情况,需要借助人工智能技术构建云平台,监测设备的运行情况,并将相关数据传送到云平台上,管理人员就能够通过云平台对每一台设备进行监控。与传统的人工巡航相比,人工智能技术的实效性更强,能够实现大规模的监控工作,有利于全面提升电气工程的运转效率,提升企业的经济效益。
篇5
关键词:人工智能;自动化
中图分类号:TP18 文献标识码:A
人工智能技术如今已经广泛应用于各个领域,也在很大程度上促进了各个行业的发展。对于电气设备来说,采用先进的人工智能技术可以大大提高系统的运行水平,改进生产效率。
1 人工智能应用理论分析
人工智能的基本原理是将人的思维方式,逻辑推理的形式进行模拟和设置的一种技术形式。人工智能是计算机技术发展的一个高级阶段,它不仅能模拟人类的语言系统,还一定程度上模仿人类的思维方式和逻辑推理。人工智能技术从研发至今,已经结合了各个学科的相关先进理论,涉及多个研究领域。其主要目的在于使机器和设备的操作能够脱离人工的绝对指导,以至于胜任一些专业技术人员的操作。
计算机的诞生给人类的生活带来了翻天覆地的变化,渗透到了各个领域,改变了许多行业的发展方式。计算机技术也随着计算机的发展和应用在不断的发展着,但是在这个发展过程中,人类逐渐认识到人脑才是最先进的信息分析和处理仪器,计算机技术要想更好的为人服务,必须朝着贴近人脑的工作特点的方向努力。对于电气系统的控制技术来说,就是要尽量的实现自动化控制。将各个生产和传输环节有机的结合起来,减少人力和资金的投入,形成一个一条龙的流水作业,有利于提高电气系统的生产效率。
2 人工智能控制器的优势
人工智能控制器相对于传统的控制器的优势在于利用了AI函数近似器,这种函数控制器较传统的常规控制器的优势在于更便于控制系统的一体化。在操作中,这些优势的表现在几下几个具体方面:
人工智能控制器的设计阶段无需设计模型的配合,这是其他常规的传统控制器所无法做到的。常规的控制器的研发和设计阶段必须要辅以各种实验模型的试验,来检测控制器的各项性能,但是人工智能控制器就克服了这一缺陷。
人工智能控制器的操作方法比常规的控制器的要简便易行,便于技术人员的执行和操作。
人工智能控制器的设置方式也相应的更加灵活,除了可以通过传统的设置方式外,它们还可以通过响应数据这种简便的方式进行设置,同样便于技术员的操作。
此外,人工智能控制器有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对具体对象必须具体设计。
人工智能控制器能解决常规方法不能解决的问题。
人工智能控制器的实现十分便宜,特别是使用最小配置时,所以人工智能控制器的使用不仅能提高电气自动化的整体技术水平,还能降低整个电气系统的成本。
人工智能控制器很容易扩展和修改,相较于其他常规控制器来说,人工智能控制器的更新和改进的空间更大。
另外,采用人工智能控制器进行电气自动化的控制时,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。虽然很多常规的控制器也能实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配景,自学习迅速,收敛快速,所以,综合上文的分析,我们可以得知人工智能控制器的优势还是十分明显的,必将取代传统的常规控制器实现电气自动化的控制。
3 人工智能的应用现状
随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,力图将先进的人工智能技术应用于电气系统的各个领域中,以提高电气自动化的水平和生产效率。目前,我国在这一方面虽然和国际上的先进国家还有很大差距,但也较以往取得了很大的进步,如将人工智能用于电气产品优化设计、故障预测及诊断、控制与保护等领域,未来随着我国在这方面的研究的深入,必将取得更加可喜的成绩。
3.1 优化设计
电气设备的设计是一项复杂的工作,也是电气设备的研发的最重要的工作之一,它不仅要应用电路,电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识,才能将电气设备的各方面的功能完美的结合起来,设计出一个满足运行需要的电气设备。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的,因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进,使传统的CAD技术如虎添翼,产品设计的效率及质量得到全面提高。
