半导体材料论文范文
时间:2023-03-14 04:34:14
导语:如何才能写好一篇半导体材料论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词半导体材料量子线量子点材料光子晶体
1半导体材料的战略地位
上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。
2几种主要半导体材料的发展现状与趋势
2.1硅材料
从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC’s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。
从进一步提高硅IC’S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。
理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。
2.2GaAs和InP单晶材料
GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。
目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。
GaAs和InP单晶的发展趋势是:(1).增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。(2).提高材料的电学和光学微区均匀性。(3).降低单晶的缺陷密度,特别是位错。(4).GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。
2.3半导体超晶格、量子阱材料
半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。
(1)Ⅲ-V族超晶格、量子阱材料。GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。
虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。
为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW。量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。
目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。
(2)硅基应变异质结构材料。硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。
另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。
尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。
2.4一维量子线、零维量子点半导体微结构材料
基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。
目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W。特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。
在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。
与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。
王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。
低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。
2.5宽带隙半导体材料
宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W。在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。
以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。
II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。
宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。
目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。
3光子晶体
光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可见光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。
4量子比特构建与材料
随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。
所谓量子计算机是应用量子力学原理进行计算的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。
这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。
5发展我国半导体材料的几点建议
鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。
5.1硅单晶和外延材料
硅材料作为微电子技术的主导地位至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。
5.2GaAs及其有关化合物半导体单晶
材料发展建议
GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。
5.3发展超晶格、量子阱和一维、零维半导体
微结构材料的建议
(1)超晶格、量子阱材料
从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。
宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。
(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。
篇2
关键词:半导体物理实验;教学改革;专业实验
