功能材料论文范文

时间:2023-03-24 08:01:22

导语:如何才能写好一篇功能材料论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

功能材料论文

篇1

构成物质的原子包含原子核及核外电子,而物质的化学性质由核外电子的结构及电子-离子、电子-电子之间的相互作用决定。因此,研究电子的行为对材料研究具有重要意义。量子力学原理为描述电子的行为提供了理论依据。量子力学的模拟方法是通过求解薛定谔方程来实现的,该方法对单电子体系(如氢原子)行之有效,但对于复杂的多电子体系就无能为力了,原因在于无法求解复杂体系的薛定谔方程。但是,通过一些近似处理便可以得到薛定谔方程解。这些方法习惯上称为第一性原理。最为著名的近似方法有Hartree-Fock近似、密度泛函理论(DensityFunctionalTheory,DFT)和量子蒙特卡罗方法(QuantumMonteCarlo)。其中,应用最为广泛的是由Hohenberg,Hohn和Sham于20世纪60年代提出的DFT方法。DFT方法的优点在于通过电子密度分布来表示系统能量,将多电子问题转化为单电子问题,从而简化了求解过程。经过不断完善,DFT方法已成为计算固体物性的首选方法。此外,基于DFT原理,研究人员还发展了第一性原理分子动力学理论及含时密度泛函,拓展了第一性原理的应用范围,使其在材料、医学、生物等方面的研究中起到举足轻重的作用。

2材料原子结构建立过程

在已知晶体结构信息条件下,在MS中可采用多种方法建立原子的构型。晶体结构的信息可以通过晶体结构数据库软件查询,对于一些复杂的晶体结构,可通过日本国立材料研究中心数据库(NIMS)等查询。

MS中构建晶体结构一般需要用到的信息有:晶格常数,晶体结构所属空间群或空间群号,晶胞中的原子占位。纳米二氧化钛作为一种新型多功能材料,性质非常优良,应用十分广泛,目前国内外的许多研究选用其作为研究对象。它主要包括金红石型、锐钛矿型和版钛型三个晶型。其中锐钛矿型纳米二氧化钛在常温下是稳定的,主要应用在环保及新材料方面,工业应用前沿广阔。笔者以锐钛矿型TiO2能带计算过程为例,介绍其建立过程。锐钛矿型TiO2为四方晶系,空间群为I41/AMD。每个锐钛矿型TiO2原胞由2个钛原子和4个氧原子组成,初始原胞1×1×1为长方体,如图1a所示。首先选取锐钛矿TiO2晶体2×2×2超级原胞,然后通过计算得到体系的最小化电子能量和原子结构的稳定构型,从而对其进行结构优化。经分析,优化后计算得到的TiO2晶体的晶格参数a,b和c与文献报道实验测试值及其他理论计算值相似(见表1)。为了考查TiO2表面原子与吸附氧之间的反应过程,在完成块体优化后,我们切出了TiO2的三个主要的低指数面(100),(001)和(101)(如图1所示)。其中(101)面为锐钛矿型TiO2的最稳定晶面,亦为锐钛矿TiO2中最主要的晶面,约占94%以上[11-13],对该表面的研究具有重要意义。(101)面的性能,在一定程度上可反映出锐钛矿TiO2体相材料的性能。因此,我们主要考虑的锐钛矿TiO2表面模型为(101)面。

对于(101)表层,分别将具有5配位和6配位的两种钛原子表示为Ti5C和Ti6C,具有面氧和桥氧两种氧原子表示为O2C(brightoxygen)和O3C(planeoxygen)(如图1所示)。为了避免交换关联影响,选择真空层厚度为10Å。通过MS软件进行计算。基于DFT理论,采用超软赝势描述价电子的相互作用,采用广义梯度近似(GGA)修正交换关联能,对构建的(101)面进行结构松弛优化。在动能截止能量为340eV及K点值为6×6×1的条件下,进行赝势和电荷密度的自洽迭代循环。计算过程中的能量收敛精度为2×10-5eV,作用在每个原子上的力小于等于0.01eV/nm,内应力小于等于0.1GPa。

除了构建原子模型之外,我们还得到了直观能带结构图(如图2所示)。在教学过程中,运用MS软件,计算过程只需要2~5分钟,学生即可得到能带结构图。横坐标为在模型对称性计算中设定的K点,K点就是倒格空间中的几何点。按照对称性,取纵坐标为能量。因此,能带结构图表示在研究体系中,各个具有对称性位置的点的能量。各个点能量的加和就是整个体系的总能量。采用MS得到的能带结构图,简单易懂、清晰明了,可清楚地看到价带、导带及带隙等具置、形状及长度等。在Castep里,通过给scissors赋值,可增加价带和导带之间的空间,使绝缘体的价带和导带清楚地区分出来。有助于学生更深层次地了解能带结构信息,为更深入的研究提供基础和引导。

3结束语

篇2

在微流控技术中,根据微流控装置制备乳液的几何结构以及液相流体流动方向的不同,乳液有不同的产生形式,据此可以将微流控装置主要分为:同向流动型(co-flow)、T形交叉流动型(T-junctioncross-flow)和流动聚焦型(flow-focusing)。如图1(a)所示为典型的同向流动型微流控装置几何结构。在该装置中,作为分散相的内相液体(innerfluid)和作为连续相的外相液体(outerfluid)分别在内、外通道中同向流动,并在注射管锥口处相遇,此时内相液体受到与其互不相溶的外相液体的剪切力作用而在收集管中断裂成为尺寸均一的单乳液滴。典型的T形交叉流动型微流控装置几何结构,该装置中内相液体和外相液体主要呈相互垂直流动,并在T形流道的交叉口处相遇,此时内相液体受到外相液体的剪切和挤压作用而分散断裂成液滴。流动聚焦型微流控装置几何结构的典型结构,该装置中中间通道内流动的内相液体受到两侧通道中流动的外相液体的作用,并一同流向下游处紧临的缩口小孔;此时,在外相液体产生的压力和黏性应力的作用下,内相液体变为一股细小的喷射流,并在小孔下游处断裂成液滴。在上述装置中,同向流动型微流控装置几何结构主要由玻璃毛细管组装构建而成,而T形交叉流动型和流动聚焦型微流控装置几何结构则可由微加工技术[如软光刻技术(softlithography)]在聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、玻片等材料上构建。

上述微流控技术均能产生具有良好单分散性(一般CV值小于5%)、且尺寸可精确调控的乳液液滴。在产生乳液的过程中,液相流动的稳定性是决定乳液液滴单分散性的主要因素,而微通道的尺寸以及液相的流速则是调控乳液液滴尺寸的关键因素。除了可以控制所产生液滴的尺寸和单分散性外,微流控技术另一大优点是其良好的可升级特性,即可以通过将上述3种类型的微流控装置几何结构相互结合而实现对结构复杂的多重乳液的可控制备。Chu等通过将两个同向流动型微流控装置几何结构串联组装,得到了两级同向流动型微流控装置,以用于产生具有液滴嵌套液滴结构的双重乳液。当第一级微流控几何结构中内相液体被中间相液体剪切产生单乳液滴后,携带有该单乳液滴的中间相液体将进一步地在第二级微流控装置几何结构中被同向流动的另一股外相液体剪切,从而使得单乳液滴被封装在所形成的中间相液体液滴中,形成了双重乳液。由于微流控技术对各级液滴产生单元所产生液滴的优良控制性,使得该双重乳液也具有良好的单分散性。基于微流控装置这种优良的可升级特性,Chu等进一步组装得到了三级玻璃毛细管微流控装置,并成功可控制得了具有更多层嵌套结构的单分散三重乳液。在上述多重乳液中,乳液内部各层所含液滴的数目和尺寸均精确可控,展现出了微流控技术在可控制备多重乳液方面的巨大优势。Wang等进一步通过设计液滴产生组件、液滴汇集组件、液体提取组件等微流控功能单元用于组装微流控装置,从而可控制得了结构更加多样化,且内部可以同时包含不同组分液滴的多组分多重乳液,对上述层层嵌套式多重乳液的结构做了进一步地扩展。这些多组分多重乳液内部各层不同组分液滴的种类、尺寸、数目、比例均精确可控。其中,液滴的种类主要取决于用于产生不同液滴的液滴产生组件的数目;液滴的尺寸主要取决于通道的尺寸以及液相流速;而多重乳液内部不同液滴之间的数目和比例则取决于不同液滴的产生频率,该频率主要也是通过匹配液相流速来进行调控。微流控技术所制备出的尺寸和结构高度可控的单分散乳液液滴,为具有多样化结构的新型微颗粒功能材料的设计和制备提供了优良的模板。

