土壤重金属污染概念范文
时间:2023-12-16 16:32:39
导语:如何才能写好一篇土壤重金属污染概念,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:重金属污染;土壤污染;生物修复;超量积累
作为人类发展的基础,土壤资源往往在城市化以及工业化的发展之下出现了不同程度的污染以及破坏。在这样的背景之下,我国的土壤容易受到重金属的污染而危害人类的生命安全。本文基于此,分析探讨国内外土壤重金属污染防治技术以及相关研究的发展。
1 土壤重金属污染预防的发展历程
1.1 预防体制
基于世界各国城市化以及工业化发展程度的日益加深,各国家普遍存在土壤重金属污染的问题。为了进一步促进各类问题的解决,世界各国加强了对于土壤重金属污染预防。关于土壤重金属污染预防的发展历程,笔者进行了相关总结,具体内容如下。
日本为了进一步促进土壤重金属污染问题的解决,颁布了《土壤环境标准》《土壤污染对策法》等法律法规,而我国自改革开放之后,逐步加强了对于环境问题的关注,并于1989年颁布《中华人民共和国环境保护法》,开始了我国土壤重金属污染问题的处理,随后中国在该法律的基础之上进行修订工作,从而实现了对于污染物排放的限制与处理。
1.2 预防技术
为了进一步实现按土壤重金属污染问题的解决,各国逐步提出了清洁生产的概念。在这样的背景之下,欧共体于1979年宣布推行工业清洁生产的政策。在这样的背景之下,该区域的农业生产部门加强了对于各类先进生产技术的运用,从而实现了农业的清洁生产,规避了农业化学产品的超量使用对土壤污染。
事实上,这种从源头上降低污染源的措施,能够降低了土壤中重金属离子的引入,从而实现了土壤资源的保护。
2 土壤重金属污染治理方法
目前,我国处于经济结构转型期间,土壤重金属污染的问题也较重。在这样的背景之下,为了实现我国社会的绿色、低碳、可持续发展,我国的有关部门加强了对于该类问题的解决。关于常见的土壤重金属污染治理方法,笔者进行了相关总结,具体内容如下。
2.1 工程治理法
所谓的工程治理法,指的是相关单位借助物理原理以及方法进行土壤重金属污染问题的解决。在传统的工程治理过程中,工作人员多借助换土、翻土等方法进行作业,但伴随着科学技术的不断变更,我国有关部门逐步采用淋洗法、电解法、热处理等办法进行作业。
一般而言,工程治理方法在运行的过程中具有效果显著等特点,但是其因为工程复杂、工程量等问题进而导致工程成本的进一步增加。此外,该方法在运用的过程中往往因为维护措施不到位而导致部分土壤中的金属元素被迁移到其他地区,造成土壤重金属污染面积的扩大,难以真正改善土壤的重金属污染现状。
以日本富士县神通川流域的土壤重金属污染防治为例,为了降低土壤中的镉元素,相关单位加强了对于工程治理法的运用。在这一过程中,工程单位去除污染区域15cm的表土,并压实心土,并采用淋洗法对污染土壤进行清洗。
2.2 农业治理
所谓的农业治理,指的是通过优化、完善传统的耕作管理制度,实现土壤重金属污染的降低。在这一过程中,工作人员需要依据重金属污染的实际状况而选择相应的植物种植,从而实现了对于土壤中重金属元素的消除。此外,在农业治理的过程中,作业人员还需要合理选择花费,从而降低土壤中的重金属元素。
学者林汲等人就通过实验分析发现了硅藻土有机肥能够实现对于Cd、Zn重金属离子的吸收,从而降低了土壤中的重金属离子。一般而言,该方法在运行的过程中普遍存在操作简便、费用低的特点,但是由于其仍旧未能够从根本上消除重金属污染,进而导致其只能够作为辅助手段进行处理。
在进行广西壮族自治^环江县废矿土壤污染治理的过程中,中科院地理所环境修复中心陈同斌率团队,借助蜈蚣草等植物开展了土壤重金属处理工作,并成功修复1280亩重金属污染农田。
2.3 生物治理
生物治理方法在运行的过程中主要借助生物生命代谢活动的开展,从而降低了环境中重金属污染的浓度。从而确保部分受到污染的土壤能够恢复到初始状态。一般而言,生物治理方法在运用的过程中因为参与治理的主角不同,故而分为动物修复、微生物修复以及植物修复。
所谓的动物修复技术,指的是有关部门以及人员利用土壤中的低等动物进行土壤中重金属的吸收,从而实现了土壤中重金属含量的进一步降低。相关的研究表明,蚯蚓的出现能够实现对于硒、铜元素的吸收。事实上,该方法在推行的过程中也具有一定的问题:诸如低等动物往往会将吸收的金属元素再次释放到土壤中,从而造成了二次污染。
微生物修复技术则是利用土壤中的微生物进行各类金属元素的吸收。目前,最为常用的微生物就是――真菌。真菌在生存的过程中往往能够分泌一定量的氨基酸、有机酸等物质,从而实现了对于重金属的溶解。目前,从相关的研究分析可以发现:微生物修复技术在运行的过程中具有较为光明的前景,且能够较好的实现我国土壤重金属问题的解决。
植物修复技术的运行原理主要是在污染的区域种植特定植物,从而借助植物的生长过程实现对于重金属的吸收以及化解。目前,植物提取技术获得了相关研究人员的重视,并由此促进了土壤重金属问题的解决。现阶段,最为常用的植物有遏蓝菜、高山甘薯等。
仍旧以日本富士县神通川流域的土壤重金属污染防治为例,土壤重金属处理单位在含镉100mg/kg土壤上进行苎麻的种植,从而由此实现对于土壤中镉元素含量的降低。该地区在采取生物法治理土壤重金属污染的过程中,实现了镉元素含量降低27.6%。
3 发展论述
为了进一步促进我国土壤重金属污染问题的解决,我国的有关部门需要从法律的角度出手,加强对于各类土壤重金属污染法律法规的制定。此外,我国还需要加强对于清洁生产的发展,并大力运用清洁能源。而在已经发生的土壤重金属污染问题,作业人员需要加强植物修复技术的运用。
4 结束语
为了进一步促进我国土地重金属污染问题的解决,我国的有关部门以及人员需要采取科学的方式进行问题解决。本文基于此,分析探讨土壤重金属污染预防的发展历程(预防体制、预防技术),并就常见的土壤重金属污染治理方法进行分析,最后论述了我国土壤重金属污染问题解决的措施。笔者认为,随着相关措施的落实到位,我国的环境问题必将得到显著的改善。
参考文献
[1] 李录久,许圣君,李光雄,张祥明,王允青,刘英,况晶.土壤重金属污染与修复技术研究进展[J].安徽
农业科学,2014(1):156-158.
[2] 董文洪,杨海,令狐文生.土壤重金属污染及修复技术研究进展[J].化学试剂,2016(12):1170-1174.
