土壤重金属污染危害范文
时间:2023-12-18 17:39:43
导语:如何才能写好一篇土壤重金属污染危害,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
土壤重金属污染是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高,统称为土壤重金属污染。土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。
土壤重金属危害有:
影响植物根和叶的发育;破坏人体神经系统、免疫系统、骨骼系统等,如水俣病等;污染饮用水。
(来源:文章屋网 )
篇2
【关键词】土壤重金属污染 特点 评价方法 危害与治理
重金属具有不易分解、易积聚的特点。如何科学地对土壤重金属污染进行评价,是污染治理的重要前提,以下就土壤重金属的污染及其评价方法进行分析。
一、土壤重金属污染的成因及特点
土壤是人类社会赖以存在和发展的根本前提,是最重要的基础资源。随着近现代工业的飞速发展,土壤中沉积了越来越多的废弃污染物。工业生产、居民生活垃圾的不合理处置以及矿产开采等,都会带来土壤重金属污染。从化学理论角度来讲,98%以上的金属都属于重金属,从环境保护学领域来讲,土壤重金属污染中的重金属主要包括汞、铅、锌、砷和镍等。
1、土壤重金属污染的成因。(1)自然原因。土壤重金属的形成不是单方面作用的结果,而是受多方面因素影响,在不同时期,其主要影响因素又不同。土壤形成初始时期,其重金属含量受成土母质的影响较大,母质中的重金属含量及组成直接决定了土壤重金属的值。随着土壤的发育,母质对其重金属值的影响逐渐减弱。与此同时,生物残落物的影响逐渐增强,受生物个体差异影响,其残落物也呈现出多样化的特点,对土壤重金属组成的影响程度也各不相同。大气沉降,如火山爆发、森林火灾等可能使许多重金属漂浮于空中,其中一些被植物叶片吸收,进而被微生物分解进入土壤,从而改变土壤的重金属含量与构成。(2)人为原因。研究人员对近30年的土壤重金属污染原因进行统计,分析发现随着工业化程度的不断加深,人类活动已经逐渐上升成为土壤重金属污染的主要来源。具体来讲,人类活动又突出表现在以下几个方面:首先废气、烟尘等大气污染。城市化进程的加快在反映国民物质生活水平提升的同时也带来一系列环境问题,城市交通、工业生产等向大气排放大量废气、烟尘,造成大气污染,通过大气沉降,这些物质进入土壤,造成土壤重金属污染。经调查研究发现,工矿生产集中区域、城市道路、铁路周围,土壤重金属污染往往格外严重。其次化肥农药在农业生产中的使用。为了缩短农作物生长周期,现代农业生产常会选择使用化肥农药,大量化肥与农药的使用在带来生产效益的同时,也将其中所含的重金属物质带入了农作物与土壤,造成土壤重金属污染,影响人体健康。再次水体污染。受水资源分布不均因素影响,在部分地区,农田灌溉需要引入工业废水和生活污水,这些未经合理处置的污水进入到农田,造成土壤重金属污染,由于污染水体中含有大量重金属物质,通过污水灌溉产生的土壤重金属危害破坏性更大,极易造成循环性水土污染。最后其他活动。含重金属的工业废弃物,城市居民生活垃圾的堆放,金属矿山酸性废水的排放等也会造成土壤的重金属污染。
2、土壤重金属污染的特点。依据化学金属元素相关理论,重金属性质稳定,极难被微生物降解,一旦进入土壤造成重金属污染,势必对农作物的品质和产量产生较大影响,加之其潜伏周期长,通过食物链的“生物富集效应”严重影响动物和人体的健康。有研究表明,低浓度的汞在小麦萌发初期能起到促进生长作用,但随着时间的延长,最终表现为抑制作用;砷有剧毒,可致癌;镉会危害人体的心脑血管。归纳起来,重金属污染有以下几个特点:(1)潜伏周期长,污染具有隐蔽性;(2)性质稳定,污染具有难降解性;(3)相互作用,污染具有协同性、扩散性。因此,重金属污染又有“化学定时炸弹”之称。
三、土壤重金属污染的评价方法
1、单因子指数法。借助综合指数法,可以对受测区域的重金属污染情况进行分级,指出土壤中污染最大的因素,但无法判定出不同元素对土壤污染的影响差别。根据这一方法计算出来的污染指数只能反映各种重金属元素对土壤的污染程度,而无法精确反映污染的质变特征。
2、污染负荷指数法。该指数是由评价区域所包含的主要重金属元素构成,它能够直观地反映各个重金属对污染的贡献程度,以及金属在时间,空间上的变化趋势.由Tomlinson等人提出污染负荷指数的同时提出了污染负荷指数的等级划分标准和指数与污染程度之间的关系,通过计算得打各重金属的污染负荷指数及可以得到各个功能区和该市的污染程度.
3、潜在生态危害指数分析。重金属元素是具有潜在危害的重要污染物,潜在生态危害指数法作为土壤重金属污染评价的方法之一,它不仅考虑土壤重金属含量,还将重金属的生态效应、环境效应与毒理学联系在一起,是土壤重金属评价领域广泛应用的科学方法
4、GIS技术在土壤重金属污染评价中的运用。GIS是由计算机硬件、软件及不同方法组成的系统,通过该系统,能够实现空间数据的采集、管理、处理、分析与建模,以解决复杂的规划和管理类问题。通过GIS技术,将不同类型的数据进行处理变换,根据客观需求对其进行空间分析和统计,最终建立各种应用模型,以便为研究决策提供依据。在对土壤重金属污染进行研究时,常利用GIS 技术的计算与图形显示功能,对受测区域指定采样点进行插值分析,实现土壤图数字化,建立空间与属性数据库,最终绘出污染物空间分布图,为土壤污染治理提供参考依据。
三、重金属污染土壤的危害与治理
土壤是人类赖以生存的最基本的自然资源之一,但现阶段严重的土壤污染,通过多种途径直接或间接地威胁人类安全和健康,开展城市环境质量评价,日益成为人类关注的焦点。
当土壤中的重金属含量达到一定程度,不仅会导致土壤污染、农业生产收益下降,通过径流,还会对水体(地表水、地下水)产生淋失作用,污染水资源、破坏水文环境;借助大气沉降,极易形成大气污染与水污染、土壤污染的“死循环”,进而影响人体健康。
根据重金属污染的隐蔽性、不可逆性及长期性等特点,与大气污染、水污染等环境问题相比,土壤污染的治理难度更大。现行的重金属污染土壤治理主要有生物法、化学法、工程治理法等方法,就目前科学技术发展形势来看,在治理方案设计上尚未形成统一标准,在实际操作中,不同的地理环境在方法的选用上存在区别,使用的技术也多种多样。从总体上来讲,治理污染土壤首先应查明污染成因,以《土壤环境监测技术规范》为指导,对污染区域进行实地分层采样调查,一般将受污染区域分为“污染源区”、“保护区”和“超标污染区”三个区域。无论采用何种方式,在对土壤污染进行治理时,应注意因地制宜,结合受污染区域的土质情况、土地使用性质与功能、重金属污染物含量与构成等特点,对治理效果、时间、经费等作出合理预期和科学规划,选择最佳方案。
结束语
随着社会发展,各行各业对重金属资源的需求与日俱增,与此同时,由生产而产生的重金属废弃物也逐渐增多,这些未能及时处理的废弃物作用于土壤,一旦其重金属含量超标,就会对土壤造成严重污染,进而破坏生态平衡。
参考文献:
[1]范拴喜等.土壤重金属污染评价方法进展[J].中国农学通报,2010
篇3
[关键词]地质;土壤;重金属;污染;污染治理
中图分类号:X53 文献标识码:A 文章编号:1009-914X(2015)22-0286-01
土壤重金属污染是指土壤中重金属过量累积引起的污染[1]。过量重金属将对植物生理功能产生不良影响,使其营养失调。重金属难以在生态系统中转化、处理,并通过食物链层层传递最终在人体内积累,严重危害人类健康[2-3]。
1.土壤重金属污染的来源
土壤重金属污染存在大气、污水、固体废物、农药化肥等多种来源,不同来源的污染治理方法也存在明显差异。我国土壤重金属污染来源主要有以下几种:
1)大气沉降。冶金、重化工等工业过程会产生含有重金属的粉尘或气体排放到空气中,通过自然沉降和降水污染土壤。
2)污水污染。工业、生活污水如果未经处理就进行排放,将携带铅、铜等重金属元素进入河流或地下水中,影响人类、牲畜、农作物安全用水。
3)固体废弃物。生活、医疗、工业产生的固体废弃物在堆放或处理过程中,由于日晒、雨淋、水洗,重金属极易移动,以辐射状、漏斗状向周围土壤、水体扩散。
4)农用物资。农药、化肥和地膜长期不合理施用,导致土壤重金属污染。高毒农药含有铜和锌等重金属元素,一旦喷洒到农作物上难以转化、处理,造成粮食、水果重金属超标,造成食品不安全。
2.土壤重金属污染的地质因素分析
我国的南北方地理区域气候、经济发展差异,土壤地形、地质差异,将导致土壤重金属污染呈现地质因素特性。具体分析如下:
1)南北方差异
从污染分布情况看,南方土壤污染重于北方。我国南方地区经济较发达,尤其是有色金属产业、外贸加工业较为集中,导致土壤重金属超标严重。镉、汞、砷、铅4种无机污染物含量分布呈现从西北到东南、从东北到西南方向逐渐升高的态势。
2)耕地土壤污染特点
耕地土壤污染主要由于含有重金属的农资使用、工矿企业重金属排放物迁移污染,并且前者具有全国普遍性,这主要因为我国农药、地膜安全标准较低所致。根据统计,我国耕地土壤重金属超标率超过1/5,主要污染物为砷、铜、汞、铅、铬等,并且呈现污染程度逐渐加剧的趋势。
3)酸碱地质差异
我国热带、亚热带地区,广泛分布着各种红色或黄色土壤的酸性土壤。南方土壤受到气高温高、强降雨量影响,pH一般低于6,较强的酸性土壤对铜、锌等金属元素具有天然的吸附能力。而我国北方地区多呈现盐碱地质。不同酸碱度土壤对重金属元素的吸附能力也不相同。
4)矿山矿区差异
我国中南地区分布较多的金属矿山,由于采矿长流程、大滞后、多变量耦合工艺的影响,导致矿山不同区域土壤具有差异的重金属污染特性,因此需要针对不同矿区进行有针对性的分析,以标定重金属污染元素以及量级程度。不同矿区的污染程度、重金属元素具有明显差异。
3.基于地质因素考虑的土壤重金属污染治理方案
1)农药污染土壤的治理
对于农药、化肥、地膜等农资污染的耕地土壤可以采用热脱附技术进行治理以提高土壤的自我更新能力,保持土壤的活性。在采用该技术时需要控制两个参数指标即加热温度和保持时间以控制污染物在不同相之间的迁移转变,尤其是将重金属通过蒸发、排放、冷凝、剔除等处理至达标后进行无危害转移与安全排放,以避免土壤的二次污染。
2)盐碱土壤污染治理
在盐碱地的耕作过程中,利用粉垄螺旋钻头设置底层粉垄暗沟系统,利用天然降水的下渗运动,使土壤中的盐分下沉,并借助粉垄土壤疏松在氧气、微生物等作用下,使土壤中的部分盐分下移,增加了微生物对重金属、有机污染物等的吸着和转化。
3)土壤污染的固化稳定处理
土壤污染的固化稳定处理其原理为削弱土壤金属元素的迁移扩散能力,避免重金属污染的传递与二次污染以降低其危害,消除其对生态环境的进一步影响。需要指出的是该技术并不是消除重金属,而是隔绝其对其它环境的影响。图1显示固化稳定化处理在土壤修复治理方案中使用率达到22.2%。
4)酸性土壤的治理特点
酸性土壤对重金属元素的易污染程度由高到低依次为As Ni Pb Cu Cd Zn Cr Hg,空间分布不均匀程度由大到小依次为Cd As Pb Zn Cu Cr Ni Hg。Cd的含量与pH值呈正相,As的含量与F的含量呈正相关性,Cr、Hg的含量与F的含量呈负相关性,Cr、Cd的含量与海拔高度呈正相关性,Cu与As、Cu与Ni、Hg与Cr呈正相关性,Zn与Pb、As与Ni呈负相关性。
5)矿区污染土壤的治理特点
针对金属矿区土壤污染特性,有针对性的对其Zn、Pb、Cd、Cu和As等金属元素进行吸收、转化与格力处理。并且,根据矿山不同区位的污染程度设定不同等级的重金属处理标准,在有限污染处理成本的前提下实现矿山土壤综合治理的最优化效果。可见,针对矿区污染土壤的特点需要设计有针对性的处理方案。
4.结论
土壤重金属污染严重危害人类健康,且其污染治理受到污染源多样化、异质性影响存在较大难度,因此该课题受到国内外广泛关注。针对不同地质因素重金属污染的形式存在差异这一特点,提出基于地质因素考虑的土壤重金属污染治理方案。所提方案对开展土壤重金属治理工作具有借鉴意义。
参考文献
[1] 徐龙君,袁智.土壤重金属污染及修复技术[J].环境科学与管理.2006(08).