2以单乳液滴为模板制备单分散功能微颗粒

以微流控技术制得的单分散乳液液滴作为合成模板,可以制备得到尺寸均一的单分散微颗粒功能材料,并且可以通过改变液滴尺寸在较宽微尺度范围内实现对微颗粒尺寸的精确调控。此外,该方法还具有很强的通用性。如以油包水型(W/O)乳液或水包油型(O/W)乳液作为模板的微流控合成方法可以分别用于不同种类的基于水溶性单体或油溶性单体的聚合物微颗粒的制备,并且可以方便地通过改变模板液滴中的组分来实现对微颗粒化学组成的调节和优化,从而实现对微颗粒功能的调控。此外,微流控技术在微通道中连续制备和操控乳液液滴的独特工艺,还使得其可以与各种设备相结合,以提供多样化的合成条件用于球形甚至非球形微颗粒的连续可控生产。

2.1球形功能微颗粒的微流控制备

Weitz研究组利用微流控技术产生的单分散W/O乳液作为模板,通过将溶解在水滴中的N-异丙基丙烯酰胺(NIPAM)单体聚合,制备得到了尺寸均一的温敏型聚(N-异丙基丙烯酰胺)(PNIPAM)水凝胶微颗粒。该温敏型PNIPAM水凝胶微颗粒具有良好的单分散性,且具有优良的温敏体积相变特性。当温度在其体积相转变温度(VPTT)(约32℃)附近变化时,该PNIPAM水凝胶微颗粒能展现出高温收缩、低温溶胀的可逆体积相变行为。类似地,Kumacheva研究组利用单分散的O/W乳液作为模板,通过紫外光照引发油滴中含有的油溶性单体聚合,制备得到了不同组分的单分散聚合物微颗粒。以上研究工作均显示出了微流控法在制备单分散微颗粒功能材料方面的优势

2.2非球形功能微颗粒的微流控制备

微颗粒材料的功能除了取决于其化学组成外,颗粒的形状也对其功能和应用前景具有很大的影响。然而,由于界面张力的作用总是使液滴尽可能地保持球形,因此传统的分批聚合方法通常难以得到尺寸均一的非球形颗粒。而微流控技术对于微通道中液滴的精确操控能力,则为可控制备单分散的非球形颗粒提供了一个优良的平台。Xu等通过设计微流控装置中通道的结构和尺寸,使得流入通道中的含有单体溶液的液滴在受限空间中变形为非球形形状,再将该变形的液滴经UV光照聚合进行原位固化后,从而制得了尺寸均一的棒状和扁平状非球形高分子聚合物微颗粒。在该方法中,由于微流控产生的单分散模板液滴的体积是一定的,因此该液滴在相同的微通道中变形后所形成的非球形液滴的形状和尺寸也是一定的,从而使得聚合后可以得到均一的非球形颗粒。此外,由于在聚合过程中单体溶液由液态转变为固态会发生一定程度的体积收缩,并且得到的固体颗粒表面仍具有一层连续相液体构成的浸润液层使之与微通道之间隔离,因此有效避免了固体微颗粒对微通道的堵塞。基于这种方法,研究者还制备得到了塞子状和圆盘状的聚合物微颗粒,以及不同形状的非球形磁性水凝胶微颗粒,展现出了微流控方法在可控制备单分散非球形微颗粒功能材料方面所具有的多样化特点。

2.3Janus形功能微颗粒的微流控制备

Janus形功能微颗粒是一种两面具有截然不同的物理或化学性质(如不同的表面浸润性、磁性、光电性质等)的颗粒,目前已在自组装研究以及乳液稳定剂和光学器件开发等方面展现出了独特的优势。微流控技术对于层流条件下运行的液滴的精确操控,使得其为Janus形微颗粒的制备提供了一个便利且易于工艺放大的优良技术平台。微流控技术用于制备Janus形微颗粒,主要是利用了两种同向流动的液相流体被剪切成为一个乳液液滴后,短时间内仍能在液滴内部相互保持层流而不至于混合这一特点。这样,利用该含有两种液相的Janus形液滴作为模板,经过快速原位聚合,便可得到两面具有不同性质的单分散Janus形微颗粒。此外,通过改变微通道形状尺寸使Janus形液滴在受限空间变形为非球形形状,还可以进一步制备得到具有非球形结构的Janus形微颗粒。

3以复乳液滴为模板制备单分散功能微颗粒

具有内部腔室结构的微颗粒功能材料由于其为物质的封装提供了一个受保护的内部空间,因此在药物传送与控释、活性物质保护、生物大分子合成、化学催化以及生化分离等领域应用非常广泛。以微流控复乳液滴,如油包水包油型(O/W/O)和水包油包水型(W/O/W)双重乳液,可以通过将其内部液滴作为微颗粒内部腔室,而将外部液层经反应后作为微颗粒壳层,从而实现对新型腔室型微颗粒的可控设计和制备。在该方法中,借助微流控技术对乳液尺寸、形状、单分散性和结构的精确控制,可以对腔室型微颗粒的壳层尺寸和厚度,以及内部腔室的尺寸和数目等进行精确调控。而O/W/O和W/O/W双重乳液的中间水层和油层使得该方法可广泛适用于多种水溶性和油溶性材料,以及可以良好分散的有机、无机纳米颗粒材料等以用于构造多样化的微颗粒。此外,O/W/O和W/O/W双重乳液的内部油滴和水滴结构还分别为油溶性和水溶性物质的封装提供了具有更好溶解性的内部环境。微流控复乳液滴能够实现对内部液滴的高封装率(约100%),这也为活性物质或药物等在制备微颗粒过程中的同步、高效率的封装提供了可能性。

3.1中空功能微颗粒的微流控制备

Zhang等利用O/W/O双重乳液作为模板,通过将具有温敏特性的NIPAM、具有葡萄糖识别特性的3-丙烯酰胺基苯硼酸,以及亲水性丙烯酸单体加入其中间水层中并由紫外光照引发聚合,再使用有机溶剂将内部油滴洗去后,制得了具有中空腔室结构的单分散葡萄糖响应型水凝胶微颗粒。该中空微颗粒的内部空腔可用于包载胰岛素,而其水凝胶壳层可在37℃条件下响应葡萄糖浓度变化以实现胰岛素的自律式控制释放。当葡萄糖浓度升高时,水凝胶壳层溶胀使得其交联网络结构的网孔变大,从而内部包载的胰岛素可以透过壳层快速扩散释放;而当葡萄糖浓度降低时,水凝胶壳层收缩使得交联网络结构的网孔变小,从而胰岛素扩散减慢、释放速率降低。这种葡萄糖响应型中空功能微颗粒为设计和开发新型自律式控释载体以用于糖尿病治疗提供了新的模型和理论指导。基于这种微流控制备方法,研究者通过灵活调节中间水层中的功能组分为其他水溶材料如N,N-甲基丙烯酸二甲氨基乙酯或者NIPAM和苯并-18-冠-6-丙烯酰胺,还成功制得了能够响应pH变化或者铅离子浓度变化以实现壳层溶胀收缩的中空水凝胶微颗粒,以期用于不同需求情况下物质的控制释放。

3.2核-壳型功能微颗粒的微流控制备

Wang等通过将均匀分散有超顺磁性Fe3O4纳米颗粒的NIPAM单体溶液作为中间水相,大豆油作为内、外油相,由微流控装置制得O/W/O双重乳液作为模板后,再由紫外光照引发其中间水层聚合,制得了具有热引发自爆突释功能的核-壳型(油核-水凝胶壳层)水凝胶微颗粒。该微颗粒的内部油核可用于封装油溶性的药物;而其PNIPAM水凝胶壳层的温敏体积相变特性以及壳层中镶嵌的超顺磁性纳米颗粒的磁响应特性,使得该微颗粒可先在外加磁场引导下定向运输到某一特定的位点,然后在升温作用下使壳层收缩从而挤压内部油核至壳层破裂,并最终将内部油核连同其中所溶解的物质一起快速突释出来,从而在短时间内达到较高的局部药物浓度。这种具有磁靶向运输和自爆式突释功能的核-壳型水凝胶微颗粒为新型药物传送系统的设计和研制提供了一种新的途径。基于这种微流控制备方法的通用性,研究者通过改变O/W/O双重乳液模板的中间水层组分以调节微颗粒壳层的功能,还成功研制出了一系列能够响应外界环境刺激如钾离子、乙醇、没食子酸乙酯等浓度变化来实现自爆式突释功能的新型微颗粒。此外,Liu等通过使用均质乳化剂制备的W/O乳液作为内部油相来构造O/W/O双重乳液,成功制备得到了内部油核中分散有水滴的自爆式水凝胶微颗粒,实现了自爆式微颗粒对水溶性药物或者纳米颗粒的封装运输。在升温条件下,微颗粒水凝胶壳层不断收缩挤压内部油滴,从而使得内部油滴连同封装有纳米颗粒的最内部水滴一并被快速释放到外部环境中,达到了很好的突释效果。除了上述自爆式核-壳型微颗粒外,研究者还利用O/W/O双重乳液研制出另一类具有突释功能的核-壳型微颗粒。Liu等通过将壳聚糖加入中间水相、交联剂对苯二甲醛加入内部油相,由微流控装置制得O/W/O双重乳液后,内相中对苯二甲醛扩散进入中间水层使壳聚糖交联形成壳层,从而制得了内含油核的核-壳型微颗粒。该微颗粒的交联壳聚糖壳层可以在较低的pH条件下降解,从而使得壳层溶解消失并将内部油核释放出来。