实验教学作为高校教学环节中的一个重要组成部分,不仅因为其是课堂教学的延伸,更由于通过实验教学,可以加深学生对理论知识的理解,培养学生的动手能力,拓展学生的创造思维[1,2]。实验教学分为基础实验和专业实验两部分[3,4]:基础实验面向全校学生,如大学物理实验、普通化学实验等,其主要任务是巩固学生对所学基础知识和规律的理解,旨在提高学生的观察、分析及解决问题的能力,提供知识储备[5,6];与基础实验不同,专业实验仅面向某一专业,是针对专业理论课程的具体学习要求设计的实验教学内容,对于学生专业方向能力的提高具有极强的促进作用[7~8]。通过专业实验教学使学生能够更好的理解、掌握和应用基础知识和专业知识,提高分析问题的能力并解决生活中涉及专业的实际问题,为学生开展专业创新实践活动打下坚实的基础[9~11]。
1半导体物理实验课程存在的问题与困难
半导体物理实验是物理学专业电子材料与器件工程方向必修的一门专业实验课,旨在培养学生对半导体材料和器件的制备及测试方法的实践操作能力,其教学效果直接影响着后续研究生阶段的学习和毕业工作实践。通过对前几年本专业毕业生的就业情况分析,发现该专业毕业生缺乏对领域内前沿技术的理解和掌握。由于没有经过相关知识的实验训练,不少毕业生就业后再学习过程较长,融入企事业单位较慢,因此提升空间受到限制。1.1教学内容简单陈旧。目前,国内高校在半导体物理实验课程教学内容的设置上大同小异,基础性实验居多,对于新能源、新型电子器件等领域的相关实验内容完全没有或涉及较少。某些高校还利用虚拟实验来进行实验教学,其实验效果远不如学生实际动手操作。我校的半导体物理实验原有教学内容主要参照上个世纪七、八十年代国家对半导体产业人才培养的要求所设置,受技术、条件所限,主要以传统半导体物理的基础类实验为主,实验内容陈旧。但是在实验内容中添加新能源、新型电子器件等领域的技术方法,对于增加学生对所学领域内最新前沿技术的了解,掌握现代技术中半导体材料特性相关的实验手段和测试技术是极为重要的。1.2仪器设备严重匮乏。半导体物理实验的教学目标是使学生熟练掌握半导体材料和器件的制备、基本物理参数以及物理性质的测试原理和表征方法,为半导体材料与器件的开发设计与研制奠定基础。随着科学技术的不断发展,专业实验的教学内容应随着专业知识的更新及行业的发展及时调整,从而能更好的完成课程教学目标的要求,培养新时代的人才。实验内容的调整和更新需要有新型的实验仪器设备做保障,但我校原有实验教学仪器设备绝大部分生产于上个世纪六七十年代,在长期实验教学过程中,不少仪器因无法修复的故障而处于待报废状态。由于仪器设备不能及时更新,致使个别实验内容无法正常进行,可运行的仪器设备也因为年代久远,实验误差大、重复性低,有时甚至会得到错误的实验结果,只能作学生“按部就班”的基础实验,难以进行实验内容的调整,将新技术新方法应用于教学中。因此,在改革之前半导体物理实验的实验设计以基础类实验为主,设计性、应用性、综合性等提高类实验较少,且无法开展创新类实验。缺少自主设计、创新、协作等实践能力的训练,不仅极大地降低学生对专业实验的兴趣,且不利于学生实践和创新创业能力的培养,半导体物理实验课程的改革势在必行。
2半导体物理实验课程改革的内容与举措
半导体物理实验开设时间为本科大四秋季学期,该实验课与专业理论课半导体物理学、半导体器件、薄膜物理学在同一学期进行。随着半导体技术日新月异发展的今天,对半导体物理实验的教学内容也提出了新的要求,因此,要求这门实验课程不仅能够通过对半导体材料某些重要参数和特性的观测,使学生掌握半导体材料和器件的制备及基本物理参数与物理性质的测试方法,而且可以在铺垫必备基础和实际操作技能的同时,拓展学生在电子材料与器件工程领域的科学前沿知识,为将来独立开展产品的研制和科学研究打下坚实的基础。2.1实验基础设施的建设。2013年年底,基于我校本科教学项目的资金支持,半导体物理实验教学团队通过调研国内外高校现行半导体物理实验教学资料,结合我校实验教学的自身特点,按照创新教育的要求重新设计了半导体物理实验内容,并根据所开设实验教学内容合理配置相应的实验仪器设备,新配置仪器设备具有一定的前瞻性,品质优良,数量合理,保证实验教学质量。由于作为一门专业实验课,每学年只有一个学期承担教学任务,为了提高仪器设备的利用率,做到实验设备资源的不浪费,计划成立一间半导体物理实验专属的实验室,用于陈放新购置的实验设备,在没有教学任务的学期,该实验室做为科研实验室和创新创业实验室使用。通过近三年的建设,半导体物理实验专属实验室———新能源材料与电子器件工程创新实验室建成并投入使用,该实验室为电子材料与器件工程方向的本科生毕业论文设计以及全院本科生的创新创业实验设计提供了基本保障,更为重要的是该实验室的建成极大地改善了半导体物理实验的原有教学条件,解决了实际困难,使得半导体物理实验教学效果显著提升。不仅加强了学生对专业核心知识理解和掌握,而且启发学生综合运用所学知识创造性地解决实际问题,有效提高学生的实践动手能力、创新能力和综合素质。2.2实验教学内容的更新。半导体物理实验是一门72学时的实验课,在专属实验室建成后,按照重视基础、突出综合、强调创新、提升能力的要求,逐步培养与提高学生的科学实验素质和创新能力,构建了“九—八—五”新的实验内容体系,包括如下三个层次(表1)。第一层次为“九”个基础型实验,涵盖对半导体材料的物理性质(结构、电学、光学)的测定,通过对物理量的测量验证物理规律,训练学生观察、分析和研究半导体物理实验现象的能力,掌握常用基本半导体物理实验仪器的原理、性能和测量方法等。第二层次为“八”个提高型实验(综合、应用性实验),学生通过第一层次的实验训练后,已掌握了基本的实验方法和技能,在此基础上,开展综合性实验,可以培养学生综合运用所学知识以及分析和解决问题的能力。通过应用性实验培养学生将来利用设备原理从事生产或者技术服务的能力。第三层次为“五”个设计创新型实验,学生需运用多学科知识、综合多学科内容,结合教师的科研项目进行创新研究,通过设计型实验可以锻炼学生组织和自主实验的能力,着力培养学生创新实践能力和基本的科研素质。每个基础型实验4学时,提高型实验8学时,创新型实验12学时,规定基础型为必修实验,提高型、创新型为选作实验。九个基础型实验全部完成后,学生可根据兴趣和毕业设计要求在提高型、创新型实验中各分别选做一定数量的实验,在开课学期结束时完成至少72个学时的实验并获得成绩方为合格。2.3实验教学方式的优化。在教学方式上,建立以学生为中心、学生自我训练为主的教学模式,充分调动学生的主观能动性。将之前老师实验前的讲解转变为学生代表讲解实验内容,然后老师提问并补充完善,在整个实验安排过程中,实验内容由浅入深、由简单到综合、逐步过渡至设计和研究创新型实验。三个层次的实验内容形成连贯的实验梯度教学体系,在充分激发学生学习兴趣的同时,培养学生自主学习、自发解决问题的能力。2.4实验考核机制的改革。目前大部分实验课的成绩由每次实验后的“实验报告”的平均成绩决定,然而单独一份实验报告并不能够完整反应学生的实际动手操作能力和对实验内容的熟悉程度。因此,本课程将此改革为总成绩由每次“实验”的平均成绩决定。每次实验成绩包括实验预习、实验操作和实验报告三部分,实验开始前通过问答以及学生讲解实验内容来给出实验预习成绩;实验操作成绩是个团队成绩反映每组实验学生在实验过程中的动手能力以及组员之间的相互协助情况;针对提高型和创新性实验,特别是创新性实验,要求以科技论文的形式来撰写实验报告,以此来锻炼本科生的科技论文写作能力。通过三部分综合来给出的实验成绩更注重对知识的掌握、能力的提高和综合素质的培养等方面的考核。