篇4
土壤污染物大致可分为重金属等化学污染物、物理污染物、生物污染物和放射性污染物。在这几类污染物中,重金属会造成土壤环境质量严重下降。重金属在土壤中累积超过一定数量,就会污染生长于其中的植物,进而影响人类健康,引发严重疾病。但是,由于土壤污染有着不同于其他污染的一些特点,在相当长一段时间内并没有引起足够的重视,我国对于土壤污染的预防和修复也还处于探索和研究的初级阶段,很多防治措施还不能起到有效作用,因此土壤重金属污染有愈演愈烈的趋势。针对土壤重金属的污染问题,我们采访了我国著名环境生态专家、南开大学环境科学与工程学院院长周启星教授。
“隐形杀手” 浮出水面
周启星,主要研究方向包括复合污染生态学、污染环境修复、生态毒理与环境基准等,在环境污染特征、毒理效应、土壤环境基准以及修复等方面进行了大量相关研究,尤其在土壤重金属污染防治与修复研究领域有很深的造诣。
在很多人的印象中,“土壤污染”似乎是个新名词,人们对它是陌生的。其实,这些在土壤中潜伏了多年的“隐形杀手”,正悄无声息地浮出水面,不断产生可怕的危害。一段时间来,各地土壤重金属污染事件频发,才渐渐引起了普通百姓对土壤污染的关注。
在采访中,周启星介绍说,土壤重金属污染来源众多。这些重金属进入土体,被生长在其中的作物吸收和积累,人食用了这些被重金属污染的粮食和蔬菜后,将重金属吸收到体内,健康受到很大危害,出现严重的“污染病”。20世纪60年代,日本发生的“痛痛病”和“水俣病”,就是因为镉和汞对环境的污染所致。目前,我国重金属污染也开始呈现快速上升的趋势,2011年1至8月份短短半年多时间,就出现了11起重金属污染事件,土壤重金属污染问题进入人们的视线,对土壤重金属污染的治理与修复变得刻不容缓。
原本被大家忽视的土壤污染一下集中爆发出来,造成的消极影响直线上升,在之前相当长的一段时间内却似乎并没有太多这方面的报道,这是什么原因呢?从周启星教授介绍的土壤重金属污染的特征中,我们可以找到原因。周启星教授介绍了土壤重金属污染的主要特点:污染的长期积累性、隐蔽性、形成原因的复杂性以及治理的困难性。
土壤重金属污染的积累性,是指土壤重金属污染不像水污染那样因为河道被排入污水就可以马上被发现,也并不像工厂的废气排入空气中后人们即刻就能看到。土壤污染是一个逐渐累积的过程,工农业生产以及城市垃圾等固体废弃物的堆放,使重金属有机会渗入土壤;水和大气中的污染物最终也会进入土壤,对土壤造成次生污染。土壤是“最后的垃圾桶”,积累于土壤中的各种重金属,将会逐渐得以释放,对地下水和植物造成缓慢的污染,最终对人体健康构成威胁。学界有一种形象的说法,将其称为“生物定时炸弹”。所以,重金属的中毒发生,是一个缓慢的过程,到出现问题时,一般都已经产生了比较严重的后果。
周启星教授说:“由于土壤本身就具有净化功能,它的污染及其危害也就具有潜在性,用肉眼是很难观察到的,只有用专业的检测设备才能够检验土壤是否被污染,以及污染的程度究竟有多严重。”土壤重金属污染的隐蔽性,造成土壤污染状况容易被忽视。因此,要到有严重的污染事件出现时人们才会察觉到土壤污染的存在,这也就是为什么最近一段时间内各地的重金属中毒事件频频发生,人们才意识到这一污染的严重性。
因为进入土壤中的重金属在大多数情况下不止一种,所以土壤的重金属污染具有复杂性。周启星教授解释说,土壤的重金属污染除了一些主要的有毒重金属污染之外,还有一种情况,那就是有一些毒性小的重金属,如锡、碘等,它们在有机污染物的交互作用下,毒性会变得比较复杂,对动植物和微生物均会造成更大的危害。
由于上面提到的这些特点,导致土壤重金属污染的治理变成一件棘手的事情,纷繁复杂、千头万绪的原因和污染状况让土壤重金属污染的治理只是停留在初级探索的阶段,很难找到切实有效的方式来进行治理,这也就涉及到了土壤污染治理所面临的极大困难。
防治征程困难重重
当土壤污染的问题不断发生并开始被重视之后,相应的预防、治理和修复也就应该开始进行,并尽量使其提早发挥作用。然而,目前我国土壤重金属污染的预防和治理工作进行得并不是很顺利,原因是多方面的。
周启星教授特别提到了我国土壤环境质量标准制定与修订工作过于落后的现状,对我国土壤重金属污染防治工作产生了严重影响。周启星教授介绍说,目前我国使用的《土壤环境质量标准》是1995年制定的,到现在将近20年都没有进行过修订和补充。在此期间,土壤污染又有很多新情况和新问题出现。由于实施的标准十分陈旧和落后,导致无法解决一些现实新问题。
周启星教授指出,1995年颁布的《土壤环境质量标准》,已经不再对我国土壤重金属污染防治工作产生积极影响。他强调,这一标准中存在的最大问题是,该标准的适用范围只限于农田、蔬菜地、茶园、果园、牧场、林地以及自然保护区等地的土壤,而关于商业用地和住宅用地,却并没有明确标准,而且标准中所收录的重金属并不全面,很多对人体健康有严重危害的土壤有机污染物并没有被列入其中。该标准明显是在土壤环境管理工作的初级阶段制定的,很多方面都已经不符合现在的要求。因此,该标准在如今的土壤重金属污染的检测和判断中,已经不能发挥应有的作用,这就迫切需要从国家层面上开展环境基准的系统研究,为《土壤环境质量标准》的修订和完善奠定坚实的基础。
周启星教授非常重视土壤环境标准修订和完善这项工作,他认为只有有了严格和符合实际的标准,解决“是不是应该修复?”、“在什么水平上修复?”、“修复之后希望达到怎样的水平?”等一系列问题,土壤重金属污染的检测和修复工作才能顺利开展。但是,他也非常遗憾地提到,目前我们国家很少有人在进行新标准方面的研究和探索。目前,只有他和他的研究团队一起,进行了一些相关的研究工作。
周启星教授还提到,目前污染土壤修复技术有待提高,也是土壤污染防治中一个比较突出的问题。土壤重金属污染的修复技术不够发达,没有有效的修复技术来处理和净化被重金属污染过的土壤,使得对土壤重金属污染的修复还停留在初级阶段。目前普遍使用的污染土壤修复方法主要有两种:物理修复法、化学修复法。其中,物理方法的缺点是费时费工,且成本较高;使用化学修复方法则容易引起其他问题,出现二次污染,因此在使用的时候应该考虑可能会造成的后果,慎重使用。因此,国内很多相关专家都在对有效的污染土壤修复的方式进行探索和研究,目前生物修复技术因为其成本低廉、治理的本位性和永久性等优点,是人们很看好的一种修复技术,但由于研究和开发刚刚起步,在应用上还并不成熟,有待相关专家进行深入的研究。
此外,周启星教授提到的修复资金、实现商业化的体制问题以及管理方面,还存在着诸多问题。因此,土壤重金属污染的预防和修复,是一项任重道远的工作,其中还存在着很多的问题需要探讨和解决。
任重道远前景乐观
周启星教授说,土壤也像人一样,会出现健康问题。土壤的健康出了问题之后,就如人生病之后,需要及时“治疗”,否则继续恶化下去就会出现更严重的问题。据相关统计数据显示,我国土壤目前已经处于亚健康状态,需要及时采取“诊断”和“治疗”措施,来抑制土壤的健康情况继续恶化。
周启星教授说:“我国的土壤污染问题比国外复杂得多,一是我国的人口多,另外在工业方面,国际上一些污染比较严重的企业都将工厂都搬到了我国。在这个大环境下解决土壤污染问题,确实存在比较大的困难。”他认为,在土壤污染的修复方面,应坚持“两手抓”,一手抓机理的研究,一手抓应用推广 ,加强与政府部门的合作来推动实际应用。他提出,应当将物理修复、化学修复、生物修复、综合修复这几种修复方式按照情况选择使用,让污染土壤修复的效果达到最好;另一方面,政府在相关政策的制定和管理上应继续加强。多个方面共同努力,污染土壤的修复才能真正达到理想的效果。
寻求土壤污染的解决之道,应该从问题的根源做起。目前,我国的经济发展还是粗放式的,环保意识仍然淡薄、片面追求经济效益、盲目开发资源、开采方式不当等问题普遍存在,这些做法也都给土壤重金属污染提供了方便的条件。因此,要在土壤重金属防治方面取得真正的成绩,就要在源头上尽量控制重金属污染的产生和扩散,在极易出现重金属污染的相关工厂 ,应当进行相关的宣传,提高大家保护土壤环境的意识,在重金属污染的源头上进行控制和预防,才能达到真正的治理污染的目的。
完善相关的法律法规,也是非常重要的一项措施。有明确的相关规定,是完成土壤污染预防和治理修复非常重要的一步。据了解,目前相关部门正在进行相关法律法规的制定,相信在这些法律法规出台了之后,污染土壤的防治和修复就会有法可循,防治工作就能更加顺利一些。
篇5
1.引言
