重金属污染的影响范文
时间:2023-12-18 17:41:07
导语:如何才能写好一篇重金属污染的影响,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
中图分类号:TE08文献标识码: A
重金属污染时指由重金属及其化合物引起的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。重金属的污染主要来源工业污染,其次是交通污染和生活垃圾污染。工业污染大多通过废渣、废水、废气排入环境,在人和动物、植物中富集,从而对环境和人的健康造成很大的危害。
重金属污染物是一类典型的优先控制污染物。环境中的重金属污染与危害决定于重金属在环境中的含量分布、化学特征、环境化学行为、迁移转化及重金属对生物的毒性。重金属污染与其他有机化合物的污染不同,不少有机化合物可以通过自然界本身物理的、化学的或生物的净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解。目前中国由于在重金属的开采、冶炼、加工过程中,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤引起严重的环境污染。对人体毒害最大的重金属有5种:铅、汞、砷、镉、铭。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物。以各种化学状态或化学形态存在的重金属,在进入环境或生态系统后就会存留、积累和迁移,造成危害。如随废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,被鱼和贝的体表吸附,产生食物链浓缩,从而造成公害。如日本的水俣病,就是因为烧碱制造工业排放的废水中含有汞,在经生物作用变成有机汞后造成的;又如痛痛病,是由炼锌工业和镉电镀工业所排放的镉所致。汽车尾气排放的铅经大气扩散等过程进入环境中,造成目前地表铅的浓度已有显著提高,致使近代人体内铅的吸收量比原始人增加了约100倍,损害了人体健康。
重金属污染在环境中难以降解,能在动物和植物体内积累,通过食物链逐步富集,浓度成千上万甚至上百万倍的增加,最后进入人体造成危害,是危害人类最大的污染物之一。国际上,许多废弃物都因含有重金属元素被列到国家危险废物名录,近些年随着我国工农业生产的快速发展,我国出现了重金属污染频发、常发的状况。2010 年4月至6月,浙江省政协组织成立调研组,通过召集省有关单位负责人座谈,向社会公众征集意见建议,并赴杭州、台州及所辖的路桥、温岭等部分县(市、区)进行实地调研,全面了解食品药品安全情况。调研结果显示,在浙北、浙中、浙东沿海三个区域中,城郊传统的蔬菜基地、部分基本农田都受到了较严重的影响。工业“三废”及城市生活污染物排放,引起重金属污染农田。调研组有关负责人表示,这些城郊重金属对土壤的污染,主要是近十多年造成的,主要是人为的污染,这会直接威胁到百姓的生命健康。2011年3月中旬,在浙江台州市路桥区峰江街道,一座建在居民区中央的“台州市速起蓄电池有限公司”(以下简称“速起蓄电池公司”)被曝出其引起的铅污染已致使当地168名村民血铅超标。由于重金属污染事件在我国频繁发生,使得我国开始重视重金属污染的治理。
常见的重金属土壤治理的方法包括化学法、生物法、物理法、热力学方法等,每种方法又包含不同的技术,每种技术又可以采用不同的施工方案实施。化学法主要通过将重金属污染土壤与化学稳定剂混合来实现重金属的稳定化,而石灰等稳定剂通常不能有长期的治理效果,分子键合是目前业界关注的一种以长期稳定性为特点的修复药剂。生物法一般有植物修复和微生物修复等。植物修复通过超积累植物吸收土壤中的重金属,比较安全但是修复周期长;微生物修复通过土壤中微生物降解重金属,但是影响修复效果的因素较多,目前应用较少。热力学方法可以通过高温来使重金属玻璃化,但是成本很高。
篇2
关键词:润草1号;镉胁迫;生理生化指标
中图分类号:Q945 文献标识码:A 文章编号:0439-8114(2016)19-4952-04
DOI:10.14088/ki.issn0439-8114.2016.19.013
Abstract:Nourishing Grass 1 is a new type of lawn grass bred in 2012. The method of pot experiment,effects of heavy metal cadmium in soil on physiological and biochemical indexes of Nourishing Grass 1 were studied. The results showed that,with the increase of the concentration of heavy metal cadmium solution,free proline content and chlorophyll content of Nourishing Grass 1 were increased first and then decreased,but the vitality of root system was gradually decreased,cell membrane permeability was gradually increased.
Key words:Nourishing Grass 1;cadmium stress;physiological and biochemical indexes
润草1号是一种新型的草坪草品种,于2012年由江苏农林职业技术学院培育而成。润草1号属于低矮型草种,坪用性状优良。润草1号具有较强的耐荫、耐热性能,抗倒伏和抗病能力强,适宜南方地区露地栽培,是中国草坪绿化常用的草坪植物之一,主要用于观赏草坪的建植,对于降低环境污染、城市绿化及美化起着非常重要的作用。
重金属镉不是植物生长所必需的营养元素,对环境造成的污染和危害大。越来越多的重金属镉,随着工业和交通不断地发展,被释放到了人们赖以生存的环境中,并大量地积累在土壤中。土壤被重金属镉污染后,不仅会造成土壤的质量下降、使土壤丧失正常的功能,还会毒害生长的植物,进而给人类身体健康带来危害。在南方地区的土壤中,重金属镉是最常见的污染元素,其含量在土壤中已超过正常值的3~4倍[1]。土壤中重金属镉污染可以利用草坪来修复,不仅净化了土壤,而且对人类的生产、生活条件和环境条件都产生了有益的影响。本试验通过研究土壤中不同浓度重金属镉对润草1号生理生化指标的影响,以期为重金属污染地区的土壤中重金属含量标准的制定、草坪绿地建设规划提供有利的参考。
1 材料与方法
1.1 供试材料
试验所用的材料为润草1号,由江苏农林职业技术学院提供。盆栽土壤取自江苏农林职业技术学院花房土质较好的表层土壤,测得pH为7.2,土壤重金属镉含量为0.056 g/kg。重金属镉添加形式为3CdSO4・8H2O,分析纯。
1.2 试验设计
于2014年9月15日,将供试土壤充分粉碎后过0.5 cm筛,再将作基肥的5%草炭按1∶3的体积比拌入供试土壤中,充分混合。将混合后的土壤称重5.5 kg,分别装入20只塑料花盆中,其中所用花盆的上口直径、下口直径和高分别为25.8、16.3、22.5 cm。试验时以不使用重金属镉的处理作为对照,重金属镉的胁迫浓度分别设定为5、20、50、100 mg/kg(不含背景值,重金属镉的胁迫浓度以Cd2+计),每次处理重复4次。
按照设定的重金属镉的胁迫浓度,在每只花盆中添加4种不同浓度的重金属镉溶液各1 000 mL,每天喷施清水100 mL。平衡14 d后,播种用蒸馏水浸泡24 h的润草1号种子,播种量为每盆中300粒,保持土壤含水量为田间最大持水量的70%。种植1个月后,分别取样分析。
1.3 测定方法
生理生化指标的测定按照张治安[2]的方法,叶绿素采用95%乙醇提取,UV-2100型紫外/可见分光光度计测定;根系活力测定采用氯化三苯基四氮唑(TTC)法;细胞膜透性测定采用电导法,使用DDS-12AW型电导仪测定;游离脯氨酸采用磺基水杨酸提取法测定。
2 结果与分析
2.1 重金属镉胁迫对根系活力的影响
根系不仅是植物吸收水分、矿物质营养的主要器官,也是合成氨基酸、激素等物质的重要部位,同时合成并输送感受外界刺激的信息物质。根系的生长状况和活力对于地上部的营养、生长和最终产量的形成至关重要。根系活力是指植物根系自身具有的合成、吸收、还原及氧化能力等,可以用来衡量植物根系长势优劣和标示植物生长情况的重要生理指标。根系活力大小反映了植物根系代谢强度的大小。如果根系活力越大,则表明根系组织的代谢能力越强,根系长得越粗壮,这对整个植株的生长发育是十分有利的[3]。从图1可以看出,不同浓度重金属镉处理后,润草1号的根系活力低于对照组,随着重金属镉浓度的逐浙增大,根系活力表现为逐渐降低。当重金属镉浓度小于5 mg/kg时,根系活力是与对照组相近的,这说明该浓度对润草1号的影响很小。重金属镉胁迫使根系活力降低,可能是由于较强的呼吸代谢作用导致了润草1号过多地消耗了能量,进而抑制了润草1号的生长发育。
2.2 重金属镉胁迫对细胞膜透性的影响
生物体内的细胞膜是一种具有选择性的半透膜,对细胞内外物质的运输和交换起着重要的调节和控制作用。外界环境对细胞产生胁迫时最敏感的部位是细胞膜,细胞膜透性的改变或丧失都是因为细胞受到各种逆境伤害引起的。因此,在植物抗逆性研究中常把细胞膜透性作为重要的生理指标。从表1可以看出,不同浓度重金属镉处理后,润草1号的电导率都比对照有所增加。在5、20 mg/kg时细胞膜透性变化较小,对润草1号影响较小。当重金属镉浓度达到50 mg/kg时,细胞膜透性明显增大。由伤害率可以看出,随着重金属镉浓度增大,伤害率逐渐增加。重金属镉浓度为100 mg/kg时,对润草1号的伤害率最大,达到29.56%,对润草1号影响明显。
2.3 重金属镉胁迫对脯氨酸含量的影响