3半导体物理实验课程改革后的成效
半导体物理实验在我校本科教学项目的支持下,购置并更新了实验设备建立了专属实验室,构建了“九—八—五”新实验内容体系,并采用新的教学方式和考核机制,教师和学生普遍感觉到新实验教学体系的目的性、整体性和层次性都得到了极大的提高。教学内容和教学方式的调整,使学生理论联系实际的能力得到增强,提高了学生的积极性和主动性。实验中学生实际动手的机会增多,对知识的渴求程度明显加强,为了更好地完成创新设计实验,部分本科生还会主动去查阅研中英文科技文献,真正做到了自主自觉的学习。通过实验课程的教学,学生掌握了科技论文的基本格式,数据处理的图表制作,了解了科学研究的过程,具备了基本的科研能力,也为学生的毕业设计打下了良好的基础。与此同时,利用新购置的实验设备建立的实验室,在做为科研实验室和创新创业实验室使用时,也取得了优异的成绩。依托本实验室,2015年“国家级大学生创新创业训练计划”立项3项,2016年“国家级大学生创新创业训练计划”立项4项。
4结语
篇3
本文的主角――陕西师范大学材料科学与工程学院特聘教授胡鉴勇,是国内有机光电子材料研究领域的新生代杰出代表。以有机电致发光二极管(OLED)、有机场效应晶体管(OFET)和有机太阳能电池(OPV)为代表的有机光电子材料和器件是研究的热点,胡鉴勇博士长期致力于应用于高性能有机光电子器件的新型有机/高分子半导体材料的开发和研究,在高效稳定的有机光电子材料的设计、合成、性能表征及其在有机光电子元器件的应用方面开展了大量创新性研究,取得了一系列原创性成果,逐渐成长为有机光电子材料领域的骨干力量。
勤奋钻研,铸就科研里程碑
早1995年大学毕业后,胡鉴勇在家乡的一所中学担任了9年的化学教师;2004年留学于日本佐贺大学获得工学博士学位,随后进入日本山形大学有机光电子研究中心,OLED研究世界权威科学家城户淳二教授(Prof. Junji Kido)研究室进行博士后研究,并在日本世界级科研中心-日本理化学研究所RIKEN,跟随著名有机半导体材料科学家龙宫和男教授(Prof. Kazuo Takimiya)从事特别研究员工作;2015年由陕西师范大学以海外高层次人才-陕西省“百人计划”特聘教授身份引进到陕师大材料科学与工程学院工作。
“勤奋、刻苦、创新、突破”是胡鉴勇博士的特点,在日本求学工作期间,他参与过一项日本国家研发课题(高效有机电子器件研发),承担过日本文部科学省、日本新能源和产业技术开发机构(NEDO)和日本科学技术振兴机构(JST)资助的多项研究课题。
在有机深蓝荧光材料的研究方面胡鉴勇博士贡献卓著。高效率的深蓝发光能最大限度地提高全彩显示品质或照明的显色指数,有效降低OLED显示器的功耗,开发性能好的蓝光材料,尤其是具有高的发光效率和CIE色度坐标Y值小于0.10的深蓝光材料对于实现高性能的OLED器件意义重大,胡鉴勇博士设计合成了一类新的蒽类衍生物―基于双蒽的D-A型深蓝延迟荧光材料,通过对传统的蓝光始祖材料蒽分子进行一系列结构上的修饰,包括采取苯基为中心桥链和pi共轭阻隔基团,在其对位上分别引入以单蒽为核的电子供体单元(D)和电子受体单元(A),形成了具有独特的双蒽结构的D-A型材料分子,以该类材料为发光体,成功实现了满足高清晰度电视(HDTV)蓝光标准的高效率器件,对实现高性能OLED器件具有“里程碑”式的创新意义。该工作发表在材料领域国际顶尖期刊《先进功能材料》上(Adv. Funct. Mater. 2014, 24, 2064),并入选SCI高被引论文(top 1%)。
在空气稳定的、高迁移率的双极性有机半导体材料的研究方面胡鉴勇博士成绩斐然。开发空气稳定的、高迁移率的n型和双极性有机半导体材料,是实现高性能OFET的前提。胡鉴勇博士和团队成员一起合作开发了一种全新的电子受体单元―萘并二噻吩二酰亚胺(NDTI),以其为共聚电子受体中心的D-A型聚合物实现了空气稳定的,高迁移率的n型和双极性有机场效应晶体管,该成果发表在美国化学会上(J. Am. Chem. Soc. 2013, 135, 11445),并入选SCI高被引论文(top 1%)。以此为契机,胡鉴勇博士进一步基于NDTI发展了新型双极性有机小分子材料,并实现了空气稳定的、可溶液加工的、高迁移率的双极性有机场效应晶体管和互补逻辑电路(J. Mater. Chem. C, 2015, 3, 4244; Chem. Mater. 2015, 27, 6418)。
在非富勒烯受体材料的研究方面胡鉴勇博士成效显著。近些年来,以聚合物电子给体和富勒烯电子受体材料为活性层的本体异质结太阳能电池取得了巨大的进步,但由于富勒烯价格昂贵、吸收光谱和能级调制较为困难,开发高效的n型聚合物电子受体材料来替代富勒烯备受业界关注。胡鉴勇博士开发的基于NDTI的有机小分子和聚合物,作为非富勒烯受体材料,在全聚合物OPV器件中取得了较好的光电转换效率(ACS Macro Lett. 2014, 3, 872)。
迄今为止,胡鉴勇博士以第一作者或通讯作者在Adv. Funct. Mater.; J. Am. Chem. Soc.; Chem. Commun.; Org. Lett.; J. Mater. Chem. C.; Chem. Eur. J.;和J. Org. Chem.等国际著名学术期刊上共发表SCI论文30余篇,受邀撰写英文论著1章, 在国际学术会议上作讲演报告20余次,多次受邀在国内著名大学和学会上做学术交流报告,申请日本专利多项,已授权2项。多年来作为一名有机光电子材料领域的科研人员,胡鉴勇博士兢兢业业、孜孜以求,以自己的实际行动为铸就科研力量不断添砖加瓦。
迎接挑战,提升人生新高度
“十年弹指一挥间”,十年前为了提升人生高度,丰富人生阅历,胡鉴勇博士以34岁的“高龄”选择自费出国留学路,付出了常人难以想象的的艰辛和努力;十年后怀揣着拳拳赤子之心,胡鉴勇博士毅然谢绝多家日本和国内公司的诚意邀请,选择了陕西师范大学作为自己事业发展的新平台。