3.3孔-壳型功能微颗粒的微流控制备

具有封闭壳层的中空微颗粒和核-壳型微颗粒在物质封装方面展现出了高效的性能。然而,其内部所封装的物质分子通过微颗粒壳层(如上述微颗粒的水凝胶壳层)的传质往往是一个比较缓慢的过程。通过在微颗粒壳层上构造孔结构,可以促进物质分子穿过壳层的传质过程;并且,通过对孔结构进行调控,还可以进一步通过孔的尺寸和功能性控制物质的封装和控释过程,从而使微颗粒功能更加多样化。Wang等基于微流控W/O/W双重乳液,通过调节中间油层组分以控制内相水滴与外部水相之间的黏结以控制双重乳液的结构变化,并以此为模板制得到了壳层表面具有单个通孔结构的孔-壳型微颗粒。该方法中使用了光聚合树脂乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)和有机溶剂苯甲酸苄酯(BB)的混合溶液作为中间油相,并使用聚甘油蓖麻醇酯(PGPR)作为乳化剂。由于ETPTA单体对PGPR的溶解度较差,因此降低了中间油相对PGPR的溶解能力,导致内相水滴与中间油层之间的W/O界面以及中间油层与外部水相之间的O/W界面趋向于黏结,从而使得双重乳液由核壳型可控演化成橡子型结构。通过改变中间油相中ETPTA的比例,可以控制W/O/W双重乳液的演化程度。以这些可控演化后的双重乳液作为模板,便可以制得壳层表面具有单个通孔结构,且通孔尺寸和内部空腔的结构均精确可控的孔-壳型微颗粒。此外,基于微流控技术对双重乳液内部液滴数目和尺寸的精确控制,还可以对微颗粒中孔-壳型结构的数目以及尺寸进行调控。这种具有可控孔-壳型结构的微颗粒可以用于基于尺寸匹配的“lock-key”式颗粒捕获;也可以用于从不同尺寸的混合颗粒中选择性地装载小颗粒,从而实现基于颗粒尺寸的选择性筛分

3.4多腔室型功能微颗粒的微流控制备

能够分隔封装不同组分的物质,并可以实现对所封装物质的按需释放的多腔室微颗粒,在作为传送载体用于不相容活性物质的协同运输,以及作为微反应容器用于不同反应物的微反应等方面具有重要的意义。多腔室微颗粒的传统制备方法通常是采用内含多个液滴的双重乳液作为模板进行合成,或者是逐步将一个腔室型微颗粒封装到另一个腔室型微颗粒中;但是这些方法往往工艺复杂,并且难以独立、精确地控制内部各个腔室的结构。而微流控多组分多重乳液则为多腔室功能微颗粒的设计和制备提供了独特的模板,其内部不同组分的液滴可作为独立的腔室用于不同组分物质甚至不相容物质的隔离封装。并且,通过精确控制其内部不同组分液滴的尺寸、数目和比例,可以实现对内部各个腔室的独立调控、以及对不同组分封装剂量的优化。Wang等利用内含两种不同组分油滴的O/W/O四组分双重乳液作为合成模板,通过紫外光照聚合中间水层中含有的NIPAM单体,从而一步可控制得了内含不同组分油滴且其数目和比例均精确可控的多腔室型微颗粒。当温度升至微颗粒PNIPAM壳层的VPTT以上时,微颗粒会因为壳层剧烈收缩而将内部不同组分的油滴连同所封装的物质一同释放出来。这种共封装和释放模式使得该微颗粒有望用于协同运输和释放不同组分药物或反应物以用于协同治疗或触发式按需反应。微流控多组分多重乳液能够封装不同组分液滴的特点,也为将具有不同功能的材料整合到同一个微颗粒中以获得多功能特性提供了可能。Liu等利用O/W/O四组分双重乳液作为模板成功制得了同时具有磁靶向响应特性和铅离子响应特性的多功能水凝胶微颗粒。该乳液模板的外部水滴中溶解有NIPAM和苯并-18-冠-6-丙烯酰胺单体,水滴内部封装有一个含有磁性纳米颗粒和聚苯乙烯高分子(PS)的乙酸异戊酯液滴以及一个大豆油滴。首先,磁性纳米颗粒和聚苯乙烯经乙酸异戊酯挥发后沉积下来形成固体PS磁核;然后,水滴中的单体经紫外光照聚合后形成包含有PS磁核和大豆油滴的水凝胶,再经过有机溶剂洗去大豆油核后,得到了具有PS磁核和空腔的水凝胶微颗粒。该微颗粒可以在外加磁场引导下进行定向运动,并且其水凝胶壳层可以响应外界环境中铅离子的浓度变化而发生溶胀或者收缩,从而有望用作受铅离子污染的微环境中的微型传感器或执行器。

4总结与展望

篇3

《光电材料导论》是我校无机非金属材料专业2013年开设的专业课程。开设这门课程的原因是:(1)国家在十二五规划中提出了重点发展的七大战略性新兴产业,其中之一的的新材料产业包含了功能材料,而光电材料是功能材料的一种;(2)我校的无机非金属材料教研室的很多老师从事光电材料相关的研究,具备开设这门课程的师资力量。所以在课程的教学内容的选材方面,我们会着重从这两个方面考虑。而教学方法会利用现在的多媒体技术,与传统的板书相结合,让学生更加形象生动的加深对知识的理解[1]。

1 教学内容的选材

在教学内容的选材方面,我们综合考虑了以下几个因素:

首先,学生必须能够有所学,开设一门课程才是有意义的。光电材料是功能材料的一种,为了便于学生循序渐进地吸收理解光电材料的专业知识点,教学内容分成三个方面:光功能材料、电功能材料、光电材料及器件。首先,讲解光功能材料和电功能材料方面的知识点,在具有这些知识的基础上,再讲解光电材料及器件方面的知识,学生们就比较容易理解。

其次,我们结合现在的就业情况及研究热点。我们设置的教学内容,既考虑了学生们以后的就业,也考虑到想进一步深造读研究生的学生们的研究工作。光功能材料方面的教学内容包含了激光材料、发光材料、红外材料及光纤材料。电功能材料方面的教学内容包含了导电材料、半导体材料、介电材料、铁电材料及超导材料,其实半导体材料也是一种导电材料,之所以把半导体材料单独作为一个章节,是因为半导体材料是太阳能电池和LED照明灯的核心材料,这也是为后面的光电材料及器件的讲解做铺垫。光电材料及器件方面的教学内容包含了光电子发射材料、光电导材料、透明导电薄膜材料、光伏材料与太阳能电池及光电显示材料。

2 教学方法的探索

光电材料的内容更新很快,现在的学生不仅应该掌握传统基础的材料知识,更应该掌握最新的知识点,更应该了解光电材料的最新研究进展,而使用多媒体教学能够及时地更新课件的内容,使得教学内容能够跟上最新的研究成果[2],也能让学生及时了解学习最新的材料知识。

多媒体教学还有助于激发学生学习的兴趣[3],因为它在视觉上能够让学生很直观的学习知识,比如:太阳能电池的工作原理,我们可以在Powerpoint(PPT)上给出太阳能电池工作原理图,然后再对照图给学生详细讲解其原理,学生将更深刻的理解其原理。再比如,在讲解光纤的传输原理时,可以通过多媒体技术使用动画,让学生很直观地了解光纤的原理。

但是多媒体教学应该和传统的板书结合起来,因为有些知识仅仅通过多媒体展示,学生可能比较难理解,还需要老师再次将其中的重点和难点板书出来详细讲解,同时也可以加深同学的印象。

同时,我们在整个的教学过程中,采用的是启发式及提问式的教学方法。通过对学生进行提问,启发学生自主思考,加深学生对知识点的理解。

3 课程考核方式的选择

课程考核的成绩包含两个方面,一个是平时成绩的考核,一个是期末成绩的考核。

平时成绩的考核,我们通过上课提问、课后习题、出勤率等方面进行考核。上课提问可以考查学生对上节课内容的掌握程度,还可以考查学生是否认真听讲、是否认真思考问题。课后习题包括两个方面,一个是对课上内容的考查,帮助学生巩固课上知识,另一个是对课外知识的拓展,督促学生课后查阅文献,培养学生的学习能力。