脯氨酸是一种水溶性最大的氨基酸,也是一种小分子渗透物质。脯氨酸可以调节植物细胞的渗透平衡,提高植物细胞结构的稳定性[4],并能有效地阻止植物细胞内氧自由基的产生,以缓解或修复逆境对其造成的伤害。因此,游离脯氨酸的含量可以作为润草1号对重金属镉胁迫的一个重要生理生化指标。从图2可以看出,不同浓度重金属镉处理后,润草1号的游离脯氨酸含量随重金属镉浓度增大呈先升高后降低的变化。重金属镉浓度为5 mg/kg时升高较小,对润草1号影响很小。重金属镉浓度为50 mg/kg时达到最大值,是对照组的3.02倍,因此对润草1号影响明显。
2.4 重金属镉胁迫对叶绿素含量的影响
植物体内的叶绿素是植物进行光合作用的重要物质基础,叶绿素含量和叶绿素a/b是衡量植物叶片长势如何的重要指标[4]。在逆境胁迫下,植物体内叶绿素含量的多少说明了植物抗逆境胁迫能力的大小,因此,叶绿素含量可以作为植物抗逆境胁迫程度的重要生理指标[5]。不同浓度的重金属镉处理后,润草1号叶片内所含的光合色素含量发生了明显变化。从表2中可以看出,润草1号的叶片内所含的叶绿素总量、叶绿素a/b、叶绿素a、叶绿素b以及类胡罗卜素均随着重金属镉浓度的增加而呈先升高后降低的变化趋势,且当浓度为20 mg/kg 时均达到了最大值。类胡萝卜素含量的增幅分别为各处理后对照组的13.79%、24.14%、-8.62%和 -17.24%,叶绿素总量的增幅分别为各处理后对照组的2.29%、11.43%、-3.71%和-10.29%,这说明不同浓度的重金属镉处理后,润草1号的适应机理存在显著差异,造成润草1号的类胡萝卜素含量和叶绿素总量的不同。
3 小结与讨论
植物根系是活跃的吸收器官和合成器官。当重金属污染土壤时,首先是植物的根系受到伤害,其主要表现为植物主动吸收能力的降低和根系活力的降低。本试验中,润草1号的根系活力随着重金属镉处理浓度的增大而逐渐下降,且重金属镉处理浓度越高根系活力下降程度越大。原因可能是在重金属镉胁迫下,润草1号自身抗氧化系统酶不能将产生的氧自由基及时清除掉,根系代谢中的琥珀酸脱氢酶就会受到多余的氧自由基的伤害,从而使根系活力下降[6]。此时润草1号要缓解镉胁迫对其造成的伤害,就要消耗大量的代谢产物,这样就会影响润草1号的生长发育。在试验过程中还发现,润草1号侧根的生成速率是随着重金属镉处理浓度的增大而减小,这恰好与润草1号根系生物量随浓度变化的情况相一致。
细胞膜系统是植物细胞和外界环境相联系的界面,也是植物细胞和外界环境进行物质交换和信息传递的屏障。植物细胞具有正常的生理功能是以细胞膜具有较高的稳定性为基础的[7]。在重金属镉胁迫下,润草1号的细胞膜受到了破坏,使其通透性增加。细胞膜的损伤不但会导致细胞内一系列生理生化过程的紊乱,而且会导致细胞膜上结合酶和细胞内酶失去平衡,使细胞内大量的可溶性物质外渗,进而造成润草1号的死亡[8]。在重金属镉的胁迫下,随着重金属镉处理浓度的增大,润草1号叶片组织外渗液的电导率逐渐升高,而且呈明显的正相关。究其原因可能是重金属镉进入润草1号叶片组织后,与细胞膜的蛋白质分子中的-SH或细胞膜的磷脂分子层中的磷脂类物质发生了化学反应,造成细胞膜蛋白和磷脂分子层的结构发生改变,进而使细胞膜的结构也发生了改变,这样细胞膜系统受到破坏,细胞膜的通透性增大,从而使细胞内的盐类或有机物出现不同程度的渗出,最终导致电导率的增大[9]。
植物体内的脯氨酸是重要的渗透调节物质,其至作用是维持植物细胞的渗透压,当外界不良环境对植物胁迫时能起到很好的指示作用[10]。润草1号叶片内游离脯氨酸含量,随着重金属镉处理浓度的增加而增大,当胁迫浓度为50 mg/kg时达到最大值,这是受到重金属镉胁迫时,润草1号表现出的正常生理反应。当受到重金属镉胁迫时,润草1号叶片组织内物质的代谢路径会发生相应的改变,使脯氨酸的氧化过程受到抑制,从而减慢蛋白质的合成速度,造成细胞内脯氨酸含量的升高。细胞内存在的大量脯氨酸能维持润草1号叶片内的水分平衡,保持细胞内原生质与外界环境的渗透平衡,增大细胞内各种蛋白质的溶解性,也使各种生物大分子的结构与稳定性受到保护[4]。
绿色植物进行光合作用的主要色素是叶绿素,植物光合作用的强弱直接受到叶绿素含量的影响,植物同化物质能力的大小可以通过叶绿素含量的多少来反映。叶绿素受到外界环境影响时其含量发生变化,叶绿素含量的变化又会引起植物光合性能的改变,甚至影响植物正常的新陈代谢[11]。本试验中,在低浓度重金属镉胁迫下,润草1号叶片中叶绿素的含量缓慢地增大,这是润草1号叶片中叶绿素合成系统主动表现出的应激性反应。当重金属镉胁迫浓度大于20 mg/kg时,润草1号叶片中叶绿素含量开始明显地减小,其原因可能是过量重金属镉破坏了润草1号叶片的细胞膜,使细胞膜受到损伤而透性增大,从而造成叶绿素分子大量地渗漏出来;也可能是催化叶绿素合成所需要的3种蛋白酶(胆色素原脱氨酶、原叶绿素脂还原酶和氨基乙酰丙酸合成酶)与重金属镉结合,使蛋白酶的结构发生了改变,这样就降低了蛋白酶的活性,从而影响了叶绿素的合成;还可能是重金属镉破坏了润草1号叶片细胞中线粒体的结构,导致叶绿素降解而使其含量降低,抑制了光合作用,使润草1号代谢产生紊乱,造成润草1号的抗逆性降低[11]。
需要强调的是,衡量草坪植物应用价值的最重要指标是根系的生长与叶片的绿色度[12],而对润草1号根系生长起显著抑制作用的、对润草1号的建植及对污染地区润草1号的生产起重要限制作用的都是重金属镉。因此,在实际应用过程中,为了使润草1号的根系生长不受到影响,应该严格控制土壤中重金属镉的浓度小于20 mg/kg。由于重金属镉不是润草1号生长发育所必需的营养元素,且具有较大的毒性,所以更应该严格控制重金属镉的使用浓度。
参考文献:
[1] 廖自基.环境中微量重金属的污染危害与迁移转化[M].北京:北京科学技术出版社,1989.
[2] 张治安,陈展宇.植物生理学实验技术[M].长春:吉林大学出版社,2008.
[3] 吴泽富,周运超,张 静,等.粗壮女贞(苦丁茶)生理特性对pH胁迫的响应[J].贵州农业科学,2012,40(1):47-50.
[4] 郭艳丽,台培东,韩艳萍,等.镉胁迫对向日葵幼苗生长和生理特性的影响[J].环境工程学报,2009,3(12):2291-2296.
[5] 唐 迪,徐晓燕,李树炎,等.重金属镉对茶树生理特性的影响[J].湖北农业科学,2013,52(12):2839-2843.
[6] 努扎艾提・艾比布,刘云国,宋华晓,等.重金属Zn、Cu对香根草生理生化指标的影响及其积累特性研究[J].农业环境科学学报,2010,29(1):54-59.
[7] 畅世勇,王 方,晰建春.重金属对值物的毒害及值物的耐性机制[J].环境科学报,2004(1):71-72.
[8] 刘万玲.重金属污染及其对植物生长发育的影响[J].安徽农业科学,2006,34(16):4026-4027,4030.
[9] 刘俊祥,孙振元,韩 蕾,等.草坪草对重金属胁迫响应的研究现状[J].中国农学通报,2009,25(13):142-145.
[10] 朱志国,周守标.铜锌复合胁迫对芦竹生理生化特性、重金属富集和土壤酶活性的影响[J].水土保持学报,2014,28(1):276-280,288.
篇3
>> 土壤重金属污染及修复的研究现状 重金属污染土壤修复技术的研究现状分析及展望 土壤重金属污染现状及修复技术研究进展 土壤重金属铬污染分析及修复技术 土壤重金属污染及修复技术 农田土壤重金属污染及修复技术分析 论重金属污染土壤修复技术的研究 重金属污染土壤植物修复技术研究 土壤重金属的污染现状及生物修复技术 浅谈我国土壤重金属污染现状及修复技术 解析土壤重金属污染的现状与危害及修复技术 土壤重金属污染特点及修复技术研究 论土壤重金属污染现状与修复 浅谈金属矿山土壤重金属污染现状及修复治理措施 浅谈土壤重金属污染与修复技术 重金属污染土壤修复技术应用 浅析土壤重金属污染与修复技术 重金属污染土壤修复技术探讨 浅析土壤重金属污染及修复措施 土壤重金属污染修复研究进展 常见问题解答 当前所在位置:l,2013-07-12.
[2] 骆永明,腾应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505 - 508.
[3] 魏树和,周启星. 重金属污染土壤植物修复基本原理及强化措施探讨[J]. 生态学杂志,2004 ,23 (1) :65~72.
[4]Yao Z T, Li J H, Xie H H et al.Review on remediation technologies of soil contaminated by heavy metals Procedia Environmental Sciences.2012;16:722-729.
[5]Aresta M, Dibenedetto A, Fragale C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere, 2008; 70(6): 1052-1058.
[6]Tokunaga S, Hakuta T. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere,2002;46(1)31-38.
[7]Li G D, Zhang Z W, Jing P, et al. Leaching remediation of heavy metal contaminated fluvio-aquatic soil with tea-saponin. [J]Transactions of the Chinese Society of Agricultural Engineering,2009;25(10)231-235.
[8]周启星,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应[J].应用生态学报,1994,5(4):438-441.
[9]黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报, 2013,32(3):409-417.
