农田重金属污染现状范文

时间:2023-12-18 17:42:05

导语:如何才能写好一篇农田重金属污染现状,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

农田重金属污染现状

篇1

【关键词】农田重金属污染;生物修复

0 前言

近年来,我国食品安全形式非常严峻,有一部分原因就是农田遭到污染,尤其是重金属污染。据报道,目前我国受砷、铬、铅等重金属污染的耕地而积近2000万平方千米,约占总耕地而积的20%;其中工业“三废”污染耕地1000万平方千米,污水灌溉达330多万平方千米。重金属不能被土壤微生物所分解,易在土壤中蓄积或转化为毒性更大的化合物。土壤重金属污染的特点为长期累积效应、隐蔽性、不可逆性和一定的交互作用。土壤受重金属污染后,影响农作物并通过食物链等影响人体健康,造成中毒危害。另据国土资源部的最新调查显示:每年我国约有1200万吨粮食被重金属所污染,这些粮食足够养活4000万左右的人口,并且这种污染问题日益严重。因此,对农田重金属污染的治理显得尤为迫切。当前,土壤重金属污染的治理方法主要有工程措施、物理化学方法、化学修复方法、以及生物修复方法。本文将重点介绍生物修复法在农田重金属污染治理中的研究进展,同时对生物修复法治理农田重金属污染的研究前景进行展望。

1 简介

生物修复法是指利用生物的生命代谢活动降低环境中有毒有害物质的浓度或使其完全无害,从而使污染的土壤局部地或完全地恢复到原始状态。其优点有:成本低、不破坏土壤生态环境、可以回收再利用贵金属、造成二次污染机会较少。缺点有:周期长、一种植物一般只能提取一种或者几种重金属、而植物固定只是将重金属暂时固定,如果土壤环境发生变化,重金属的毒性作用还有可能再次出现[1]。

2 生物修复法的分类

生物修复作用治理农田重金属污染方法可以分为动物修复法、植物修复法以及微生物修复法。它们有着不同的优缺点。因此,在利用生物技术处理重金属污染时,要结合当地实际,因地制宜,才能达到预期效果。

2.1 动物修复

动物修复是指土壤动物群通过直接的吸收、转化和分解或间接的改善土壤理化性质,提高土壤肥力,促进植物和微生物的生长等作用而修复土壤污染的过程。有关动物修复的研究报道较少,主要集中在有机物和农药污染土壤的修复(如利用蚯蚓等修复)和富营养化水体的修复(如利用滤食性贝类、棘皮动物、河蟹等修复),对重金属污染土壤的动物修复机理仍处于探索阶段[2]。

2.2 微生物修复

利用土壤微生物的蓄积和降解作用来治理土壤重金属污染是一种高效的途径。国内外许多研究己证明,菌根在修复遭受重金属污染的土壤方面发挥着特殊的作用,他们减轻了植物在重金属污染的土壤中的受害程度[3]。

土壤重金属污染的微生物修复是利用微生物的生物活性对重金属的亲和吸附或转化为低毒产物,从而降低重金属的污染程度[4]。利用微生物(藻类、细菌和酵母等)来减轻或消除重金属污染,虽然微生物不能降解和破坏重金属,但是可以通过改变它们的物理或化学特性而影响金属在环境中的迁移和转化。其修复机理包括表面生物大分子吸收转运、细胞代谢、空泡吞饮、生物吸附和氧化还原反应等。微生物对上壤中重金属活性的影响主要体现在以下几个方面:①溶解和沉淀作用;②生物吸附和富集作用;③氧化还原作用。微生物修复技术种类繁多,可进行异位修复、原位修复以及原位/异位联合修复。其中,原位修复操作简单,对原有的土壤环境破坏程度低。微生物修复受各种环境因素的影响较大,氧气、pH、温度、水分等均可影响微生物活性进而影响修复效果,其田间试验效果不是非常理想。因此,为降解菌提供适宜条件以促进其生长繁殖至关重要,这也是今后研究的重点。