优化设计的另一个有力武器是专家系统。但从目前已开发的专家系统来看。总体上仍处于研究阶段,离实用尚有一定距离。将专家系统应用到电机设计领域是从1988年J.H.Garret建立变压器设计专家系统开始的,目前我国沈阳工业大学特种电机研究所研制了永磁直流电动机及永磁同步电动机的设计专家系统;西安交通大学、华中理工大学、东南大学各自开发了异步电动机的设计专家系统,都取得了一定成效。
3.2 故障诊断
电气设备在运行过程中难免会出现各种故障,如果不及时排除,将会影响整个系统的运行,所以,电气设备的故障排除和运行维护工作同等重要,需要引起我们监管人员的相关重视。电气设备的故障发生前,一般都会出现一定的故障征兆,我们可以以此来推测故障产生的大致原因,但是电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性,用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络,从目前的应用效果来看,人工智能技术在电气设备故障的判断阶段起到了良好的效果和作用,为维护人员的工作提供了便利。
变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析,从而判断变压器的故障程度。
另外,值得一提的是人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃,已经被较为广泛的应用。
3.3 智能控制
人工智能控制技术在自动控制领域的研究与应用已广泛展开,但在电气设备控制领域所见报道不多。根据笔者整理的资料来看,可用于控制的人工智能方法主要有3种:模糊控制,神经网络控制,专家系统控制。但是这三种方法的应用范围程度还是有所不同的,由于模糊控制是其中最为简单、最具实际意义的方法,因而它的应用实例最多,另外两种控制方法在实际中的应用实例还比较少。
结语
综合全文来看,人类智能主要包括三个方面,即感知能力,思维能力,行为能力。而人工智能是指由人类制造出来的“机器”所表现出来的智能。人工智能主要包括感知能力、思维能力和行为能力。人工智能的应用体现在问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器人学等方面,而这诸多方面都体现了一个自动化的特征,表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化,因此人工智能在电气自动化领域会大有作为,电气自动化控制需要人工智能的参与。只有将二者有机的结合起来,才能更好的促进我国电气自动化控制技术的发展,也可以在应用中不断促进人工智能技术的进步。
参考文献
篇6
关键词:人工智能;电气自动化;应用
中图分类号:TP18 文献标识码: A
引言
“人工智能”一词产生于1956午的Dartmouth学会上,其作为边沿学科,通常也被称作机器智能。与传统的方式比,人工智能是一种全新的科技,是研究、开发用于延伸、模拟和扩展人的智能的方法、理论、技术及应用系统的一门科学。它企图了解智能的实质,继而生产出以人类智能相似的方式作出反应的一种智能机器。这种技术主要通过计算机来完成,该领域的研究包括语言识别、机器人、自然语言处理、图像识别和专家系统等,从而达到完成需要人类智慧才能解决的复杂问题的目的。
电气自动化这门学科研究对象主要为与电气工程有关的自动控制、系统运行、信息处理、研制开发、电力电子技术、试验分析以及电子与计算机应用等。在电气自动化技术中应用人工智能技术,可以提高设备运行和处理的精确度与准确性,进一步提高自动化水平。随着技术和经济的发展,这项技术无论是从理论方面还是实践方面也得到了迅速发展。机械设备在无人参与的情况下自动、准确的操作和运行并实现自动化,就等于减少了人力成本的投入并提高了运作的效率。
一、人工智能控制器的优点
人工智能(Artificial Intelligence),英文缩写为AI,它是在电气自动化中应用较多的人工智能控制器。不同的人工智能控制通常用完全不同的方法去讨论。但是AI,如遗传算法、模糊理论、神经算法、模糊神经算法都可以看做一类非线性函数近似器。与常规函数估计器相比,采用AI函数近似器拥有一些特点:
(一)、在许多场合由于实际控制对象的精确动态方程很难得到,其模型在控制器设计时往往有很多不确定性因素。而在进行人工智能电气设计时,不需要控制对象的模型,也不需要知道非线性、参数变化等具体因素。
(二)、人工智能控制器拥有良好的一致性,即使在使用一些新的未知输入数据时预测结果也能很好,且跟驱动器的特性没有直接联系。现在没有使用人工智能的控制算法,对其他控制对象的效果就不会像对特定对象控制效果一般好,因此对具体对象必须具体设计。
(三)、人工智能控制器在没有必须专家知识时,通过响应数据也能进行设计,且更容易调节。运用语言和响应信息进行设计,更易于扩展和修改,对数据和信息的适应性更好,且具有较强的抗干扰性能。