我国矿产资源丰富,为国家经济建设做出了巨大的贡献,是工业经济的重要支柱,促进了社会进步,但在矿产开采和冶炼过程中也存在一系列严重的环境问题。首先,矿产开采会占用大片土地,并可能造成地质灾害。在采矿的过程中产生大量的矿渣,包括选矿渣、尾矿渣及生活垃圾等。据统计,中国铁矿石开采经选矿后68%以上为尾矿,黄金矿开采选矿后几乎100%为尾矿[1]。超过90%的矿区废弃物采取堆放处理,占用了大片的土地。我国矿山多为地下开采,常常导致地表裂缝与塌陷,严重危及到地表的人类活动。其次,矿山开采过程破坏生态环境,造成环境污染。矿区大片植被遭到破坏,表土剥离,加剧了水土流失,引起了土壤退化,导致生态失衡。矿产开采中产生的废弃物成分复杂,含有大量的酸性、碱性或有毒的物质,这些物质能对周边地区造成严重的影响。许多矿物有重金属伴生,矿物开采过程中常产生重金属污染。重金属具有长期性,稳定性和隐蔽性的特征,同时重金属元素会在植物体内积累,并通过食物链富集到动物和人体中,诱发癌变或其他疾病[2],危害人类健康。如铅中毒会影响人的神经系统、造血系统和消化系统等,镉中毒则会引起骨痛病。矿区土壤重金属污染已不容忽视,到了亟待解决的地步。矿区固体废弃物和矿山酸性废水是矿区土壤中重金属的主要来源。尤其是在Pb/Zn矿、Fe/S矿的开采过程中,尾矿废石中的Pb、Cd、Zn、Cr、Cu、As等在地表水的冲洗和雨水的淋滤下进入土壤并累积起来。而酸性废水则使矿区中的重金属元素活化,以离子形态迁移到矿区周边的农田土壤或河流中,导致土壤和河流中重金属含量远远超过背景值[3],影响农产品品质和饮水健康。另外,在矿石采矿、运输及排土过程中,尘埃污染也是矿区周边土壤中重金属的一个来源。在发达国家和地区,矿区废弃地治理已达50%以上[4],而我国还不到10%。近年来,我国开始重视矿区重金属污染的治理,如中国污染场地修复科技创新与产业发展论坛中来自全国各地的重金属污染场地修复专家一起商议湖南重金属污染矿区的治理措施,并对各方法的实用性做了分析。土壤重金属的各个修复方法可以降低重金属的浓度或生物可利用度,降低对生态环境及人类健康的危害。重金属污染土壤的修复中,方法的选择至关重要。本文在阐述了重金属污染土壤的基本修复原理后,着重分析了土壤重金属污染的物理修复法、化学修复法和生物修复法,为土壤中重金属的去除、固化及钝化提供了理论依据。
2.重金属污染土壤的修复技术
国内外用来修复土壤污染的方法较多,在具体的应用过程中多为交叉使用,一般分为三大类,即物理修复方法、化学修复方法和生物修复方法[5]。其修复原理如下:(1)加入化学改良剂转化重金属在土壤中的存在化学价态和存在形态,使其固化或钝化。或者采用物理修复等方法,使重金属在土壤中稳定化,降低其对植物和人体的毒性;(2)利用重金属累积植物、动物、微生物吸收土壤中的重金属,然后处理该生物或者回收重金属;(3)将重金属变为可溶态、游离态,然后进行淋洗并收集淋洗液中的重金属,达到降低土壤中重金属含量的目的[5]。
3.物理修复法
物理修复法是基于机械物理的工程方法,它主要包括客土、换土和翻土法、电动修复法和热处理法三种。
3.1客土、换土和翻土
客土法是指向被重金属污染的土壤中加入大量干净土壤,覆盖在土壤表层或混匀,使重金属浓度降低至低于临界危害浓度,从而达到减轻污染的目的[6]。对移动性较差的重金属污染物(如铅)采用客土法时,相对较少的客土量也能满足要求,可减少工程量。换土法是指把受重金属污染的土壤取走,代之以干净的土壤。该方法适用于小面积严重污染的地区,以迅速地解决问题,并防止污染扩大化。此方法要求对换出的受污染土壤进行妥善处理,以防止二次污染[7]。翻土法是指深翻土壤,使表层的重金属污染物分散到更深的土层,达到减少表层土壤污染物的目的。在矿区重金属治理的过程中,换土法治理较为彻底,而客土法和翻土法并未根除土壤中的重金属污染物,相反把重金属继续留在土壤中,因此这两种方法只适用于移动性差的重金属污染物,以免土壤中重金属污染物对地下水造成污染。
3.2电动修复
电动修复法是由美国路易斯安那州立大学研究出的一种治理土壤污染的原位修复方法,该方法近年来在一些欧美发达国家发展很快。它适合修复低渗透粘土和淤泥土,可以控制污染物流向[8]。在电动修复过程中,利用天然导电性土壤加载电流形成的电场梯度使土壤中的重金属离子(如铅、镉、锌、镍、钼、铜、铀等)以电迁移和电透渗的方式向电极移动,然后在电极部位进行集中处理。郑喜坤等[9]在沙土上的实验表明,土壤中Pb2+、Cr3+等重金属离子的除去率可达90%以上。该方法不搅动土层,且修复时间较短[10],是一种可行的修复技术。
3.3热处理
热处理法是利用高频电压释放电磁波产生的热能对土壤进行加热,使一些易挥发性有毒重金属从土壤颗粒内解吸并分离,从而达到修复的目的[11]。该技术可以修复被Hg和As等重金属污染的土壤。虽然物理修复方法取得了一定的成果,但其还存在局限性。客土、换土和翻土法操作起来花费具大,破坏土壤结构,使土壤肥力下降,同时还依然需要对换土进行堆放或处理;电动修复法在实际运用中受其他多种因素影响,可控性差;热处理法对气体汞不易回收。
4.化学修复法
4.1化学改良剂
该方法是指向重金属污染土壤中添加化学改良剂,通过对重金属的吸附、氧化还原、拮抗或沉淀作用,改变其在土壤中的存在形态,使其钝化后减少向土壤深层和地下水迁移,从而降低其生物有效性。常用的化学改良剂有石灰、碳酸钙、沸石、硅酸盐、磷酸盐等,不同改良剂对重金属的作用机理不同。如施用石灰或碳酸钙主要是提高土壤pH值,促使土壤中镉、铜、汞、锌等元素形成氢氧化物或碳酸盐等结合态盐类沉淀。如当土壤pH>6.5时,Hg就能形成氢氧化物或碳酸盐沉淀[12]。沸石是一种碱土金属矿物,通过吸附、离子交换等降低土壤中的重金属生物有效性。黄占斌等指出对于铅、镉复合污染土壤,环境材料腐殖酸对铅有显著固定作用,而高分子材料SAP及材料组合(腐殖酸、高分子材料SAP和沸石)对镉起到明显固定作用。A.Chlopecka等发现沸石、磷石灰等能降低重金属Pb、Cd的移动性,且能够减少玉米和大麦对重金属Pb、Cd的吸收量。
4.2化学淋洗
化学淋洗修复法是指在重力或外压下向污染土壤中加入化学溶剂,使重金属溶解在溶剂中,从固相转移至液相,然后再把溶解有重金属的溶液从土层中抽提出来,进行溶液中重金属的处理过程[15]。利用此方法开展修复工作时,既可以在原位进行,也可采用异位修复[16]。原位化学淋洗修复法要在污染地进行全部过程,包括清洗液投加、土壤淋出液收集和淋出液处理等。由于原位化学淋洗过程形成了可迁移态污染物,因此要把处理区域封闭起来避免污染扩大化;异位化学淋洗修复法则要把重金属污染土壤挖掘出来,用化学试剂清洗,以去除重金属,再处理含有重金属的废液,最后清洁后的土壤可以回填或作其他用途。化学淋洗法的关键在于试剂的选择,可用来淋洗土壤重金属的试剂主要有盐酸、硝酸、磷酸、硫酸、草酸、氢氧化钠、EDTA等。现已证明EDTA是针对重金属污染最有效的提取剂,但其价格昂贵,且对EDTA的回收还存在技术问题[17]。
5.生物修复法
生物修复法是通过植物、微生物或者动物的代谢活动,降低土壤中重金属含量方法。它主要包括植物修复法、微生物修复法、动物修复法和菌根修复法四种。
5.1植物修复
植物修复是将对重金属有超累积能力的植物种植在污染土壤上,待植物成熟后收获并进行妥善处理(如灰分回收)。通过该种植物可将重金属移出土壤,达到治理污染的目的。对于修复重金属污染土壤,植物修复法主要有植物钝化、植物提取和植物挥发三种。植物钝化是指利用植物根系分泌物降低重金属的活性,从而减少重金属的生物毒性和有效性,并防止其进入地下水和食物链,减少对人类健康的威胁。如植物分泌的磷酸盐与土壤中的铅结合成难溶的磷酸铅,使铅得到固化。除直接与重金属发生作用外,根系分泌物导致的根际环境pH值和Eh值的变化也可转变重金属的化学形态,使重金属固化在土壤中。但是这种方法并未将重金属去除,因此环境条件的改变仍有可能活化重金属。植物提取是指利用重金属超累积植物从污染土壤中吸收重金属,并将其转移、储存在植物地上部分(茎或叶),随后收割地上部分并集中处理其中的重金属,从而达到降低土壤重金属含量的目的。蒋先军等发现,印度芥菜对铜、锌、铅污染的土壤有良好修复效果。夏星辉[22]指出蕨类植物对镉的富集能力很强,杨柳科能大量富集镉,十字花科的芸苔能富集铅,芥子草能富集铅、锡、锌、铜等。在英国和澳大利亚等国家,一些对重金属有高耐受性的植物的培育已经商业化。植物挥发是指植物将其吸收的重金属转化为可挥发态,并挥发出植物的过程。如植物可以吸收土壤中的Hg2+,然后使之转化成气态HgO后,通过蒸腾作用从叶片蒸发出来。这种方法只适用于具有挥发性的重金属污染物,应用范围较小。同时,该方法将污染物转移到大气中,对大气环境造成一定影响。
5.2微生物修复
微生物修复法是利用微生物对重金属的亲和吸附作用将其转化为低毒产物,从而降低污染程度。虽然微生物不能直接降解重金属,但其可改变重金属的物理或化学特性,进而影响重金属的迁移与转化。微生物修复重金属污染土壤的机理包括生物吸附、生物转化、胞外沉淀、生物累积等。通过这些过程,微生物便可降低土壤中重金属的生物毒性[23]。由于细胞表面带有电荷,土壤中的微生物可吸附重金属离子或通过摄取将重金属离子富集在细胞内部。微生物与重金属离子的氧化还原反应也可降低重金属的生物毒性,如在好气或厌气的条件下,异养微生物可将Cr6+还原为Cr3+,降低其毒性。杜立栋等[24]从铅污染矿区土壤中筛选出一株青霉菌,对人工培养基中有效铅的去除率达96.54%,且富集效果比较稳定,可应用于铅污染矿区土壤的生物修复。