篇4
关键词 蔬菜;重金属;污染;防治措施;广东东莞
中图分类号 X56 文献标识码 A 文章编号 1007-5739(2016)13-0227-01
东莞市位于广东省中南部,属珠江、东江冲积平原,土地肥沃,有丰富的土地、森林资源,濒临南海,地处北回归线以南,属于南亚热带海洋性气候,年平均气温22.3 ℃,降水量1 780.4 mm,日照量1 780.4 h,具有良好的农业生产气候条件。蔬菜在东莞农业生产中占据了极其重要的地位,一直以来是我国供港蔬菜的生产和出口基地,2014年东莞蔬菜的播种面积保持在2万hm2左右,随着经济的发展,大量工厂产生的废气废水致使蔬菜中重金属检出率很高[1]。蔬菜重金属污染问题不仅影响了东莞市蔬菜出口和菜农收入,还影响消费者的健康。本文在综述东莞蔬菜重金属污染状况的基础上,提出生产过程中的多种防治措施。
1 蔬菜重金属污染现状
近年来,东莞城市化和工业化快速发展,大量工厂的出现,给农业土壤带来了严重的污染过,特别是土壤重金属污染。经过调查,珠江三角洲典型地区中山市与东莞市铅、镉的污染比较严重,平均有13.2%的蔬菜样品中铅与镉的含量超过国家卫生标准的允许量[2]。土壤中镉污染为5种重金属中最严重,平均污染指数超过警戒线4倍,为严重污染等级[1]。东莞市菜地土壤整体受到了轻度的重金属污染,以西北部污染较为严重,东北部污染最轻[3]。东莞市土壤中主要受到Cd和Hg污染,许多蔬菜对重金属都有积累能力,例如芥兰对汞和铬积累的能力较强,空心菜、白菜和油菜对铅、镉的积累能力强。
2 蔬菜重金属污染来源
2.1 大气污染
东莞市有一些大型的蔬菜基地位于交通繁忙地带或毗邻高速公路。大气污染主要来源于工业生产、汽车尾气排放。大量的有害气体和粉尘中含有重金属。气体中的重金属经过自然沉降和水沉降进入土壤。污染物以二氧化硫、烟尘和粉尘为主,其次还有氮氧化物、一氧化碳、硫化氢、氟、铅等。
2.2 水污染
东莞市的蔬菜用地环境受到周边企业工业“三废”、城镇生活垃圾和农业垃圾等涌入河道,使得河道里的水资源受到污染,污水中的重金属随着灌溉进入农田。
2.3 土壤污染
土壤污染表现在肥料元素积累过多、多种重金属污染严重、农药和有机物污染物残留量高等方面。过度施肥造成土壤酸化,导致土壤盐渍化,土壤中的污染物主要包括Hg、Cd、As、Zn、Pb等重金属。
3 防治措施
随着社会的不断发展,环境污染问题日益突出。蔬菜重金属污染具有潜伏性、地域性、长期性、难治理性等特点,其防治应坚持“预防为主,防治结合、综合治理”的基本方针。针对东莞蔬菜重金属污染提出几点防治措施。
3.1 合理规划蔬菜生产基地
随着社会工业经济的不断发展,城镇化水平不断提高,工业产区与农业生产区不断向郊区转移。蔬菜生产基地应该远离工业产区和城市生活污染区,选择环境较好的地区作为蔬菜生产基地。除此之外,对基地的环境要进行实时动态监测与评价。
3.2 隔绝污染源,控制重金属流入食物链
治理重金属污染问题,首先最重要的是从源头上做起,控制和消除污染源。在农业生产方面,减少化肥和农药的使用量,减少其在土壤中的残留。此外,对于用来灌溉的水源,要制定相应的标准,禁止使用污水进行灌溉。土壤中的重金属主要通过植物的吸收积累,进而通过食物链对人体造成危害。因此,控制植物对重金属的吸收,可减少其在植物可食部分的积累量。
3.3 根据不同蔬菜累积重金属的能力,合理布局
对于不同区域主要污染重金属,筛选出选择可食部分低累积重金属的蔬菜作物或对污染重金属有强抗性的蔬菜品种栽培,并合理安排茬口进行轮作。
3.4 改良土壤结构,提高土壤重金属污染的抵抗能力
从源头上改善土壤的组成与结构,从而减少土壤中的重金属,降低作物对重金属的吸收累积量。改变土壤中重金属的存在形态,如增加有机肥的使用量,可增加土壤胶体对重金属的吸附能力,使得重金属元素不易被作物吸收,也可促使土壤中某些重金属的形态发生变化,从而有效降低其毒性[4]。
4 参考文献
[1] 张冲.东莞蔬菜产区重金属污染调查评价及土壤环境因子相关性分析[D].武汉:华中农业大学,2008.
[2] 黄勇,郭庆荣,任海,等.珠三角洲典型地区蔬菜重金属污染现状研究:以中山市和东莞市为例[J].生态环境,2005,14(4):559-561.
篇5
[关键词] 土壤 重金属 污染 防范
[中图分类号] X833 [文献标识码] A [文章编号] 1003-1650 (2016)06-0061-02
随着“镉大米”超标的报道,湖南省株洲、衡阳等地的稻米重金属镉超标陆续曝光,在国内外引起强烈反响,对整个粮食行业造成了很大冲击。广大市民在经历了牛奶的“三聚氰胺”,猪肉“瘦肉精”等事件之后,现在又出现了粮食“镉米”事件。因此,土壤重金属污染治理任务更加紧迫。
1 土壤重金属污染现状
民以食为天,食以安为先。粮食是最基本、最重要的食品,也是生产其他食品的基本原料,保障粮食质量安全至关重要。而“食品安全”的核心挑战就是农药残留和重金属污染。我国土壤污染的形势已相当严峻,据估算,全国每年受重金属污染的粮食达1200万吨,造成的直接经济损失超过200亿元。土壤污染造成有害物质在农产品中积累,并通过食物链进入人体,引发各种疾病,最终危害人体健康。
根据全国污染区的不同情形,稻米中超标的有害重金属不只是镉,还可能包括铅、砷、汞、铜等。除了稻米,其他农作物同样有可能受到重金属超标的影响。据中国土壤学会副理事长张维理分析,我国农药使用量达130万吨,是世界平均水平的2.5倍。而据测算,每年大量使用的农药仅0.1%左右可以作用于目标病虫,99.9%的农药则进入生态系统,造成大量的土壤中的农药残留、重金属及植物激素的污染。总之,我国土壤污染呈现一种十分复杂的特点,呈现新老污染并存,无机有机污染混合的局面。
2 土壤重金属污染种类
土壤重金属污染是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高,统称为土壤重金属污染。
污染土壤的重金属主要包括汞、镉、铅、铬和类金属砷等生物毒性显著的元素,以及有一定毒性的锌、铜、镍等元素。
3 土壤重金属污染的特点
3.1 重金属不能被微生物降解,是环境中长期、潜在的污染物;
3.2 因土壤胶体和颗粒物的吸附作用,长期存在于土壤中,浓度多成垂直递减分布;
3.3 与土壤中的配位体作用,生成络合物或螯合物,导致重金属在土壤中有更大的溶解度和迁移活性;
3.4 土壤重金属可以通过食物链被生物富集,产生生物放大作用;
3.5 重金属的形态不同,其活性与毒性不同,土壤pH、颗粒物以及有机质含量等条件深刻影响它在土壤中的迁移和转化。
4 土壤重金属污染的危害
4.1 重金属污染对环境的危害
重金属在土壤-作物系统中迁移直接影响到作物的生理生化和生长发育,从而影响作物的产量和品质。镉是危害植物生长的有毒元素,例如,如果土壤中镉含量高,会破坏叶绿素,植物叶片的结构,减少根系吸收水分和营养物质,抑制根系生长,引起植物生理失调,减少生产。铅在农作物中的组织中可能会导致氧化、光合作用和脂肪代谢强度减弱,减少对水的吸收,耗氧量增加,从而阻碍作物生长,甚至导致作物减产等。
4.2 重金属污染对人类的危害
金属可通过食物链最终危害人类健康。比如:镉的生物毒性显著,会给人体带来高血压、心脑血管疾病、肾功能失调等一系列问题。汞食入人体后直接沉入肝脏,对大脑视力神经破坏极大。砷会使皮肤色素沉着,导致异常角质化。铬会造成四肢麻木,精神异常。铅是重金属污染中毒性较大的一种,一旦进入人体很难排除,并直接伤害脑细胞,造成智力低下等。
5 土壤重金属污染的来源
5.1 工业“三废”对土壤中重金属的影响
随着经济的发展,人们对工业的应用越来越重视,在一些经济欠发达地区,人们环保意识薄弱,加之我国目前科技水平低和经济实力差,未经处理的废水、废气、废渣直接在环境中的工业发展。这些重金属也通过自然沉淀、雨水淋入土壤等方式进入土壤,进入正常循环的生态系统。例如,一些金属冶炼厂,硫酸厂,化工厂和采矿场附近的这些重金属也通过自然沉淀,如雨水渗入土壤的方式,然后进入生态系统的正常循环。例如,一些金属冶炼厂,硫酸厂,化工厂和采矿场附近重金属通过自然作用,如风力,雨水再次由重力进入土壤层,严重影响居民的生活质量。工业发达,由于城市人口密度大,土壤重金属污染严重,从郊区到农村逐渐缓解。
5.2 农业灌溉、化肥农药的应用
克服了自然能力的提高,天气已成为历史。在追求高产、稳产、科技发展的同时,为农业提供了广泛的农药、肥料等磷肥,含有镉、汞、铅、有机汞等农药和未经处理的污染农田灌溉农田,是埋下了诅咒,对土壤重金属污染的土壤硬化和盐碱化,农作物产量和品质造成很大影响。
5.3 汽车尾气的排放
汽车尾气排放的主要污染物如一氧化碳、碳氢化合物、氮氧化物、铅。这些物质随风一起落,变成土壤形成污染。实验证明,国道、公路在土壤重金属污染较严重,而作为距离从近到远,从公共道路,土壤的污染逐渐轻。
6 防范重金属污染的途径与措施
6.1 清理和减少化工污染源,如电镀企业、油漆生产加工企业、化工原料生产企业、矿山开采企业、废旧电子回收及拆解企业等。
6.2 做好雨污分流工作,充分发挥污水处理厂的作用,减少企业废水、生活污水中重金属对环境的危害。
6.3 减少农田化肥和农药用量,加强畜禽粪便的处理,减少农业投入品及养殖业的污染。
6.4 做好废旧电池(干电池、蓄电池)、废旧电子产品、日光灯管、荧光灯、节能灯等的集中回收。据统计,一支普通的节能灯管破碎瞬间可以使周围每立方米空气中的汞浓度达到10~20毫克,而按规定汞在每立方米空气中的最高允许浓度仅为0.01毫克。
6.5 提倡健康出行,以步代车,减少汽车尾气(铅、PM10)对环境的影响。
6.6 重金属污染应注重于防。一旦发生污染,则很难治理。为了子孙后代的安全,我们要增强主动防范意识。
土壤重金属污染给人类社会和自然生态环境带来了严重的危害,这些危害与人类息息相关,因此,我们只有从自身做起,从控制污染的源头采取措施,综合性地防治土壤重金属的污染。
参考文献
[1]宋伟,陈百明,许悦.中国耕地土壤重金属污染概况[J].水土保持研究,2013,20(2):293-298.