(四)、通过适当调整(根据响应时间、鲁棒性能或者下降时间等),可以提高设计函数的性能。在进行适当调整后,模糊逻辑控制器的下降时间比最优PID控制器快3.5倍,而上升时间比最优PID的快1.5倍。
二、人工智能在电气自动化中的应用
(一)、人工智能在优化设计中的应用
电气设备的设计不仅要大量运用设计中的经验性知识,还要机电、电磁场、应用电路等学科的知识,可以说是一项复杂的工作。与传统的产品设计相比,为了获得最优方案,计算机辅助设计(CAD)成为电气产品设计的重点,而人工智能的引进帮助改进传统CAD技术,产品设计的效率及质量得到全面提高,也大大缩短了产品开发周期。人工智能技术用于优化设计主要有专家系统和遗传算法两种技术手段。电气产品人工智能优化设计大部分采用遗传算法,这种算法适合于产品优化设计,相对前者比较先进。
(二)、人工智能在故障诊断中的应用
在电气设备故障诊断中人工智能技术中的神经网络、模糊理论、专家系统等应用较广泛,特别是在发电机和电动机故障诊断、变压器故障诊断中的应用。针对设备故障的复杂性、不确定性、非线性等特点,用传统的故障诊断方法无法进行诊断,致使诊断效率较低。为了提高诊断准确率,就要应用人工智能方法。专家系统、模糊逻辑和神经网络三大故障诊断方法是人工智能技术采用的主要手段。如在电动机和发动机的故障诊断中,结合神经网络和模糊理论,使用人工智能化的故障诊断技术,可实现较强的神经网络与故障诊断知识模糊性共同诊断,起到提高故障诊断准确率的效果。
(三)、人工智能在电气设备设计中的应用
电气自动化专业中电力电子技术、电路、变压器、电机、电磁场等多门学科内容都在电气设备设计里涉及到,这是一个复杂过程,不仅需要大量的财力、物力和人力投入,也对设计者的实际工作经验要求很高。如果借助于人工智能技术,就能大大提高设计的精度和工作效率,解决很多人脑难以快速解决的模拟过程和繁琐计算。优化设计常常采用遗传算法,开发性设计通常采用专家系统,要进行高效率、高质量的设计工作,应用时就要注意不同的实际情况和不同算法的使用,此外还要求工作人员具有丰富人工智能软件工作经验和较高水平的应用能力。
(四)、人工智能在电力系统中的应用
启发式搜索、专家系统、模糊集理论神经网络这四方面是人工智能技术在电力系统中的应用。专家系统主要是模拟专家的决策过程,依靠特定领域的专家的知识和经验进行推理判断。该系统由知识库、推理机、数据库、咨询解释、人机接口和知识获取六部分组成,对各种需要专家进行决策的难题进行处理,是集经验和专业知识、大量规则于一身的复杂程序系统。
现有许多种神经网络和训练算法在电力系统中得到广泛应用。神经网络的复杂状态分类能力、识别能力都很强,有完全分布式的存储方式和灵活的学习方式,广泛应用于大规模信息处理中。模糊逻辑对负荷变化和电力生产等小确定因素建立求属函数,能够完成高难度的数学近似计算,可以构建电力系统的最优化潮流模型。模糊理论广泛应用于电力系统的系统规划、潮流计算和模糊控制方面。
(五)人工智能在电气控制中的应用
实现增强分配、交换、生产、流通的关键环节就靠电气自动化控制,提高控制自动化,就能够提高系统的运作效率和质量,减少物力、人力、财力的投入。人工智能技术将专家系统控制、模糊控制、神经网络控制三种控制应用于电气设备控制中,其中用得最多的是模糊控制,因为其与实际联系最为紧密。最新研究中,各种数字高动态性能传动系统中应用了模糊神经控制器,并得到了新的研究果。现举个实例论证模糊神经控制器在电气传动控制中的应用:
模糊控制在电气传动控制中的应用主要是直流传动控制,包括Sugeno和Mamdani。Sugeno控制器典型的规则是:假设A和B是两个模糊集,如果x隶属于A,且y隶属于B,则Z=f(x,y)。Mamdani用于调速控制,其规则库是个if-then模糊规则集,Sugeno控制器其实是Mamdani控制器的特例。
结语
当今社会日新月异,计算机编程技术催生自动化运输、生产、传播的快速发展,科技的发展促进了智能技术的发展。模仿模拟人脑的机能,使机器能够胜任一些通常需要人类智能完成的复杂的工作正是实现自动化的一个主要目标,实现自动化,就等于提高了运作的效率,减少了人力资本投入。
而在电气自动化控制中也应该应用这种人工智能技术,这项技术在经济和社会发展中起到极大的作用。人工智能的应用体现了一个自动化的特征,这种特征能增强产品生产、流通、交换、分配环节效率,提高电气设备的质量和使用效率。相信人工智能在今后电气自动化的应用中会更多发挥优点,为我国电气设备的发展提供更大的技术支持和帮助。
参考文献
[1]徐建芳.浅析人工智能在电气自动化控制中的应用[J].经营管理者,2012,07:384.
[2]许德强.人工智能在电气自动化控制中的应用[J].科技创新与应用,2012,20:61.