5.3动物修复
土壤重金属污染的动物修复是指利用土壤动物在自然条件或人工控制下,在污染土壤中生长、繁殖等活动过程中对污染物进行富集和钝化等作用,从而使污染物降低或消除的一种修复技术。在评价污染物的生态学危害研究中,科研工作者对土壤动物并未给予足够的重视,所以与微生物修复相比,国内外的相关报道还不多。而在众多土壤动物中,普遍认为蚯蚓是改良土壤的能手,并且对土壤污染具有指示作用,具有巨大的修复污染土壤潜力。朱永恒等[25]研究得出蚯蚓对重金属的富集量随着污染浓度的增加而增加,蚯蚓体内的Pb、Cd和As的含量和土壤中这三项元素的含量具有良好的相关性。且蚯蚓体内的金属硫蛋白和溶酶体机制可以解毒重金属。除蚯蚓外,腐生波豆虫及梅氏扁豆虫等动物对重金属也有明显的富集作用[27]。土壤动物不仅直接富集重金属,还和微生物、植物协同富集重金属,改变重金属的形态,使重金属钝化而失去毒性。
5.4菌根修复
菌根是指土壤中真菌菌丝与植物根系形成的联合体。成熟的菌根是一个复杂的群体,包括真菌、固氮菌和放线菌,这些菌类有一定的修复重金属污染的能力。菌根真菌可通过分泌特殊的分泌物改变植物根际环境,从而使重金属转变为无毒或低毒的形态,降低其毒性,起到促进重金属的植物钝化作用。申鸿等[28]通过对菌根的研究发现,菌根玉米地上部铜浓度降低24.3%,根系铜浓度降低24.1%,表明菌根植物对铜污染土壤具有一定的生物修复作用。黄艺等[29]采用根垫法和连续形态分析技术,分析了生长在重金属污染土壤中有菌根小麦和无菌根小麦根际铜、锌、铅、镉的形态分布和变化趋势,发现菌根可调节根际中土壤重金属形态降低重金属的生物有效性。此外,菌根还能使菌根植物体中重金属积累量增加,强化植物提取的效果。
篇6
关键词:环境监测;重金属元素;取样;分析方法
中图分类号: X830.2 文献标识码: A 文章编号: 1673-1069(2017)06-79-2
引言
随着我国绿色发展理念的深化,重金属污染防治工作越来越受到重视,防治重金属污染成为我国重要的环保工作之一。为了从根本上减少重金属污染给人民生活带来的种种危害,对环境监测中的重金属元素进行分析,是解决重金属污染的首要任务。本文将对污染源及危害进行概述,然后对重金属分析方法及注意事项进行论述。希望本文的探讨能给监测工作者带来一定的借鉴作用,使重金属元素的检测工作更加高效进行。
1 重金属污染源头
无论作为化学元素本身,还是作为化工原料来讲,重金属元素都具备毒性。随着工业的发展,重金属广泛应用于各个生产领域,造成了城乡重金属污染的主要源头。工业方面,煤矿运输中的扬尘,煤矿以及化工产品的燃烧,钢材的冶炼等环节会产生有毒重金属。接着有毒金属物质,随着大气的流动,排放到空气中,造成空气污染。另外,工业生产会留下大量工业废水,未经检验合格的污水任意排放到周围的水源中,造成周围的水体污染。农业方面,化学肥料的使用使有毒的重金属离子残留在土壤中,经过时间的积累土地质量越来越差,对农业产量和质量造成巨大的影响。人民生活方面,电池等化工废弃物被人为丢弃,没有经过处理的重金属渗入地下,其中的重金属离子同样给环境造成污染。交通方面,尤其是繁华地带,交通事故引起的汽油泄露、汽车焚烧等后果也成为重金属离子流入大气的主要途径。因此,工业、农业、交通、人民生活等方面是重金属污染的主要源头,这也是环境监测的主要方向[1]。
2 重金属污染危害
重金属污染会很大程度上造成空气、水体、土壤等污染,与人民的生活息息相关,可见,重金属的污染危害直击人类。当重金属残留物流入到空气中,空气的流动加大了重金属污染范围,使其波及范围广,危害性大。土壤和水体中的重金属离子在降解上更是存在极大困难。从生物角度讲,食物链的进程中具有富集作用。也就是说,有害物质经过食物链的层层递进集中进入人体内导致各类疾病引发。在我国,地区性重金属中毒的例子比比皆是,重金属的污染具有地域性,采矿业及工业汇集的地方,重金属污染会更加严重,使周围的人民健康带来威胁。地球上一切的生物都离不开空气、水体、土壤。因此,重金属污染不尽快解决,污染速度之快将会给地球带来不可想象的灾难。针对重金属的环境检测分析刻不容缓。
3 重金属分析方法
3.1 分析方法的选择
通过重金属污染的源头与危害分析,重金属元素主要存在于大气、土壤、水源中,所以环境监测中的重金属污染分析主要针对大气、土壤、水源,分别对空气、土壤、水质进行采样分析,根据样品中金属元素浓度和元素间的相互作用来选择分析方法。一般来讲,得到推广应用的有光分析法,电化学分析可以通过使用仪器设备对样品中的重金属元素进行检测。光分析法,原理上是利用紫外线的分光性,通过原子的光谱吸收与荧光反应,辨别重金属物质的分布状况。电化学法,是结合生物分析法在环境监测中使用。为了监测的准确性与便捷性,分析方法的选择要根据样品中重金属含量以及分析指标进行选择。
3.2 样品制备
环境污染特e是水体、土壤污染问题越加突出,加强重金属污染的鉴别,需要采集具有良好代表性的样品。样品制备主要包括对污染固体和水体的取样。比如,垃圾的焚烧物、含铅汽油、轮胎焚烧残留物、工厂附近的废水和家用废弃电池都是可进行采集的样品。根据污染源特性,利用合适的采样工具,进行不同深度的样品制备。在采集之前,需要分析测定污染体的酸碱度,重金属离子的含量。金属污染物样品的制备是对样品进行预处理的前提,直接影响仪器的分析结果、监测结果的准确度。在环境检测中,重金属的含量比较低,如果制备样品时没有注意规范操作,制备样品混入其他物质,增加了分析结果的干扰项。样品制备还需要采集有代表性的样品,制备环节需谨慎操作[2]。
3.3 液体样品预处理
进行液体的预处理,实质上是对吸附在液体表面的杂志与有机物质等进行处理,目的是消除对分析结果的影响,减少监测误差。在液体样品处理之前,应用洗涤液将预装样品的瓶子进行清洁,然后在弱酸性的溶液中放置十五分钟,用清水冲洗干净后盛装液体样品。处理方法采用化学过滤法,使用孔径为0.45微米的滤纸进行过滤,将酸碱度降低到1到2之间。若使用硝酸溶液,硝酸的加入其溶液的质量比例为1:500,重金属溶液可快速溶解到溶液中。保存后应用氯化酸消解方法进行试验。采用碱性溶液防治样品挥发。消解过程中,用电热板进行加热。消解法被普遍应用在重金属检测试验中,具有方便、高效的特点。
3.4 固体样品预处理
固体进样法是固体预处理中最直接的一个方法,在土壤检测中得到广泛应用。固体进样法是针对固体悬浮液进行取样,即将固体当作液体样品,进行一定的稀释后再详细分析。针对高要求的固体样品,也可以采用特定的预处理。特定的固体样品预处理,包括酸分解进样法、固体悬浮液法、碱熔法等。几个方法中通常以酸解法为先,酸解法无法满足要求时,可采用高温碱熔法。进行高温消解时,可利用高压微波加热,使消解方式更加高效。通常电热板法有一定的局限性,比如由于电热板的加热时间较长,易造成元素的损失与挥发。高R密封加热,能够减少试剂中元素的损耗与挥发性[3]。
3.5 空气样品预处理
在化工与煤矿厂集中地带,周围空气中重金属离子含量较大,便于采样和研究。利用中流量采样器,采集固定污染源排气筒中颗粒物,以此分析其中的重金属含量。在采集过程中注意避免降雨天气,在风向稳定、温度适宜的情况下进行采集。由于空气采样的较难实施,采样人员需要学习有关检测技术规范,正确使用仪器设备。采样后,将样品滤膜用锡箔纸夹好,放在干燥箱内保存,便于日后实验室的分析测试。空气样品的预处理可参照固体样品处理方式。
3.6 污染程度分析
水质和土质的污染受到金属污染实际上是重金属含量的超标,超过的标准越多,污染程度越严重。实际监测中,重金属元素的样品含量分布,可经过多种分析方法体现,进而确定重金属的污染程度。通常可以采用公式法计算,污染程度用单因子指数表示,不同重金属的采样点单因子指数不同,污染程度不同。重金属的实际检测浓度为变量,污染程度与其成正比。该金属元素的背景值为定量,背景值的大小有关采样区域,污染程度与其成反比[4]。
4 结论
重金属污染是对环境造成巨大危害的污染之一。在“十三五”规划中,国家出台了重金属污染综合治相关政策及加强重金属污染防治工作的指导意见,国家的指导与支持使金属元素污染防治工作更加高效。做好环保防治工作,需要在环境检测中加强对重金属元素的分析。本文分析了重金属污染的源头和危害,分别阐述了液体样品和固体样品,制备过程及监测之前进行处理的注意事项。根据分析结果以及重金属污染程度,采取不同的应对防范措施和治理措施。以上针对监测环境中的重金属分析方法的探究,可供监测工作人员参考。除此之外,保护环境是人类共同的责任,在防治工作的顺利开展时,更重要的是,提升企I及民众的环境保护意识。只有这样,重金属污染问题才能得到根本上的解决。保护与治疗应双管齐下,将我国的持续发展战略方针实施到底。
参 考 文 献
[1] 龚海明,马瑞峻,汪昭军,叶云,胡月明.农田土壤重金属污染监测技术发展趋势[J].中国农学通报,2013(02):
140-147.