[3] 廖健.土壤重金属污染及其化学修复技术的研究进展[J].中国石油和化工标准与质量,2013
(24):30+28.
篇2
关键词:有机肥;土壤重金属;生物有效性
中图分类号:X53 文献标识码:A DOI 编码:10.3969/j.issn.1006-6500.2017.02.006
Abstract:With the increasing concern of soil heavy metal pollution, it is necessary to do the research on reducing the heavy metal toxicity of soil, while the bioavailability of heavy metals is an important index for researching. There were many researchers have done the researches on the effects of fertilization and tillage on bioavailability of heavy metals, however only a few have been focusing on the effect of organic fertilizer.This dissertation have referenced many literatures in relation to organic fertilizer and soil heavy metals in recent years, the conception of soil heavy metals bioavailability, and the related infecting factors of bioavailability, as well as the effects of fertilization on bioavailability of heavy metals was conclused. It also gave a conceivable prospect of relationship between organic fertilizer and the soil bioavailability to improve the research on organic fertilizer and soil heavy metals bioavailability.
Key words:organic fertilizer;heavy metals in soils;bioavailability
随着工业化和城市化的快速发展,各种工业污染、人为活动以及不合理施肥等原因导致的有毒有害重金属(Pb、As、Cd、Hg等)通过各种途径进入土壤,使重金属污染程度不断加深。调查显示,全世界各国的土壤都存在着不同程度的污染。土壤中重金属含量的上升,使土壤发生质量退化、农产品的产量和品质降低,并且经食物链等方式被带入到人的身体内,影响危害着人类的身体健康[1-2]。在关于土壤重金属有效性的研究方面,科学家们更加关注的是添加改良剂与修复改良等,而对施用有机肥与重金属生物有效性方面研究较少。本研究主要综合了现有有机肥对土壤重金属有效性研究的相关文献,从土壤重金属生物有效性的概念、影响因素、有机肥对土壤性状及重金属有效性的影响3个方面进行了归纳总结。
1 土壤重金属生物有效性的概念
关于土壤重金属生物有效性的定义,第一次被提出是基于物理化学的概念,它是指污染物在水体中生物传输或生物反应被利用的程度。后来,又被应用到固体环境,例如土壤和污泥以及大气环境中的生物可给性问题[3]。环境化学概念中,生物有效性是指能够被生物所吸收利用的那部分物质。而生物学概念中的生物有效性,则是指能够经细胞膜而进入生物体,并参与生物新陈代谢过程的物质[4]。除此之外,由于研究对象和研究环境的不同,生物有效性的定义也不相同,如生物吸收物质的途径和方式,生物吸收物质的量,潜在的能被生物吸收的部分[5]。土壤重金属生物有效性不仅与土壤环境有关,也与生物自身的特征有关,这也就导致了土壤重金属生物有效性概念的复杂性。
2 影响土壤重金属生物有效性的因素
影响土壤中重金属生物有效性的因素很多,主要有重金属形态、总量,土壤理化性质和土壤环境条件等。除此之外,土壤类型、土壤生物等因素都会对其产生一定影响。
2.1 土壤重金属形态
土壤重金属形态是最重要的因素。重金属和土壤中的不同成分结合成不同的形态,各个形态的含量影响着重金属生物有效性。重金属在土壤中的存在形态研究主要有以下几种。Tessier 等[6]在1979年提出可以把重金属在土壤或者沉积物中的形态划分为5种形态:可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态、残渣态。这种划分也是到现在为止学者们所认为的最常见、最有代表性的。Shuman[7]在1985年提出把其划为交换态、水溶态、碳酸盐结合态、氧化锰结合态、紧结合有机态、不定性氧化铁结合态、松结合有机态、硅酸盐矿物态。Gambrell[8]则将其划分为水溶态、易交换态、大分子腐殖质结合态、无机化合物沉淀态、硫化物沉淀态、氢氧化物沉淀吸收态(吸附态)和残渣态等7种形态。它们中有的形态如残渣态,其迁移性较小,不被植物所吸收,因此,它的生物有效性小;有的能与土壤有机质、铁锰氧化物吸附结合,形成结合态沉淀物,在土壤l件发生改变时,迁移活性较大;有的吸附于土壤颗粒表面,与土壤液相离子进行吸附解析化学活动,属于可交换态重金属,迁移活性强,容易被植物所吸收利用。
2.2 土壤重金属总量
土壤重金属总量对生物有效性的影响虽然不能与形态相比,但总量更能够说明重金属富集程度和潜在危害等,因此,总量的研究被普遍应用到各国的土壤环境质量标准中。第一,土壤中的重金属形态和重金属总量两者之间有着相互关联及影响。例如,Sauve等[9]对几种不同类型的土壤进行了试验研究,元素Cu的全量与可交换态的Cu、水溶态Cu都有着很好的相关性,并且发现全量也是影响土壤中Cu2+活度的因素之一。Sauve等人[10]还对某铅矿周围的不同类型(88种)的土壤进行了研究,在对元素铅进行分析时发现,影响土壤中水溶态和可交换态铅以及铅离子活度的重要因素之一就是元素铅的总量。第二,在一定的条件下,土壤重金属的生物有效性可以用重金属总量来评估。
2.3 土壤理化性质
2.3.1 有C质土壤的理化性质 能够影响重金属的生物有效性的因素中,土壤中有机质的含量是主要的影响因素[11]。土壤中的有机质和重金属元素形成的络合物,影响土壤重金属的迁移性以及生物有效性。有机质对生物有效性的影响主要有以下两个方面。一是通过加入有机质来影响对重金属元素的吸附能力。有机质作为一种天然的吸附剂,能够在很大程度上降低离子活度。二是土壤中有机质含量的多少改变着土壤中重金属元素各形态的分布,能够影响重金属元素的迁移性。例如王浩等[12]通过研究发现,受到铅和铜污染的土壤在加入有机质后,随着有机质积累的增加,会使土壤中水可提取铅和铜的含量显著减少,这一结果说明有机质可稳定土壤中的铅和铜。同样,钟晓兰等[13]也发现,除了元素Cr,其余重金属元素的各个形态和土壤有机质之间都有着显著相关性。