2.3 植物修复

植物修复技术是指通过植物自身及共存微生物体系,修复和消除由无机废弃物和有机毒物造成的土壤环境污染的一种技术。

我国野生植物资源丰富,生长在天然的污染环境中的耐重金属植物和野生超积累植物数不胜数。因此开发与利用这些野生植物资源对植物修复的意义十分重大。有关资料表明,大量植物对重金属Cr,Cd,Co,Pb,Ni,Cu,Zn等有很强的吸收积累能力。比如国内有人利用白菜修复重金属污染土壤,如丛孚奇等将白菜用于钥矿区重金属污染土壤的修复研究,结果表明磷酸氢二钠一柠檬酸缓冲溶液能显著提高白菜的地上部富集土壤中重金属元素的能力。李玉双[5]等以沈阳张士灌区重金属污染上壤为修复对象,采用盆栽试验,研究了乙二胺四乙酸(EDTA)对白菜富集重金属及其生长状况的影响。结果表明,EDTA能够提高白菜对上壤中Cu,Cd,Pd 和Zn的植物提取效率。

但是,由于超富集植物一般只能积累某些重金属元素,植物物种的选取受到不同地理气候条件的限制,同时富集植物和超富集植物生物量一般较少,生长速度慢,积累效率低。所以,利用野生抗性植物进行重金属污染土壤的治理还未取得理想结果。这就需要相关科研人员做进一步深入的研究,以求早日获得生长周期短,能吸附多种重金属,积累效率高的重金属富集吸收植物。

2.4 综合修复技术

由于每个地区的污染物来源不同造成各地污染情况有很大的差异。只用一种修复技术往很难达到目标。因此,开发复合修复方法成为土壤重金属污染修复的主要研究方向[6]。现今开始投入应用的复合修复技术的主要类型有动物/植物联合修复、化学/物化一生物联合修复以及植物/微生物联合修复。

3 展望

生物修复技术治理重金属污染土壤以其低成本、高效率、适用范围广和无二次污染等优点已成为重金属污染农田土壤治理中的一个全新研究领域和国内外有关学者研究的热点之一。但是由于其起步晚,难度大,其大部分研究还处于实验室阶段,尚不能有效地应用于重金属农田污染的治理中去,但随着不同学科(遗传学、土壤学、生态学、化学、生理学、环境保护学和生物工程)的相互配合。我们相信该技术会日趋成熟,并且为重金属污染农田的治理贡献出巨大的力量。

【参考文献】

[1]肖鹏飞,等.土壤重金属污染及其植物修复研究[J].辽宁大学学报:自然科学版,2004,31(3):279-283.

[2]李宇飞.土壤重金属污染的生物修复技术[J].环境科学与技术,2001.34(12H):148-151.

[3]王真辉.农田土壤重金属污染及其生物修复技术[J].海南大学学报:自然科学版,2002,12:386-387.

[4]阎晓明,何金柱.重金属污染上壤的微生物修复机理及研究进展[J].安徽农业科学,2002,30(6):877-879,883.

篇2

关键词:滨海新区;重金属;土壤污染;综合评价

中图分类号:X53 文献标识码:A DOI 编码:10.3969/j.issn.1006-6500.2014.05.013

土壤环境的安全问题是农业生态环境安全的核心,土壤污染与防治已成为环境科学和土壤科学共同关注的热点[1]。土壤重金属污染具有潜伏性、滞留时间长、移动性差等特点,从遭受污染到产生后果有一个逐步积累的过程,因此,对于土壤重金属污染的监测已成为农业环境保护的重要内容之一。分析监测土壤重金属元素的含量变化和分布特征,可为调控土壤重金属的活性与毒性、制定合理的控制标准及选择修复技术提供必要的理论依据[2-4]。天津市滨海新区原来是农业区,自20世纪80年代以来,郊区开始出现较大规模的企业,其产生的废水、固体废弃物数量明显增加,污水排放及工业固体废弃物的扩散,导致水环境不断恶化。地下水污染、污水灌溉及碱渣扩散也使得污染物直接或间接进入土壤,影响到土壤环境质量,成为该地区土壤污染的主要原因之一[5-7]。近年来,随着滨海新区的快速发展,土地利用转型使得原有的土壤污染压力得到一定的缓解,但现有的基本农田中依旧存在污染的风险。因而,系统地开展农田重金属污染状况的调查具有重要的理论和实际意义。目前,在滨海新区的环境监测部门中,针对大气、水体和固废的监测已积累了丰富的资料,而对于土壤污染的数据还相对较少。所以,适时地补充该地区土壤中污染物含量与分布的信息显得十分必要。本研究以滨海新区现有的部分基本农田、果园、菜地和湿地土壤为研究对象,拟通过分析土壤中重金属含量,了解其主要污染物的分布特征,以期为正确认识该地区的土壤环境现状提供必要的科学依据。