篇7
【关键词】电气自动化 控制 人工智能技术 应用
1 人工智能技术概述
人工智能技术,是在对人类智能理论研究的基础上,研究出的对于人类智能模拟、延伸和扩展的应用方法和技术[1]。该项技术是计算机技术的分支之一,主要目的是使得生产过程运用智能机器操作,实现生产的高效化、自动化和智能化。其涉及的研究内容包括机器人和语言图像处理、专家系统等。人工智能技术涉及到多种学科科学,是自动化、仿生学和逻辑学、语言学、控制论等多种学科的集大成。随着研究的不断深入,其在人类社会的多个领域得到有效运用,通过精确化的信息收集和处理,大幅提高生产运作效率。
2 电气自动化控制存在的问题
2.1电气自动化控制系统缺陷问题
我国电气自动化控制存在的问题之一,即系统的缺陷问题。电气自动化控制系统的缺陷,表现在多个方面。如许多企业的隔离开关和电流短路操作上,均采用硬操作,这样一来,电气自动化控制无法发挥其自动化操作功用,造成操作效率较低,生产作业时间延长,也就使得生产效率大大降低,经济效益受损。又如发电厂升压站中,其使用传统的开关操作,多为按键操作方式,也使得电气自动化控制系统作用受限,自动化生产无法有效开展[2]。
2.2 电气自动化控制系统监控效果不佳
电气自动化控制系统监控效果不佳,是许多企业面临的重要问题。传统的监控设备支持下,虽然能够获得一定的监控效果,但多为点状分布,无法覆盖多方位和全方面,造成监控死角,监控效果不佳。这样一来,工作人员无法对设备的运行状况进行有效把握,导致电气自动化控制系统的运行安全得不到保障。监控设备落后,不能及时有效地显示出现问题的系统,导致电气自动化控制系统运行有效性受损,生产效率和质量得不到保证。
3 人工智能技术在电气自动化控制中的应用
3.1 人工智能技术在电气自动化设备中的应用
人工智能技术在电气自动化设备中的应用,是该技术融入电气自动化控制的基础性应用。电气自动化设备要想实现高效化运作,需要操作技术人才在掌握多领域和多学科知识的基础上,保证其高素质和高责任感。这就对人才的要求大大提高,成本也相对较高。使用人工智能技术,通过计算机编程技术,模拟人脑复杂的运算和运作机制,使得电气自动化设备在高效化、精准化模式下运行,保证了生产的高效率,还能降低人力成本,实现经济效益的提高。
3.2 人工智能技术在电气控制过程中的应用
电气控制过程是电气领域的重要部分,实现电气控制过程的自动化,才能实现整体电气系统的自动化和高效率。应用人工智能技术,能够有效实现电气控制过程的自动化,通过专家系统控制和模糊控制、神经网络控制等方式,完成对电气过程的自动化控制。模糊控制是电气控制中的主要控制方式,其通过传统电气控制过程的交流或直流传统来实现。电气直流传动控制中的模糊逻辑控制,多以Mamdani实现调速控制,以Sugeno来完成前者的例外情况控制[3]。
3.3 人工智能技术在事故诊断处理中的应用
人工智能技术能够应用于电气事故的诊断和处理当中,使得诊断处理过程更加精准化和高效化。如发动机、发电机和变压器出现事故后,传统的诊断方法则主要通过人工的检查,并结合相关知识和经验,既无法保证诊断的准确性,且消耗大量时间,事故处理效率慢。而利用人工智能技术,通过模糊理论、专家技术和神经网络等能够快速准确地找到事故点,并诊断出事故原因,提出事故处理方法,大大提高事故诊断和处理的效率[4]。
3.4 人工智能技术在日常操作中的应用
电气领域的日常操作步骤多样且繁琐,且每个环节的重要性均十分显著,如某个环节出现故障问题,将造成整体电气系统出现故障,甚至导致重大事故损失发生。人工智能技术的应用,使得电气自动化控制的日常操作得到有效简化,且在远程控制技术的实施下,使得相关数据资料信息得以准确收录和储存。操作的流程简化,故障发生率大大降低,且日常操作的信息均能存留和备份,实现报表的生成,方便以后的生产和研究时的信息查阅,使得电气自动化控制系统的运行和发展更加高效。
4 结语
人工智能技术在电气自动化控制中的应用,是社会发展的必然结果,也是社会需求不断增加的必然结果。其能够应用于电气自动化设备中,还能实现电气控制过程中和电气控制事故诊断处理中的应用,对于电气自动化控制运行的效率有极大的提升效果。就当前电气自动化控制存在的问题而言,人工智能技术能够有效实现系统缺陷的弥补和监控问题的不足。随着人工智能技术在电气自动化控制中应用融合程度的不断加深,其发挥的作用将会越来越大,在电气领域当中产生的生产推动力和影响力也越来越大。
参考文献:
[1] 靳虎.人工智能技术在电气工程自动化中的应用[J].科技展望,2015,15(02):74-76.