为了进一步提升有机光电子材料研究新高度,拓展以有机电致发光二极管(OLED)、有机场效应晶体管(OFET)和有机太阳能电池(OPV)为代表的有机光电子材料和器件在新型信息显示、绿色节能固体照明和新能源等技术领域的应用前景,胡鉴勇博士争取到了多项科研课题,在不到一年的时间里,成功打造了一个环境优美、设备一流的先进实验室和一个小而精致的科研创新团队,以期在OLED跻身最具发展前景的下一代显示技术和固态照明技术产业化,OFET应用于有机传感器、有源矩阵显示、射频标签、电子纸等新兴产业,OPV技术光电转换效率实用化等领域大显身手,开展更深入、更细致的高端研究工作。
篇4
英文名称:Journal of Synthetic Crystals
主管单位:中国建筑材料联合会
主办单位:中材人工晶体研究院
出版周期:双月刊
出版地址:北京市
语
种:中文
开
本:16开
国际刊号:1000-985X
国内刊号:11-2637/O7
邮发代号:
发行范围:国内外统一发行
创刊时间:1972
期刊收录:
CA 化学文摘(美)(2009)
SA 科学文摘(英)(2009)
CBST 科学技术文献速报(日)(2009)
EI 工程索引(美)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
期刊荣誉:
中科双效期刊
Caj-cd规范获奖期刊
联系方式
篇5
关键词:光纤,语音,传输,光电检测
1、光纤通信系统的基本组成
最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波有0.85、1.31和1.55三个低损耗窗口。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。论文格式。在光纤通信系统中,光纤中传输的是二进制光脉冲'0'码和'1'码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。光纤通信系统的基本组成原理图如下图1-1所示:
图1-1光纤通信系统
1.1光发射端机
光发射机是实现电/光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆中传输。电端机就是常规的电子通信设备。光发射机的原理图如下图1-2所示:
图1-2光发射机原理框图
光源是光发射机的核心,其性能好坏将对光纤通信系统产生很大的影响。目前光纤通信系统使用的光源都是由半导体材料制成的,而半导体光源分两种:发光管LED和激光管LD。由于半导体激光器发出的是激光,发光功率大、谱线宽度窄,但电路结构复杂,温度特性差。而半导体发光二极管发出的是荧光,发光功率不大,谱线宽度宽,但电路结构简单、寿命长、价格便宜。在实验室中经常用到。
1.2光纤或光缆
光纤作为传输媒介,作用是将发射端机光源发出的光信号,经远距离传输后耦合到接收端机的检测器,完成信息传输任务。在通信中使用的光纤通常是由石英玻璃制成的,由纤芯和包层组成。目前,塑料光纤应用于低速、短距离的传输中。其构成光纤的纤芯与包层都是塑料材料。与大芯径50/125μm和62.5/125μm的石英玻璃多模光纤相比,塑料光纤的芯径高达200~1000μm,其接续时可使用不带光纤定位套筒的便直注塑塑料连接器,即便是光纤接续中芯对准产生 ±30μm偏差都不会影响耦合损耗。正是塑料光纤结构赋予了其施工快捷,接续成本低等优点。另外,芯径100μm或更大则能够消除在石英玻璃多模光纤中存在的模间噪音。论文格式。
1.3中继器
含有光中继器的光纤传输系统成为光纤中继通信。光信号在光纤中传输一定的距离后,由于受到光纤衰减和色散的影响会产生能量衰减和波形失真,为保证通信质量,必须对衰减和失真达到一定程度的光信号及时进行放大和恢复。中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲进行整形。
1.4光纤连接器、耦合器等无源器件
由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的(如1Km)。因此一条光纤线路可能存在多根光纤相连接的问题。于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。
1.5光接收端机
光收信机是实现光/电转换的光端机。 它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。光接收机原理图如下图1-3所示:
图1-3光接收机电路原理方框图
2、光纤语音电路设计
光纤语音电路由三部分组成:光发射电路、光纤和光接收电路。论文格式。其工作原理是:音频信号最初是声波,由发送器的电子麦克风转换为电信号。此信号由LM358组成的音频放大器放大,并且借助于一个单独的晶体管控制LED的端电压,将电信号转换为光信号。光信号送入光纤或光缆。在光纤或光缆的另一端,光信号照射到接收器的光电检测器上。光电检测器再将其转换为电信号。此信号被放大并送入扬声器转换为声波恢复为原始信号。
2.1、发射器电路板
此电路主要是把音频信号经麦克风转换为电信号,电信号经滤波器、多级放大器把微弱的电流信号转换为适合半导体二极管发光的电压信号,在晶体管的调制下把电信号转换为光信号送入光纤中进行传输。在发射器电路上有一个话筒和调制LED发光的线路。LED装在塑料壳中以便于连接光纤或光缆进行发送信号。在实验室里设计操作可以使用200m长的塑料光纤传送语音信号,也可以使用玻璃光纤在更远的距离内通信。光纤语音发射器电路如下图1-4所示:
图1-4光纤语音发射电路
2.2、光电接收器电路板:
在接收器电路板上通过光电检测器把光纤传输的微弱的光信号转换为电信号,经电容滤波、运算放大器放大,把电流信号转换为电压信号,放大到适合扬声器输出的电压,恢复原始的语音信号。光纤语音接收电路如下图1-5所示:
图1-5光纤语音接收电路
3、结 语
本文详细的介绍了光纤通信系统的组成,为设计光纤语音传输电路提供理论基础。在该电路系统中语音信号以光波形式在光缆内传输、不受任何电场和磁场的影响。传输距离远,抗干扰能力强。每个电路板需要一个9V电池,元件简单,易于实现,在实验室就能操作完成。
参考文献
[1] 顾畹仪,李国瑞.光纤通信系统[ M].北京:北京邮电大学出版社,2006.
[2]周增基,周洋溢,胡辽林,任光亮,周绮丽.光纤通信[M].西安:西安电子科技大学出版社,2008.12.
[3]田国栋.光纤通信技术[M].西安:西安电子科技大学出版社,2008.9.
[4]杜庆波,曾庆珠,李洁,王文轩.光纤通信技术与设备[M]. 西安:西安电子科技大学出版社,2008.2.
[5] 杨家德.光电技术使用电路精选[J]..四川:成都科技大学出版社,1996.