1 材料和方法

1.1 样品采集

按照土壤的利用现状选择了农田、蔬菜地、果园及湿地4种类型的土壤。土样采集于2009年8月,采样点分布如图1所示。采集0~20 cm的表层土壤样品,自然风干后磨细,过0.25 mm土壤筛。土壤理化性质参见文献[8-10]。不同土壤样品的pH值分布为:农田土壤中6.5~7.5之间和>7.5的样品各占50%;菜地土壤均为6.5~7.5之间;果园土壤均>7.5;湿地土壤90%为6.5~7.5之间,10%为>7.5,并以此作为选择土壤环境质量评价标准的依据。

1.2 测定方法

土壤中重金属Cu、Zn、Pb、Cd、As、Hg、Cr、Ni全量的分析测定按照《土壤环境质量标准》(GB l5618―1995)[11]和《土壤环境监测技术规范》(HJ/T 166―2004)[12]规定的步骤进行。所用试剂均为优级纯或分析纯。土壤中铜、锌、镍、铅、镉、铬采用盐酸―硝酸―氢氟酸―高氯酸体系消解,原子吸收及分光光度法测定;土壤总砷和汞采用硝酸―高氯酸消解,原子荧光光度法。

1.3 土壤污染评价因子及方法

研究区土壤为城郊土壤,根据国家标准《农产品安全质量:无公害蔬菜产地环境要求》(GB/T 18407.1―2001)[13]、土壤环境质量标准(GB 15618―1995)[11],选取国标中的8种元素(Cu,Zn,Pb,Cd,As,Hg,Cr和Ni)作为评价因子。评价方法采用单项污染指数和Nemerow综合污染指数法[14]。依据土壤样本pH值测定结果,标准限值采用土壤二级指标中相应的pH值要求(pH 6.5~7.5及>7.5的数值),农田和蔬菜地以农田的标准比对,果园土壤采用对应的果园标准,湿地土壤采用国家标准中相近的稻田土壤标准进行比较。土壤污染等级划分参照夏家淇[15]及姜芝萍[16]报道的方法。

2 结果与分析

2.1 不同土地利用方式土壤重金属分布特征

天津市滨海新区不同利用状况下土壤中8种元素含量测定结果如表1所示。由表1可以看出,研究区域内土壤重金属含量较天津土壤重金属背景值[17]有明显的增加,Cu、Zn、Pb、As、Hg、Ni的测定平均值分别为背景值的2.19,2.30,2.39,1.66,12.46,2.47倍,Hg的增加量最大;Cd和Cr为背景值的0.87和0.99倍,与背景值相当。

2.1.1 土壤中Cu含量变化 在4种土地利用类型中,农田土壤中铜含量的平均值达到50.10 mg・kg-1,菜园土壤中为58.59 mg・kg-1,果园土壤中为71.33 mg・kg-1,湿地土壤中为53.90 mg・kg-1。不同土地利用方式的土壤Cu含量变化如图2所示。由图2可以看出,农田和湿地土壤中不同采样点之间差异较大,而在蔬菜地之间差异较小,果园土壤中总体上大于其他类型的土壤。湿地中的S19样点含量最高,达到128.83 mg・kg-1,这与其处于碱渣堆附近的位置有关。农田采样点中的S5~S7和湿地中的S25及S26的铜含量相对较低。