[2] 张霖琳,薛荔栋,滕恩江,吕怡兵,王业耀.中国大气颗粒物中重金属监测技术与方法综述[J].生态环境学报,
2015(03):533-538.
篇7
摘要:
矿区周边土壤重金属污染对区域农产品和人体健康危害极大,为对个旧市大屯镇稻田土壤重金属的潜在生态风险进行定量评价及预警分析,计算了6种重金属元素(Pb、Cd、砷、Zn、Cu和Cr)的综合生态风险指数(RI)、地累积指数(Igeo)和生态风险预警指数(IER)。结果表明:研究区域6种重金属平均风险指数的大小顺序为:Cd>砷>Cu>Cr>Pb>Zn,Cd和砷元素的生态风险指数平均值>40,94.4%的土壤样品处于中等风险以上水平;重金属元素的Igeo顺序为Cd>砷>Pb>Cr>Cu>Zn,Cd和砷元素有超过94.4%的土壤样品处于中等污染以上水平。生态风险预警评价结果显示,66.7%采样点处于生态风险无警级别,33.3%采样点处于生态风险重警级别。综合分析认为,该区域主要是以Cd和砷为主的土壤重金属复合污染,对已经达到生态风险重警级别的区域应该采取相应的土壤修复措施,对无警区域应该加强监控防止污染。
关键词:
重金属;生态风险;风险预警;个旧
云南省个旧市素以“锡都”著称,是我国最大的锡矿所在地,长期的土法采矿炼矿不仅导致矿产资源有效利用率低,而且破坏了当地自然环境,给当地居民的生产生活带来了严重的影响。黄玉等[1]对个旧锡矿区的不同辐射范围进行土壤污染调查研究,发现个旧市矿业活动区Pb、Cd、砷给当地造成极高风险。肖青青等[2]对个旧市鸡街镇的土壤重金属污染调查评价发现土壤中Pb、Cd、Zn和Cu含量均超出《土壤环境质量标准》二级标准。土壤中的重金属长期停留和积累在环境中,对生态环境和人体健康存在诸多现实和潜在风险,选用一种或几种正确的评价方式评价土壤中的重金属污染程度对于环境和健康问题有着重要意义。前人对个旧矿区重金属污染分布和风险评价采用的主要方法有:Hakanson指数法[3]、单因子指数法[4]、内梅罗综合污染指数法[5]和地积累指数[6]。这些方法各有其适用条件和优点,但也存在一定的局限[7-8]。生态风险预警评价源于生态风险评价,既具有Hakanson指数法、地积累指数法、脸谱图法、综合指数法、尼梅罗综合指数法和污染负荷指数法等评价方法定量评价的特点,也能通过定量评价值与警度内涵之间的关联,实现定性评价分析[9]。前期关于区域土壤污染评价的研究多采用单一的分析方法进行重金属风险评价,针对个旧市大屯镇水稻土的污染评价也仅局限于单因子指数、内梅罗综合污染指数法的污染分级评价,采用重金属生态风险评价和风险预警的研究鲜见报道。本研究以云南省个旧市大屯镇稻田土壤为研究对象,采用Ha-kanson指数法和地积累指数法对6种重金属(Pb、Cd、砷、Zn、Cu、Cr)的含量进行分析计算,评估其污染程度,定量评价生态风险并作出风险预警,以期为个旧市水稻土生态风险预警和农产品安全生产提供科学依据。
1材料与方法
1.1土壤样品的采集
个旧地区水稻生产区域主要集中在大屯镇,本试验地点位于云南省个旧市矿区周边大屯镇稻田种植区。采样点集中在23°2'56″~24°2'56″N和103°14'11″~104°22'55″E的研究稻田。2015年3月12日,参照《NY/T395-2000农田土壤环境质量监测技术规范》的相关要求,分别按照不同的取样地块采集0~20cm土壤样品,每个样品由5个五点法取样的子样品混合而成,共采集54个样品。土壤样品自然风干,去除杂物,磨碎后过100目尼龙筛,用自封袋保存待测。
1.2样品的测定
土壤pH值用酸度计(STARTER3100,奥豪斯仪器(上海)有限公司)测定,固液比值为1∶2.5[10];重金属总量测定采用HF-HClO4-HNO3消解法[11]。所用试剂为优级纯,试验用水为去离子水。样品溶液中重金属元素铅、镉、砷、锌、铜和铬采用ICP-MS(ELANDRC-e型,美国PerkinElmer公司)进行分析测定。
1.3评价方法
1.3.1潜在生态风险指数法
评价潜在生态风险指数法是1980年由瑞典科学家Hakanson[12]提出的评价方法。该方法综合考虑了重金属含量、环境效应、生态效应和重金属毒性等因素而被广泛用于土壤中重金属污染风险分析[13-14]。其计算公式如下:Cri=Ci/Cni(1)Eri=Tri×Cri(2)RI=∑ni=1(Eri)=∑ni=1(Tir×Cir)(3)式中:Cri为土壤中重金属i的富集系数;Ci为重金属i的实测数据;Cni为计算所需的参比值,本文采用云南省土壤质量背景值作为参比值;Eri为土壤中重金属i的潜在生态风险系数;Tri为沉积物中重金属i的毒性系数,本研究中Pb、Cd、砷、Zn、Cu和Cr6种元素的毒性系数分别为5、30、10、1、5和2;RI为土壤中多种重金属的综合潜在生态风险指数。潜在生态风险分级标准见表1。
1.3.2地累积指数法
地积累指数法是在1969年由Muller[15]提出的用于评价水环境沉积物中重金属的方法。该方法考虑了自然成岩作用对背景值的影响,也考虑了人为活动对环境的影响,近年来,被国内外学者用于评价土壤重金属的污染程度[16-17]。计算公式为:Igeo=log2[Ci/(K×Cin)](4)式中:Ci是土壤中元素n的实测值;Cni为普通页岩中元素i的地球化学背景值,本文采用云南省土壤质量背景值作为参比值;K为消除各地岩石差异可能引起背景值的差异(一般取值为1.5)。其污染等级分为0~6级,见表2。
1.3.3重金属生态风险预警
对于个旧市大屯镇稻田土壤重金属生态风险预警,采用Rapant等[18]提出的生态风险预警指数法进行预警评估,预警分级标准见表3。公式为:IER=∑ni=1IERi=∑ni=1(CAi/CRi-1)(5)式中:CAi表示重金属i的实测数据;CRi表示重金属i的背景参比值,本文的背景参比值采用《GB15618-95国家土壤二级标准进行评估》(表4);IERi为重金属i的生态风险预警指数;IER表示各采样点土壤样品的生态风险预警指数。
2结果与分析
2.1水稻土重金属基本参数统计特征分析
土壤重金属基本参数统计描述如表4所示。结果表明,土壤样品中Pb、Cd、砷、Zn、Cu和Cr含量的平均值分别为180.57、1.96、136.55、133.44、84.09和145.71mg/kg。研究地土壤pH值为7.03±0.44,按照《GB15618-1995土壤环境质量标准》二级标准,重金属超标的元素有Cd和砷,超标倍数分别为2.27、4.46。与乔鹏炜等[19]2014年调查研究云南个旧锡矿区大屯盆地农田土壤重金属平均值相比,本研究中Pb和Zn元素明显较低,Cr元素明显较高,其他元素含量平均值相差不大。6种重金属元素的变异系数在12.17%~74.54%,属于中等变异程度,其中Pb、Cd和砷3种元素变异程度相对较大,说明其易受外源因子干扰。土壤重金属元素和pH值相关分析结果见表5。大屯镇矿区周边水稻土多数重金属元素之间存在相关性,Pb与Cd、砷和Zn的相关性达到极显著水平(P<0.01)。Cd与砷和Zn的相关性达到极显著水平(P<0.01)。Cu与Cr的相关系数为0.757,相关性达到极显著水平(P<0.01)。这表明,该区域水稻土Pb、Cd、砷和Zn可能具有相似的来源,呈现相互伴随的复合污染现象,而Cu和Cr的来源途径也具有相似性。土壤pH与Pb呈极显著正相关,与Cd和砷呈显著正相关,而与Zn、Cu和Cr相关性不显著。
2.2土壤重金属潜在生态风险评价
经计算,研究区域稻田土壤重金属元素的潜在生态风险系数(Ei)和综合生态风险指数(Ri)如表6所示。从单个重金属潜在生态风险系数可以看出,研究区域6种重金属平均风险指数的大小顺序为:Cd>砷>Cu>Cr>Pb>Zn,Pb、Zn、Cu、Cr这4种元素的风险指数平均值<40,均属于轻度生态危害,对该区域土壤生态污染的贡献率较低;其中Cd平均潜在生态风险指数为267.33,达到很强生态危害程度,砷平均潜在生态风险指数为74.21,达到中度生态危害程度,其余元素均未达到轻度生态危害的上限标准。根据土壤重金属潜在危害系数所对应的潜在危害程度频数的统计(表7),按照污染程度分级,Cd元素潜在生态风险系数达到强度、很强和极强生态危害的比例分别为11.1%、61.1%和22.2%;砷元素潜在生态风险系数达到中等、强度和很强生态危害的比例分别为77.8%、5.6%和11.1%。这表明Cd和砷元素对该区域土壤生态污染的贡献率较高。土壤重金属综合生态风险指数(RI)平均值为1114.98,属于很强生态危害水平;轻度、很强和极强生态危害的比例分别为16.7%、50.0%和33.3%。