篇6
近年来,仅发生的镉污染事件,就有2005年的广东北江韶关段镉严重超标事件,2006年的湘江湖南株洲段镉污染事故,2009年的湖南省浏阳市镉污染事件。至于其它重金属污染事件,仅“血铅超标”事件,就已涉及陕西、安徽、河南、湖南、福建、广东、四川、湖南、江苏、山东等省。
国家环保部数据显示,2009年重金属污染事件致使4035人血铅超标、182人镉超标,引发32起群体性事件。
2011年2月,国家环保部部长周生贤在出席有关重金属污染综合防治“十二五”规划会议时也谈到,“从2009年至今,我国已经有30多起重特大重金属污染事件,严重影响群众健康。”
据了解,重金属污染指由重金属或其化合物造成的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。既有因人类活动导致环境中的重金属含量增加,超出正常范围,并导致环境质量恶化,也有个别地区如喀斯特地区因石漠化导致重金属释放。
近10多年来,随着中国工业化的不断加速,涉及重金属排放的行业越来越多,包括矿山开采、金属冶炼、化工、印染、皮革、农药、饲料等,再加上一些污染企业的违法开采、超标排污等问题突出,使重金属污染事件出现高发态势。
2011年两会期间,全国政协委员、国家环保部中国环境监测总站办公室副主任温香彩告诉中国青年报记者,我国重金属污染中,最严重的是镉污染、汞污染、血铅污染和砷污染。
一些地区重金属污染比较严重值得注意的是,一向被认为是高科技行业的IT行业也与重金属污染挂钩。因制作中国水污染地图而闻名的民间环保人士马军曾在2011年联合30多家环保组织一起《2010IT品牌供应链重金属污染调研》,该调研报告显示,珠三角、长三角等地区有大量生产印刷线路板的企业不能稳定达标排放,给当地河流、土壤和近海造成了严重重金属污染。
中国重金属污染呈现出地域差异。温香彩说,东部比西部严重,南部又比北部严重,珠三角地区尤为显着。另外,像湖南等有色金属大省也是重金属污染的重点地区。湘江是中国重金属污染最严重的河流。
一项由原国家环保总局进行的土壤调查结果显示,广东省珠江三角洲近40%的农田菜地土壤遭重金属污染,且其中10%属严重超标。2008年,中山大学生命科学学院的科研团队分别在广州6个区各选择两个农贸市场采集蔬菜样本,分析样本中镉、铅的含量情况,结果发现,叶菜类蔬菜的污染情况十分严重,除1种为轻度污染外,其余5种均达到重度污染水平。
在中国东南部一些区域,重金属污染出现了比较严重态势。
一个需要警惕的趋势是,随着产业转移,原本重金属污染只是零星分布的西北地区也开始面临威胁。近年来,一些东部地区的高能耗、高污染项目开始往中西部省份转移,这其中,尤其是化工企业、光伏企业和制药企业,由于中西部省份经济比较不发达,患有严重的“项目饥渴症”,对环境的监管水平和力度相对不足或主动放松,导致中西部地区的污染事故也频频出现。
重金属污染对生态影响极大,2009年的浏阳镉污染事件殃及当地的瓜果蔬菜,当地产的水稻和蔬菜都呈黄褐色,茄子辣椒则形态恐怖。
2007年,南京农业大学农业资源与生态环境研究所教授潘根兴和他的研究团队,在全国六个地区(华东、东北、华中、西南、华南和华北)县级以上市场随机采购大米样品91个,结果表明,10%左右的市售大米镉超标。2011年,《新世纪周刊》据此作出报道,曾引起一些居民恐慌。全国政协委员、人口资源环境委员会副主任、国务院第一次全国污染源普查领导小组办公室主任王玉庆对此提出质疑,认为“镉大米污染比例不可能高达10%”。潘根兴通过媒体回应说,“不是市场上所有的大米都是这样的,江苏的样品就没啥问题,只能说我们抽查样品的10%存在镉超标,大家不必恐慌”。
重金属污染致癌、致疾、致突变温香彩说,重金属污染不像大气污染,既闻不到,也看不到,被重金属污染的水体或土壤,即使含量很低,只要超标了对人体伤害也会很大。而且,不同于其它污染物的可降解特性,重金属污染物不仅不可降解,还能在环境里累积和循环,由此也加重了对人群的危害。
她说,重金属污染对身体的危害主要是“三致”,致癌、致疾、致突变。
多种资料均提及,重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、亚急性中毒、慢性中毒等,对人体会造成很大的危害。
资料显示,血铅污染所导致的毒性效应是贫血症、神经机能失调和肾损伤,易受害的人群有儿童、老人、免疫低下人群。镉的毒性很大,可在人体内积蓄,主要积蓄在肾脏,引起泌尿系统的功能变化。镉也能够取代骨中钙,使骨骼严重软化,并可干扰人体和生物体内锌的酶系统,易受害的人群是矿业工作者、免疫力低下人群。砷通过呼吸道、消化道和皮肤接触进入人体,如摄入量超过排泄量,砷就会在人体的肝、肾、肺、子宫、胎盘、骨骼、肌肉等部位蓄积,与细胞中的酶系统结合,使酶的生物作用受到抑制失去活性,特别是在毛发、指甲中蓄积,从而引起慢性砷中毒。砷还能致癌。
篇7
关键词:土壤;重金属污染;法律对策
中图分类号:X53 文献标识码:A
文章编号:1005-913X(2017)06-0056-02
土壤-植物系统是生物圈中最为基础的结构,可以对太阳能进行有效转化。而土壤重金属污染就是人类在生产、生活过程中将重金属加入土壤,使重金属含量比自然含量显著高出,从而导致生态环境受损的状况。土壤重金属污染不仅会影响农作物的生长,而且会对空气、水等造成影响,所以说土壤重金属污染对人类生存有着关键影响。因为土壤重金属污染所带来的后果十分严重,所以对其进行有效防治已经成为环保工作中的重点。
一、土壤重金属污染的来源与环境标准
(一)土壤重金属污染的来源
随着社会的快速发展,生态环境污染问题越来越严重,而土壤重金属污染问题最为严峻。而造成土壤重金属污染来源的详细信息如表1所示。
(二)重金属土壤环境的质量标准
土壤是人类赖以生存的基础,如果重金属的含量过高,就会出现土壤重金傥廴咀纯觯为人类的生存、发展造成严重影响。所以重金属土壤环境的质量需要控制在相应范围内,以确保土壤的应用质量。而重金属土壤环境质量标准值如表2所示。
二、土壤重金属污染中存在的防治问题
(一)缺乏系统性的防治法规
我国对大气、水体、固体以及放射性物质的污染都制定了有针对性的法律法规,可以对其进行系统性的防治与处理。但是却没有针对土壤重金属污染制定系统性的法律,只是在其他防治立法中进行分散制定,所以说我国缺乏对土壤重金属污染进行防治的系统性法律。虽然许多污染防治立法中都对土壤重金属污染问题有所涉及,但是这些法律过于分散。这样不仅不利于对法律功能的充分发挥,而且不能对土壤重金属污染的防治效果提供确切保障。所以在制定土壤重金属污染防治法律时,需要对其系统性进行重点考虑。
(二)缺乏健全的预防机制
虽然我国也认识到对土壤重金属污染进行防治的重要性,但是在实际操作过程中依然是强调治理而忽略预防。首先,我国有对环境影响进行评价的机制,以对相应施工项目对环境可能产生的影响进行分析与评价,从而降低项目对环境的损害。虽然环境影响评价机制中对相应的生态环境准入机制进行了说明,但是随着社会、经济的高速发展,新型问题的不断出现,生态环境准入机制已经不能满足现在的发展要求。其次,我国目前没有出台对土壤重金属污染扩散进行有效控制的法律,无法降低受污土壤对人类生存所造成的影响。最后,现在我国土壤重金属污染问题治理状况不具备较高的透明度,大部分人们都不了解土壤重金属污染的原因与治理效果,所以不懂得如何从自身做起,降低土壤污染。
(三)缺少责任追究制度
土壤重金属污染责任追究制度就是在主体触犯相应法律后,强制其对有关责任进行承担的制度。但是目前我国缺少对土壤重金属污染责任进行有效追究的制度。首先,承担责任的主体一般就是土地的所有及使用人员,其范围太窄,不能对相关的企业、个人进行有效包含。同时我国没有制定相关法律对应承担的责任进行明确,致使国外许多重污染企业搬至国内,大大提升了我国土壤重金属污染的程度以及治理难度。其次,我国对造成土壤重金属污染主体的责任进行追究时,主要对其行政责任进行追究,但是有时责任主体对土壤的伤害是不可挽回的,可是我国却没有出台相应的法律法规,不能对其进行定罪。这样不仅体现出了责任追究制度中的严重缺失,而且不能对违法行为进行有效打击。最后,因为土壤污染的潜伏周期长,治理费用高、周期长,而我国又缺乏对责任进行有效归纳的原则,不能对污染主体责任进行有效追究。
三、土壤重金属污染防治的法律对策
(一)制定系统性的法律规定
以预防为主,防治兼顾的原则制定有针对性的土壤污染法规,同时以《环境保护法》为基础指导,制定有效的土壤污染防治制度,而其主要原则包括预防为主、民众参与、污染主体付费、社会和环境可持续健康发展等原则。另外,土壤污染防治法律是环保法律体系中的关键部分,是对土壤污染进行有效治理的根本,可以为相应法律体系的构建奠定基础。所以应该先建立相应的法律框架,然后以其为依据对土壤重金属污染防治的相关法律内容进行明确,从而使我国防治土壤重金属污染问题有法可依。所以想要对土壤重金属污染问题进行有效防治,只是构建一些原则性、概括性制度,是得不到明显效果的。只有先出台相应的土壤污染防治法,并以此为基础构建相应的法律体系,从而对我国土壤重金属污染问题进行有效解决。