[2]马龙.人工智能技术在电气自动化控制中的应用[J].山西焦煤科技,2014,20(S1):114-115.
[3] 马仲雄.浅谈电气自动化控制中的人工智能技术[J].电子技术与软件工程,2014,12(11):153-154.
篇8
关键词:电气工程;智能化技术;自动化控制;应用
中图分类号:F407.6文献标识码: A
1 、人工智能应用理论分析
人工智能是一门新的科学,它主要是研究开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统。计算机科学的一个分支就是人工智能。智能化技术通过对智能本质的阐述,使机器拥有了与人类类似的智能,其研究成果主要有语言图像识别系统、专家系统及机器人等。电气工程作为人类生产生活的重要活动,与其密切相关的系统运行、自动化控制、计算机应用及信息处理等功能,均有智能化技术涉及。不过相比于最为精密的人类大脑,人工智能不可能那么完美,它仅能通过计算机编程模仿人类大脑,完成信息收集、分析、处理及反馈等程序。这仍然有效促进了电气工程自动化控制的发展,有效节省了人力资源,保障了人们生命安全,提升了工作效率。
2、 智能化控制的优点
人工智能种类不同,其控制方法也不同。为更好地理解分类总体,便于控制策略系统开发,对于神经网络、模糊逻辑与遗传算法等,均可看做非线性函数的近似器,一般函数估计器并不具备此类优势。对动态方程进行精确掌握控制较为困难,在控制设计时具有较多不确定因素,像非线性及参数变化等。根据鲁棒性能、下降时间与响应时间等不同,智能化控制器在设计控制对象模型时可通过自身适当调整来提高其性能,像下降时间因素,与最优秀的 PID 控制器相比,模糊逻辑控制要快4倍多,普通控制更是无法相比,而在上升时间因素方面,它要比最优秀的 PID 控制器高出 2 倍以上。与普通控制器相比,即使没有专家系统指导,智能化控制器依然能应用相应数据来完成设计,也可通过语言及信息等方法,并且在调节方面,智能化控制器更易调节。智能化控制器具有很强的一致性,当输入未知数据时,智能化控制器可实施有效估计,其估计效率很高,对于驱动器所产生的影响可忽略不计。智能化控制器还能解决一般方法无法解决的问题,普通神经控制器中的学习算法、拓扑结构等已定型,需要很长时间来计算,其应用效果不是很理想,而运用智能化控制器就有效解决了所遇难题,提高了学习算法的速度。在新数据信息方面,智能化控制器具有良好适应性,其抗干扰能力更强,扩展修改也很容易,对于配置应用的实现,其价格实惠,尤其是最小配置的应用。
3、 智能化技术应用
3.1 模糊逻辑及其控制应用
电气工程的自动化控制系统中含有较多的模糊控制器,它能有效代替 PID 控制器,并可用于其他任务。模糊控制器由英国的阿伯丁大学开发,它常应用于各类数字动态的传动系统里。对于模糊逻辑的控制应用主要有 M 型与 S 型两种,截至目前为止,仅有 M 型控制器用在调速控制当中。不过,这两种控制器均有规则库,可称为 if them 的模糊规则集。S 型控制器的规则为 if X 是 G,且 Y 是 H,则 W=(fX,Y),其中 G 与 H 为模糊集。M 型控制器主要由模糊化、推理机、知识库与反模糊化所构成,模糊化主要用来实现变量的量化、测量与模糊化,其隶属函数具有很多形式;推理机为模糊控制器关键部分,可模仿人类对模糊控制行为进行决策与推理;而知识库主要是由语言控制的规则库与数据库所构成,规则库开发方式为:将专家知识与经历放于控制及应用目标上,建设操作器控制的行动,在建模过程当中,应用模糊控制器与神经网络的推理机来操作;反模糊化主要用来量化与反模糊化,包括中间平均技术与最大化的反模糊化等技术。
3.2 神经网络及其控制应用
在电气工程的驱动系统与交流电机等的诊断监测中运用了神经网络,其中,神经网络的反向转波算法要比梯形控制法性能更好,它有效减短了定位时间,并且有效控制了非初始速度与负载转矩大范围的变化。神经网络系统结构为多层的前馈性,可运用常规的反向学习算法,在两个子系统里,其中一个系统经过机电系统参数可辨别控制转子的速度,另一系统经过电气动态参数辨别控制定子的电流。智能神经网络已在信号处理与模式识别上获得了广泛应用,因智能神经网络具有非线性一致的函数估计器,所以被有效应用于电气传动的控制领域,其优势前文已提及,即具有较强的一致性,不用被控系统的数学模型,抗噪音能力强。而且智能神经网络为并行结构,较为适合很多个传感器的输入应用,例如用于诊断系统及条件监控中可使其决策可靠性得到加强。神经网络常用学习技术为误差反向的传播技术,当网络含有足够多的隐藏结点、隐藏层与激励函数时,网络神经仅能实现所需映射,而对最优隐藏结点、层数及激励函数等进行选择的问题,一般是通过尝试法来解决的。反向传播的算法为最快的下降法,结点误差反馈到网络可用来调整权重,应用反向传播技术可快速得到非线性函数的近似值,对网络结点具有较大影响。