2.3土壤重金属地积累指数
以土壤环境背景值作为地球化学背景值,计算稻田土壤中重金属的Igeo并进行分级,结果如表8。从表中可以看出,除Zn外,其余5种重金属元素的地积累指数平均值均>0。Pb、Cd、砷和Cu元素的最大值都>1,达到中等污染程度以上。从土壤样品污染分级比例可以看出,Cd元素污染比例最大,达94.4%,其中有11.1%的土壤样品属于中等污染,66.7%属于中等-强污染,11.1%属于强污染,5.6%土壤样品到达强-极严重污染。砷元素的污染比例也达到94.4%,其中有22.2%的土壤样品属于中等污染,61.1%属于中等-强污染,有11.1%达到强污染水平。Zn元素的污染比例最低,仅有44.4%的土壤样品属于轻度污染。整体统计分析各元素可知,Pb、Cd和砷元素的地积累指数标准差较大,表明土壤样品中这3种元素地积累指数值离散程度较大,即变异程度较大。
2.4重金属生态风险预警
采用生态风险预警评估法分别计算了研究区域稻田土壤中重金属Pb、Cd、砷、Zn、Cu和Cr的生态风险预警指数,评估了土壤重金属生态风险预警级别,结果见表9。从IER分级比例可以看出,该研究区域稻田土壤中主要重金属污染为砷、Cd。按照生态风险分级,砷元素生态风险指数达到轻警、中警和重警的比例分别为11.1%、66.7%和16.7%;Cd元素生态风险指数达到轻警、中警和重警的比例分别为61.1%、16.7%和5.6%。从综合指数来看,该区域有66.7%样点处在无警级别,属于最低生态风险,有33.3%样点处于重警级风险状态,属于高生态风险。
3讨论
李江燕等[20]对个旧市大屯镇蔬菜地土壤进行健康风险评价,发现Zn、Cu、Cd质量比严重超标,分别达到412.73mg/kg、132.86mg/kg、1.60mg/kg。乔鹏伟等[19]采用潜在生态危害指数法对大屯盆地农田土壤进行生态风险评价发现,Cd和砷两种元素对危害的贡献率高达87%。本研究结果也表明,个旧市大屯镇稻田土壤重金属污染特征主要表现为以Cd和砷为主的重金属复合污染,Cd和砷分别超出《GB15618-1995土壤环境质量标准》二级标准2.27、4.46倍。因此,研究区域稻田土壤Cd和砷具有较大的潜在生态危害,应作为该区域主要的修复和防控目标。本研究所采用的两种土壤重金属生态风险评估方法的评价结果存在一定的差异。土壤重金属潜在生态风险指数评价结果表明,6种重金属元素,有83.3%的土壤样点超过很强污染程度。研究区域重金属平均风险指数的从大到小排序为:Cd>砷>Cu>Cr>Pb>Zn,Cd和砷元素达到中等生态危害及以上的比例为94.4%,其余元素均处于轻度生态危害程度。土壤重金属地积累指数评价结果表明,除Zn和Cr元素其余元素都有不同比例处于中等污染程度,按照每种元素的地积累指数平均值,从大到小的顺序为:Cd>砷>Pb>Cr>Cu>Zn。两种评价方法的结果都表明Cd和砷对土壤重金属污染的贡献率最大,其他元素贡献率大小的差异可能在于生态风险指数评价法对不同重金属赋予了相应的毒性系数,而地积累指数法为消除各地岩石差异而引入系数K(一般取值为1.5),重金属元素之间没有差别[20-21]。采用生态风险预警指数(IER)进行预警分析认为,研究区域稻田土壤受到Cd和砷元素的污染,Pb和Cu有一部分预警级别是预警,Zn和Cr元素的预警级别是无警。总体评估研究区域IER有33.3%预警类型为重警,说明该研究区域有1/3的稻田土壤生态系统服务功能严重退化,生态环境受到较大破坏,且受外界干扰后恢复困难,生态问题较大,生态灾害较多[23]。土壤中Cd和砷对水稻安全质量影响较大,建议调整种植结构,引导种植较好的高梁抗性品种[24],或采取种植低累积重金属水稻品种[25],使用降低土壤重金属有效性的钝化剂和施用技术[26-27]、稻田水分管理技术[28]、钝化剂与农艺联合调控技术[29-30]等措施对区域农田进行修复和安全利用。
4结论
(1)研究地稻田土壤中的Cd、砷、Cu质量比均超出《GB15618-1995土壤环境质量标准》二级标准,水稻土Pb、Cd、砷和Zn可能具有相似的来源,呈现相互伴随的复合污染现象。
(2)根据土壤重金属潜在生态风险指数的评价结果,研究区域6种重金属平均风险指数的大小顺序为:Cd>砷>Cu>Cr>Pb>Zn,其中Cd和砷元素对该区域土壤生态污染的贡献率较高,有超过94.4%的土壤样品处于中等生态风险以上水平。土壤重金属综合生态风险指数(RI)仅有83.3%处于很强生态风险以上水平。
(3)土壤重金属地积累指数的评价结果表明,6种重金属元素含量的平均值只有Zn元素尚处于无污染水平,Cd、砷元素有超过72.2%的土壤样品处于中等污染以上水平,需要严格控制人为活动引入这几种元素,避免重金属的累积对土壤生态环境的危害。
(4)从土壤重金属生态风险预警的评价结果可知,研究区域33.3%属于重警区,应该采取相应的土壤修复措施,在农耕区改种非食用作物,必要时可以进行土壤污染治理,提高当地居民的环境保护意识。对无警区应该监控可能引起土壤污染来源,防止土壤污染。
参考文献:
[1]黄玉,蔡保新,王宇,等.云南个旧锡矿区矿业活动对土壤重金属的累积贡献[J].地质通报,2014,33(8):1167-1174.
[2]肖青青,王宏斌,赵宾,等.云南个旧市郊农作物重金属污染现状及健康风险[J].农业环境科学学报,2011,30(2):271-281.
[3]叶玉瑶,张虹鸥,谈树成.个旧城区土壤中重金属潜在生态危害评价[J].热带地理,2004,24(1):14-17.
[4]张德刚,刘艳红,全舒舟.云南个旧锡矿山山地土壤及作物中重金属污染分析[J].西南农业学报,2014,27(5):2045-2049.
[5]宋雁辉,钟正燕,李红梅,等.云南个旧多金属矿区农田土壤-作物系统重金属污染现状--以乍甸镇为例[J].安全与环境学报,2012,12(1):138-146.
[6]郑国强,方向京,张洪江,等.云南省个旧锡矿区重金属污染评价及植被恢复初探[J].水土保持通报,2009,29(6):208-213.
[7]范拴喜,甘卓亭,李美娟,等.土壤重金属污染评价方法进展[J].中国农学通报,2010,26(17):310-315.
[8]郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896.
[9]王军,陈振楼,王初,等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J].环境科学,2007,8(3):647-653.
[10]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:30-35.
[11]张霖琳,梁宵,加那尔别克.西里甫汗,等.在土壤及底泥重金属测定中不同前处理和分析方法的比较[J].环境化学,2013(32)2:302-306.
[13]陈明,杨涛,李登宇.赣南某钨矿区稻田土壤中重金属污染特征及生态风险评价[J].有色金属工程,2016,6(2):89-95.
[16]王斐,黄益宗,王小玲,等.江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较[J].环境化学,2015,34(2):225-233.
[19]乔鹏炜,周小勇,杨军,等.云南个旧锡矿区大屯盆地土壤重金属污染与生态风险评价[J].地质通报,2014,33(8):1253-1259.
[20]李江燕,杨永珠,李志林,等.云南个旧大屯镇蔬菜重金属污染现状及健康风险评价[J].安全与环境学报,2013,13(2):91-96.
[21]何东明,王晓飞,陈丽君,等.基于地积累指数法和潜在生态风险指数法评价广西某蔗田土壤重金属污染[J].农业资源与环境学报,2014,31(2):126-131.
[22]韩平,王纪华,冯晓元,等.北京顺义区土壤重金属污染生态风险评估研究[J].农业环境科学学报,2015,34(1):103-109.
[23]罗艳,何锦林,许锡娟,等.遵义东南部地区农业土壤重金属污染生态风险预警研究[J].贵州科学,2013,31(6):75-79.
[24]米艳华,雷梅,黎其万,等.滇南矿区重金属污染耕地的植物修复及其健康风险[J].生态环境学报,2016,25(5):864-871.
[29]陈喆,张淼,叶长城,等.富硅肥料和水分管理对稻米镉污染阻控效果研究[J].环境科学学报,2015,35(12):4003-4011.