(二)严格规定法律责任
严格追究污染主体的法律责任是有效开展土壤重金属污染防治工作的重点,所以首先需要做到对土壤重金属污染进行防治的过程中,单位、企业与个人都可能是造成土壤重金属污染的主体。对于无心所造成的污染问题,相关人员需要承担法律责任。同时还应该以污染情况为依据对不同的污染主体进行明确,并对污染原因进行查明,对责任主体范围进行扩大。其次,对土壤重金属污染防治工作的行政责任进行明确,可以以《水污染防治法》为参考,而所采用形式包括财产以及行为责罚。再次,对土壤重金属污染防治工作的民事责任进行明确,民事责任是整个责任体系中的重要部分。对民事责任进行制定的过程中,立法人员需要对相应的付费原则进行充分考虑。最后,刑事责任作为最为严厉的惩罚方式,在土壤重金属污染防治工作中具有十分重要的意义,但是我国刑法中缺乏对污染犯罪行为的明确定罪。所以国家对刑事立法进行构建时,需要对土壤重金属污染的刑事立法进行有效关注,只有这样才能有效提升我国土壤重金属污染的防治效果。
(三)增强执法力度
在环境污染执法过程中,如果行政机关不能对自己手里的权力进行恰当使用,就会使污染土壤的行为得到放纵。所以国家需要增强政府机关的执法力度。首先,对保护土壤的立法体系进行健全,其中包括全国统一性的立法,还有以区域特点为依据制定的地方性立法。健全的法律法规不仅是政府机关开展执法工作的前提,而且是政府机关落实执法工作的关键依据。所以对土壤保护的立法体系进行有效健全有着非常重要的意义。其次,构建完善的执法机构。以立法为依据,构建完善的执法机构,对相关基层执法部分进行独立于国家机构之外的构建,以有效提升执法效果。同时实施主管机构的垂直领导,以避免地方政府过度参与当地环保工作,从而消除政府权利对环保执法的不良影响。此外,环保行政部门的上下级需要对其关系进行良好处理,并以确保执法效率为前提,严格遵循执法的根本目的以及协调性的执法原则,从而有效落实土壤重金属污染的执法工作。再次,增强执法手段。以地方污染特点为依据,采用有针对性的防治方法,对土壤污染状况进行有效解决。同时对污染源进行有效调查,并进行针对性处理;最后,提升土壤污染的执法费用,增加高质量的执法设备。这样拥有充足经费以及高技术设备,可以满足土壤污染监测、执法的更高要求。
四、结语
土地资源是人类赖以生存的重要资源之一,并且是人类生存必须的前提。随着社会的快速发展,人类对土地的影响越加严重,并且两者之间的矛盾越来越激烈。同时随着社会改革的快速进行,人类需要面对更多的挑战与风险,而生态环境污染风险就是人类需要面临的最大风险。而土壤是生态环境的重要部分,土壤重金属污染对人类的生活、生产有着非常重要的影响,所以土壤重金属污染问题的防治至关重要。
篇8
关键词 重金属污染;蔬菜;现状
中图分类号 X820.4 文献标识码 A 文章编号 1007-5739(2013)22-0208-03
Research Progress of Heavy Metal Pollution in Vegetables
YAO Li-xia RU Qiao-mei HE Liang-xing
(Yuhang District Agro-product Monitoring Center in Hangzhou City of Zhejiang Province,Hangzhou Zhejiang 311119)
Abstract With the ever serious environmental pollution,vegetables have been subjected to varying degrees of pollution. Heavy metal is one of the important factors,which affect vegetable growth and human health. The paper studied aspects of hazards of heavy metal pollution,evaluation of heavy metal contamination in vegetables,and status quo of vegetables polluted by heavy metals in China. It also discussed vegetables polluted by heavy metals in the future and prospects,which would provide reference and experience for the research on vegetables polluted by heavy metals.
Key words heavy metal pollution;vegetables;present situation
重金属是指密度在5×103 kg/m3以上的金属,如金(Au)、银(Ag)、镉(Cd)、汞(Hg)、铬(Cr)、铜(Cu)、铅(Pb)等。部分重金属通过食物进入人体,对人体正常生理功能造成干扰,危害人体健康,被称为有毒重金属,如锌、汞、铅、铬、砷、锡、镉等。
随着农业生产中化肥、农药等的大量使用,土壤、水体的重金属污染逐渐加重,不仅影响植物生长发育,而且在植物叶、茎、根、籽实中大量积累。蔬菜作为人们日常摄入量最大的食物之一,含有丰富的膳食纤维、维生素、必需矿质元素等,但食入重金属超标的蔬菜会对人体健康造成极大危害,其危害具有一定的隐蔽性,一般不会发生急性中毒,只是在人体中不断积累,逐渐危害人体健康。近年来,监测、防治重金属污染已成为各国普遍关注的热点问题。蔬菜作为人类日常生活摄入量较大的食品之一,分析、评价其受重金属污染状况,对保障人们的饮食安全、促进蔬菜生产具有重要意义。
1 重金属污染的危害
铬、锌、汞、铅、砷、锡、镉等有毒重金属中,对人体危害最大的是铅,毒害人体各系统,尤其常使造血系统、神经系统、血管等发生病变。人体摄入过量的铅不仅会抑制血红素的合成,降低红细胞中血红蛋白量,导致人体出现贫血,损伤中枢神经系统及其周围神经,轻度中毒时,出现失眠、头痛、记忆减退、头晕等症状。特别是对于大脑处于发育期的儿童来讲,更容易受铅的危害,严重影响儿童的智力发育和行为。
有毒重金属中危害人类健康的其次是砷、汞。砷大都以烷基砷、无机砷的形态存在,2种类型的砷差别较大。无机砷毒性较大,有机砷毒性较小,其中砷糖甚至被认为无毒。长期接触砷,会引起细胞中毒,诱发恶性肿瘤,其还能透过胎盘损害胎儿。无机砷是致癌物质,常诱发肺癌、皮肤癌。汞容易被植物吸收,通过食物进入人体,也可以蒸汽形式进入人体,危害人体健康。汞毒性因形态不同存在较大差异,其中甲基汞毒性最大,容易被人体吸收,在肾、骨髓、心、脑、肝、肺等部位蓄积,使肾、神经系统、肝脏等产生不可逆的损害。另外,金属汞、无机汞通过水中厌氧微生物甲基化可转化为甲基汞危害。
相对铅来说,镉容易被植物吸收,但其不容易造成植物毒性,反对人体容易造成毒害,具有致畸、致癌、致突变等作用。镉进入体内可损害血管导致组织缺血,损伤多系统,干扰钴、铜、锌等代谢,阻碍肠道吸收铁,抑制血红蛋白的合成,抑制肺泡巨噬细胞的氧化磷酰化的代谢过程,对肾、肺、肝造成损害。
铬的急性中毒会对皮肤造成刺激和腐蚀,使皮肤糜烂或变态反应发生皮肤炎。亚急性或慢性中毒会引起咽炎、鼻炎、支气管炎等。另外,铬还有致畸变、致癌变、致突变作用。六价铬和三价络均有致癌作用,且六价铬的毒性比三价铬大100倍,某些铬化合物的致癌性是目前世界公认的,被称为“铬癌”。
可见,重金属对人体健康的危害具有富集性、隐蔽性、不可逆性,且其污染一旦出现就难以逆转,治理非常困难,成本高。
2 蔬菜重金属污染评价
内梅罗综合污染指数是土壤或沉积物重金属污染评价中较为常用的方法。目前,该方法已在蔬菜重金属污染评价方面得到应用[1]。
(1)单因子污染指数:
Pi=■
Pi、Ci、Si分别为计算出的重金属单项污染指数、重金属的实测值、各项评价标准值。
当Pi≤1时,表示蔬菜未受污染;Pi>1时,表示蔬菜受到污染,Pi数值越大,说明受到的重金属污染越严重。
(2)尼梅罗综合污染指数:
P综=■
Pave为蔬菜各单因子污染指数的Pi 平均值,Pmax为蔬菜各单项污染指数中最大值。
通常,设定综合污染指数P综合≤0.7为安全等级,P综合≤1.0为警戒限,P综合≤2.0为轻污染,P综合≤3.0为中污染,P综合>3.0为重污染。
3 我国蔬菜重金属的污染现状
3.1 华东地区(包括山东、江苏、安徽、浙江、福建、上海市)