期末成绩的考核,我们采用撰写科技论文的形式进行考核。《光电材料导论》开设在大四上学期,总共24个课时。因为光电材料的内容更新比较快,而教学课时比较有限,通过撰写科技论文的形式,既可以督促学生去更全面的了解光电材料最新的研究进展,又可以锻炼学生查阅文献的能力,培养学生总结文献的能力,有利于大四学生在下学期更快进入本科毕业论文的工作。

4 需要改进的地方

作为本专业开设的新课,在教学的探索与实践过程中,肯定存在一些不足,有很多地方需要我们去反省和改进。我们自己对此进行了总结,具体包括以下三个方面:

(1)在多媒体教学过程中,我们不仅只是使用了PPT这个软件,还应该引入视频,比如,在讲解使用直拉法制备单晶硅时,就可以引入一段视频,让学生更直观地了解使用直拉法是如何制备单晶硅的。

(2)在教学的过程中,我们还应该出示实物,让学生能够直接接触,加深印象。可以出示实物包括光纤、发光二极管LED,单晶硅片和多晶硅片(这时,还可以教学生从宏观上如何分辨单晶硅片和非晶硅片)、ITO玻璃、闪锌矿及纤锌矿结构模型等,不但增强生学习光电材料的兴趣,而且让他们对光电材料实体有直接的感性认识[4]。

(3)在教学过程中,我们还应该加入两个学时的讨论课,老师布置一个题目,让学生课后准备,几个学生一组,进行资料搜集与整理,然后让一个学生做代表,在讨论课上做PPT报告,其他组的学生进行提问,作报告的学生做解答。同时这个也要纳入平时成绩中,占总成绩的20%。

篇4

关键词: 无机材料专业本科毕业设计团队培养模式

毕业设计是高校学生综合运用所学理论知识分析解决实际问题的一次系统训练和检验过程,是培养大学生的创造能力、实践能力和创新精神的重要环节,通过这个环节,可锻炼学生独立分析和解决问题的能力,培养学生严肃认真的科学态度和严谨求实的工作作风。目前,理工科大学生毕业设计的质量和整体水平存在下滑趋势,如何保证理工科大学生毕业设计的质量,发挥这一教学环节在人才培养中的关键作用,已成为提高本科教学质量的重要问题之一[1]。本文结合专业老师教学第一线多年的实践和体会,在分析影响毕业设计质量主要矛盾的基础上,尝试一种共享优质教育资源、提高毕业设计质量的团队指导法,这对于进一步深化理工科大学生实践教学改革、全面提高教学质量是有益的。

一、建立毕业设计团队的目的和意义

传统单纯的个体毕业设计存在许多弊端,例如选题难,毕业设计指导工作量大,学生能力得不到很好培养。近年来,随着高校本科生数目的增多,高校教师往往同时指导多名学生进行毕业设计,许多工科院校要求本科毕业设计题目不得重复,甚至几年内不得重复,增加了高校教师选题的难度。选题太难,学生在短短的几个月内很难高质量地完成;选题太简单,毕业设计过程形同虚设,达不到预期的效果。题目选定了之后,每位学生的研究内容都不尽相同,遇到了难题,找不到合适的讨论对象,少数学生遇到困难一拖再拖,延误进度,最终影响毕业设计质量。

基于以上原因,有必要引入新的毕业设计模式。团队式组织是一种高效的组织形式,它是在团队成员充分合作的基础上确保任务的高质量完成。无机材料专业在指导毕业设计的过程当中,采用了团队毕业设计的形式,并进行了积极的探索和实践。

1994年,斯蒂芬·罗宾斯教授首次提出“团队”的概念[2]:为实现某一目标而由相互协作的个体所组成的正式群体。所谓团队合作能力,是指在团队的基础上团队中的每个成员不仅具备个人能力,更具备一种通过各尽所能来互补互助以发挥最大效率的能力。经济全球化时代,生产力飞速发展,竞争愈加激烈,加速和强化了全球范围内的专业化和社会分工。分工细化要求人们掌握更专业的知识与技能,同时要求这些不同知识、技能更广泛、更深入地进行交换与合作,团队合作能力已成为个人在社会生存与发展的必要素质。所以,要培养适合社会发展的综合性人才,就要培养在校大学生的团队合作能力。

二、团队模式的建立

所谓团队模式包括两层含义,即教师团队和学生团队。

1.教师团队的建立

教师团队是由若干个课题组成员构成的,可以弥补原来单人指导学生的不足。例如一旦某些教师出国、出差或开会,团队中的其他教师就会进行指导和监管,避免指导缺位。

教师团队由经验丰富的教授、副教授和青年教师组成。团队第一指导教师为专业带头人,指导的本科论文多次获评江苏大学优秀论文,团队成员均具有副教授职称的年轻教师,且在不同的高校取得博士学位,目前承担着863课题、国家青年科学基金、江苏省自然科学基金及博士后基金等项目的研究工作,自身具有丰富的科研经验。团队模式既可保证团队的科研方向有比较高的起点,又有利于青年教师的培养和成长。

2.学生团队的建立

教师和学生以双向选择的形式,组成学生团队。经过多年的实践,我们发现一个对课题感兴趣的学生在完成课题的态度上,比一个对课题无兴趣而学习成绩优异的学生要认真。在双向选择的基础上,学生团队共由六位同学组成,其中三人考上本校研究生,一人考上南京理工大学研究生,团队成员有着共同的特点,即对科研工作很感兴趣,部分同学参加了江苏大学大学生科研立项工作,在三年级时就进入老师的课题研究,积累了一定的经验,并有同学参与并完成的工作发表在Materials Technology期刊上(SCI收录)。

三、团队毕业设计(论文)的选题

选题与学生的专业知识背景相关,可以培养学生综合运用所学知识分析、解决实际问题的能力,这是毕业设计工作的基本要求。同时,学生对背景熟悉的课题比较容易接受,上手快,有利于高质量地完成毕业设计研究工作。选题具有一定的探索性,有利于培养学生的创新能力和科研素养。好的毕业设计题目可以不断激发学生的创造性思维,培养学生浓厚的科研兴趣,让学生在毕业设计过程中不断发现新问题、分析原因、解决难题,体验科研的乐趣。选题具有一定的系统性,这是团队毕业设计选题的基本要求。系统性强的课题有利于充分培养团队毕业设计成员之间的协作能力。将一个系统问题划分为若干个子课题,每个成员都单独负责一个子课题,只有各个成员之间通力合作,才能圆满实现团队总目标。

根据无机非金属材料专业的特点及新型无机功能材料发展的现状及趋势,结合部分学生科研立项的研究方向,同时结合实验室现有条件,选择“无机功能材料的水热制备技术”为毕业设计团队总课题,各指导老师子课题结合老师科研项目,围绕总课题展开。该课题紧密贴合学生专业背景,涉及《无机材料科学基础》、《材料测试新技术》、《粉体工程》等多门课程,可以较好地利用学生所学的专业知识,同时锻炼学生综合运用所学知识解决实际问题的能力。

目前,水热法广泛应用于无机功能材料,如单晶材料、半导体材料、磁性材料、发光材料等的制备研究中,不仅可以制备粉体,而且可以制备薄膜、纤维,甚至是复合材料,在新型无机功能材料的研制方面发挥着越来越重要的作用。该课题瞄准无机功能材料发展的前沿,围绕无机功能材料的研究热点,如纳米单晶、稀土发光材料、压电陶瓷等展开,是综合性和设计性实验的提升,具有一定的实用性和很强的探索性。对学生而言,该课题题材新颖,极具挑战性。

四、各种能力的培养

1.文献调研、写作和表达能力的培养

教师团队安排教师专门对学生进行了文献调研能力的培养,使其掌握利用图书、检索工具和网络等手段查阅的方法,然后消化、分析和总结所查到的资料。为了使学生达到论文写作的规范及要求,安排了教师专门对学生进行写作能力的培训。为了提高学生的口头表达能力,我们每两周举办一次研讨会,要求团队中所有学生汇报研究进展、下一步计划和遇到的问题,然后大家共同讨论。

2.动手能力和创新能力的培养

我们还引导学生参与硕士生和博士生的课题实验活动,如研究生开题、中期考核、课题研讨、论文答辩等,并安排教师专门对学生的动手能力进行培养。教师详细讲解水热釜的使用规程和注意事项,并指导学生进行具体的实验,每一位指导老师都要全程指导,介绍相关仪器设备(如X射线衍射、热分析、扫描电镜等大型仪器)的操作方法及注意事项,尤其是谱图的分析方法,让学生自己设计实验方案后独立完成实验研究。