2.3.2 pH值 土壤溶液的pH值影响了土壤溶液中的各种离子在固相上的吸附程度,各种土壤矿物质的溶解度及其元素离子活性。因此,土壤pH值是土壤重金属元素解吸、吸附、溶解、沉淀离子化学过程的重要控制条件。如廖敏等[14]研究发现,随着土壤pH值升高,元素镉的吸附能力及其吸附量都明显增强,并且最终会产生沉淀。赵雅婷[15]研究发现:随着土壤pH值的上升,土壤中元素Zn的铁锰氧化物结合态及碳酸盐结合态含量增加,而可交换态Zn的含量减少;随着pH值的升高,土壤铁锰氧化物结合态Cd、碳酸盐结合态Cd的含量增多,而可交换态Cd含量减少。句炳新[16]研究发现,Cu的可交换态量会随着pH值的升高而减少,Cu的碳酸盐态则会随着pH值的升高而增加,这与廖敏、赵雅婷等研究相同。
2.3.3 氧化还原电位 土壤氧化还原电位是通过影响重金属在土壤中的价态来影响重金属的形态和分布的。土壤中重金属元素在氧化环境下,一般处于较高的氧化态。例如汞元素可以从单质汞转化为汞离子,从而甲基化成为甲基汞,大大地增强了它的有害性[17]。曹媛媛等[18]研究水稻田中重金属情况发现,土壤在还原环境中含有大量的二价铁离子,能和还原态的硫离子结合形成FeS。FeS再和CuS /ZnS反应产生沉淀,CuS /ZnS在土壤中大量累积,以此来降低重金属Cu或Zn的生物有效性。
2.3.4 粘土含量 在理化性质中,土壤中的粘土含量也影响其生物性。粘土矿物主要是通过进行离子交换来吸附溶液中的重金属离子,因此,粘土含量对重金属生物有效性影响深远。有研究发现,土壤中粘土含量影响着锌元素的生物有效性,但是这种影响会因为时间的长短而发生变化,而且有学者对土壤矿物学进行了相关研究,发现可交换态Cd的含量和粘土含量有较好的相关性[19-20]。因此,可知在研究重金属生物有效性时,粘土含量这一内容也是不可忽视的。
2.4 其他因素
除以上的因素之外,影响因素还包括重金属元素的种类、土壤类型和生物种类差异、农业活动等。如不同的耕作强度也影响着土壤的结构,不合理的耕作方式会使有机质大量的流失,从而产生重金属毒害;同种植物种植在不同类型的土壤中,所吸附重金属能力也有着很大差异,相同的植物对不同的元素的富集吸收能力又不相同。并且,各影响因素之间也存在相互关联,因此,在研究土壤重金属生物有效性时,应当综合考虑各个影响因素,进行全面的研究分析。
3 有机肥对土壤重金属生物有效性的影响
有机肥的施用不仅可以改善土壤的理化性质,增加土壤营养元素,减轻土壤次生盐渍化[21],提高作物产量和品质[22-24],增加土壤中的有益微生物种类[25-26],还可以对土壤重金生物有效性产生影响。有机肥对生物有效性产生影响,最主要的方面是通过改变土壤中的有机质和pH值。
3.1 有机肥对有机质的影响
一般土壤中有机质的含量范围约在0.5%至20%之间,它影响土壤的理化性质,同时也是植物所必需营养元素的重要来源[27]。大量的研究显示,长期施用有机肥或者有机无机肥配比施用都会促进土壤中有机质的积累。如汪红霞等[28]采用10年长期肥料定位试验后发现,单施有机肥或P肥与有机肥混合施用能使土壤有机质增加,增加范围在8.4%~17.3%之间,而单独施用P肥反而会引起土壤有机质的下降。王彩绒等[29]采用6年定位试验后发现,在单施有机肥或者与无机肥配施下,都能明显地促进耕作层土壤有机质的积累。田小明等[30]对3种类型的土壤施用有机肥后发现,不同类型及有机质含量土壤中的有机质组分含量与不施有机肥相比,都有不同程度的提高。同时随着施肥量的增加,土壤有机质总量和活性有机质组分(活性有机质、中活性有机质、高活性有机质) 都有所增加,这与汪红霞等[28]研究结果大致一致,有机肥对土壤有机质确实有着深远的影响。
3.2 有机肥对pH值的影响
在当今世界,土壤酸化已成为一个严重的环境问题,引起了全世界人民的广泛关注。大量的研究表明,由于当今农业施肥缺乏科学合理的指导,并且施入的肥料品种过于单一,偏爱无机肥,且投入量较大。这一现象不仅使肥料被大量浪费,并且使土壤溶液中pH值下降及次生盐碱化[31-33]。蔡泽江[34]等研究发现,单独施用有机肥或有机无机肥配施后,土壤的pH值与试验之前相比,呈现出稳定或者有所升高。其中,以单施有机肥的处理pH值升幅最大,升高了1.0个单位。Wang 等[35]研究结果显示,施用玉米秸秆能改善土壤酸度。丁玉梅等[36]在研究不同施肥对烟株根际土壤pH值的影响时发现,在不同土质条件下,不同油菜含量的有机肥对植株根际土壤的pH值具有一定的调节作用。肖辉等[37]研究得出,设施土壤施用化肥降低了土壤的pH值,而施用鸡粪等有机肥能够使土壤的pH值适当上升,从而避免土壤酸化。
3.3 有机肥对生物有效性的影响
有机肥料在农业中的施用,常被当作控制以及改良土壤重金属污染的重要方法,其主要表现为两个方面。
3.3.1 有机肥对土壤重金属形态的影响 土壤中重金属形态是研究生物有效性时最为主要的指标。有大量研究表明,有机肥能影响土壤中重金属的形态。大部分研究表明,施用有机肥能降低土壤重金属的有效性,如张琴[38]连续施用有机肥后发现:土壤中重金属Hg、Zn、Cd的有效态含量较试验前都有所降低,并且各处理之间呈显著性差异;重金属Hg、Zn、Cd的有效态含量随着有机肥施用量的增加逐渐减少,各个处理之间差异均达到显著水平,并且连续施用有机肥料还会增大重金属有效态的含量的递减率。PEREZ-DE-MORA 等[39]向受到重金属污染的土壤中施加生物堆肥,Y果显示随着土壤中有机质的含量增加,有效态重金属的比例降低。胡星明等[40]研究得出,在土壤里施用稻草能够改变重金属元素铜、镉、锌和铅在土壤中的化学形态分布。华珞等[41]在受Cd、Zn污染的土壤里施入了不同数量的有机肥后,发现土壤中有效态Cd、Zn的含量明显降低,Cd、Zn的总量也明显下降,所以可以显著地减少Cd2+和Zn2+对农作物的毒害。这与张琴[38]、胡星明等[40]研究结果相一致。同时,也有少部分研究指出,有机肥对重金属生物有效性没有产生作用甚至会加重重金属污染风险。如谭长银等[42]、王开峰等[43]研究发现,在稻田土壤长期施用有机肥会提高Zn和Cd 的有效性,增加土壤重金属污染风险。Zhang 等[44]研究发现,在东北地区的农田土壤中施用了畜禽粪便后,反而增加了该地区土壤受重金属元素铜污染的风险。宋琳琳等[45]施用有机肥后发现,土壤中生物有效态的Cd和Zn 含量显著增加,生物有效态Pb含量显著下降,残渣态Pb的含量也有所增加。出现这一结果的原因可能是,地区差异和各类型的土壤对重金属的富集吸附水平也存在着差别,另外,同一土壤对不同重金属元素的富集吸附能力也不相同,所以在研究重金属有效性时,要结合当地实际情况综合考虑。