王淑娥等[2]调查发现济南市8种蔬菜中重金属含量均未超出无公害蔬菜限量标准。马桂云等[3]也报道盐城市区少数蔬菜受到Cd的污染。而蚌埠市市售蔬菜中,叶菜类蔬菜中主要是Pb、Cd超标,这可能与含铅的汽车尾气污染大气有关[4]。孙美侠等[5]对徐州市市场上15种蔬菜、水果进行抽样检查,测定240个样品中重金属Cu、Pb、Cd、Cr、Zn的含量状况,结果表明所测样品中仅重金属Cd、Zn有部分超标,其中Cd的污染需引起有关部门的重视。然而,厦门市售蔬菜仅部分品种如菠菜、甘蓝、花菜、萝卜的Pb超标,有潜在污染风险;大部分蔬菜中As、Hg、Cr3种重金属的含量都较低,潜在的污染风险不大[6]。许 静等[7]对福建省4个区域的4类19种蔬菜品种进行分析和评价,结果显示福建省蔬菜重金属污染主要为Cd和Pb,品种涵盖小白菜、芥菜、空心菜。林梅[8]采用原子吸收分光光度法对福州市油菜番茄茄子3种上市蔬菜中重金属Pb、Cu、Cr、Cd和微量元素Zn的含量进行了检测,并运用单因子污染评价指数进行了蔬菜重金属污染的评价,结果表明:自由集市中个别蔬菜存在Cr轻度污染,部分蔬菜存在Pb轻中度污染;从大型超市和自由集市购买的所有蔬菜样品均存在Cd含量超标现象,其中自由集市蔬菜的Cd甚至达到中度污染级;所有样品中Cu含量均低于全国代表值,Zn含量则与全国代表值相当。
3.2 华南地区(包括广东、广西、海南)
广东省蔬菜重金属调查已有不少研究报道。马 瑾等[9]报道东莞市蔬菜重金属污染以Pb的污染情况最普遍,20.9%的叶菜类蔬菜Pb含量超标。其次是Cd和Hg,分别有11.6%和2.3%的叶菜类蔬菜超标。但张 冲等[10]对东莞市主要蔬菜产区的112个蔬菜样品进行重金属污染现状调查,发现这些蔬菜受到不同程度的重金属污染,但大多数只是轻度污染,并未达到危险级别。佛山市禅城区居民食用蔬菜样品中有46.6%的蔬菜重金属含量超标,Pb和Cr超标率分别为32.9%和19.2%[11]。李传红等[12]调查表明,惠州市蔬菜重金属含量整体质量尚好,但蔬菜Cd污染较为严重,超标率为15.8%。珠海市蔬菜中Cd、Cr、Ni、Pb、Hg元素有超标情况,其中Cd元素超标率最高,需要引起有关重视[13]。秦文淑[14-15]通过对广州城区各居民菜场主要蔬菜进行采样,发现主要重金属污染为Cr、Pb、Cd,其超标率分别为38.9% 、22.2%、13.9%。利用单因子污染指数法进行了评价,发现广州市蔬菜的污染比例在50%以上,其中28.9% 为轻度污染。然而,赵 凯等发现As、Pb是广州市郊地区蔬菜中的主要污染元素,而且各类蔬菜的综合污染指数均小于1,表明绝大部分蔬菜可以放心食用。杨国义等评价结果表明,在广东省典型区域所采集的171个蔬菜样品中,有13.45%的样品受到不同程度的重金属污染,以Cd和Pb污染为主,Ni、Hg、As和Cr污染相对轻一些。
南宁市相当部分蔬菜的重金属含量超过国家规定的无公害蔬菜标准,其中污染最严重的是Hg和Pb,超标率分别达41.9%和40.4%。秦波和白厚义研究发现南宁市郊蔬菜已受Pb和Cd的污染,其中Pb的污染最重,其次为Cd污染,但未受Cr的污染。
3.3 华中地区(包括湖北、湖南、河南、江西)
刘尧兰等[16]报道环鄱阳湖区叶菜类蔬菜有2/3样品的重金属含量超标,超标率在50%以上,其中白菜Pb超标最为严重,超标率高达85.2%;单因子污染指数评价表明,环鄱阳湖区叶菜类蔬菜的安全和优良级别所占比例为66.9%,已受到一定程度的重金属污染,其中以芹菜受污染的程度最大,污染主要来源于Cr和Pb。黄石市售蔬菜重金属污染主要表现为As、Pb污染。叶菜类重金属含量最高,其次是瓜豆类,茄果类含量最低。调查的6种蔬菜中,莴笋叶和小白菜遭受到严重污染,黄瓜受到轻度污染,四季豆处于警戒水平,仅番茄和茄子是安全的[17]。
成玉梅和康业斌[18]用单因子和综合因子污染指数评价,洛阳市郊区叶菜类蔬菜重金属污染大部分已处于警戒级到轻度污染,加强蔬菜重金属污染的预防与治理十分必要。新乡市蔬菜Cd、Pb的污染明显,其中Pb污染较严重[19]。商丘市售蔬菜中存在超标的元素为Pb、Cd,Cu、Hg、Cr 含量较低[20]。沈 彤等[21]研究表明,长沙地区蔬菜中,Cr、As、Hg的含量未超标,尚未构成污染,但Pb、Cd污染严重,超标率分别为60%和51%。南昌市售蔬菜中均含有重金属Cu、Zn、Pb 和Cd,其中Cu、Zn含量较低,远低于食品卫生标准,仅部分样品存在Pb、Cd超标现象[22]。
3.4 华北地区(包括北京、天津、河北、山西、内蒙古)
中国科学院地理研究所调查认为,北京市生产的蔬菜重金属超标的占30%[23]。薄博[24]对大同县主要蔬菜产地调查研究,结果发现调查的5种蔬菜污染程度为茄子>西红柿>黄瓜>青椒=西葫芦,但均未超标,属于安全等级。对天津市郊的36种蔬菜样品进行检测,发现重金属检出率为100%,其中Cd达到警戒线水平,单项污染指数最高值达19.22,总超标率为30.41%。
3.5 西北地区(包括宁夏、新疆、青海、陕西、甘肃)
1996—1997年彭玉魁等对陕西省咸阳、西安、宝鸡等6个城市郊区的14种蔬菜进行调查研究,分析其As、Hg、Cr、Cd、Pb等污染情况,结果表明Cr、Pb在某些蔬菜中超标严重。陕西省主要蔬菜产区蔬菜重金属污染也以Pb污染为主。李桂丽等[25]调查发现西安市10种蔬菜总体合格率为83%,Pb是蔬菜中的主要污染元素,总体超标率为77.5%;Hg和Cr只在芹菜和茼蒿上出现污染,总体超标率分别为10%和2.5%。然而,马文哲等[26]调查了杨凌示范区4类9种蔬菜重金属的污染现状,发现Cr对蔬菜的污染程度最为严重,其次Pb、Cd也有一定程度的污染。
乌鲁木齐市安宁渠区蔬菜中Cd、Pb的超标率最高[27]。殷 飞等[28]报道新疆喀什市三大批发市场蔬菜的Pb、Cd、Cr、Cu 4种主要重金属含量,平均值均低于相应的食品卫生标准,只有个别蔬菜样品存在重金属 Pb、Cd 含量超标现象,超标率均不高。因此,从重金属污染这个角度来说,喀什市市售的蔬菜基本上是安全的,消费者可以放心消费。
3.6 西南地区(包括四川、云南、贵州、、重庆)
李江燕等[29]通过现场调查及室内分析,对云南省个旧市大屯镇的蔬菜重金属污染现状进行评价。当地蔬菜综合污染指数从大到小的重金属为Cd、Pb、Zn、Cu,Cd、Pb污染较严重。重庆市主城区市售蔬菜有39.2%受到重金属污染,其15.7%蔬菜处于重度污染状态[30],Cd、Pb和 Hg是主要污染元素。罗晓梅研究发现,成都地区蔬菜Cd和Pb污染严重,在检测的蔬菜样品中,Pb、Cd超标率分别为22.0%、29.4%,最高超标分别为5.60倍和2.86倍,Hg和As则无超标现象出现。
3.7 东北地区(包括辽宁、吉林、黑龙江)
周炎对沈阳市近郊受重金属污染农田上生产的大白菜进行取样分析,Cd、Pb超标率分别为58.3%、100.0%。辽宁省农业环保监测站调查发现,各种蔬菜已受重金属不同程度的污染,蔬菜综合超标率为 36.1%。
4 研究方向与展望
(1)从蔬菜重金属污染的来源及危害途径可以看出,重金属主要是通过土壤污染造成蔬菜重金属残留超标的,且由于土壤重金属污染具有不可逆、隐蔽性、滞后性、积累性和。因此,应开展菜地土壤重金属污染的调查研究及风险评估,了解土壤重金属污染的基本情况和态势,分析其空间变异与分布规律,开展土壤环境质量标准的研究和制定工作,加强无公害粮食蔬菜生产基地建设[31-34]。
(2)开展蔬菜中重金属含量与土壤中重金属及其向食物链传递关系的定量研究,同时加强蔬菜对重金属吸收积累的基因型差异研究,利用丰富的植物物种资源,研究其对重金属的吸收转运机制,以降低土壤中重金属的污染,同时筛选和培育低吸收低富集重金属的蔬菜品种,减少重金属进入食物链[35-38]。
(3)为检查蔬菜质量,我国出台相应标准,其中将重金属列入标准中优先控制的污染物之一,为蔬菜质量控制发挥了巨大作用,但仅以污染物含量作为蔬菜质量评价标准难以衡量污染物对人体健康危害的大小,因此应用健康风险评价方法评估污染物对人体健康的危害已成为趋势[39-40]。
5 参考文献
[1] 崔旭,葛元英,张小红.晋中市部分蔬菜中重金属含量及其健康风险[J].中国农学通报,2009,25(21):335-338.
[2] 王淑娥,冷家峰,刘仙娜.济南市蔬菜中硝酸盐及重金属污染[J].环境与健康杂志,2004,21(5):312-313.
[3] 马桂云,周秋华,王京平,等.盐城市区蔬菜中重金属污染调查研究[J].化工时刊,2005,19(10):13-15.
[4] 朱兰保,高升平,盛蒂,等.蚌埠市蔬菜重金属污染研究[J].安徽农业科学,2006,34(12):2772-2773,2846.
[5] 孙美侠,黄从国,郝红艳.江苏省徐州市售蔬菜和水果重金属污染调查与评价研究[J].安徽农业科学,2009,37(29):14343-14345.
[6] 汤惠华,陈细香,杨涛,等.厦门市售蔬菜重金属、硝酸盐和亚硝酸盐污染研究及评价[J].食品科学,2007,28(8):237-332.
[7] 许静,陈永快,邹晖. 福建省不同区域土壤、蔬菜重金属污染现状分析[J].福建农业学报,2011(4):646-651.