[6] ic37.com/
篇6
论文关键词:元素周期表,规律
一.“m/n定性”规律:
若主族元素族数为m,周期数为n,则:①m/n<1时为金属,m/n值越小,元素失电子能力越强;②m/n>1时是非金属。m/n越大,元素得电子能力越强;③m/n=1时多为两性元素。例如:Na是第一主族元素,m/n=1/3<1为金属,Cl是第三周期第七主族元素,m/n=7/3>1为非金属。
二.“阴前阳下,径小序大”规律:
“稀有气体元素原子、与之同周期元素的阴离子及下一周期元素阳离子”三者之间具有相同的电子层结构;同时原子序数大的,其粒子半径反而小。例如:
r (Ca2+)<r(K+)<r(Ar)<r(Cl-)<r(S2-)。
三.序差“左上右下”规律:
元素周期表中上下相邻两元素原子序数之差,取决于其所在周期表中的位置,如果它们位于元素周期表ⅢB元素之左(或右),它们的原子序数之差就是上(或下)面的元素所在周期的元素个数。
四.主族中非金属元素个数规律:
除ⅠA族外,任何一主族中,非金属个数=族序数—2。
五.“对角”规律:
1.沿表中金属与非金属分界线方向(↖ ),对角相邻的两主族元素(都是金属或非金化学论文,性质(得、失电子能力)相近。
2.元素周期表中左上右下(↖ )相邻的两金属元素的离子半径相近。
六.“奇偶数”规律:
在元素周期表中,原子序数为奇(或偶)数的元素,元素所在的主序数及主要化学价也为奇(或偶)数(第Ⅷ族元素除外),即价奇序奇,价偶序偶。
七.“序位互定”规律:
若n为奇数,则第n周期最多容纳的元素种数为(n+1)2/2;若n为偶数,则第n周期最多容纳的元素种数为(n+2)2/2。应用这一规律,不仅可求出任一周期所含元素种数(第七周期为排满除外),进而还可以“序位互定”,即已知某元素的原子序数,可确定其在表中的位置;已知某元素在表中的位置,可确定出其原子序数。
八.“分界”规律:
1.表中金属与非金属间有一分界线,分界线左边元属(金属元素)的单质为金属晶体,化合物为离子晶体。分界线左边元属(非金属元素)的单质及其相互间的化合物为,固态时多为分子晶体。
2.分界线附近的金属多数有两性,非金属及其某些化合物多数为原子晶体(如晶体硼、晶体硅、二氧化硅晶体、碳化硅晶体等);同时在分界线附近还可以找到半导体材料。
3.若把元素周期表从第ⅤA与ⅥA之间分开,则左边元素氢化物化学式,是将氢元素符号写在后面(如SiH4、PH3、CaH2等);而右边的氢化物化学式,是将氢元素符号写在前面(如H20、HBr等)。
篇7
10月6日下午,2009年诺贝尔物理学奖揭晓,高锟与美国贝尔实验室的威拉德・博伊尔(Willard Boyle)、乔治・史密斯(George Smith)共获殊荣。高锟的获奖成果,是在英国标准电讯实验室完成的。后来,他在香港中文大学做过九年校长(1987年至1996年),直至退休。
由于在光纤通信领域的开创性成就,高锟将获得约140万美元奖金的一半,博伊尔和史密斯发明了用于数字图像技术的CCD传感器,将各获四分之一的奖金。
三位科学家40年前的研究,帮助构建了当下的信息时代,也为自己赢得了诺贝尔奖。
高锟与低损耗光纤
20世纪60年代初,激光器的发明给光通信研究带来了新的希望――激光束不仅具有亮度高等优点,还可以在光纤中传播。
但由于缺乏稳定、可靠和低损耗的传输介质,光通信似乎仍是一个遥不可及的目标,因为光信号在当时的光纤材料中只能传输20米。
当时,高锟是国际电话电报公司旗下英国标准电讯实验室的一名研究人员。他1933年11月出生在上海的一个书香门第,孩提时代的他就喜欢科学实验,甚至自制过小型炸药弹丸。
后来,高锟随家人迁居香港,曾在香港圣约瑟书院就读。1954年,他远赴英伦,在伦敦大学攻读电机工程。
与不少同行因此对光纤传输的技术前景产生怀疑不同,高锟研究团队认为更值得关注的,是光纤原材料问题。
他后来回忆道:“那时面对的最大难题,就是玻璃的杂质问题。玻璃看似透明,其实杂有不纯的元素,所以我们构想,假若有一种没有杂质的玻璃,光波的传导就不会衰减。”
1966年6月,高锟与同事乔治・霍肯(George Hockham)在《电气电子工程师学会学报》上发表题为“用于光频的光纤表面波导”的论文指出,提纯原材料后可制造出适合长距离通信使用的低损耗光纤:在纯的玻璃纤维中,光信号可传输100公里以上。
这一研究奠定了光纤通信的基础。这一年,他年仅32岁。1970年,美国康宁公司研制出第一种超纯光纤。1975年,英国安装了世界上第一套光纤通信系统。
北京邮电大学前校长林金桐对记者说:“从高锟和霍肯的论文,到世界上第一个商用光纤通信系统的诞生,仅用了十年时间,这在重大科学研究成果向现实生产力转化的众多案例中,显得格外突出。”
诺贝尔奖评委会在新闻公报中表示,这些低损耗的玻璃纤维推动了因特网等宽带通信的发展,光在这些玻璃纤维中流动,文本、音乐、图像和视频可在瞬间进行全球传输,“如果我们拆开密布全球的玻璃纤维,将得到一条10亿公里以上的长线,足够环绕地球2.5万多圈。”
香港中文大学前任校长金耀基甚至将高锟研究成果的重要性,与印刷术、火药、指南针等中国古明相提并论,“今天生活在网络社会,就是因为光纤的发明改变了我们的生活。”(更多关于高锟的资料,见本期“华人”栏目)
贝尔实验室和CCD
在现代的高速网络通信中,数字图像是最主要的承载内容,而这很大程度上要归功于本年度诺贝尔物理学奖的另一项获奖内容――美国朗讯公司贝尔实验室的威拉德・博伊尔和乔治・史密斯发明的用于数字图像的装置:电荷耦合器件(Charge Coupled Device,CCD)。
博伊尔1924年出生于加拿大,26岁时在加拿大麦基尔大学获得博士学位。他在1953年加入贝尔实验室,并在1962年与同事首先发明了可以连续运行的红宝石激光器。