3.3 优化设计与故障诊断
电气工程中的电气设备设计是项复杂工作,需要应用到电磁场、电路及电机等有关学科知识,也需要运用经验知识。原来的产品设计一般是运用实验方法与经验手工方法,其所得方案并不是最优化的。可随着计算机技术的发展,电气工程产品设计已由手工方法转变为 CAD 设计,这有效减短了产品的开发周期,在此基础上引进智能化技术,可说为 CAD 设计添上了翅膀,使其设计质量与效率得到了更大提高。为进一步优化电气设计,当前正尝试在电气工程中应用专家系统,不过专家系统仍处于研究阶段,其应用于实际尚需进一步努力。我国的沈阳工业大学就研究了永磁同步的电动机专家系统,其他院校也都在积极开发设计专家系统,并获得了一定成效。智能化技术在优化设计方面的应用还体现在遗传算法上,遗传算法是种先进计算法,其计算精度高,在电气工程中十分常用,故作用不可忽视。在电气工程中,故障和它的征兆间具有错综复杂的关系,具有非线性与不确定的特点,应用智能化技术恰好发挥了它的优势。电气设备的故障诊断中应用的技术有神经网络、逻辑模糊与专家系统,在变压器、电动机与发电机等的故障诊断中,智能化诊断技术均得到了较为广泛的应用。
3.4 PLC 技术的应用
随着科学技术的发展,电力生产要求也越来越高,有些大型电力企业里的辅助系统,其继电控制器被 PLC 技术所代替。用 PLC 系统可实现辅助系统某工艺流程控制,并可协调整个企业的生产。在电力企业当中,其输煤系统由储煤、上煤、配煤与辅助系统等所构成,并通过现场传感器、主站层与远程的 I/O 站等组成输煤的控制系统,其中,主站层由 PLC 及人机接口所组成,设立在集控室里,集控室中以自动控制系统为主、手动控制为辅,并通过显示屏监视及控制系统,这大大提高了企业的生产效率。供电系统中应用 PLC 技术,有效实现了其自动切换,且实物元件被软继电器所取代,极大提高了供电系统的安全可靠性。
结束语
电气工程作为人类生产生活的重要组成部分,其生产自动化程度直接关系着电气工程的工作效率与安全性。在激烈的市场竞争下,在电气工程中应用智能化技术实现自动化控制,不仅能有效提高企业自身经济效益与竞争实力,还能将人类从繁重的劳动中解救出来,推动人类社会整体前进的步伐。
[参考文献]
[1]翟辉.浅谈人工智能在电气自动化控制中应用[J].科技创新导报,2009(27)
[2]郝俊华,李春丽.基于人工智能技术的电气自动化控制研究[J].中国新技术新产品,2012(9)
篇9
社会的快速进步和人们对生活质量的要求不断提高,都对智能化水平产生了迫切需要,从而节省宝贵的时间,提高生产力,也极大的方便了人们的生活,提高舒适度和生活质量。电气工程自动化的领域中若想进行改革,就需要人工智能的广泛参与,在此过程中,人工智能在电气工程自动化控制方面的优势也得到了极大的发挥,不仅促进了自动化的发展和创新,也推进了人工智能理论在自动化控制领域中的应用,并大量解决了以往的传统技术难以解决的问题。本文中所提到的人工智能主要包括一下三个方面,即思维能力、行为能力、感知能力,人工智能主要是由人们创造出来的机器、设备等传递出的智能化技术,为人们提供便捷服务、帮助计算机做辅助工作、为企业的电气设备做自动漏洞修复等,充分体现了电气工程自动化的优点和特征。
1人工智能概述
人工智能的概念早在1956年就以问世,并随着经济和科技的快速发展得到越来越多的关注和重视,形成了以计算机为主题,以自动化技术、控制论、信息论、生物学科、仿生学科、心理学科、语言学科、数理逻辑学科、哲学论、医学等为主要内容的综合性技术,以方便人们的生活和设备的生产力为主要目的。在人工智能领域中,其技术可以使研制的机器设备拥有与人类的大脑智力和思考过程相近或一部分规定的技能的系统,从而帮助人们去完成一些辅助工作,方便人们的生活,提高整体生产力。人工智能是主要用于开发和研究如何更好的延伸和模仿人类的智能的理论。作为计算机科学技术的新兴起的一个分支,人工智能技术更好的诠释了智能的本质,并在此基础上研究生产出一类具有部分或相近的人们的智能的机器或设备,现已研究出的领域较多并已开始广泛应用,其中主要包括:图像识别、语言识别、机器人、专家系统、自然语言处理分析等多种系统。电气工程自动化技术领域涉及面较宽,主要研究的是自动控制技术、系统运行技术、信息处理技术、电子技术、研制开发技术、信息处理技术、计算机与电子应用技术等。随着我国在自动化领域研究课题的不断增加和发展,人工智能技术已开始应用在人们生活中的方方面面。