3.3.2 有机肥对土壤重金属植物有效性的影响 因为各种植物对各重金属元素的吸附能力也存在着差异,所以研究重金属生物有效性,在研究土壤重金属形态之外,植物的有效性也是不容忽视的重要内容。近年来“镉米”等事件的发生,使水稻的重金属污染状况备受关注,谢运河等[46]把施用有机肥3 000,6 000 kg・hm-2和单独施用无机肥的稻米中镉的含量进行了对比,发现两个有机肥施用水平镉的含量分别下降了14. 3%和21. 4%,虽然施用有机肥对土壤有效态镉含量并无显著影响,但有机肥使镉在水稻中的分配率发生明显变化。唐明灯等[47]通过对生菜进行有机肥与化肥混合施用后发现,不管是单施有机肥或与化肥配施,花生麸及鸡粪处理都降低了生菜地上部镉的含量,并且施用鸡粪能够有效地降低生菜地上部铅的含量。牛粪和花生麸配比施用对降低生菜中铅含量的效果,要远远超过单独施用任何一种有机肥。祖艳群等[48]在对两种作物施用有机肥后发现,施用有机肥(猪粪)能导致小花南芥中铅和锌的含量增加,在施用猪粪14 g・kg-1时的含量及累积量达到最大。而施用猪粪后使中华山蓼里铅的含量和累积量上升,锌的含量和累积量减少。吴清清等[49]研究发现:在潮土中施入鸡粪或者垃圾有机肥后,潮土中苋菜内铜和锌的含量增加数分别为26.3%至36.0%和 1.2%至20.3%,但它们的含量都在国家食品卫生标准对铜和锌的规定含量之下;同时植株中镉、铅的含量与对照试验相比,都有所下降。红壤中苋菜植株中Zn、Cd和Pb分别下降 42.7%~59.9%,0~48.9%和4.1%~71.3%,达到显著水平。从以上的研究数据可知,虽然各种植物与土壤对重金属元素的吸收富集存在着差异,但都证明了有机肥的施用对植物有效性的影响。在研究有机肥与植物有效性的相关性问题上,要充分考虑土壤类型和作物的自身特性。
4 总结与展望
综上所述,有机肥对土壤性状和土壤重金属生物有效性都有着不同程度的影响,有机肥是现代农业中减少或防止土壤重金属污染的重要手段,国内外学者也做了相关方面的研究,也取得了一定成果。但由于受到地区差异、土壤类型、有机肥种类等差异,样品分析方法的多样性、影响因素的复杂性的影响,得出的研究结果也不尽相同,导致许多研究数据之间缺乏对比性。对有机肥与重金属污染防治方面也远没有其它措施研究得多,有机肥对土壤重金属的影响研究停滞不前。有机肥对不同类型土壤、生物及元素种类的作用,各种影响因素之间的相互影响等问题,都还需要进行更深入的研究,以推动有机肥对土壤重金属生物有效性研究的发展。
参考文献:
[1]樊霆,叶文玲,陈海燕,等.农田土壤重金属污染状况及修复技术研究[J].生态环境学报,2013,22(10):1727-1736.
[2]董彬.中国土壤重金属污染修复研究进展[J].生态科学,2012,31(6):683-687.
[3]李国臣,李泽琴,高岚.土壤重金属可利用性的研究进展[J].土壤通报,2012,43(6):1527-1531.
[4]杨小敏,简红忠,何文,等.土壤中重金属生物有效性研究[J].环境科学与管理,2016,41(8):103-106.
[5]黄碧捷.土壤重金属生物可利用性研究趋势展望[J].江汉大学学报(自然科学版),2013,12(6):38-43.
[6]TESSIER A,CAMPBELL P C,BISSON M.Sequential extraction procedure for the peciation of particulate trace metals[J].Analytical chemistry,1979,51(7):844-851.
[7]SHUMAN L M.Fractionation method for soil microelements[J].Soil science,1985,140(1):11-22.
[35]WANG N,LI J Y,XU R K.Use of agricultural by-products to study the pH effects in an acid tea garden soil[J].Soil use and management,2009,25(2):128-132.
[36]丁玉梅,李宏光,何金祥,等.有机肥与复合肥配施对烟株根际土壤pH值的影响[J].西南农业学报,2011,24(2):635-639.
[37]肖辉,潘洁,程文娟,等.不同有机肥对设施土壤全盐累积与pH值变化的影响[J].中国农学通报,2014,30(2):248-252.
[38]张琴.连续施用有机肥对冬小麦和高粱吸收重金属的影响[D].贵阳:贵州大学,2009.
[39]DE MORA A P,ORTEGA-CALVO J J,CABRERA F,et al.Changes in enzyme activities and microbial biomass after & iduuo in situ & idquo; remediation of a heavy metal-contaminated soil[J].Applied soil ecology,2005,28(2):125-137.
[40]胡星明,袁新松,王丽平,等.磷肥和稻草对土壤重金属形态、微生物活性和植物有效性的影响[J].环境科学研究,2012,25(1):77-82.
[41]华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤的改良效应[J].农业环境保护,1998,17(2):8-12.
[42]谭长银,吴龙华,骆永明,等.不同肥料长期施用下稻田镉、铅、铜、锌元素总量及有效态的变化[J].土壤学报,2009,46(3):412-418.
[43]王开峰,彭娜,王凯荣,等.长期施用有机肥对稻田土壤重金属含量及其有效性的影响[J].水土保持学报,2008,22(1):105-108.
[44]ZHANG F S,LI Y X,YANG M,et al.Copper residue in animal manures and the potential pollution risk in Northeast China[J].Journal of resources and ecology,2011,2(1):91-96.
[45]宋琳琳,铁梅,张朝红,等.施用污泥对土壤重金属形态分布和生物有效性的影响[J].应用生态学报,2012,23(10):2701-2707.
[46]x运河,纪雄辉,黄涓,等.有机肥与钝化剂及其配施对土壤Cd生物有效性的影响[J].作物研究,2014,28(z2):890-895.
[47]唐明灯,艾绍英,罗英健,等.有机无机配施对生菜生长及其Cd Pb含量的影响[J].农业环境科学学报,2012,31(6):1104-1110.