篇5

关键词:差别化;教学方法;研究生;课程教学

针对我院研究生课程教学中开设的基础课“高等热力学”、专业基础课“材料化学”“火灾动力学”和专业课“消防功能材料”,研究了“差别化”教学方式在不同属性课程中的应用。

一、基础课教学

基础课教学主要强调基本科学方法和基本研究思路。由于学科专业的特殊性,我院本科课程的专业课发展起步较晚,与传统优势学科相比存在逻辑推理不太严密,有知识断裂等方面的不足。

在安全技术及工程研究生专业开设了基础课“高等热力学”,该课程特点鲜明、资源丰富,逻辑严密,推理严谨,是树立科学方法和培养研究思路的优秀课程之一。在该课程设计中,教学目的是扎实基础理论,培养学习方法,启发学员积极思考,从习惯听到习惯提出问题和分析问题,注重培养学员严密的逻辑思维能力,并有意识地进行训练,纠正我院学员以往“想当然”的思想。

“高等热力学”教学中选取部分章节内容组织学生自己讲授,培养学生的表达能力。同时引导学员与消防工程等各相关学科进行关联,通过查资料、对比分析、撰写读书笔记、读书报告和论文等形式引导学员思考该课程在安全技术及工程学科体系中的作用,避免学员为了考试而学习。但教师不能置身事外,否则会造成个别学员简单地将教材内容读一遍而未能取得实际效果,要指导学员进行课程设计,查阅相关背景,对知识进行整理和组织,并清楚表达所授内容,其他学员参与讲评,从不同角度思考问题,集思广益,提高学习效果。

二、专业基础课教学

“材料化学”是为我院材料学研究生开设的专业基础课,本身具备比较完善的体系。该课程是专业方向的选修课,选课人数较少,此时研究生的研究方向基本确定,部分同学已进入课题的前期研究阶段。因此,要立足为专业服务开展教学活动,教学内容的选取要关注学生研究方向,同时将课程内容结合研究生取得的研究成果进行分析探讨,培养学生研究意识和运用专业基础知识的能力。

专业基础课“火灾动力学”在火灾科学理论体系中具有举足轻重的作用,面向全院消防各专业研究生开设。选用的教学参考书是火灾动力学研究领域的权威专著Drysdale编写的原版著作。与基础课教学方法不同,在教学中注重与本科的专业基础课“消防燃烧学”进行比较,同时重视与其他课程的衔接。对于教学内容处理不能再采用原版著作系统学习,这会限制学生创新思维的发展。教学时应课上进行理论分析讨论,课后组织学员查阅理论背景、实验背景条件以及理论的工程应用,拓宽研究生的视野,加深研究生学习中的思考意识。以专业理论与实际研究相关联为出发点,并通过研究生授课研讨实际问题,进一步培养研究生的科学思维方法、创造能力和创新意识。

三、专业课教学

专业课教学是研究生教育的最基本部分,是提高研究生专业素质和创新能力的直接途径。通过本科阶段的学习,研究生已具有较好的专业基础和较强的自学能力,因此专业课教学的重点不再是基本理论和基础知识,专业课教学必须具有前瞻性,要引导学生关注学科的发展动态,注意学科的交叉、延伸。 “消防功能材料”是为材料学专业研究生开设的专业课,课程讲授应该达到:①了解基础,了解技术的应用。即学习成熟的理论和技术,了解基础理论和技术应用,可以参考专业领域学术论文和研究生已取得的成果。②了解消防领域的技术标准和规范。学院所培养的学员是从事消防实际工作的技术监督或建审人员,学员对工作领域的技术现状和规范有一个准确的了解,还要了解标准的渊源、背景和目前的状况,未来工作才能心中有数。③了解国内外专业领域研究动态和技术应用动态。作为专业领域的研究生不了解学科前沿发展动态,未来研究就会没有方向,不知道目前存在的问题,工作中就不容易发现问题。④了解消防技术监督中其他方面存在的问题,体现知识学有所用。专业课要达到的目的是重基础、重实际、重研究、重结合。

参考文献:

[ 1] 乔玉全.21 世纪美国高等教育 [ M].北京:高等教育出版社,2000.

篇6

关键词:梯度功能材料,复合材料,研究进展

Abstract :This paper introduces the concept ,types,capability,preparation methods of functionally graded materials. Based upon analysis of the present application situations and prospect of this kind of materials some problems existed are presented. The current status of the research of FGM are discussed and an anticipation of its future development is also present.

Key words :FGM;composite;the Advance

0 引言

信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。

近年来,材料科学获得了突飞猛进的发展[1]。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而FGM即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用[2],并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。

1 FGM概念的提出

当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5MW/m2, 其空气入口的前端热通量达5MW/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000K以上的温差,传统的单相均匀材料已无能为力[1]。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落[3]或龟裂[1]现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念[1],即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小[3]。

随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(FGM)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料[4]。

2 FGM的特性和分类

2.1 FGM的特殊性能

由于FGM的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足[5]。正如Erdogan在其论文[6]中指出的与传统复合材料相比FGM有如下优势:

1)将FGM用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;

2)将FGM用作涂层和界面层可以减小残余应力和热应力;

3)将FGM用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;

4)用FGM代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。

2.2 FGM的分类

根据不同的分类标准FGM有多种分类方式。根据材料的组合方式,FGM分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料[1];根据其组成变化FGM分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)[1];根据不同的梯度性质变化分为密度FGM,成分FGM,光学FGM,精细FGM等[4];根据不同的应用领域有可分为耐热FGM,生物、化学工程FGM,电子工程FGM等[7]。

3 FGM的应用

FGM最初是从航天领域发展起来的。随着FGM 研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的FGM,并可望应用于许多领域。

功 能

应 用 领 域 材 料 组 合

缓和热应

力功能及

结合功能

航天飞机的超耐热材料

陶瓷引擎

耐磨耗损性机械部件

耐热性机械部件

耐蚀性机械部件

加工工具

运动用具:建材 陶瓷 金属

陶瓷 金属

塑料 金属

异种金属

异种陶瓷

金刚石 金属

碳纤维 金属 塑料

核功能

原子炉构造材料

核融合炉内壁材料

放射性遮避材料 轻元素 高强度材料

耐热材料 遮避材料

耐热材料 遮避材料

生物相溶性

及医学功能

人工牙齿牙根

人工骨

人工关节

人工内脏器官:人工血管

补助感觉器官

生命科学 磷灰石 氧化铝

磷灰石 金属

磷灰石 塑料

异种塑料

硅芯片 塑料

电磁功能

电磁功能 陶瓷过滤器

超声波振动子

IC

磁盘

磁头

电磁铁

长寿命加热器

超导材料

电磁屏避材料

高密度封装基板 压电陶瓷 塑料

压电陶瓷 塑料

硅 化合物半导体

多层磁性薄膜

金属 铁磁体

金属 铁磁体

金属 陶瓷

金属 超导陶瓷

塑料 导电性材料

陶瓷 陶瓷

光学功能 防反射膜

光纤;透镜;波选择器

多色发光元件

玻璃激光 透明材料 玻璃

折射率不同的材料

不同的化合物半导体

稀土类元素 玻璃

能源转化功能

MHD 发电

电极;池内壁

热电变换发电

燃料电池

地热发电

太阳电池 陶瓷 高熔点金属

金属 陶瓷

金属 硅化物

陶瓷 固体电解质

金属 陶瓷

电池硅、锗及其化合物

4 FGM的研究

FGM研究内容包括材料设计、材料制备和材料性能评价。

4. 1  FGM设计

FGM设计是一个逆向设计过程[7]。

首先确定材料的最终结构和应用条件,然后从FGM设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出FGM体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。

FGM设计主要构成要素有三:

1)确定结构形状,热—力学边界条件和成分分布函数;

2)确定各种物性数据和复合材料热物性参数模型;

3)采用适当的数学—力学计算方法,包括有限元方法计算FGM的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。

FGM设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。

4. 2 FGM的制备

FGM制备研究的主要目标是通过合适的手段,实现FGM组成成份、微观结构能够按设计分布,从而实现FGM的设计性能。可分为粉末致密法:如粉末冶金法(PM) ,自蔓延高温合成法(SHS) ;涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(PVD) 和化学相沉积(CVD) ;形变与马氏体相变[10、14]。

4. 2. 1  粉末冶金法(PM)

PM法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的FGM。粉末冶金法可靠性高,适用于制造形状比较简单的FGM部件,但工艺比较复杂,制备的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。PM法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的FGM有:MgC/ Ni 、ZrO2/ W、Al2O3/ ZrO2 [8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7] 。

4. 2. 2 自蔓延燃烧高温合成法(Self-propagating High-temperature Synthesis 简称SHS或Combustion Synthesis)

SHS 法是前苏联科学家Merzhanov 等在1967 年研究Ti和B的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去, 利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:

SHS 法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的FGM。但SHS法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用SHS 法己制备出Al/ TiB2 , Cu/ TiB2 、Ni/ TiC[8] 、Nb-N、Ti-Al等系功能梯度材料[7、11]。

4. 2. 3 喷涂法

喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(PSZ)陶瓷和NiCrAlY合金[9]。

4. 2. 3. 1 等离子喷涂法(PS)

PS 法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1 500 K,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1. 5 km/ s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7] 、NiCrAl/MgO -ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料

4.2.3.2 激光熔覆法

激光熔覆法是将预先设计好组分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便会产生用B合金化的A薄涂层,并焊接到B基底表面上,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的FGM。用Ti-A1合金熔覆Ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层A的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备Ti - Al 、WC -Ni 、Al - SiC 系梯度功能材料[7 ] 。

4.2.3.3 热喷射沉积[10]

与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如SiC或Al2O3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/SiC复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。

4.2.3.4 电沉积法

电沉积法是一种低温下制备FGM的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到FGM膜或材料[8]。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为TiO2-Ni, Cu-Ni ,SiC-Cu,Cu-Al2O3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]

4.2.3.5 气相沉积法

气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD) 和化学气相沉积(CVD) 两类。

化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。

物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm 厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD 法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/ TiN、Ti/ TiC、Cr/ CrN 系的FGM [7~8、10~11]

4. 2. 4 形变与马氏体相变[8]

通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力) 梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18 -8 不锈钢(Fe -18% ,Cr -8 %Ni) 试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。

4. 3 FGM的特性评价

功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5 FGM的研究发展方向

5.1 存在的问题

作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:

1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;

2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;

3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;

4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。

5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;

6)成本高。

5.2 FGM制备技术总的研究趋势[13、15、19-20]

1)开发的低成本、自动化程度高、操作简便的制备技术;

2)开发大尺寸和复杂形状的FGM制备技术;

3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);

4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。

5.3 对FGM的性能评价进行研究[2、13]

有必要从以下5个方面进行研究:

1)热稳定性,即在温度梯度下成分分布随 时间变化关系问题;

2)热绝缘性能;

3)热疲劳、热冲击和抗震性;

4)抗极端环境变化能力;

5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

6 结束语

FGM 的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段[8]。FGM的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。

参考文献

[1] 杨瑞成,丁旭,陈奎等.材料科学与材料世界[M].北京:化学工业出版社,2006.

[2] 李永,宋健,张志民等.梯度功能力学[ M].北京:清华大学出版社.2003.

[3]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理,2000,29(4):206-211.

[4] 曾黎明.功能复合材料及其应用[M]. 北京:化学工业出版社,2007.

[5] 高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[J]. 山西建筑,2006, 32(5):143-144.

[6] Erdogan, F.Fracture mechanics of functionally graded materials[J].Compos. Engng,1995(5):753-770.

[7] 李智慧,何小凤,李运刚等. 功能梯度材料的研究现状[J]. 河北理工学院学报,2007, 29(1):45-50.

[8] 李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[J]. 菏泽学院学报,2007, 29(5):51-55.

[9] 林峰.梯度功能材料的研究与应用[J].广东技术师范学院学报,2006,6:1-4.

[10] 庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J]. 金属制品,2005,31(4):4-9.

[11] 戈晓岚,赵茂程.工程材料[ M].南京:东南大学出版社,2004.

[12] 唐小真.材料化学导论[M].北京:高等教育出版社,2007.

[13] 李进,田兴华.功能梯度材料的研究现状及应用[J]. 宁夏工程技术,2007, 6(1):80-83.

[14] 戴起勋,赵玉涛.材料科学研究方法[M] .北京:国防工业出版社,2005.

[15] 邵立勤.新材料领域未来发展方向 [J]. 新材料产业, 2004,1:25-30.

[16] 自蔓延高温合成法.材料工艺及应用etsc.hnu.cn/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm

[17] 远立贤.金属/陶瓷功能梯度涂层工艺的应用现状.91th.com/articleview/2006-6-6/article_view_405.htm.

[18] 工程材料. col.njtu.edu.cn/zskj/3021/gccl/CH2/2.6.4.htm.

篇7

关键词 智能包装;识别;判断;自适应控制;信息干预

中图分类号TS09 文献标识码A 文章编号 1674-6708(2013)92-0232-02

从上世纪六七年代开始,智能化的浪潮日渐高涨。从1967年LEONDES提出的“智能控制”(INTELLIGENT CONTROL)理论开始,产品包装领域的智能控制成为一种不可阻挡的趋势。从早期自动化管理的无人工厂,到九十年代开始的智能包装(Intelligent Packaging),再到近几年兴起的物联网(INTERNET OF THINGS)技术革命,智能化成为新兴生产力给世界带来了革命性变革。阐明什么是智能包装及其相应分类,对我国包装设计领域智能化发展进程具有重要指导意义。

1正确认识智能包装

1992年,在英国伦敦召开了世界第一次智能包装国际会议。会议对智能包装进行了广泛地研讨并对智能包装(Intelligent Packaging)阐释如下:在一个包装,一个产品或产品与包装的组合中,有一个集成化组件或一项固有特性,通过此组件或特性把符合特定要求的智能产品赋予产品包装的功中,或体现在产品本身的使用中。

虽然该会议对智能包装进行了解释,目前学界仍持有不同看法。范骏(1984)面对雨后春笋般的新材料,认为智能包装是新材料的应用,他说“我们要敏锐地、及时地把新材料引进包装工业, 使包装材料和容器对商品的保护性、包装过程的便利性、原材料的节约性产生革命性的变化。”韩景平、王渝珠(1996)对世界包装用高新材料进行了分类整理,并总结十五种包装用高新材料及其功能,与范骏观点基本一致。韩锦平(2002)认为“所谓智能包装是指对环境因素具有控制识别和判断功能的包装,它可以控制识别和指示包装微空间的温度、湿度、压力以及密封的程度时间等一些重要参数。” 余雷、杨丽君等(2004)指出了RFID智能标签在物联网物流管理和产品包装的积极作用,“RFID电子标签技术的更新换代,将对商品包装和物流管理产生深远的影响。”马爽(2005)把智能包装归类为交互式包装的子类,把交互式包装分为感觉包装、功能包装、智能包装三类,认为交互式包装指“指通过包装材料和包装手段的实施,使产品和消费者之间建立起一种紧密联系。这个概念的产生,进一步说明了包装与产品的关系,强调了包装是产品的一部分,甚至就是产品本身。”

我们追溯上世纪50年代,人类追求人工智能的脚步不曾停止,从机械手、到无人工厂,智能包装是延续这一主题发展的阶段产物之一。在此理念之上并结合时代背景,我们探究智能包装,认为其应是伴随新材料新技术的发明和应用,通过对包装材料的更新换代升级、通过改造包装结构、通过整合被包装物信息管理,实现被包装物的人性化的智能化的目的、要求或功效,这些目的、要求或功效,是传统包装装潢所不能达到不能完成的,也就是智能化的结果,我们称之为智能包装。智能包装通过对产品包装材料、包装结构以及产品信息进行可控性的变革,满足消费者对产品品质的要求、功能的需求,满足制造商对产品流通过程的信息干预、控制及处理的管理要求,达到实现人与物交互式便捷沟通的目的。

2智能包装的分类

韩锦平(2002)根据近期欧美提倡的“新包装体系”,可分为下列10 类:1)增强型复合包装;2)高阻渗型复合包装(阻气、阻水、阻油);3)防腐型(防蚀防锈)复合包装;4)防电磁场干扰复合包装;5)抗静电复合包装;6)生物复合包装(果品催熟、鱼类保活、防虫、防霉);7)保鲜复合包装(果蔬和肉制品用);8)烹调用复合包装(如蒸煮、微波烘烤等9)智能型复合包装;10)超微纳米复合包装。陈新(2004)、张改梅(2007)、胡兴军、林燕(2010)等将智能包装分类为:功能材料型智能包装、功能结构型智能包装、信息型智能包装。此分类法从内涵和外延都能较直观、全面了解其意义,本文采用这一分类法。

1)韩锦平(2002)、陈新(2004)认为智能材料包装是指应用新型包装材料对产品外包装进行包装设计,使得外包装“对环境因素具有某种“识别”和“判断”功能的包装,这些包装材料通常采用光电、温敏、湿敏、气敏等功能材料与包装材料复合制成。它可以智能识别和指示包装微空间内的温度、湿度、压力和密封程度、保存时间等重要参数。除“识别”和“判断”功能,许文才、李东立、付亚波、魏华(2010)、周忠福(2001)认为其还能根据包装微空间内部 “自适应器物本身的不同特质和突变或渐变的外部环境,又可相应地调整内部环境,”即“控制功能”。