2人工智能技术应用于电气工程的优点
人工智能技术较传统技术更不容易受到其他因素的影响。在电气工程中,传统的控制器在运行中非常容易受到不利因素的影响,而人工智能技术由于具有一定的智能,从而具有一定的自身调整能力,并具有自身修复和抗压能力,因此受其他因素的总体影响较小。人工智能技术具有操作简便,效率较高。近年来的研究显示,电气工程自动化中的人工智能技术的应用主要有三种方法,即模糊控制、神经网络控制、家电系统控制。这三种技术的应用使设备能够自动对开关量、模拟量等数据进行收集,并快速进行相应的处理,并将数据进行存档。另外,人工智能技术可以使设备具有良好的界面显示功能,并帮助使用者完整的了解电气设备的整体运行状态,同时,也使设备带有了自动报警功能,提示工作人员进行处理,而不需要时刻进行检测,节省了人力物力。
3电气工程自动化中人工智能的运用
人工智能是利用计算机技术去完成以往只能由人们去完成的技术,可以说是对以往仍能够操作的颠覆。人工智能随着应用的广泛已家喻户晓,不再陌生,也经常出现在寻常百姓家,其工作的原理也较为简单,主要是通过对人的智能和思考规律进行摸索总结,找到关键点,再对设备或机器安装程序,使其具有与人类相同的感知能力、思维能力以及行为能力,进而达到模仿甚至代替人类进行工作或操作某项活动的目的。随着电气工程自动化的快速发展,计算机在电气工程领域的应用越来越广泛,人工智能作为新兴的技术也开始投入到电气控制领域,在电气工程中帮助人类进行信息的采集、数据的处理以及信息的反馈等功能,实现电气工程领域中某些设备的自动化生产,另外,由于投入了人工智能设备,使人们可以根据需要来随时调整和控制其运行的程序参数,达到低成本、低人力投入的成本最小化初衷,并实现提高生产力,获得最高的经济效益的目标。目前,我国的电气工程自动化的许多环节中都应用了人工智能技术,并得到了良好成效。本文主要对人工智能在电气设备的控制、故障诊断两大方面具体描述人工智能在电气工程自动化中的运用。在电气工程自动化中,为了充分实现信息的传递、交换、数据处理和提高生产力,就需要使用人工智能来进行设备控制,从而降低人力、物力和财力的投入,增强设备的运行质量以及工作效率。例如:食品公司的一体化生产流水线,它从食品的材料压制磨碎,到食品的烘焙和制作,以及成品的分块、包装等,都充分利用计算机编程软件,使设备达到自动化运行的目的,在此过程中,设备可以根据固定的参数和定值对食品材料进行选择和城中,减少了人为失误,提高了生产效率。由此可见,人工智能在电气设备的控制中具有良好的应用前景。
4结束语
篇10
关键词:神经网络控制;模糊神经元控制;自适应控制
前言:
社会的进步要求生产力更加发达,要求人类的经济生活更加智能化,以节省宝贵的时间去做其它有益的事情。电气自动化控制领域的革新需要人工智能的大力支持,而人工智能在自动化控制方面的优势在这个领域也确实能够得到极大的发挥,促进自动化控制的发展进步。自动化的特征,表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化,因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。在将来,智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用。
一、人工智能控制器的概述
不同的人工智能控制通常用完全不同的方法去讨论。但AI 控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI 函数近似器比常规的函数估计器具有更多的优势,这些优势如下:
(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)
(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。例如:模糊逻辑控制器的上升时间比最优PID 控制器快1.5 倍,下降时间快3.5 倍,过冲更小。
(3)它们比古典控制器的调节容易。
(4)在没有必须专家知识时,通过响应数据也能设计它们。
(5)运用语言和响应信息可能设计它们。
(6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对具体对象必须具体设计。
(7) 它们对新数据或新信息具有很好的适应性。
(8)它们能解决常规方法不能解决的问题。
(9)它们具有很好的抗噪声干扰能力。
(10)它们的实现十分便宜,特别是使用最小配置时。