篇3
关键词:无公害蔬菜;重金属污染;生物防治;生物农药
1、引言
从世界范围来看,对于无公害蔬菜的基本概念,先后出现过许多相似的提法,诸如清洁蔬菜、健康蔬菜、无农药污染蔬菜、天然食品等等,至今尚未对无公害蔬菜的概念形成统一的说法。笔者认为:以国家颁布的《食品卫生标准》为衡量尺度,农药、重金属、硝酸盐、有害生物(包括有害微生物、寄生虫卵等)等多种对人体有毒物质的残留量均在限定的范围以内的蔬菜产品,可统称为无公害蔬菜。[4]
早在20世纪20年代,国外就开始发展无公害蔬菜,其主要生产方式是无土栽培。据不完全统计,世界上单用营养液膜法(NFT)栽培无公害蔬菜的国家就达76个。在新西兰,半数以上的番茄、黄瓜等果菜类蔬菜是无土栽培的。日本、荷兰、美国等发达国家,采用现代化的水培温室,常年生产无公害蔬菜。工业高度发达的日本,其许多城市郊区的蔬菜良田被工业废气、废水、废渣所污染,良田耕作层内的镉、铜等重金属大量富集、积累,致使蔬菜产品内的重金属含量严重超标,消费者重金属慢性中毒现象时有发生,引起日本政府的高度重视和社会各界的广泛关注。政府曾拨给大量的专项资金,动员广大科技工作者对“重金属污染”问题进行攻关。通过多年的努力,探索出客土换层、地底暗灌、配方施肥、生物固定等综合农艺措施。[1]
我国无公害蔬菜的研究和生产始于1982年,全国23个省、市开展了无公害蔬菜的研究、示范与推广工作。通过几年的研究实践,探索出一套综合防治病虫害、减少农药污染的无公害蔬菜生产技术。1985年全国推广无公害蔬菜生产面积60万亩。
2、无公害蔬菜研究与生产现状
(1)研制开发了一批高效、无毒生物农药,总结出一套以生物防治为重点的蔬菜病虫害综合防治技术
所谓生物防治,笼统地讲,是指病虫草等有害生物的生物学防治或植物保护的生物学防治方法;确切地说,生物防治是利用生物或其代谢产物来控制有害动、植物种群或减轻危害程度的方法。我国广大的蔬菜科技工作者和蔬菜种植示范户在长期的研究与生产实践中,探索总结出一套以生物防治为重点的蔬菜病虫害综合防治技术,即:在加强农业防治的前提下,在蔬菜病虫害发生期使用高效、无毒生物农药,并设法保护天敌;万一上述措施不奏效时,科学合理地选用高效低毒低残留化学农药,并严格控制农药的安全间隔期,尽量减少施药次数和降低用药浓度。[2]
(2)初步探索出治理菜田土壤重金属污染的办法,蔬菜产品中的重金属污染问题获得有效的解决途径
蔬菜产品的重金属污染问题早就引起我国蔬菜科技工作者的重视,同时对重金属在土壤中的存在状态、环境容量、迁移规律以及在植物体内的富集状况等做了大量的研究。实践表明,增施有机肥,可明显改善土壤理化性状,增加土壤环境容量,提高土壤还原能力,从而可以使铜、镉、铅等重金属在土壤中呈固定状态,蔬菜对这些重金属的吸收量相应地减少。另外,根据菜园土地的环境条件,利用排土工程法和就地表底土翻换工程法等工程措施,对各种重金属污染,均不失为良好的治理对策。[2]
(3)对蔬菜中的硝酸盐污染问题进行了系统研究,蔬菜产品中的硝酸盐污染得到有效控制
从1979年开始,中国农科院蔬菜花卉所的科研人员就对蔬菜中硝酸盐的分布水平、累积规律和控制途径等进行了系统研究,得出北京地区常见蔬菜品种中硝酸盐的大致含量,指出蔬菜中的硝酸盐含量除与蔬菜的种类、品种及蔬菜的生长部位有关外,还受外界光照、施肥等环境条件的影响。利用荫棚遮光栽培菠菜,与露地栽培相比,其产品中的硝酸盐含量明显降低;施用化肥,大白菜叶片中的NO3含量明显提高。上述研究成果广泛应用于蔬菜生产实践中,从蔬菜品种选择、施肥技术、栽培环境控制等多途径综合控制蔬菜产品中的硝酸盐污染,效果明显。[2]
3、无公害蔬菜的发展对策
(1)加强对无公害蔬菜生产的行政、组织与协调工作,建立和完善产前、产中、产后一条龙服务体系。
强有力的行政领导,加上优质的产、供、销一体化服务,是我国无公害蔬菜生产健康、持续、稳定发展的根本保证。建议在全国各大、中城市设立两类机构,即无公害蔬菜领导机构和无公害蔬菜服务机构。强化科研投入,增加科研力量,加强与无公害蔬菜有关的基础理论和开发技术研究。建议设立国家无公害蔬菜工程专项研究基金,成立国家无公害蔬菜工程技术研究协作小组,从财力、人力上给予重点扶持。着重加强微生物对土壤中有机污染物(薄膜、农药、垃圾等)的生物降解机理、高效无毒生物农药的研制、高抗病虫害蔬菜品种的选育等与无公害蔬菜有关的基础理论与开发技术研究。[3]
(2)建立一套规范化的无公害蔬菜生产技术体系
无公害蔬菜的生产,需要一套规范化的技术体系(或规程)加以指导。无公害蔬菜生产技术体系,主要应把握以下三关:一是生产基地选址关。首先对无公害生产基地进行生态环境本底状况调查,在对大气、水质、土壤等主要环境因素进行多种污染项目检测的基础上,选择诸环境要素综合指标较好的地域作为试验基地。二是种植过程无害化关。采取控制农药、化肥、生物和重金属污染的综合技术病虫害的蔬菜优良品种;采取施有机肥为主、化肥为辅,化肥中又以氮、磷、钾平衡配方的施肥技术等等。三是蔬菜残留毒物检测关。在蔬菜上市前,由质量检测部门对蔬菜中重金属、化学农药、化学肥料等有毒物质残留状况进行全面检测,保证产品的各项指标符合国内(或参照国际)的食品卫生标准或相应地区的有关标准。 [5]
参考文献
[1] 闫晓波. 无公害蔬菜青翠碧绿.中国环境报,2007.06
[2] 无公害蔬菜标准的探讨. 《食品研究与开发》杂志,2007.11
[3] 加强无公害蔬菜标准化建设.农民日报,2006.03
篇4
关键词:土壤污染、生物修复、研究进展
前言
土壤重金属污染是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。加之重金属离子难移动性,长期滞留性和不可分解性的特点,对土壤生态环境造成了极大破坏,同时食物通过食物链最终进入人体,严重危害人体健康,已成为不可忽视的环境问题。随着我国人民生活水平的提高,生态环境保护日趋受到重视,国家对污染土壤治理和修复的人力,物力的投入逐年增加,土壤污染物的去除以及修复问题,已成为土壤环境研究领域的重要课题。而生物修复技术是近20年发展起来的一项用于污染土壤治理的新技术,同传统处理技术相比具有明显优势,例如其处理成本低,只为焚烧法的1/2-1/3,处理效果好,生化处理后污染物残留量可达到很低水平;对环境影响小,无二次污染,最终产物CO2、H2O和脂肪酸对人体无害,可以就地处理,避免了集输过程的二次污染,节省了处理费用,因而该技术成为最有发展潜力和市场前景的修复技术。
1.污染土壤生物修复的基本原理和特点