史密斯1930年出生于美国,29岁时在美国芝加哥大学获得博士学位后也进入贝尔实验室。
1969年10月的一天,史密斯走进同在贝尔实验室半导体研究部门工作的博伊尔的办公室,两人进行了一场“头脑风暴”。在不到两个小时的时间里,博伊尔和史密斯在黑板上大致勾绘出一种新装置的蓝图,两人将其命名为电荷耦合器件。
这种新技术的源头,还要追溯到爱因斯坦提出的光电效应,即通过光电效应,光可以被转变为电信号。然而,如何在极短时间内收集并读出信号,看上去却是一个无法逾越的技术挑战。因此,一开始,很多同行都对CCD的概念嗤之以鼻。
但博伊尔和史密斯坚信自己的想法,并成功地将蓝图变成了现实。他们采用特殊的硅半导体材料,并将硅片细分为一个个“单元格”或者说“像素”,这样,当光照射到像素之上,会产生信号电荷。当时,很多电子器件以电流或电压作为信号,CCD则采用电荷作为信号。
信号电荷不仅可以在CCD内存贮,还可以穿越一排排的“像素”,在电极与电极之间快速传输(电荷耦合),并最终被读出。
CCD的发明,带来了摄影的一场革命。光能够被电子化捕捉,而不再需要传统的感光胶卷,数码相机也得以走进千家万户。
篇8
中美专家计划“绿能城市”
【本刊讯】(记者 蔡婷贻)减排和城市的持续发展不仅与经济成长结为一体,而且已经变成招商引资的重要因素。在12月4日举办的“未来城市”论坛上,来自美国的专家们一致强调这一观点。
该论坛由美国前财政部部长亨利・保尔森成立的芝加哥大学保尔森研究所与中国国际经济交流中心联合举办。在美国专家眼中,仍快速发展的中国,占有推广绿色节能城市的绝对优势,因为不断建设的中国有机会将节能减排的概念直接运用到城市化进程中。
长期致力于环保运动的保尔森表示,“中国最让我感兴趣的地方是,这是世界上最大的实验室。中国在城市化进程中的一些理念和经验将对世界上所有人至关重要。”据他透露,中美专家将在中国城市中开展一个“绿能城市”实验计划,假若成功,这一计划将被推向世界其他城市。
“绿能城市”涵盖交通能力、能源消耗、建筑节能等多方面。纽约交通主管赛迪克-侃(Janette Sadik-Khan)在接受《财经》记者采访时表示,舒适、方便的居住环境是城市能否吸引世界级投资的重要诱因,而大城市人口的不断增长则是城市规划者面临的主要挑战。以纽约交通为例,因公共运输系统发达,私家车出行减少,纽约在过去20年内交通量几乎没有明显的增长。但是,到2030年纽约人口将再增加100万人,而这个城市已经没有容量修建新的道路。
“纽约市政府致力于扩大公共运输系统和鼓励市民骑自行车、走路出行。为了这100万人,我们正在公路上增加自行车道,在过去四年里增加了260英里的自行车道,现在总长是600英里,这使自行车使用几乎增加了一倍。”赛迪克-侃建议,街道是非常宝贵的资源,在交通量不断增长的同时,城市规划者必须作出优先选择,让街道得到最高效率地使用就是最优先的选择。
纽约1.3万辆计程车安装了GPS,市政府借此来衡量交通流量。北京也有6.5万辆计程车装有类似的系统。“我认为投资高运量的交通工具,通过提高效率来运输更多乘客将是重要的策略。而用数据证明政策是不是有效,则是最有效的方法。”赛迪克-侃说。
关键词
“雪鹰”号科考直升机坠毁
12月9日,正在执行任务的第28次南极科学考察队配置的“雪鹰”号KA32直升机,在南极冰山间的海冰区上空突然失控,迫降未成功,后坠落海冰上损毁。两名机组人员安全脱险,并被及时救回“雪龙”号科考船。中国科考队联系了附近的俄罗斯站与印度站,对损毁直升机进行营救。事故的调查工作已全面展开。
“雪鹰”号是一种可执行多种任务的多用途直升机,包括消防救援、人员货物运输、巡逻保护等,在南极地区被广泛使用。
失事直升机于2008年12月从俄罗斯购进,购置价格约5400万元,于2009年正式服务于中国南极考察队。此次是该机第三次随队执行任务,中信通用航空有限责任公司受委托管理并执行此次南极考察飞行任务。此次考察任务,中国极地研究中心亦购买了8000万元意外损害保险。
进展
英国科学家造出优质干细胞
英国科学家制取出了质量一流的“金标”干细胞,这可能引发对退化性疾病的新治疗方法的研究。相关论文已发表于《细胞治疗》期刊。
此前在人体上进行的胚胎干细胞试验一直使用质量较低的“研究级”干细胞,它们是在经过处理后被重新定为“临床级”的,而研究人员新制取的干细胞在被捐赠出来时就具有“临床级”质量,不需要昂贵而又危险的转换过程。这些“金标”干细胞已捐给了英国干细胞库,并将在此接受进一步检测,以确保它们安全无害,达到可用于人体试验的质量。
瑞士制成首个辉钼芯片
篇9
论文关键词: 信息技术 微电子专业教学 应用
论文摘 要: 信息技术包括多媒体技术、虚拟仿真技术、网络技术,等等。它的飞速发展和广泛普及,使得传统的教学方法正在向现代教育技术方法转变。针对新兴的多学科综合的微电子专业,作者讨论了信息技术在微电子专业教学中的作用与意义,联系实际教学实践,指出了各种信息技术的特点及应用中需注意的关键问题。
信息技术是现代教育技术的基石和重要组成部分。《国家中长期教育改革和发展规划纲要(2010—2020年)》中提出:“信息技术对教育发展具有革命性影响,必须予以高度重视”;“强化信息技术应用。提高教师应用信息技术水平,更新教学观念,改进教学方法,提高教学效果”。信息技术与高校专业教学相结合,可以改进教学手段、创新教学方法、提高教学效率、增强教学效果。
微电子专业是我国近年来大力发展的一个多学科综合、高技术密集的新兴专业,主要研究半导体材料、器件与工艺和集成电路与系统的设计、制造和测试等理论和技术。微电子专业教学由于课程开设时间较短、涉及学科多、理论性强、同时又与实践结合紧密。因此如何有效地改善教学效果,提高教学质量成为微电子专业教学中迫切需要解决的问题。将现代信息技术应用到微电子专业的教学活动中,提高了学生学习的兴趣和积极性,促进了教师与学生的互动,取得了很好的教学效果。