[8] 林梅.福州市上市蔬菜中重金属污染评价及防治措施[J].江西农业学报,2011,23(6):129-131.
[9] 马瑾,万洪富,杨国义,等.东莞市蔬菜重金属污染状况研究[J].生态环境2006,15(2):319-322.
[10] 张冲,王富华,赵小虎,等.东莞蔬菜产区蔬菜重金属污染调查评价[J].热带作物学报,2008,29(2):250-254.
[11] 邵昭明,欧阳静茹,张珊珊,等.佛山市禅城区蔬菜重金属污染现状及对人体健康风险分析[J].华南预防医学,2012,38(3):14-21.
[12] 李传红,朱文转,谭镇.广东省惠州市蔬菜重金属污染状况研究[J].安徽农业科学,2007,35(5):1448-1449.
[13] 胡小玲,张瑰,陈剑刚,等.珠海市蔬菜重金属污染的调查研究[J].中国卫生检验杂志,2006,16(8):980-981.
[14] 秦文淑,邹晓锦,仇荣亮.广州市蔬菜重金属污染现状及对人体健康风险分析[J].农业环境科学学报,2008,27(4):1638-1642.
[15] 秦文淑.广州城区居民食用蔬菜重金属含量现状分析[J].广东轻工职业技术学院学报,2010,9(4):17-21.
[16] 刘尧兰,陈焕晟,蒋建华,等.环鄱阳湖区部分叶菜类蔬菜重金属污染评价与来源分析[J].安徽农业科学,2011,39(20):12310-12312, 12314.
[17] 严素定,万晓琼,杨.黄石市几种市售蔬菜的重金属污染分析[J].湖北师范学院学报:自然科学版,2008,28(4):48-51.
[18] 成玉梅,康业斌.洛阳市郊区叶菜中重金属含量抽样分析及评价[J].广东微量元素科学,2007,14(11):60-63.
[19] 王学锋,冯颖俊,林海,等.新乡市部分市售蔬菜中重金属污染状况与质量评价[J].河南师范大学学报:自然科学版,2006,34(3):120-123.
[20] 娄淑芳,张新环,谢春,等.商丘市蔬菜重金属污染状况与质量评价[J].中国食物与营养,2010(12):18-20.
[21] ,刘明月,贾来,等.长沙地区蔬菜重金属污染初探[J].湖南农业大学学报:自然科学版,2005,31(1):87-90.
[22] 丁园,宗良纲,何欢,等.蔬菜中重金属含量及其评价[J].安徽农业科学,2007,35(33):10672-10674.
[23] 周东美,郝秀珍,薛艳,等.污染土壤的修复技术研究进展[J].生态环境,2004,13(2):234-242.
[24] 薄博.大同县蔬菜中重金属污染状况与质量评价研究[J].安徽农业科学,2009,37(14):6793-6794.
[25] 李桂丽,苏红霞,段敏,等.西安市蔬菜中重金属污染分析评价[J].西北植物学报,2008,28(9):1904-1909.
[26] 马文哲,王文光,吴春霞,等.杨凌示范区蔬菜中重金属污染分析与评价[J].北方园艺,2012(17):46-48.
[27] 胡慧玲,玉素甫·艾力,阿布力米提·阿布都卡德尔.乌鲁木齐市安宁渠区蔬菜中重金属的分布特征研究[J].新疆大学学报:自然科学版,2003,20(3):260-263.
[28] 殷飞,王晶.喀什市上市蔬菜重金属污染现状分析及评价[J].安徽农业科学,2010,38(23):12671-12672,12675.
[29] 李江燕,杨永珠,李志林,等.云南个旧大屯镇蔬菜重金属污染现状及健康风险评价[J].安全与环境学报,2013,13(2):91-96.
[30] 张宇燕,陈宏.重庆市市售蔬菜中锌、砷、汞的污染现状评价[J].三峡环境与生态,2012,34(1):47-51.
[31] 丁玉娟,林昌虎,何腾兵,等.蔬菜重金属污染现状及研究进展[J].贵州科学,2012(5):78-83.
[32] 梁称福,陈正法,刘明月.蔬菜重金属污染研究进展[J].湖南农业科学,2002(4):45-48.
[33] 王旭.广东省蔬菜重金属风险评估研究[D].华中农业大学,2012.
[34] 任艳军,马建军,杜彬,等.秦皇岛市根菜类蔬菜中重金属含量及健康风险分析[J].河北科技师范学院学报,2013(2):1-6.
[35] 杨国义,罗薇,高家俊,等.广东省典型区域蔬菜重金属含量特征与污染评价[J].土壤通报,2008(1):133-136.
[36] 汪琳琳,方凤满,蒋炳言.中国菜地土壤和蔬菜重金属污染研究进展[J].吉林农业科学,2009(2):61-64.
[37] 杨胜香,易浪波,刘佳,等.湘西花垣矿区蔬菜重金属污染现状及健康风险评价[J].农业环境科学学报,2012(1):17-23.
[38] 谢华,刘晓海,陈同斌,等.大型古老锡矿影响区土壤和蔬菜重金属含量及其健康风险[J].环境科学,2008(12):3503-3507.
篇9
关键词:土壤 重金属 复合污染
中图分类号:X131.3 文献标识码:A 文章编号:1674-098X(2016)10(a)-0071-02
近年来由于人类科技的不断进步和工农业的迅猛发展,土壤环境中的污染物种类和总量日渐增长,使得土壤环境重金属污染很少以单元素的形式存在,多滴两种或者多种元素共存,即多种重金属元素形成重金属复合污染(Teutsch N et al.,2001年)。土壤环境中各种重金属的赋存形态因为不同重金属元素彼此的各种相互作用如络合、吸附-解吸及氧化-还原等各种理化作用制约,而且重金属元素的移动性、生物有效性和生理毒性对重金属彼此作用有着显著响应关系(Tandy et al.,2009年)。这也是形成土壤环境重金属复合污染对生态系统的影响效应不同于单一元素重金属污染的主要因素。至此,重金属复合污染已然成为环境科学研究中又一个热点(Zhong et al.,2012年)。
1 土壤重金属污染
重金属通常是指比重等于或大于5.0 g・cm-3的金属,如汞、镉、铅、镍、铜、铁、锰等(Adriano,2001年);砷是介于金属与非金属之间,与重金属元素的环境效应和化学特性存在诸多相近之处,所以一般研究中将砷元素纳入重金属元素范畴(陈怀满,2005年)。
土壤环境重金属污染的特点是滞后性、隐蔽性、有毒性、难降解和污染现象不明显,但重金属含量在环境中形成污染效应后,对环境影响不容易改变和去除,具有较强的顽固性(郝春玲,2010年)。经调查,在我国大部分省份土壤环境中都存在程度不同、种类各异的重金属污染(王恒,2014年)。全国每年遭到重金属污染影响的粮食数量超过1 200万t,带来的经济损失超过200亿元(王燕等,2009年)。
重金属元素不仅在食物链的各级生物中不断传递进而富集,而且通过一定的生物作用转变成为毒性更强的大分子有机化合物,所以说重金属污染对于整个生态系统影响不仅是停留在让土壤环境质量下降,减少农作物产量和影响农作物品质,甚至对人类及动物的健康产生威胁;对于生态环境中其他要素都产生负面效应。
2 重金属复合污染
通常我们说绝对单一一种重金属元素污染环境的情况是不存在的,重金属元素在环境介质中都是相伴共存的。
一般认为的复合污染是指同一环境介质(土壤、水、大气、生物)受到多元素或多种化学品(多种污染物)对其的同时污染(陈怀满等,2002年)。因此土壤重金属复合污染可定义为:在土壤介质中,两种或两种以上重金属元素同时存在,满足各种重金属元素的赋存浓度大于国家土壤环境质量标准或者没有超过相应标准但对于土壤环境质量已经产生影响作用的土壤污染(周东美等,2005年)。重金属复合污染中各种重金属元素相互作用极其复杂,并且重金属复合污染在土壤环境中更为普遍,因此重金属复合污染相关研究工作也成为环境污染领域重要开拓方向之一。
3 重金属复合污染特点
相对于单一重金属污染,土壤重金属复合污染中重金属迁移转化遗存效应的影响因素更多且更为复杂。研究者在1939年提出复合污染效应分为叠加效应、同向效应和驳斥效应3种不同类型(何勇田,1994年),其基本内涵是:叠加效应产生的毒性效果等于各污染物单独作用的毒性效果叠加之和;驳斥效应的毒性效果小于各污染物单独作用的毒性之和;同向效应产生的毒性效果大于各污染物单独作用的毒性效果之和。此外,在美国相应研究中将重金属复合污染的相互作用定义为单元素作用、协助、竞争、累积和屏障作用(Wallace,1982年)。
通常情况下,因为有着相近性质的不同重金属元素更容易对生态系统造成复合污染,而且不同重金属之间的相互作用会随着各自存在浓度的不同表现出特有的效应模式。镉锌复合污染研究表明,土壤中的锌元素浓度不同时,锌元素与镉元素对于水稻生理指标的联合作用效果存在差异。当土壤中锌元素添加浓度为100 mg/kg时,水稻生物量随镉元素浓度增加而不断升高,镉锌之间在此浓度时表现出同向效应;当锌元素添加浓度为200 mg/kg或者400 mg/kg时,水稻的生物量会因为镉元素浓度的增加反而降低,镉锌之间存在驳斥效应(周启星等,1994年)。
在土壤中存在铅镉复合污染情况下,因为铅元素可以争夺镉元素的土壤中的接触点位,促使镉元素活性增加,进而产生同向效应,使得土壤中镉元素的生物有效性提升,导致土壤-植物系统中镉元素的迁移转化更容易发生。(王新等,2001年)。
土壤中元素的含量和其与共存元素相互之间效应决定着生长在该土壤植株中的元素。研究表明,镉、铅、铜、锌、砷生理毒性呈现出对水稻苗的剂量与效应的正相关,表现出随着重金属添加浓度增加毒性作用越严重的现象。土壤环境中重金属复合污染存在两元素、三元素和多元素共存的各种组合形式。
参考文献
[1] Teutsch N,Erel Y,Halicz L,et al.Distribution of natural and anthropogenic lead in Mediterranean soils[J].Geochimica et Cosmochimica Acta,2001(65):2853-2864.