土壤生物修复的基本原理是利用土壤中天然的微生物资源或人为投加目的菌株,甚至用构建的特异降解功能菌投加到各污染土壤中,将滞留的污染物快速降解和转化成无害的物质,使土壤恢复其天然功能。由于自然的生物修复过程一般较慢,难于实际应用,因而生物修复技术是工程化在人为促进条件下的生物修复,利用微生物的降解作用,去除土壤中石油烃类及各种有毒有害的有机污染物,降解过程可以通过改变土壤理化条件(温度、湿度、pH值、通气及营养添加等)来完成,也可接种经特殊驯化与构建的工程微生物提高降解速率。
2.污染土壤生物修复技术的种类
目前,微生物修复技术方法主要有3种:原位修复技术、异位修复技术和原位-异位修复技术。
2.1原位修复技术:
原位修复技术是在不破坏土壤基本结构的情况下的微生物修复技术。有投菌法、生物培养法和生物通气法等,主要用于被有机污染物污染的土壤修复。投菌法是直接向受到污染的土壤中接入外源污染物降解菌,同时投加微生物生长所需的营养物质,通过微生物对污染物的降解和代谢达到去除污染物的目的。生物培养法是定期向土壤中投加过氧化氢和营养物,过氧化氢则在代谢过程中作为电子受体,以满足土壤微生物代谢,将污染物彻底分解为CO2和H2O。生物通气法是一种加压氧化的生物降解方法,它是在污染的土壤上打上几眼深井,安装鼓风机和抽真空机,将空气强行排入土壤中,然后抽出,土壤中的挥发性有机物也随之去除。在通入空气时,加入一定量的氨气,可为土壤中的降解菌提供所需要的氮源,提高微生物的活性,增加去除效率。
2.2异位修复技术:
异位修复处理污染土壤时,需要对污染的土壤进行大范围的扰动,主要技术包括预制床技术、生物反应器技术、厌氧处理和常规的堆肥法。预制床技术是在平台上铺上砂子和石子,再铺上15-30cm厚的污染土壤,加入营养液和水,必要时加入表面活性剂,定期翻动充氧,以满足土壤微生物对氧的需要,处理过程中流出的渗滤液,即时回灌于土层,以彻底清除污染物。生物反应器技术是把污染的土壤移到生物反应器,加水混合成泥浆,调节适宣的pH值,同时加入一定量的营养物质和表面活性剂,底部鼓入空气充氧,满足微生物所需氧气的同时,使微生物与污染物充分接触,加速污染物的降解,降解完成后,过滤脱水这种方法处理效果好、速度快,但仅仅适宜于小范围的污染治理。厌氧处理技术适于高浓度有机污染的土壤处理,但处理条件难于控制。常规堆肥法是传统堆肥和生物治理技术的结合,向土壤中掺入枯枝落叶或粪肥,加入石灰调节pH值,人工充氧,依靠其自然存在的微生物使有机物向稳定的腐殖质转化,是一种有机物高温降解的固相过程。上述方法要想获得高的污染去除效率,关键是菌种的驯化和筛选。由于几乎每一种有机污染物或重金属都能找到多种有益的降解微生物。因此,寻找高效污染物降解菌是生物修复技术研究的热点。
3.影响污染土壤生物修复的主要因子
3.1污染物的性质:
重金属污染物在土壤中常以多种形态贮存,不同的化学形态对植物的有效性不同。某种生物可能对某种单一重金属具有较强的修复作用。此外,重金属污染的方式(单一污染或复合污染),污染物浓度的高低也是影响修复效果的重要因素。有机污染物的结构不同,其在土壤中的降解差异也较大。
3.2环境因子:
了解和掌握土壤的水分、营养等供给状况,拟订合适的施肥、灌水、通气等管理方案,补充微生物和植物在对污染物修复过程中的养分和水分消耗,可提高生物修复的效率。一般来说土壤盐度、酸碱度和氧化还原条件与重金属化学形态、生物可利用性及生物活性有密切关系,也是影响生物对重金属污染土壤修复效率的重要环境条件。
3.3生物体本身:
微生物的种类和活性直接影响修复的效果。由于微生物的生物体很小,吸收的金属量较少,难以后续处理,限制了利用微生物进行大面积现场修复的应用,
植物体由于生物量大且易于后续处理,利用植物对金属污染位点进行修复成为解决环境中重金属污染问题的一个很有前景的选择。但由于超积累重金属植物一般生长缓慢,且对重金属存在选择作用,不适于多种重金属复合污染土壤的修复。因此,在选择修复技术时,应根据污染物性质、土壤条件、污染程度、预期修复目标、时间限制、成本及修复技术的适用范围等因素加以综合考虑。
4.发展中存在的问题:
生物修复技术作为近20年发展起来的一项用于污染土壤治理的新技术,虽取得很大进步和成功,但处于实验室或模拟实验阶段的研究结果较多,商业性应用还待开发。此外,由于生物修复效果受到如共存的有毒物质(Co-toxicants)(如重金属)对生物降解作用的抑制;电子受体(营养物)释放的物理;物理因子(如低温)引起的低反应速率;污染物的生物不可利用性;污染物被转化成有毒的代谢产物;污染物分布的不均一性;缺乏具有降解污染物生物化学能力的微生物等因素制约。因此,目前经生物修复处理的污染土壤,其污染物含量还不能完全达到指标的浓度要求。
5.应用前景及建议:
随着生物技术和基因工程技术的发展,土壤生物修复技术研究与应用将不断深入并走向成熟,特别是微生物修复技术、植物生物修复技术和菌根技术的综合运用将为有毒、难降解、有机物污染土壤的修复带来希望。为此,建议今后在生物修复技术的研究和开发方面加强做好以下几项工作:
(1)进一步深入研究植物超积累重金属的机理,超积累效率与土壤中重金属元素的价态、形态及环境因素的关系。
(2)加强微生物分解污染物的代谢过程、植物-微生物共存体系的研究以及植物-微生物联合修复对污染物的修复作用与植物种类具有密切关系。
(3)应用现代分子生物学与基因工程技术,使超积累植物的生物学性状(个体大小、生物量、生长速率、生长周期等)进一步改善与提高,培养筛选专一或广谱性的微生物种群(类),并构建高效降解污染物的微生物基因工程菌,提高植物与微生物对污染土壤生物修复的效率。
(4)创造良好的土壤环境,协调土著微生物和外来微生物的关系,使微生物的修复效果达到最佳,并充分发挥生物修复与其他修复技术(如化学修复)的联合修复作用。
(5)尽快建立生物修复过程中污染物的生态化学过程量化数学模型、生态风险及安全评价、监测和管理指标体系。
结论
综上所述,我们不难发现由于土壤重金属来源复杂,土壤中重金属不同形态、不同重金属之间及与其它污染物的相互作用产生各种复合污染物的复杂性增加了对土壤重金属治理和修复难度,且重金属对动植物和人体的危害具有长期性、潜在性和不可逆性,同时进一步恶化了土壤条件,严重制约了我国农业生产的加速发展,所以要更好的防治土壤重金属污染还需要广大科研工作者不懈的努力,研发出更好的效率更高的修复治理技术,同时我们还不应该忘记必须加强企业自身的环保意识,提高企业自我约束能力,始终将防治污染积极治理作为企业工作的头等大事来抓,把企业对环境的污染程度降到最低限度,形成全社会都来重视土壤污染问题的良好环保氛围,逐步改善我们的土壤生态环境。
参考文献:
[1]钱暑强,刘铮.污染土壤修复技术介绍[J].化工进展,2000(4):10-12,20.