2.1.2 不同土地利用方式土壤Zn含量变化 不同利用类型土壤中,农田土壤中锌含量的平均值达到104.3 mg・kg-1,菜园土壤中为160.1 mg・kg-1,果园土壤中为127.0 mg・kg-1,湿地土壤中为156.6 mg・kg-1。不同土地利用方式的土壤锌含量变化如图3所示。由图3可以看出,农田中除S3和S4样点含量较高外,其他样点集中在80 mg・kg-1上下;5个菜地土样的总体含量较高,含量分布在142.87~182.26 mg・kg-1之间;2个果园土壤中锌含量分别为109.5~144.5 mg・kg-1,显著低于菜园土壤中的含量;10个湿地土壤中含量差异较大,含量在106.1~247.4 mg・kg-1之间,其中S19样点的含量最高。

2.1.3 不同土地利用方式土壤Pb含量 不同土地利用方式的土壤铅含量变化如图4所示。由图4可以看出,农田土壤中的平均值达到29.71 mg・kg-1,但S3和S4样点的含量显著高于于其他样点;菜园土壤中平均为49.23 mg・kg-1,各采样点的铅含量在40.15~53.74 mg・kg-1之间,总体上含量较高;果园土壤中为35.14 mg・kg-1,尽管2个样点分布在海河南北,但二者之间差别较小;湿地土壤中平均为44.01 mg・kg-1,除S17和S19样点的铅含量达到73.84和85.67 mg・kg-1外,其他点的含量均在20.08~49.35 mg・kg-1之间。

2.1.4 不同土地利用方式土壤Cd含量 不同土地利用方式中土壤镉含量变化如图5所示。由图5可以看出,农田土壤中的平均值达到0.086 mg・kg-1,菜园土壤中为0.325 mg・kg-1,果园土壤中为0.131 mg・kg-1,湿地土壤中为0.137 mg・kg-1。在全部25个采样点中,镉含量在0.060~0.336 mg・kg-1之间,平均值为0.139 mg・kg-1,低于天津市土壤镉背景值(0.16 mg・kg-1)。农田土壤的含量均较低,菜园土壤中有4个样点超出背景值且含量较高(在0.228~0.303 mg・kg-1之间)、果园和湿地土壤中,除S19样点含量较高外(0.336 mg・kg-1),其他样点均低于土壤背景值。

2.1.5 不同土地利用方式土壤As含量 不同土地利用方式的土壤砷含量变化如图6所示。在4种土地利用类型中,农田土壤中的砷含量平均值为14.97 mg・kg-1,菜园土壤为15.92 mg・kg-1,果园土壤为13.54 mg・kg-1,湿地土壤的砷含量最高,达到18.36 mg・kg-1,但除S19样点含量较高(31.51 mg・kg-1)外,其他样点在11.71~20.51 mg・kg-1之间。总体上看,土壤砷含量分布比较均匀,但超出了土壤背景值。

2.1.6 不同土地利用方式土壤Hg含量 不同土地利用方式的土壤汞含量变化如图7所示。在4种土地利用类型中,农田土壤中Hg含量平均值为0.360 mg・kg-1,菜园土壤的砷含量为0.707 mg・kg-1,果园土壤为0.271 mg・kg-1,湿地土壤的砷含量最高,达到0.768 mg・kg-1。由图7可以看出,农田超出背景值的有3个样点,菜园和果园中超出背景值的有4个样点,而在湿地土壤中,90%的样点超出背景值,表明湿地土壤中汞的累积比较显著。

2.1.7 不同土地利用方式土壤Cr含量 不同土地利用方式的土壤铬含量变化如图8所示。4种不同土地利用类型中,菜园土壤中铬的平均浓度最高,达到75.26 mg・kg-1,其次为农田73.24 mg・kg-1,果园土壤中为71.06 mg・kg-1, 湿地土壤中为69.22 mg・kg-1。在25个样点中铬含量超出背景值的点占38.5%,但总体的平均值为71.86 mg・kg-1,低于背景值72.65 mg・kg-1,不同样点之间的Cr含量分布比较均匀。