1.多媒体技术在专业教学中的应用
多媒体教学是信息技术在教学过程中最典型、最广泛的具体应用。多媒体信息技术在教学中的应用是指采用图像、动画、视频等新颖的教学形式,将教学内容生动形象地展示给学生,使学生获得直观的感性认识。多媒体教学方式有助于学生对教学内容,特别是重难点内容的理解和吸收,是对传统教学方式的突破和有益的补充。针对于微电子专业的特殊性和综合性,我们在教学中采用多种多媒体表现方式,分别应用在以下几个方面。
1.1幻灯片教学
多媒体辅助教学课件通常由多页幻灯片组成。在幻灯片中可以插入各种对象如文字、图片、图形、表格、艺术字和声音等,把抽象的、难以直接用语言表达的概念和理论以直观的、易于接受的形式表现出来,有效地增强了教学效果。微电子专业课程理论较多,信息量大,直接讲授学生感到比较枯燥。使用幻灯片教学后,色彩丰富,图形清楚,概念清晰,有助于把抽象概念形象化,复杂问题简明化,调动学生的积极性,提高学习效率。
1.2动画演示
电脑动画的运用能够进一步提升多媒体技术的作用和效果。动画能够将微电子专业课程中遇到的深奥的理论问题和复杂的内部机理,通过简单的画面动态地表示出来,从而使学生加快加深理解,特别有利于重点难点的掌握。另外,电脑动画能够逼真地再现微电子工艺流程的加工过程,可以模拟实际操作步骤,从而可以代替或辅助部分实践教学。
1.3录像放映
微电子专业的实习单位往往是高投资、大规模、贵重设备云集的高科技公司。这些公司管理制度严格、专业程度高,对在校学生进企业实习有着很多限制,同学们经常只能去参观工厂环境,远眺机器的运作,甚至有些生产企业不对学生开放实习。这样,教学得不到生产实践的支持,使得理论与实践严重脱节,降低了教学效果。而将企业内部的生产流程拍成录像,或者购置相关内容的影像资料,通过多媒体放映给同学观看,可以近距离地观摩生产流程和设备运作、了解技术细节,对不甚明白的内容可以反复观看。采用这种方式进行教学,同学们纷纷反映大开眼界,受益匪浅,不仅对课程里所学的内容有了直观的认识,而且了解到产业的前沿发展。
2.虚拟仿真技术在专业教学中的应用
得益于计算机硬件的飞速进步和软件技术的迅猛发展,虚拟仿真技术成为当前流行的新型教学手段。传统的实验教学手段,局限于实验室购置的设备和仪器,特别是微电子专业的实验设备价格高昂、操作复杂、容易损伤,使同学很难得到上机锻炼的机会。而使用基于虚拟仿真技术的教学方式,过程简单灵活,交互方式多样,结果直观明了,既能培养学生的动手能力和分析、综合能力,又能提高学习兴趣,激发学生的创造性。
虚拟仿真技术在微电子专业教学中的应用主要体现在两个方面:一是在电路设计方面,基于电子设计自动化(electronic design automation,eda)技术实现对电子线路(包括集成电路与版图)的模拟仿真;二是在微电子工艺与器件方面,基于半导体工艺和器件的计算机辅助技术(technology computer aided design,tcad)实现对微电子制造工艺和半导体器件结构及工作过程的仿真与演示。使用仿真软件所提供的强大功能,包括软件所具有的可升级性,在课堂和实验中通过软件设计微电子电路、工艺和器件,在屏幕上模拟其功能,可使教学概念清晰,内容生动,过程可视,还能够大幅节省实验设备的购置和维护费用,经济高效。
3.网络技术在专业教学中的应用
近年来网络技术更加普及,也更加方便,特别是校园局域网的建设,提供了学生随时随地使用各种终端进行网络学习的教育环境。这也促使我们把教学平台从教室向网络拓展,必然在一定程度上改变教学的形式和基本架构,带来革命性的变化。
互联网和校园局域网一方面可以作为信息资源库,为微电子专业课程教学提供教学教案、课件、习题等资源的下载和在线浏览;另一方面也可以作为师生课外互动的平台,进行答疑、作业提交、通知等教学活动。这两种方式也是目前微电子教学中最主要的网络应用手段。使用网络教学有助于师生双方的交流,教学信息的丰富,以及多元化教学,等等。网络教学的推广和网络教学平台的建设,极大地推动了网络技术在教学体系中的应用,将会成为现代教育技术的主流之一。
综合运用信息技术的各种方法和手段,结合微电子专业特点,更新教学观念,加强教学实践应用,能够有效地提升教学效率和效果,培养出更优秀的符合社会需求的专业人才。
参考文献:
[1]刘子良.发挥幻灯片在计算机辅助教学中的作用[j].中国现代教育装备,2007,52(6):22-24.
篇10
【关键词】ZnS:Mn;发光性质;发光寿命
0 引言
硫化锌纳米半导体材料是制造光电设备的重要材料之一,具有带隙宽、化学稳定性好等特点,可用做蓝光发光材料,自Bhargava等[1]用实验证实经表面钝化处理的纳米ZnS:Mn能够显著提高半导体的发光效率,越来越多的科研工作者涌向了ZnS掺杂Mn这一领域。而掺杂锰离子的硫化锌是一种发橙色光的光电材料,用途很广,可用作磁性材料和发光材料,因此,很多研究者都把目光集中在了ZnS:Mn的发光性质方向上的研究。
1 实验部分
1.1 试剂和仪器
实验所用的化学试剂包括:醋酸锌、醋酸锰、硫化钠、巯基丙酸均为分析纯,实验用水为自制的去离子水。
1.2 ZnS:Mn纳米颗粒的制备
1.2.1 配置反应溶液
称取6.5700g的醋酸锌,在磁力搅拌下加入巯基丙酸(1%ml)水溶液中,配置的70ml溶液为①,此溶液为白色的乳浊液;称取0.0368g质量的醋酸锰,在磁力搅拌下加入巯基丙酸(1%ml)水溶液中,配置的30ml溶液为②,此溶液为粉红色的透明溶液;称取10.854g的硫化钠溶入去离子水中,配置的50ml溶液为③,此溶液为无色透明溶液。