[2]陈玉成.土壤污染的生物修复[J].环境科学动态,
1999,(2):7-11.
[3]李凯峰,温青,石汕.污染土壤的生物修复[J].化学工程师,2002,93(6):52-53.
[4]杨国栋.污染土壤微生物修复技术主要研究内容和方法
[5]张春桂,许华夏,姜晴楠.污染土壤生物恢复技术[J].生态学杂志,1997,18(4):52-58.
[6]李法云,臧树良,罗义.污染土壤生物修复枝木研究[J].生态学杂志,2003,22(1):35-39.
[7]滕应,黄昌勇.重金属污染土壤的微生物生态效应及修复研究进展[J].土壤与环境,2002,11(1):85-89.
[8]沈德中.污染环境的生物修复(第一版)[M].北京:化学工业出版社,2001:14,311.
篇5
【关键词】生物修复;金属污染;石油污染;污染治理
随着人口的迅猛增长、工农业生产的迅速发展,人类对化学品的依赖程度不断提高,化学品在生产、储存、运输、装卸和处置的过程中都会有大量有毒有害物质释放到空气、土壤和水体中,使得土壤、水体及空气中有毒有害化学物质的污染加重,这已经成为世界各国面临的主要环境问题。寻找一种高效、经济、持久且对环境扰动小的治理方法成为目前关注的焦点。
在二十世纪50年代末和60年代初,在Cornell大学任教的Martin.Alexander与他的学生展开了农药在土壤中可降解性的研究,为后来生物技术在环境保护中的应用打下了基础[1]。但人类利用生物修复技术处理现场仅有30年的历史,首次记录实际使用生物修复是在1972年,于美国宾夕法尼亚洲的Ambler清除管线泄漏的汽油[2]。最初生物修复的应用范围仅限于试验阶段,直到1989年,埃克逊油轮在阿拉斯加泄油事件为生物修复技术的大规模应用提供了机会,同时生物修复技术也得到了广泛认可。1991年,第一届原位生物修复国际研讨会在美国的圣地亚哥举行,各国学者在会上对生物修复工作中的经验进行了交流和总结,进一步促进了生物修复技术的推广和应用[3]。2002年10月Science专门刊登环境微生物技术的研究特辑[4]。可以预料,生物修复将是21世纪初环境生物技术的主攻方向之一。
1.生物修复技术的概念
生物修复(bioremediation),是指利用生物的生命代谢活动减小存在于环境中有毒有害物质的浓度或使其完全无害化,从而使污染了的环境能够部分或完全恢复到原初状态的过程。生物修复方法是利用土著的、引入的微生物的代谢作用进行消除或富积有毒有害物质的生物学过程。应用环境生物修复技术处理污染物时,最终产物大都是无害的、稳定的物质,如二氧化碳、水、氮气等,而且这种处理方法能一步到位,避免了污染物的多次转移。总体而言,生物修复技术是一类低耗、高效和环境安全的环境生物技术。
大体上,可以将生物修复分为原位生物修复和异位生物修复。原位生物修复(就地生物修复)即污染土壤或水体不经过搬运或运输,而是通过投加微生物、营养盐、电子受体等方法进行原位生物降解。异位生物修复即利用物理化学方法将受污染物质搬离原地进行集中生物降解,通常对于污染严重的土壤与水体多采用该技术。
2.生物修复技术的研究与应用
2.1生物修复技术在金属污染中的应用
随着电镀、制革、印染、化工等工业的发展,重金属的使用越来越广泛,伴随而来的重金属污染的问题也日趋严重。环境中的痕量重金属如铅、铬、镉等可通过食物链最终在生物体内累积,对人的神经系统、肝脏、骨骼具有毒害作用,甚至产生三致(致癌、致畸、致突变)作用,极大地危害了人类健康;而镍不仅被认为是致癌物质,还会通过基因遗传影响后代。因此,有效地去除重金属污染也成为当前一个十分迫切的任务。
传统的处理重金属的物理化学方法很多,如化学沉淀法、离子交换法、电解法、反渗透法、萃取法、活性炭吸附法、膜分离法等[5-6]。它们各有优点,但不同程度地存在着投资大、能耗高、操作困难、易产生二次污染等缺点,特别是在处理低含量重金属污染时,其操作费用和原材料成本相对过高。随着生物技术的发展,20世纪80年代人们逐渐将低含量重金属污染治理的研究重点转向了生物修复技术。
重金属污染土壤生物修复技术,是利用生物作用,削减、净化土壤中重金属或降低重金属毒性,该技术主要通过2种途径来达到净化作用。①通过生物作用改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性;②通过生物吸收、代谢达到对重金属的削减、净化与固定作用。生物修复技术主要包括微生物修复和植物修复2种类型。
微生物法去除环境中的重金属主要是利用微生物改变金属原子、金属离子的形态使其沉淀,以达到去除有毒重金属的目的;或者利用微生物改变金属离子的价态使金属溶于液体中,从而易于从土壤中滤除。此外,还发现海藻、酵母菌等对金属具有较强的生物吸附能力。Hap等[7]发现从工业废水中分离出的Enterobacter cloacae,Klebsiella spp.微生物可以适应环境中高浓度的镉、铅、铬,而且细胞繁殖过程中对镉的去除率达63%~70%。Donmez和Aksu[8]分离出的Candida spp.酵母菌对环境中镍、铜的去除率分别为57%~71%、52%~68%,但是去除率受到介质中起初金属浓度、pH值(最适宜pH值为3~5)的影响。
植物修复技术是利用植物对某种污染物具有特殊的吸收富集能力,将环境中的污染物转移到植物体内或将污染物降解利用,对植物进行回收处理,达到去除污染与修复生态的目的。植物修复的机理通常包括植物固定、植物挥发和植物吸收3种方式,其中植物吸收技术是目前应用最多、最有发展前景的土壤重金属污染植物修复技术。植物修复具有成本低、可提高土壤肥力、避免二次污染以及对环境扰动小等优点,被广泛应用于土壤重金属污染治理中。
2.2生物修复技术在石油污染中的应用
随着工业化进程的不断加快,全球对于石油的需求量也随之增加。然而石油在开采与运输过程中由于泄漏对土壤、水体等环境造成的污染也越来越严重。石油中含有多种烷烃、环烷烃、芳香烃和烯烃等复杂烃类化合物,其中多环芳香烃(PAHs)还被认为是一种致癌、致诱变物质[9-10]。1989年3月,美国埃克森公司“瓦尔德斯”号油轮在阿拉斯加州威廉王子湾搁浅,泄漏5万吨原油。沿海1300公里区域受到污染,当地鲑鱼和鲱鱼近于灭绝,数十家企业破产或濒临倒闭;1991年1月,海湾战争期间,伊拉克军队撤出科威特前点燃科威特境内油井,多达150万吨石油泄漏,污染沙特阿拉伯西北部沿海500公里区域;2010年4月,位于美国南部墨西哥湾的“深水地平线”钻井平台发生爆炸,事故造成的原油泄漏形成了一条长达100多公里的污染带,造成严重污染。