篇8
【关键词】重金属元素;分析;环境监测
1 重金属污染及其危害
1.1 重金属污染的来源
据调查研究,发生重金属污染事故的主要是工业、农业、城市和环境等方面。其中,在采矿、选矿、冶炼、锻造、加工、运输等生产过程会产生大量的重金属污染。含有重金属的废水排放、废弃物和其他污染物进入水体和土壤沉淀后,也会对水体等环境产生污染,特别是重金属含量的偏高易使环境污染超标。
农业生产过程中,由于使用了含重金属的化肥,会对土壤产生重金属污染,尤其是农药灌溉水会直接污染土壤。而城市的重金属污染主要来自污水厂污泥的不当处置、垃圾填埋场渗滤液渗漏、使用含铅汽油、使用含重金属的汽车轮胎等等;含有大量重金属的污泥、垃圾焚烧处理不当会造成重金属污染。在繁忙的高速公路附近也会产生一些重金属超标。突发性环境污染事故会造成严重的重金属污染,如某地发生的砷污染。某些重金属污染也可由多种情况综合引起。如血铅事件是由于管理不当,交通事故和环境污染事故长期积累的结果。
1.2重金属的危害
经过污染的重金属进入土壤和水,严重危害土壤和水生环境。因为重金属能透过空气、水和土壤退化的环境进入植物和动物,例如环境、食物链,然后浓缩到体内。进入人体中的重金属会引起严重的作用,它会与蛋白质、核酸等发生反应,造成蛋白质活性降低或消失,导致核酸结构的改变,从而导致突变。重金属会累积在人体肠道,破坏人体功能。医学科学已证明,水俣病、骨痛病、阿尔茨海默氏病和重金属是有很大联系的,所以对人体有害的重金属不容忽视。
2 重金属分析
2.1分析概述
前面分析了重金属污染主要来自受污染的土壤和水,除了这些还包括受污染固体悬浮物,排放的废水、废气和固体废物,如颗粒物。由此可以看出在环境监测中的重金属样品主要是水中样品和固体样品。一般用于分析的样品,先进行某些处理,再进行分析,这是所谓的前处理或样品的预处理。
目前,重金属的检测基本上都采用仪器分析的方法,主要是光分析和电化学分析。光学分析方法,常用的是原子吸收光谱(AAS),原子荧光光谱仪(AFS),紫外-可见分光光度法(UV-VIS)。现在电感耦合等离子体原子发射光谱(ICP)的应用日益广泛,因为其具有快捷方便的特点。电化学分析主要是极谱分析。此外,生物方法,如酶抑制方法等,也可在环境监测中应用。选择分析方法主要是考虑样品中的重金属含量,对分析方法和其他因素的选择,各检出元素之间的关系和相互作用等。
2.2样品制备方法分析
样品的预处理是在分析中非常重要的一部分,对分析结果的影响程度可能比仪器本身甚至更多。因为环境监测中的重金属含量一般比较低,如果在样品制备时污染它可以产生较大的误差。
2.2.1 水样预处理
预处理的目的是为了消除一些干扰,如悬浮物或有机吸附组分的存在可造成分析误差。处理的方法是用孔径为0.45μm的滤膜过滤,酸化至pH=1?2保存。通过氧化酸消解法,如HNO3,王水, HClO4等进行试验。抑制样品的挥发性可以用碱性消解法,如用NaOH-H2O2等。消解通常需要加热,过去一般使用电热板加热。微波消解法是一种非常快速、有效的方法,现在也用于很多的试验当中。水样中处于检测下限的元素,也可进行分离和浓缩后测定,如蒸馏、萃取、吸附等,主要的进行处理的方法是离子交换方法。
2.2.2 固体样品前处理
固体样品如土壤、沉积物,预处理方法包括酸分解法、碱熔、固体悬浮液制备等,或者是直接固体进样方法。在酸分解法的基础上,利用电热板加热、高压闭合消解和微波消解可以更有效。酸消化时混合酸通常用HNO3-HF-HClO4, HNO3-HCl-HF-H2O2等。电热板法是经典的方法,因为热处理时间长,易造成易挥发元素等的损失,因此近年来也采用高压密封微波消解法。高压密封微波消解法加快了升温速度,降低了试剂消耗量,减少易挥发元素的损失,减少有毒气体的排放量,具有显著优点。当不使用酸水解或酸溶液的时候,也可以使用碱熔法。碱熔法可以完全破坏样品的晶格,释放被测元素。常用的碱熔剂是偏硅酸锂、四硼酸锂、碳酸钠、氢氧化钠和过氧化钠等。样品在高温下通过碱熔融,冷却后成玻璃晶体料,然后用酸来溶解熔块,过滤后的溶液可以在试验后进行分析。固体悬浮液取样通常用于超声处理并加入琼脂悬浮液等手段来稳定该悬浮液,然后在相同液样品的稀释样品处理后进行分析。由于省去了消化过程,大大简化了操作,目前的问题是精度和准确性无法得到保证。直接固体进样,无疑是最简单的加工工艺,现在被测试土壤样品也取得了一定的效果。
2.3 重金属分析
如前所述,由于大量的重金属分析方法,很难做出正确的选择,以ICP-AES法为例来说明,需要注意测定的一些问题。ICP-AES是电感耦合等离子体原子发射光谱法的简称,是光源的电感耦合等离子体激励频谱分析,具有快速、检出限低、灵敏度高的特点,线性范围宽,特别是它能够同时的测定各种元素的优点,这样,其在重金属监测方面已成为一个重要分析工具。
(1)由上述方法,消解水样;然后样品以相同的方式,去相同体积的离子水消化以制备空白溶液。(2)仪器参数。诸多因素性能的ICP-AES分析,高频功率,载气流量,观测高度,不同项目的波长元分析应选择合适的参数。(3)试剂,使用分析纯或优级纯试剂。制备单元素和多元素标准溶液混合。(4)水的样品。在所选择的仪器参数和样品,分别与空白溶液的操作依照规定进行标准化。标准化后,使用样品和空白溶液进行测定。使用背景消除系数法的消除背景干扰。(5)ICP-AES法结果频谱分析,选择谱线做中小干扰信号强度分析,并进行湾检测限。元素通常5次为一组的方法进行检出限测试,回收率和精密度应符合要求。
3 结语
重金属污染的防治工作正愈来愈受到重视,重金属元素的监测工作需要更加高效。随着监测技术的不断发展和完善,作为环境监测工作者的一员也需要与时俱进,不断地学习和提高。
参考文献:
[1]陈程等.环境重金属污染的危害与修复[J].环境保护,2010(03).
篇9
随着人类活动日益频繁以及工业的不断发展,人类不得不面对随之而来的污染难题。如何保护我们赖以生存的家园?如何让不堪重负的地球始终绿意盎然?如何让人类与自然生态始终和谐相处?如何科学的修复不可避免的环境及土壤污染?等等,这一系列摆在人类面前的难题极大地考验着人类的智慧。
科技的价值正体现在与现实困境的有效互动。在污染难题面前,生态环境科学家周启星无疑是一位积极前行的学者,将坚韧和执着书写在其不懈的探索中,把使命和责任融入进了一位有追求科学家的社会担当中。对于他而言,思考和创新是一种无上的乐趣,为生态和谐作出奉献才是他事业永恒的追求。
污染危害
2005年的广东北江韶关段镉严重超标,2006年的湘江湖南株洲段镉污染事故,2008年广西河池市砷污染饮用水事件,2011年紫金矿业及渤海蓬莱油田漏油……重金属污染日益严重,仅“血铅超标”事件,就已涉及陕西、安徽、河南、湖南、福建、广东、四川、江苏和山东等省。
国家环保部数据显示,2009年重金属污染事件致使4035人血铅超标、182人镉超标,引发32起。2011年2月,国家环保部部长周生贤在出席有关重金属污染综合防治“十二五”规划会议时也谈到,“从2009年至今,我国已经有30多起重特大重金属污染事件,严重影响群众健康。”
据周启星介绍,重金属污染不像大气污染,既闻不到,也看不到,被重金属污染的水体或土壤,即使含量很低,只要超标了对人体伤害也会很大。而且,不同于其它污染物的可降解特性,重金属污染物不仅不可降解,还能在环境中累积和循环,由此也加重了对人群的危害。
积极应对
周启星教授解释,因为进入土壤中的重金属在大多数情况下不止一种,所以土壤的重金属污染具有复杂性。土壤的重金属污染除了一些主要的有毒重金属污染之外,还有一种情况,那就是有一些毒性小的重金属,如锡、碘和硒等,它们在有机污染物的交互作用下,毒性会变得比较复杂,对动植物和微生物均会造成更大的危害。
由于上面提到的这些特点,导致土壤重金属污染的治理变成一件棘手的事情,纷繁复杂、千头万绪的原因和污染状况让土壤重金属污染的治理只是停留在初级探索的阶段,很难找到切实有效的方式来进行治理,这也就涉及到了土壤污染治理所面临的极大困难。
为此,作为专家,周启星在科技领域做出了积极的回应,他主持了多项重要课题:国家杰出青年科学基金项目――金属-有机复合污染生态化学过程及分子机制研究;国家自然科学基金重点项目――土壤污染微界面过程及其分子诊断与调控原理;国家自然科学基金面上项目――沙蚕Nereis diversicolor耐污染的生态毒理化学研究等。
相关的科技成果为我国重金属污染的防治带来了新的思路和启发。但要科学防治污染,光有科学家的努力是不够的。为此周启星教授还建议国家应积极支持,同时相关部门应该尽快完善相关的政策和指导文件,以对日益严重的重金属污染进行有效的治理。
周启星教授介绍说,目前我国使用的《土壤环境质量标准》是1995年制定的,由于实施的标准十分陈旧和落后,导致无法解决一些现实新问题,亟待修订和完善。
科学修复
对环境污染的治理并不是简单的修补,而是如何用高科技手段进行无害化的生态修复,只有这样,才是我们生态可持续发展的保证。
周启星教授介绍,目前污染土壤修复技术有待进一步提高,也是土壤污染防治中比较突出的问题。土壤重金属污染的修复技术不够发达,没有有效的修复技术来处理和净化被重金属污染过的土壤,使得对土壤重金属污染的修复还停留在初级阶段。目前普遍使用的污染土壤修复方法主要有三大类:物理修复法、化学修复法和生物修复法。其中,物理方法的缺点是费时费工,且成本较高;使用化学修复方法则容易引起其他问题,如出现二次污染,因此在使用的时候应考虑可能会造成的后果,慎重使用。生物修复方法的缺点是需要花费较长的时间进行修复,有时修复也不会很彻底。