2.1.8 不同土地利用方式土壤Ni含量 不同土地利用方式的土壤镍含量变化如图9所示。4种土地利用类型中,菜地土壤的镍含量平均浓度达到最高76.10 mg・kg-1,其次为湿地土壤71.90 mg・kg-1,农田和果园土壤含量分别为59.36 mg・kg-1和50.28 mg・kg-1。与天津市土壤背景值比较,在供试的25个土样中Ni含量均远远超出背景值,反映出土壤Ni含量的变化是影响该区土壤环境质量的要素之一。与其他元素类似,在农田中的S3~S4样点、菜地中的S10~S13样点及湿地中的S17~S25样点检出的Ni含量显著高于其他样点,反映出其污染途径具有相似性。

2.2 土壤环境质量状况评价

以国家土壤环境质量标准为基础,通过计算单项污染指数和Nemerow综合污染指数,得出滨海新区不同土地利用方式下不同重金属对土壤环境质量的影响现状(表2)。依据土壤样本pH值测定结果,标准限值采用土壤二级指标值,农田和蔬菜地以农田的标准比对,果园土壤采用对应的果园标准,湿地土壤采用国家标准中相近的稻田土壤标准进行比较。

从单项污染指数来看,采样区的25个土壤样本中Cu、Zn、Pb及Cr的Pi值均小于1,表现为清洁;除湿地土壤中S19样品外,Cd和As在其他24个样本中也达到清洁水平。样品S19的PCd和PAs分别为1.121及1.260,属于轻度污染,这与该采样点位于过去的晒盐场地附近有关。Hg和Ni是该地区污染率较高的元素,在25个样本中有16个达到轻度以上的污染水平,污染率均为64%,其中S19的Hg污染达到中度污染水平,表明该地区的Hg和Ni存在较大的污染风险,并且Hg和Ni的污染分布具有同步性。从不同利用类型土壤中的分布来看,农田的轻度污染率为37.5%,蔬菜地为80%,果园属于清洁,湿地土壤中为90%。分析其污染的原因,Hg和Ni污染与该地区污水中Hg和Ni排放有密切关系。湿地土壤主要分布在盐场、河口区域,排污河及海河水质污染是导致超标的主要原因。蔬菜地灌溉量大,灌溉水污染可导致土壤中累积量增大。从样点分布看,农田中的S3和S4、菜地中的S10~S13均分布在海河附近,所以存在较大的污染风险。

从综合污染指数看,25个样本中8%属于轻度污染,包括菜园土壤S10和湿地土壤S19;综合指数超过警戒级阈值(>0.7)的样本数占52%,包括了农田中的S3和S4样本,菜地土壤中的S11~S13,湿地土壤中的S17、S20~S26样本;样本中达到安全级别的占40%,以农田和果园土壤为主。

3 结论与讨论

土壤重金属的来源受成土母质、气候、人类活动等多种因素的影响,不同地区、不同种类的土壤、特别是人类活动较为频繁、容易受到扰动和污染的各种农用土地[18]。在针对土壤环境问题的研究和管理过程中,我国相继公布了土壤元素背景值和土壤环境质量标准,确定了Cu、Zn、Pb、Cd、As、Hg、Cr及Ni等8种重金属和类金属元素的含量限值,为土壤污染评估提供了必要的判别参考依据。由试验结果可知,除Cd和Cr外,其他元素的平均值均超出公布的天津市土壤元素背景值,其原因一方面与这些元素在土壤中的现存浓度或许较30年前有所增加有关,另一方面也与当年背景值测定时选取的采样地点和土壤类型有关。本研究主要是以滨海新区的土壤为研究对象,而背景值可能包括天津市较大的土壤范围,其土壤类型会有一定差别,因此,利用背景值仅仅是一种评估污染状况时的参考,而更主要的是以国家土壤环境质量标准为依据。

在监测的数据中,滨海新区不同类型土壤中Hg和Ni存在较大的污染风险,在25个样本中的污染率均为64%,污染分布具有同步性,并且主要分布在菜地和湿地土壤中。这一现象或许与人为活动导致的水污染有一定关系。在滨海新区特定的土壤环境下,其土壤以砂质为主,土层薄,导致水与土壤交换过程加剧,海河水系带入的污染物及过去晒盐过程引起的水与土壤中物质交换增加也许是其土壤中Hg和Ni元素积累量变化的重要原因。同时土地利用类型对土壤重金属含量分布的影响具有一定差异,农田的轻度污染率为37.5%,蔬菜地为80%,果园属于清洁,湿地土壤中为90%。综合污染指数评价的结果表明,25个样本中8%属于轻度污染,超过警戒级阈值的样本数占52%,达到安全级别的样本占40%。总体上表现为农田和果园土壤比较清洁,而蔬菜地和湿地土壤中存在一定的污染风险。