[2] Tandy S,Healey J,Nason M,et al.Heavy metal fractionation during the co-composting of biosolids,deinking paper fibre and green waste[J].Bioresource technology,2009(100):4220-4226.
[3] Zhong LY,Liu L M,Yang JW.Characterization of heavy metal pollution in the paddy soils of Xiangyin County, Dongting lake drainage basin,central south China[J].Environmental Earth Sciences, 2012(67):2261-2268.
[4] Adriano DC.Trace elements in terrestrial environments:biogeochemistry,bioavailability,and risks of metals[J].Springer,2001(33):532-541.
[5] 怀满.环境土壤学[M].北京:科学出版社,2005:522.
[6] 郝春玲.表面活性剂修复重金属污染土壤的研究进展[J].安徽农学通报,2010(16):158-161.
[7] 王恒.吉林省土壤-水稻系统环境质量分析评估及重金属复合污染研究[D].北京:中国科学院研究生院,2014.
[8] 王燕,李贤庆,宋志宏,等.土壤重金属污染及生物修复研究进展[J].安全与环境学报,2009,9(3):60-65.
[9] 陈怀满,郑春荣.复合污染与交互作用研究――农业环境保护中研究的热点与难点[J].农业环境保护,2002(21):192.
[10]周东美,王玉军,仓龙,等.土壤及土壤-植物系统中复合污染的研究进展[J].环境污染治理技术与设备,2005(5):1-8.
[11]何勇田,熊先哲.复合污染研究进展[J].环境科学,1994(15):
79-83.
[12]Wallace A.Additive,protective,and synergistic effects on plants with excess trace elements[J].Soil science,1982(133):319-323.
篇10
[关键词] 农田土壤 重金属污染 现状 方法
[中图分类号] S158.4 [文献标识码] A [文章编号] 1003-1650 (2013)09-0037-02
土壤是由一层层厚度各异的矿物质成分所组成的。土壤和母质层的区别表现在形态、物理特性、化学特性以及矿物学特性等方面。由于地壳、大气和生物圈的相互作用,土层由矿物和有机物混合组成。疏松的土壤微粒组合起来,形成充满间隙的土壤形式。相对密度在4.5g/cm3以上的金属称作重金属。土壤中的重金属累积后对人体的危害相当大,能引起人的头痛、头晕、失眠、健忘、神经错乱、关节疼痛、结石、癌症(如肝癌、胃癌、肠癌和畸形儿)等。
一、土壤重金属污染的定义
土壤重金属污染是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引发的问题统称为土壤重金属污染。过量重金属可引起植物生理功能紊乱、营养失调,此外汞、砷能减弱和抑制土壤中硝化、氨化细菌活动,影响氮素供应。重金属污染物在土壤中移动性很小,不易随水淋滤,不为微生物降解,通过食物链进入人体后,潜在危害极大。一些矿山在开采中尚未建立石排场和尾矿库,废石和尾矿随意堆放,致使尾矿中富含难溶解的重金属进入土壤,加之矿石加工后余下的金属废渣随雨水进入地下水系统,造成严重的土壤重金属污染[1]。
二、重金属污染物的来源
污染土壤的重金属主要包括汞、镉、铅、铬和类金属砷等生物毒性显著的元素,以及有一定毒性的锌(Zn)、铜(Cu)、镍(Ni)等元素。主要来自于固体废物,如乱扔旧电池、电子线路板;工业选矿垃圾等的堆集;含重金属的废水未达标排放,被污染地下或地表水径流、渗透;重金属粉尘的沉降等。如汞主要来自含汞废水,镉、铅主要来自冶炼排放和汽车废气沉降,砷则来源于杀虫剂、杀菌剂、杀鼠剂和除草剂。
三、土壤重金属污染的特点
1.隐蔽性和滞后性
大气污染、水体污染和废弃物污染等一般通过感官就能发现,而农田土重金属污染往往要通过对土壤样品的分析化验、对农作物残留检测,甚至通过研究人畜健康状况后才能确定。因此农田土重金属污染从产生到问题出现通常会经过较长的时间,并具有一定的隐蔽性。
2.不可逆性和难治理性
如果大气和水体受到了污染,切断污染源后通过稀释作用和自净化作用也可能会使污染问题逆转。但是累积在农田土中的难降解重金属则很难靠稀释作用和自净化作用来加以消除。某些被重金属污染的土壤可能需要 100~200年的时间才能恢复原状。因此土壤重金属污染一旦发生后通常很难治理,而且其治理成本比较高、治理周期也比较长。
3.表聚性
农田土中的重金属污染物大部分残留于土壤耕层中,很少向土壤下层移动。这是由于土壤中存在有机胶体、无机胶体和有机-无机复合胶体,它们对重金属有较强的吸附能力和螯合能力,这就限制了重金属在土壤中的迁移。因此农田土中的重金属污染物很少向土壤下层移动,大部分残留在土壤耕层,这就导致农作物污染,进而危害人类的健康。
四、我国土壤重金属污染现状
我国的土壤重金属污染物主要来源于污水灌溉、工业废渣和城市垃圾等。污水中占有较大比例的工业废水的成分比较复杂,不同程度地含有微生物难以降解的多种重金属,是土壤重金属污染物的主要来源。
目前我国因农药和重金属污染的土壤面积已经达到上千万公顷,污染的耕地约有一千万公顷,占耕地总面积的10%以上。全国每年受重金属污染的粮食高达l200万吨,因重金属污染而导致的粮食减产高达1000多万吨,经济损失至少有200亿元。华南有的地区接近50%的农田遭受镉、砷、汞等重金属污染;广州近郊因为污水灌溉而污染的农田有2700公顷,因使用污泥造成1000多公顷的土壤被污染;上海的农田耕层土壤汞、镉含量增加了50%;天津市近郊因污水灌溉而导致超过两万公顷农田受重金属污染。国内蔬菜重金属污染的调查结果显示,我国菜地土壤重金属污染形势严峻,珠三角地区接近40%菜地重金属含量超标,其中10%属“严重”超标;重庆市的蔬菜重金属污染程度为镉>铅>汞,近郊蔬菜基地的土壤重金属汞和镉出现超标情况,超标率分别为6.7%和36.7%;广州市的蔬菜地铅污染最为普遍,砷污染次之[2]。
五、土壤重金属污染的危害
重金属污染与其他有机化合物的污染不同。不少有机化合物可以通过自然界本身物理的、化学的或生物的方式净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解。即使有益的金属元素浓度超过某一数值也会有剧烈的毒性,使动植物中毒,甚至死亡。金属有机化合物(如有机汞、有机铅、有机砷、有机锡等)比相应的金属无机化合物毒性要强得多;可溶态的金属又比颗粒态金属的毒性要大;六价铬比三价铬毒性要大等。
重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、慢性中毒等,对人体会造成很大的危害。有关专家指出,重金属对土壤的污染具有不可逆转性,已受污染土壤没有治理价值,只能调整种植品种来加以回避。
六、重金属污染土壤的修复
土壤被污染后,为了避免其对植物的生长和通过食物链对人类造成危害,需要将其从土壤中清除掉。重金属污染土壤的修复技术主要有两种,一是改变重金属元素在土壤中的存在形式,使其由活化态转变为稳定态;二是从土壤中去除重金属元素,使土壤中重金属元素的浓度接近或达到背景含量的水平[3,4]。当前采用的治理方法主要有以下三种:
1.工程治理
即用物理(机械)原理治理重金属污染的土壤,主要有热处理技术、淋滤法、洗土法以及深翻法;
2.生物修复
即针对土壤中的重金属具有生物迁移这一特点而提出的一项净化措施,即利用某种特殊的植物、动物或者微生物能吸收土壤中的重金属污染物从而达到净化的目的;
3.改良剂
即投入各种土壤的改良剂,主要用于调节酸碱度和化学组分,使重金属能够以生物有效性低,毒害程度弱的形式存在。
国内对于土壤污染的治理已有过不少探索,从治理的手段上可以分为物理、化学和生物措施。物理和化学措施主要采用直接换土法、电化法、稳定固化法等方式。但物理和化学措施只适用于有限时空的土壤治理,大规模采用该方式成本太高,也不便于实施。而生物措施则主要利用动物、植物、微生物的生物作用,所用设施相对简单,成本低廉,更适合大规模应用。传统的植物修复技术是利用重金属超富集植物(多为草本植物)的种植吸收土壤内的重金属元素,但在实际应用中存在较大限制,且需要每年进行种植和收割,增加了土壤修复的成本。所以,寻找和培育重金属高富集能力的木本植物成为一个亟待解决的问题。
七、结束语
土壤重金属污染具有污染范围广、持续时间长、污染隐蔽性、难被生物降解等主要特点,并可能通过食物链不断地在生物体内富集,甚至可转化为毒害性更大的甲基化合物,对食物链中某些生物产生毒害,或最终在人体内积累而危害健康。为了预防土壤重金属污染,我们应当树立环保意识,充分认识其危害性,从小事做起,在根本上去除污染来源,杜绝废水、废气的任意排放,及时处理城乡垃圾,不滥用化肥农药。如何恢复重金属污染地区的本来面目也是一个长期性的课题,需要我们不断努力作进一步的探讨。
参考文献
[1]孙铁珩, 李培军, 周启星等. 土壤污染形成机理与修复技术, 北京, 科学出版社, 2005.
[2]周建利, 陈同斌. 我国城郊菜地土壤和蔬菜重金属污染研究现状与展望, 湖北农学院学报, 2002,22(5):476-480.
[3]董丙锋. 土壤环境质量及其演变的影响因素污染防治技术, 2007, 2: 53-55.
- 上一篇:城市垃圾处理存在的问题
- 下一篇:商务经济学前景