为此,有着深厚科学积淀的周启星教授不断地进行着探索和创新,他的污染生态学以及复合污染生态学等理念与方法的提出与创新,并在此理念基础上进行的相关技术创新,为我国污染难题的解决提供了极具价值的启发和产业技术。
走在行业前沿的周启星教授很早就对土壤生态修复的方式进行探索和研究,该技术成本低廉、治理的本位性和永久性等优点,是人们很看好的一种修复技术。虽然周启星教授在相关的领域作出了很多有效的研究并主持了许多科研项目,但他也坦言,由于该研究和开发刚刚起步,在应用上还并不成熟,我们仍在进行更加深入和广泛的研究。
任重道远
为生态和谐,周启星教授除了尽情释放自己的专业智慧外,还不断地鼓与呼,将一位科学家应有的社会担当也融入到了自我价值的实现中。
污染土壤和沉积物以及污染地下水的解决,任重道远。周启星教授认为,应该从问题的根源做起。目前,我国的经济发展还是粗放式的,环保意识仍然淡薄、片面追求经济效益等,这些做法也都给土壤重金属污染提供了方便的条件。因此,要在土壤重金属污染防治方面取得真正的成绩,就要在源头上尽量控制重金属污染的产生和扩散,同时应进行相关的宣传,提高大家保护土壤环境的意识,在重金属污染的源头上进行控制和预防,才能达到真正的治理污染的目的。
周启星教授还建议我国尽快完善相关的法律法规,明确相关规定,这是完成土壤污染预防和治理修复非常重要的一步。据了解,目前相关部门正在进行相关法律法规的制定,相信在这些法律法规出台了之后,污染土壤的防治和修复就会有法可循,防治工作就能更加顺利一些。
篇10
关键词 重金属污染;农作物;影响;应对措施
中图分类号 X52 文献标识码 A 文章编号 1007-5739(2013)15-0247-01
重金属是指比重在4.0以上(大概60种)或比重在5.0以上(45种)的元素,而对于农田土壤中重金属污染,主要是指具有生物毒性且对农作物易造成污染的铅、镉、铜、锌、镍、铬等重金属[1-5]。一般情况下,重金属是以环境可适的浓度广泛分布于自然界中。但随着社会的发展以及人类活动的加剧,包括对采矿、废气排放、污水灌溉和使用重金属制品等活动的日益增多,造成铅、汞、镉、钴等生物毒性显著的重金属元素及其化合物进入大气、水、土壤中,随着时间的推移,在生物体中存留、积累和迁移,从而引起更严重的污染问题,对环境造成不可逆的危害[6-9]。
1 农作物污染来源
1.1 农业生产活动中农药及化肥的使用
农药及化肥的使用保证了农作物的产量,但与此同时也带来了环境污染的负面效果。其中由于农田长期、广泛地使用农药,已异化了害虫、草的耐药性,进而促使农药的药量不断加大,造成恶性循环,对环境、农作物以及人类都造成了更深层次的伤害。与此同时,为了追求更高的农作物产量,大量并且更加频繁地使用化肥,造成了重金属在农作物体内的富集,使得重金属含量不断攀升。如汞主要来自含汞的废水和不恰当的灌溉,镉、铅污染主要来自农用塑料薄膜中的热稳定剂等,铜、锌污染主要来源于有机肥、化肥和农药的使用。马耀华等人通过对上海地区菜园土的研究发现:经过一个种植期的施肥后,农作物体内的镉含量从0.10 mg/kg攀升至0.32 mg/kg。
1.2 工业污染
工业污染对于农作物的危害形式则体现在2个方面:一是工业、矿业废水以及弃渣的排放。工业污水和工业弃渣是重金属的重要载体。尤其是对于一些金属冶炼厂等高污染企业,废渣、废水中的重金属含量极高,若未经处理就随意堆放或直接混入土壤则会对生态环境造成非常大的危害。二是工矿企业排放的烟尘上吸附着大量的重金属,导致重金属以气溶胶的形式进入大气,经过大气的降水等形式的干湿沉降进入到土壤中去,从而对农作物造成污染。因此,在农业土壤中,工矿企业周围的土壤中重金属含量一般会较其他地区高很多,因而污染也严重很多。
1.3 大气污染
李其林等人通过研究表明:铅、镉、汞、砷与大气污染有直接的关系。如铅可来源于汽车含铅汽油燃烧后排放的尾气、轮胎中添加的锌以及发动机及车体零部件中的铜经过磨损后进入环境中等。Viard et al发现造成公路两侧表层土壤和植物发生重金属污染的主要途径是机动车释放的重金属微粒在近路侧发生沉降。Garcia et al通过对公路两侧土壤和植物中铅、镉、锌、铜等含量的测定,认为道路两侧重金属污染的主要来源是机动车,并提出在公路长期运营前提下路侧土壤会发生显著的重金属累积等观点。Nabul et al通过研究认定高速公路两侧土壤和叶菜类蔬菜中存在重金属累积和污染。刘廷良等研究发现,路两旁的土壤中锌的重要来源即为汽车轮胎添加剂中的锌。目前,我国城市化进程迅速推进,机动车等交通工具数量激增,因此其排放至大气中的污染物质也日益增加,从而导致重金属在道路附近的农业土壤中累积。生物毒性显著的重金属元素如铅、镉等,随着公路运营过程而长期存在,对人体健康安全存在着潜在影响。
2 重金属对农作物的危害机理
土壤酶是土壤中一种生物化学反应的生物催化剂。在多数情况下,土壤酶是以复合体的形式吸附在土壤胶体颗粒表面,只有部分会溶解于土壤的溶液中。在土壤中的各种生物化学反应过程都有土壤酶参加,如动植物残体和微生物残体的分解过程,腐殖质的分解及其合成有机化合物的水解与转化过程,还有某些无机化合物的还原、氧化反应等等。土壤酶的活性能够反映出某一种土壤在特定状况下生物化学过程的相对强度。因此,测定相应酶的活性,可以间接了解某种物质在土壤中的转化情况。
依据相关研究可知,土壤酶活性的大小与重金属的污染程度存在一定的相关性。土壤中的许多酶大部分是由微生物分泌的,并且它们和微生物共同参与土壤中物质与能量的循环。Kandeler et al通过对土壤中13种酶的研究发现,与土壤中碳循环有关的酶受到重金属的抑制较小,而与土壤氮、磷、硫循环有关的酶受到重金属抑制作用比较明显。同时,Kuperman et al的研究成果指出:随着重金属浓度的增加,几乎所有的土壤酶活性明显降低了10~50倍。生物酶一般为蛋白质,而重金属可与蛋白质发生络合反应,使得蛋白质变性沉淀,因而酶也就失去活性。有研究者将在金属冶炼厂及化工厂等高污染企业附近的受到重金属污染的土壤与未被污染的土壤相比,土壤中脱氢酶、蛋白酶、碱性磷酸酶及硫酸酯酶的活性均受到了明显的抑制。
3 重金属对农作物危害的表现形式
对于重金属元素含量超标的地区则会引起植物生理功能的紊乱、营养不均衡,最终使植物枯萎甚至死亡。此外,汞、砷能够有效地减弱和抑制土壤中硝化、氨化细菌活动,影响氮元素的供应。重金属在农田土壤系统中的污染过程具有隐蔽性、长期性和不可逆性的特点,不容易被人所发现,这样会使危害更加严重,农田重金属污染不仅会使土壤中的肥力下降,导致农作物的产量和质量减少,而且会通过食物链最终危害人类的健康。重金属还会对生殖障碍造成影响,影响胚胎的正常发育,威胁儿童和成人的身体健康等。
4 应对措施
4.1 化学方法
治理重金属污染的化学方法可归纳为2种。一是土壤解毒剂的研发与应用。土壤解毒剂是一种以凝灰岩为主要材料的合成硅,它除含有钙和硅这2种元素之外,还含有少量的铁、锰、镁及钾等,可对土壤中残留的农药进行无害化处理,同时农药在分解后的产物又能促进细菌的繁殖,对被重金属污染的土壤起到一个轻度进化的作用。二是柠檬酸的研制。美国能源部下属的Brookhaven National Laboratory的科学家发明了一种柠檬酸。该种酸能够有效地从土壤和垃圾中分离出生物毒性显著的重金属污染物,并随之将其转变成为有具有可利用价值的物质。该种新方法几乎可以清除土壤和垃圾中所有的具有显著生物毒性的重金属镉、铅、锌、铜以及放射性物质比如铀、铂、钻、艳、锶等。经过该种柠檬酸的处理后,土壤中具显著生物毒性的重金属可大大减少。
4.2 生物技术
利用生物方法净化土壤这一农作物的生长载体中的复合污染,在现如今对于土壤污染防治与修复,生物修复技术得到广泛的推崇。日本往原公司研制出利用生物技术迅速净化土壤复合污染的技木,即在污染的土壤中混入肥料和微量的无害酸,从而使受到污染而失去活性的土壤恢复固有的呼吸作用。然后通过迅速消耗土壤中的氧而形成强烈的还原效应,达到治理污染修复农作物生长环境的目的。
5 参考文献
[1] 环境保护部.GB15618-2008土壤环境质量标准[S].北京:中国标准出版社,2008.
[2] SANKAM,STRNADM,VONDRA J,et al.Sources of Soil and Plant Contamination in an Urban Environmentand Possible As sessment Me-thods[J].International Journal of Environmental Analytical Chemistry,1995(59):327-343.
[3] 徐庆.上海郊区农业地土壤重金属污染研究与溯源[D].上海:东华大学,2008.
[4] 李军辉,卢瑛,尹伟,等.佛山市某工业区周边蔬菜重金属富集特征的研究[J].华南农业大学学报,2008,29(4):17-20.
[5] NICHOLSON F A,CHAMBERS B J,JRWILLIAMS.Heavy Metals Con-tents if Livestock Feeds and Animal Manures in England and Wales[J].Bioresource Technology,1999(70):23-31.
[6] 杨国义,张天彬,万洪富,等.广东省典型区域农业土壤中重金属污染空间差异及原因分析[J].土壤,2007,39(3):387-392.
[7] 刘善江,李国学.高碑店污泥农用肥效及重金属污染防治[J].华北农学报,1999,14(1):118-122.
- 上一篇:粮食浪费最主要的原因
- 下一篇:电力负荷分析