整合以上观点,我们认为智能材料包装,即指应用新材料对产品外包装进行包装设计,使外包装能对外部环境和内部环境的湿度、温度、光敏、压力、时间和气体含量等参数进行性识别、判断和自适应控制,对包装物品质进行智能化干预和保障;

2)伴随时展新材料新技术的研发如雨后春笋,智能材料包装相应得到了极大推动力。如果说智能材料包装在“包”的材料上下功夫,智能结构包装则在“装”的结构上做文章。相对智能材料包装而言,目前对智能结构包装研发相对较慢。

陈新(2004)、胡兴军、林燕(2010)认为功能结构型智能包装是指通过增加或改进部分包装结构,而使包装具有某些特殊功能和智能型特点。

智能结构包装,即指对产品内部结构进行可控性智能化设计,以满足制造商和消费者特定的需要。智能结构包装最具代表性的作品为自动冷却和自动加热包装,陈新(2004)、郝晔(2007)、胡兴军、林燕(2010)分别介绍了饮料包装结构设计中冷凝、加热装置,曹利杰(2007)介绍了通过结构改造而便于清洗的可再装容器系统,郝晔(2007)还介绍了欧洲饮料结构营养释放装置。

药物儿童安全盖设计是智能结构包装另一代表,王立党、赵美宁、李小丽(2005)、李晶、卢立新(2008) 介绍了为避免儿童误食药物的安全盖装置;

3)智能信息控制包装,又称可跟踪性智能运输包装,主要指产品生产时各项生产参数的智能记录,如:名称、成份、性状、规格、产地、功能、价格、保质期、使用说明、使用禁忌等,以及产品的仓储、运输、销售期间各项信息参数的追踪记录,实现产品的自动化管理。

智能信息包装源于RFID射频识别技术的研发,并以其在非接触式自动识别、信息管理、自助结账以及未来物流网信息流通的强大优势,日益受到包装产业青睐。王文珍、张成利(2008)介绍了基于RFID智能标签独有的无接触信息识别管理功能,及时掌握货物出入仓、销售信息、自助结账等功能。

“最基本的RFID系统是由电子标签、阅读器、天线和通讯系统四部分组成” ,阅读器在指定区域发射无线电信号形成电磁场,当装有RFID芯片的包装产品经过此区域时,由阅读器发送指令将标签信息通过天线将反馈信息传送至计算机网络。借助RFID智能标签,产品在生产和流通过程中均有可追踪性,制造商和用户可以实时了解产品库存、流通、保质等信息,这在物流管理中能预测顾客购物情况,优化库存管理,整合资源,建立智能化管理体系。基于RFID智能标签技术,美国奥巴马政府已接受由IBM公司提出的“互联网+物联网=智慧地球”的构想,借助无线射频识别技术(RFID)和无线传感网络技术(WIRELESS SENSOR NETWORKS,WSN),物联网技术将成为下一代革命性技术,实现对物体的智能化识别、定位、跟踪、监控和管理,人类将跨入另一个崭新时代。

智能包装以其对被包装物智能化的控制、干预和管理功能,在食品、医药、日化用品、物流管理等领域具备广泛的应用空间和广阔的市场发展前景,具备良好的社会功效,因篇幅限制将另文说明。

参考文献

[1]范骏.第三次浪潮与包装工业[J].中国包装,1984(5):5.

[2]韩景平,王渝珠.二十一世纪的包装产业信息化[J].中国包装工业,1996(4):18.

[3]韩锦平.复合软包装的发展新动向[J].中国包装工业, 2002,98(8):6.

[4]余雷,杨丽君,吴艳泽,余艳萍.基于RFID电子标签的物联网物流管理系统[J].微计算机信息,2006,22(2):233-234.

[5]马爽.交互式包装技术的特点及应用[J].包装世界,2005(3):48.

[6]陈新.智能包装技术特点研究[J].包装工程,2004,25(3):40-41.

[7]张改梅.智能包装技术及其应用领域[J].印刷技术,2007(10):19-22.

[8]胡兴军,林燕.智能包装的分类、应用及前景[J].湖南包装,2010(1):33-36.

[9] 许文才,李东立,付亚波,魏华.智能释放保鲜包装复合膜的研发和应用[J].中国印刷与包装研究,2010,2(11):419-423.

[10]周忠福.纳米技术与文物保护[R].中国文物保护技术协会首届学术年会会议论文,2001(5):253-255.

[11]郝晔.智能包装在食品、饮料、医药等领域的应用[J].印刷技术,2007(10):23-24.

[12]曹利杰.智能包装赏析[J].印刷技术,2007(10):31.

[13]王立党,赵美宁,李小丽.基于人体工效的新型智能儿童安全盖设计[J].中国工业包装,2005(7):61-62.

[14]李晶,卢立新.危险品的儿童安全包装.包装工程[J],2008,29(11):193-195.

[15]王文珍、张成利.基于RFID超市智能库架管理系统设计[J].包装工程,2008, 29(9):78.

篇8

1.办学特色不明确。自我校材料化学专业招生以来,在办学过程中发现在专业建设上存在一些薄弱环节,如专业学科定位不确定,专业人才培养目标不够明确、课程体系中基础课平台不够规范,课程设置不够科学、合理等。究其原因,主要由于材料化学专业建立时间短,办学经验不足。

2.课程设置理念滞后。合理的课程设置理念是让每一位学生不仅受到严格的专业训练,而且还应受到广泛的通识教育,把学生培养成有专业知识、有爱心、有责任心、有雄心的智者。在材料化学专业课程设置中,由于受传统观念的影响,侠义专业概念的限制,只要求知识的传授,对学生独立思考能力、自学能力、动手能力和生存能力方面的培养没有足够的重视。同时,在课程设置中存在对社会需求、学生就业、市场前景等考虑不周等问题。

3.实践、实验教学条件欠缺。实践、实验课程是培养学生的动手能力、分析问题和解决问题能力必不可少的教学环节。起初,我们以三、四十人组成的实习队伍进入企业、经济实体实习。而今,大型企业自动化程度很高,实习生很难进入车间进行实践操作,另外,经济欠发达地区的大型企业为数不多,小型企业又没有能力接收大量的实习生,加上实习经费的短缺等原因,无法实现“大部队”形式的实习。在实验教学方面,由于条件所限,只能开出部分专业课的实验。

4.专业教师缺乏。师资队伍是优化课程体系的执行者,也是人才培养的主导者。先有优秀的教师,后有优秀的学生,再有品牌专业[2]。我校材料化学专业建立以来,虽然引进了固体材料化学、无机功能材料、催化材料、分子生物学等领域的数名博士研究生充实本专业的教师队伍,但是由于地域和待遇的局限,专业教师数量有限,还是不能完全满足教学的需求,目前正在通过各方努力引进高水平的教师,以加强本专业的师资队伍建设。

二、课程体系的优化策略

课程体系是高校人才培养目标、课程指导思想、课程设置、课程结构及教学管理模式的综合体现,是学校办学特色、学科专业特色和人才培养特色的综合反映。课程体系是否科学合理,对培养高质量人才目标具有决定性的意义。今年,为提高教学质量,适应社会对人才的需求,学校开展了人才培养和教学体系改革研究,重新制定“2012版本科人才培养方案”,借此契机,化学与环境科学学院对材料化学专业课程体系作了重新修订,通过选择、整合与调适等措施进行了材料化学专业课程体系的优化。

(一)调整教学计划,优化专业基础课内容

教学计划是一门课程授课的整体规划,随着社会经济和科学技术的发展,教育结构不断发生变革,教学计划也必须不断改革。在本次修订人才培养方案的同时,材料化学专业也调整了教学计划,对各门课程的教学内容进行了优化。

1.无机化学课程。现行的材料化学专业课程体系中,无机化学是大学一年级学生的必修课程。本课程的教学直接影响大学一年级的学生的学习思维方式和学习习惯。也是他们从中学的学习方式转变为大学学习方式的关键时期。在本阶段,我们有意识地培养学生的独立思考能力和自学能力。无机化学课程内容包括理论部分和元素部分,对于材料化学专业的学生来说,无机化学课程的理论部分是课程的核心,元素部分是辅助内容。在调整教学计划前,我们就无机化学课程的讲授内容对本专业三届(90人)学生进行了问卷调查,结果显示,89%的学生不赞成讲解课程的全部内容,认为无机化学元素部分可在教师指导下进行自学。

在元素部分的教学中,教师以典型元素的性质进行讲解,然后同学生一起讨论,通过实例指导学生去认识一种元素、一族元素以及一类元素,逐步了解元素的结构—性质—功能之间的关系,使学生掌握学习元素化学知识的方法。另外,我们在化合物的性质教学中,教会学生如何查阅相关工具书、参考书和手册等,这样,其余元素部分设置为自学内容。