(11)它们很容易扩展和修改。
总而言之,当采用自适应模糊神经控制器,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置,自学习迅速,收敛快速。
二、人工智能在电气传动控制中的运用
1、人工智能在直流传动中的运用
(1)模糊逻辑控制应用
主要有两类模糊控制器,Mamdani 和Sugeno型。到目前为止只有Mamdani 模糊控制器用于调速控制系统中。限于篇幅这里不详细讨论其中的原因。值得注意的是这两种控制器都有规则库,它是一个if-then 模糊规则集。但Sugeno 控制器的典型规则是“如果x 是A,并且y 是B,那么Z=f(x,y)”。这里A 和B 是模糊集; Z=f (x,y)是x,y的函数,通常是输入变量x,y 的多项式。当f 是常数,就是零阶Sugeno 模型,因此Sugeno 是Mamdani 控制器的特例。
Mamdani 控制器由下面四个主要部分组成:
① 模糊化实现输入变量的测量、量化和模糊化。隶属函数有多种形式。
② 知识库由数据库和语言控制规则库组成。开发规则库的主要方法是:把专家的知识和经历用于应用和控制目标;建模操作器的控制行动;建模过程;使用自适应模糊控制器和人工神经网络推理机制。
③ 推理机是模糊控制器的核心,能模仿人的决策和推理模糊控制行为。
④ 反模糊化实现量化和反模糊化。有很多反模糊化技术,例如最大化反模糊化,中间平均技术等。
(2)ANNS 的应用
过去二十年,人工神经网络(ANNS)在模式识别和信号处理中得到广泛运用。由于ANNS 有一致性的非线性函数估计器,因此它也可有效的运用于电气传动控制领域,它们的优势是不需要被控系统的数学模型,一致性很好,对噪音不敏感。另外,由于ANNS 的并行结构,它很适合多传感器输入运用,比如在条件监控、诊断系统中能增强决策的可靠性,当然,最近电气传动朝着最小化传感器数量方向发展,但有时,多传感器可以减少系统对特殊传感器缺陷的敏感性,不需要过高的精度,也不需要复杂的信号处理。
误差反向传播技术是多层前馈ANN 最常用的学习技术。如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN 只能实现需要的映射,没有直接的技术选择最优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的最快下降法,输出结点的误差反馈回网络,用于权重调整,搜索最优。输出结点的权重调整迭代不同于隐藏结点的权重调整迭代。通过使用反向传播技术,能得到需要的非线性函数近似值,该算法包括有学习速率参数,对网络的特性有很大影响。
2、人工智能在交流传动中的应用
(1)模糊逻辑的应用
在大多数讨论模糊逻辑在交流传动中运用的文章中,都介绍的是用模糊控制器取代常规的速度调节器,可英国Aberdeen 大学开发的全数字高性能传动系统中有多个模糊控制器,这些模糊控制器不仅用来取代常规的PI 或PID 控制器,同时也用于其他任务。该大学还把模糊神经控制器用于各种全数字高动态性能传动系统开发中。也有一些优秀的文章论述运用模糊逻辑控制感应电机的磁通和力矩。它的输入标定因子是变化的。实验结果也验证了所提方案的有效性。该系统中模糊速度控制器与常规的PI 速度控制器和CRPWM塑变器一起使用,它往往用来补偿可能的惯性和负载转矩的扰动。
(2) 神经网络的应用
现如今,有大量文章讨论神经网络在交流电机和驱动系统的条件监测和诊断中的运用。介绍了使用常规反向转波算法的ANN 用于步进电机控制算法的最优化。该方案使用实验数据,根据负载转矩和初始速度来确定最大可观测速度增量。这就需要ANN 学习三维图形映射。该系统与常规控制算法(梯形控制法)相比具有更好的性能,并且大大减少了定位时间,对负载转矩的大范围变化和非初始速度也有满意的控制效果。ANNS 的结构是多层前馈型,运用常规反向传播学习算法。该系统由两个子系统构成,一个系统通过电气动态参数的辩识自适应控制定子电流,另一个系统通过对机电系统参数的辩识自适应控制转子速度。
最后值得指出的是现在发表的大多数有关ANN 对各种电机参数估计的论文,一个共同的特点是,它们都是用多层前馈ANNS,用常规反向传播算法,只是学习算法的模型不同或被估计的参数不同。
三、结束语
总之,电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术所替代。
参考文献:
【1】陆伟民. 人工智能技术及应用[M ]. 上海: 同济大学出版社,1998 .
- 上一篇:村级阵地建设工作总结
- 下一篇:工艺美术的起源与发展