关于土壤污染状况的评估问题,目前学者们也有新的认识和共识,污染物在土壤中的含量(总量)高低不仅仅是判别土壤是否被污染的唯一依据,而要结合污染物受体是否产生危害及危害性的大小进行全面评估[19-20]。生物是土壤中的主要受体,污染物是否对生物产生毒害效应也需要结合土壤中污染物的存在形态、生物的蓄积量和毒性表现形式等多方面因素综合评判[21-22]。因此,监测土壤中重金属的现存量对于评价土壤可能存在的环境污染风险具有一定的意义。依据土壤环境质量标准的限值可知,其超标量越大则污染的风险亦越大。

参考文献:

[1] 中国科学院农业领域战略研究组. 中国至2050年农业科技发展路线图[M]. 北京:科学出版社, 2009.

[2] 罗金发, 孟维奇, 夏增禄. 土壤重金属(锡,铅,铜)化学形态的地理分异研究[J]. 地理研究, 1998, 17(3): 265-272.

[3] 王家兵. 天津城市发展中的若干环境地质问题[J]. 地质调查与研究, 2004, 27(3): 164-168.

[4] 周启星, . 我国农业土壤质量基准建立的方法体系研究[J]. 应用基础与工程科学学报, 2012, 20(S1): 38-44.

[5] 马兴, 胡万里, 邵德智, 等. 海河塘沽段水污染指数变化及其原因分析[J]. 水资源与水工程学报, 2008, 19(1): 69-76.

[6] 陈霞. 塘沽区污水资源化利用对策研究[D]. 杨凌:西北农林科技大学, 2007.

[7] 刘新菊. 用循环经济理念促进工业固体废物资源化[D]. 杨凌:西北农林科技大学, 2008.

[8] 杜微, 曲东, 王静, 等. 天津滨海新区不同土壤的生物学性状及土壤质量评价[J]. 西北农业学报, 2011, 20(4): 200-206.

[9] 马文梅, 王静, 曲东, 等. 天津市塘沽区不同土地利用状况下土壤盐分变化特征[J]. 西北农业学报, 2011, 20(12): 152-157.

[10] 杜微. 天津市塘沽区不同利用类型土壤生物学特征及其土壤质量变化研究[D]. 杨凌:西北农林科技大学, 2011.

[11] 国家环境保护部, 国家技术监督局. GB 15618―1995 土壤环境质量标准[S]. 北京: 中国标准出版社, 1995.

[12] 国家环境保护部. HJ/T 166―2004 土壤环境监测技术规范[S]. 北京: 中国环境出版社, 2004.

[13] 国家质量监督检验检疫总局. GB/T 18407.1―2001农产品安全质量蔬菜产地环境要求[S]. 北京: 中国标准出版社, 2001.

[14] 丁桑岚. 环境评价概论[M]. 北京: 化学工业出版社, 2001.

[15] 夏家淇. 土壤环境质量标准详解[M]. 北京: 中国环境科学出版社, 1996.

[16] 姜芝萍, 杨俊衡. 城市重点污染区土壤重金属污染评价标准探讨[J]. 安全与环境工程, 2010, 17(1): 57-60,64.

[17] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.

[18] 郑袁明, 陈同斌, 郑国砥, 等. 北京市不同土地利用方式下土壤铜的积累及其污染风险[J]. 自然资源学报, 2005, 20(5): 690-696.

[19] 宋玉芳, 周启星, 宋雪英, 等. 土壤整体质量的生态毒性评价[J]. 环境科学, 2005, 26(1): 130-134.

[20] 夏家淇, 骆永明. 关于土壤污染的概念和3 类评价指标的探讨[J]. 生态与农村环境学报, 2006, 22(1): 87-90.