2.高等数学课程。高等数学是材料化学专业的一门必修课程。目前我院材料化学专业使用的教材为“生化类”《高等数学》。随着材料化学学科的知识量迅速增加,对材料的定性定量分析、材料结构分析、材料物理性能测试等技术的要求,需要高深的高等数学知识。因此,我们把材料化学专业的“生化类”高等数学调整为“理工类”高等数学。同时,在高等数学课程中增加了线性代数的内容,以达到材料结构测试和性能计算知识的要求。

3.材料结构分析方法课程。测试方法在材料化学专业的发展中有着非常重要的作用。随着对材料的性能、组成和微观结构的深入研究,新的研究方法、实验方法和测试手段越来越多样化。因此,我们把材料结构分析方法课程的教学分为理论讲授和仪器操作。首先,教师在课堂上讲解测定材料结构和性能的仪器,然后学生到仪器实验室进行观摩,在教师的指导下学生自己动手测定样品学习操作。另外,还可借助内蒙古功能材料物理与化学重点实验室的部分高档仪器进行学习。

4.专业前沿知识讲座。课程内容应随着社会、科技的发展及时充实新知识。材料化学专业教材的内容往往是数年、甚至数十年的科学知识总结。为及时补充材料科学领域的新知识,我们将现代材料科技成果融入到教学中,用前沿的材料科学研究内容去充实陈旧的教学内容,在人才培养方案中增加了专业前沿知识专题讲座课程,及时传授本学科的前沿知识和最新研究成果、动态。

(二)加强实践教学,优化课程类型

多元化的实践教学是培养学生创新和动手能力的最有效的手段,通过实验来研究物质及其变化规律,使学生获取基本的实验动手能力、综合分析问题的能力、解决问题的能力、一定的科学研究能力和一般的创新能力[3]。根据“高等院校理工科教学指导委员会通讯”所提倡的高等院校材料化学专业规范讨论稿的要求,材料化学专业的实践课程有基础课实验、专业基础课实验、专业课实验、专业实习、毕业论文等等内容[4]。在材料化学专业实验教学中,充分考虑实验内容的科学性和系统性,选择具有一定难度和较大覆盖面的交叉型综合实验作为实验教学的主要内容,以培养学生的创新能力。学院全面开放所有实验室,给学生创造开展专业综合技能训练的场所,提高学生的实验能力。目前,在各级有关部门的支持下,按材料化学人才培养方案的要求,材料化学实验室基本具备完成基础课、专业基础课和专业课的实验教学条件。学院倡导请相关的知名企业家、工程师指导部分实践教学,实现学校与地方大中小型企业的对接。

根据各企业的实际,按照学生意愿分成由五至八人组成的“小组”进入不同的微小企业进行多元化的实习。材料化学专业对学生完成毕业论文(设计)实行分类指导和分流培养的方式,改变以往的毕业论文撰写模式,允许学生在教师的指导下根据自已的兴趣、爱好以及个人的从业需求选择毕业论文课题,可以在本学院教师的指导下,也可以在科研院所、企业、经济实体中科技人员的指导下完成毕业论文(设计)。

(三)增设自学选修课程,优化课程结构

当今,是社会需求多元化的时代,需要的人才不是单一性人才,而是综合能力较强的复合型人才。材料化学专业教育不仅要传授材料科学相关的知识,更重要的是传授获取知识的方法,使学生学习相关领域的新知识,适应社会的需求。因此,在材料化学专业课程体系中增设自学性选修课程是社会和科学发展的必然要求。培养学生自学能力是丰富学生知识面的重要措施,是教师的基本职责,也是素质教育的必然要求。

教学理念和观念的提升是培养学生自学能力的前提条件,激发学生的学习兴趣是培养学生自学能力的关键所在,创建学生自主学习的氛围是培养学生自学能力的重要环节,科学指导学生自学是培养学生学习能力的基本内容,科学的评价标准是促进学生自学的原动力[5]。为了培养学生的自学能力,在材料化学专业课程体系中增设自学性选修课是一重要措施。如“化学与社会”、“化学史”等课程我们设置为自学性选修课程。这样给学生创造自学的机会和环境。

篇9

明确将无机非金属材料专业的培养目标定位在地方经济建设需要的无机非金属材料工程高级应用型人才,突出“一定基础知识支撑、适当宽度专业口径、突出某一专业方向、强化专业实践能力、博专共存、以专为主、长短兼顾、持续发展”的特点,强调知识、能力和素质的协调发展,强调学生的工程实践能力的培养与培育。通过教学计划、教学内容、教学方法和教学手段的改革,突出工程实践教学,强化实践技能的培训;确保学生工程实践能力的提高。无机非金属材料工程专业的人才培养方案在修订后开设了两个培养方向:

(1)传统无机非金属材料方向(硅酸盐及耐火材料),培养学生利用高新技术提升传统产业(水泥、玻璃、陶瓷、耐火材料等),在节能减排的技术改造中发挥作用。

(2)新型无机非金属材料方向。加强学生对“广泛材料”了解、认识、掌握的培养模式,通过对先进陶瓷材料、复合与功能材料、薄膜与微晶玻璃、材料表面改性等课程学习,在自主择业中能快速适应新材料领域的工作环境。我专业在这两个培养方向上,形成了以国家、企业需求为牵引,将材料基础研究与新材料应用开发相结合的特色发展模式。

2以应用型人才培养目标为中心,优化无机非金属材料工程专业课程体系

根据市场需求和学科发展,即主动适应社会发展,做到“一个专业,两个方向,自主选择”。“自主选择”,即强调学生个性发展,增加选修课和选修覆盖面,使学生有更大的自主选择空间。在此指导思想下,对无机非金属材料专业课程体系进行优化。

1)公共基础平台。按照教育部工科大学生培养要求由学校统一设置,分为必修课和选修课,该平台提供了工科大学生应掌握的基本知识和人文素质。

2)专业基础平台。分为必修课、无机非金属材料工程一级学科基础课程、无机非金属材料工程二级学科基础课程。该平台的设置可使学生掌握材料工程师所需的基础知识和基本理论,为后续课程学习奠定基础,对学生考研也有很好的作用。

3)专业课平台。分为:

(1)专业方向限选课,此为无机非金属材料工程专业的特色,学生在三年级自主选择,分传统无机非金属材料方向和新型无机非金属材料方向进行学习。

(2)专业任选课,专业任选课中的基础课程可以使学生加强材料工程专业知识。无机非金属材料专业学生就业的企业,既有新材料企业,也有水泥、玻璃、陶瓷等传统企业,因此在第六学期开始开设就业针对性强的课程,能有效增强学生就业能力。

4)实践平台。分为:通识实践课、学科实践课、专业特色实践课(分两个专业方向)、毕业设计(论文)。

3总结

篇10

项目承担单位:中国纺织科学研究院,天津工业大学、总后勤部军需装备研究所

项目简介

本项目属于纺织功能纤维技术领域。

随着特殊作业场所与日常生活对服装及纺织品抗静电的要求日益提高,作为消除静电、减少静电危害和实施静电防护的重要材料之一,导电纤维已成为世界功能纤维材料的研究热点。长期以来,其生产技术和市场一直被美国、日本等少数国外几家大公司所垄断。自上世纪80年代开始,我国投入大量的人力、物力和财力进行导电纤维的研究开发,但一直未实现导电纤维的产业化规模生产。因此,开发具有自主知识产权的导电纤维对于打破国外垄断、提升我国功能纤维及其产品的国际竞争能力具有重要意义。

本项目系统研究了复合导电纤维的导电机理及纤维成形条件,攻克了成纤用纳米功能材料制备、多相体系纺丝成形、纤维加工等系列科学与技术难题,开发出导电纤维成套设备与工艺技术软件,实现了复合型导电纤维的产业化。研究了导电粉体的表面修饰条件,提出了产业规模的导电粉体表面处理、分散及成纤聚合物多相体系纺丝成形的技术方法,建立了导电粉体在聚合物基体中的分散模型,开发出导电母粒制备技术;在国内首创了纺牵一步法导电长丝工艺,独创了“FDY+短纤化后处理”的复合导电短纤维工艺流程,将纤维的导电功能性与可加工性有效统一,开发出溶解一涂覆型等新型系列导电纤维产品;在成纤聚合物多相体系纺丝动力学研究基础上,研制了多种截面的复合导电纤维专用喷丝板、组件等纺丝关键设备,解决了导电组分易团聚、纺丝熔体易堵塞管路等产业化技术难点;揭示了各种条件对纤维导电性能的影响规律,提出了纤维导电通道模型,建立了科学有效的纤维、面料与服装的导电性能测试与评价体系,开发出上百种导电纤维功能面料,形成了导电纤维复合纺丝设备与生产线设计、导电母粒制备与导电纤维生产、导电功能面料及产品设计与加工、产品性能评价等成套产业化集成技术。