1.2.2 在250ml三口烧瓶中,先让②溶液和③溶液在90℃温度、磁力搅拌、冷凝回流、氮气环境下反应30分钟,再加入①溶液,反应六个小时,制的乳浊液。在氮气保护下冷却至室温的乳浊液,用无水乙醇离心三次,在80℃下真空干燥3小时获得固体,需研磨获得粉末,该合成的ZnS:Mn纳米颗粒中Mn2+ / Zn2+为0.5%(mol之比)。
同样条件下以此制备Mn2+ / Zn2+为1%、1.5%、2%的ZnS:Mn纳米颗粒。
2 实验结果与讨论
2.1 X射线粉末衍射(XRD)分析
图1 ZnS:Mn纳米颗粒的X射线粉末衍射图
图中a为标准卡片(JCPDS NO.77-2100)上的ZnS,b、c、d、e为本论文实验制备的Mn2+ / Zn2+为0.5%、1%、1.5%、2%的ZnS:Mn纳米颗粒。标准卡片上的ZnS的2θ=28.5°,47.5°,56.5°,对应晶面是(111),(220)和(311),从图上分析,该实验合成的ZnS:Mn纳米颗粒和标准卡片是一致的,说明该反应合成的ZnS:Mn的晶体结构和ZnS相同,为立方形晶体结构,在我们掺杂范围内晶体结构无根本变化,无杂相生成。平均晶粒尺寸D是根据谢乐公式D=Kλ/βcosθ计算获得。K为Scherrer常数,其值为0.89;β为积分半高宽度,θ为衍射角;λ为X射线波长,为0.154056nm。由于掺杂的Mn的量不同,纳米晶体的平均粒径依次为2.21nm,2.55nm,2.87nm和3.37nm,随着Mn含量的增加,纳米颗粒的几何尺寸逐渐增加。
2.2 ZnS:Mn光致发光光谱
图2 ZnS:Mn的光致发光光谱
用340nm波长的光激发合成的ZnS:Mn纳米材料,以此图分析:ZnS:Mn纳米颗粒的发光有两个发光峰,在波长475nm左右蓝光发射峰和在600nm左右桔黄色光发射峰。波长475nm的蓝光是来自体材料ZnS的缺陷,一般认为是锌空位,600nm桔黄色光是由于Mn2+的3d中4T1-6A1的跃迁。Bhargava等人认为,在ZnS:Mn纳米粒子中,由于Mn离子的d电子态与ZnS基体的SP电子态的耦合导致了Mn2+的4T1-6A1的跃迁[2]。Sooklal等人发现Mn2+取代了体材料ZnS晶格中Zn2+导致了Mn2+的4T1-6A1的跃迁,而ZnS表面方上的Mn2+产生的是紫外光,因此可以推断出Mn2+成为ZnS晶格中的一部分,成为发光中心[3]。一些学者发现随着ZnS纳米晶中Mn2+浓度的增加,橙色光(波长600nm)强度会下降。Sooklal等人发现Mn2+的最佳浓度为的最佳浓度为2%,Khosravi等人研究认为Mn2+的最佳浓度为0.12wt%,Leeb等人报道Mn2+的最佳浓度为1%。从我所做的实验中能看出,Mn2+的发光强度随着Mn2+浓度的增加而增加,Mn2+的最大浓度为1%,当Mn2+的浓度继续增加,也就是超过1%时,Mn2+的发光强度下降。由于纳米颗粒表面和内部结构受制备条件影响非常大,制备过程和制备条件的差异导致发光的不同,所以不同研究者得到的结论和规律有很大的差异,有些甚至是相反的。
2.3 ZnS:Mn的寿命
为了研究ZnS:Mn纳米颗粒的激发态的寿命,我们测量了在光激发下的瞬态发光。
图3为ZnS:Mn(1%)的在355脉冲激光激发下的发光寿命衰减曲线,通过数学拟合可知我们得到的发光衰减曲线满足双e指数衰减规律:
I=Ae■+Be■
这里I为发光强度,A和B是常说,t时间,τ1和τ2是激发态寿命。具体寿命拟合结果显示ZnS:Mn(1%)的发光寿命τ1为5.57364E-4, τ2为1.41348E-4。
关于ZnS:Mn的寿命,Bhargava等在实验上发现纳米ZnS:Mn的590nm发光(对应Mn2+的4T1-6A1跃迁)在保持较高发光效率的同时发光寿命至少缩短了5个量级[2],他们给出常规晶体ZnS:Mn的寿命是1.8ms,纳米晶体ZnS:Mn的寿命是20.5ns,3.7ns。但是后来有许多人研究证实了这一结果是有误的。而我所测试的ZnS:Mn的寿命是几百个微秒,仅次于常规晶体ZnS:Mn的寿命:1.8ms,也证实了纳米晶体的ZnS:Mn的寿命不是纳米量级。通常,发光衰减时间要归结于发光物理过程和发光中心所处的环境。从发光过程分析不会有两个衰减寿命,双衰减寿命应该是存在两种不同环境的发光中心。我们知道有一部分Mn2+在合成过程中进入ZnS晶格中,取代晶体中的Zn2+,而另一部分是穿在于ZnS晶体表面附近。当10nm左右的纳米颗粒表面原子占20%左右,表面附近原子要更多。表面的Mn离子所处晶场和内部的不同,激发态的寿命不同,所以发光衰减存在两个寿命。随着纳米颗粒粒径的增加,表面原子所占的比例逐渐降低。
图3 ZnS:Mn(1%)的发光寿命衰减曲线
3 结论
本文采用溶胶法制备了不同掺杂量的ZnS:Mn纳米颗粒,用X射线衍射谱对ZnS:Mn纳米晶的晶型结构进行了表征,结果表明了该合成法合成的ZnS:Mn纳米晶为立方相,且发现在相同的制备条件下,随着ZnS中Mn的含量的增加,纳米晶的颗粒不断增大。用光致发光光谱研究了Mn2+的发光强度,比较得出:随着Mn掺杂的增加,Mn2+的发光强度在增加,1%Mn的ZnS纳米晶中,Mn2+的发光强度最强。ZnS:Mn瞬态发光研究显示,纳米量级的ZnS:Mn晶体的寿命比常规的ZnS:Mn晶体要短一些,但是又不像Bhargava等人实验得出的纳米量级的ZnS:Mn晶体发光寿命至少缩短了5个量级。处于纳米表面和内部的Mn离子的激发态寿命不同,由此导致发光衰减是双e指数衰减。
【参考文献】
[1]Bhargava R N, Gallagher D. Optical properties of manganese doped nanocrystals of ZnS[J].Phys Rev Lett,1994,72:416-419.