石油泄漏过程中不仅破坏了海洋等生态环境,而且通过土壤、植物等进入食物链直接危害到了人类健康。美国国家环保局已将l6种PAHs确定为污染环境的优先去除污染物。与传统的去除PAHs的物理化学方法相比,生物修复方法不是将污染物从一种环境物质转移到另一种环境物质,而是将污染物降解或者固定,从而减少了二次污染,节省了投资,因此得到广泛应用。
石油污染的生物修复研究,萌芽自20世纪70年代,到了90年代显著增加,尤其是2000年以后,其研究方向更为多元化[11]。1984年,针对美国密苏里州西部石油运输泄漏事件,采用了添加氮磷营养物质、人工曝气的方法进行原位生物修复,经过32个月的运行。苯、甲苯和二甲苯的浓度从20mg/L~30mg/L降低到0.05mg/L~0.1mg/L。均得到了良好的处理效果。1989年,利用生物修复的方法修复受石油污染的阿拉斯加海滩是生物修复技术大规模应用的最成功的例子。在我国,石油污染土壤、地下水的生物修复技术还处于研究阶段。秦煜民、隋智慧等[12]人在对辽河石油污染土壤的生物修复可行性研究中分离出微球菌、黄杆菌、假单胞菌和无色杆菌4种可以降解石油中碳氢化合物的菌种,当H2O2和油酸钠的用量分别为8850mg/L和166mg/L时,24h内生物除油率可达48%。张旭等[13]人取淄河滩含石油土壤。通过加入富集细菌、翻耕调湿、加菌和翻湿相结合3种生物修复室内模拟实验,发现石油半衰期由自然土壤的990d减少到346d;在翻耕和调节土壤含水率的条件下。石油半衰期由对照样的173d减少为90d;在综合生物治理条件下,石油半衰期缩短为42d。
石油污染生物修复技术目前的主要研究方向包括:添加辅助营养物质或辅助乳化剂、石油污染降解过程的生物标记研究、菌株具体降解途径、工程示范研究,但由于石油污染成分复杂,不同微生物可利用的石油底物不同,降解途径也不同,因此传统的石油污染生物修复研究存在效率不高、难以维持等问题。
3.生物修复技术的应用前景展望
生物修复技术是20世纪90年代迅速发展起来的一项污染环境治理技术,实践证明,采用生物技术修复污染环境与传统的物理化学技术相比可以节省大量投资、可以就地进行、对周围环境的影响较小、可以最大限度地去除环境中的污染物。
生物修复是目前环境工程领域应用广泛、较为重要的一项技术,是一种环境友好替代技术,从经济和环境的发展角度来看具有很大的诱惑力,在国内外受到日益广泛的重视。我国关于生物修复的研究起步较晚,目前尚处于小试与中试阶段,还需进一步发展。
参考文献:
[1] ALEXANDER M. Biodegradation and bioremediation [M]. USA Aca demic Press, Aan Diego, Califirnia, 1999.
[2] 李树文,孟文芳,巩学敏,李文玉.污染环境生物修复技术的应用前景[J].河北建筑科技学院学报,2005,22 (2):7-9.
[3]刘娜,杨云龙.生物修复技术在污染环境修复中的应用研究[J].科技情报开发与经济,2005,15(3):173-175.
[4] Ash C, Karr R A, Penissi E, et al. [J]. Science, 2002, 296:1055-1077.
[5] 唐受印, 汪大晕.废水处理工程[ M].北京:化学工业出版社.
[6] 徐根良.[J].水处理技术,1991,17(2):77-86.
[7] Haq R, Zaidi S K. Shakoori A R. Cadmium resistant Enterobacter cloacae and Klebsiella sp. isolated from industrial effluents and their possible role in cadmium detoxification [J]. World J Microbial Biotechnology, 1999(15): 283-290.
[8] Denmez G, Aksu Z. Bioaccumulation of copper(H)and nickel(H)by the non-adapted and adapted growing Candida spp [J]. Water Res, 2001, 35(6):1425-1434.
[9] White KL. An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons [J]. Environmental Carcinogenesis Review, 1 9 8 6, C4: 63-202.
[10] Palhmann R, Pelkonen O. Mutagen city studies of different polycyclic aromatic hymns: the significance of enzymatic factors and molecular structures [J]. Carcinogenesis, 1987(8):773-778.
[11] 黄艺,礼晓,蔡佳亮.石油污染生物修复研究进展[J].生态环境学报2009,18(1):361-367.
篇6
关键词:污染土壤 微生物修复 修复机理
土壤污染已经成为全球性的重要环境问题之一,对于土壤污染处理而言,传统物理及化学修复技术的最大弊端是污染物去除不彻底,导致二次污的发生,从而带来一定程度的环境健康风险危害。而生物修复技术主要是利用生物有机体,尤其是微生物的降解作用将污染物分解并最终去除,具有快速,安全,费用低廉的优点。因此.被称为环境友好替代技术[1]。利用微生物对不同污染类型土壤进行生物修复已经成为微生物研究的热点之一,学者们努力研究微生物菌种以及生物修复条件[2-3]。以下分别对石油污染、化学农药污染、重金属污染的土壤微生物修复和采矿废弃地生态恢复的研究进展进行综述。
一、微生物修复概念及原理
1.微生物修复概念
微生物修复是指利用天然存在的或所培养的功能微生物群,在适宜环境条件下,促进或强化微生物代谢功能,从而达到降低有毒污染物活性或降解成无毒物质的生物修复技术。微生物修复的实质是生物降解,即微生物对物质(特别是环境污染物)的分解作用。它与传统的分解在本质上是一样的,但又有分解作用所没有的新特征(如共代谢作用、降解质粒等),因此可视为是分解作用的扩展和延伸[4]。由于微生物个体小、繁殖快、适应性强、易变异,所以可随环境变化产生新的自发突变株,也可能通过形成诱导酶产生新的酶系,具备新的代谢功能以适应新的环境,从而降解和转化那些“陌生”的化合物微生物对土壤中的有毒污染物的降解主要包括氧化反应、还原反应、水解反应和聚合反应等。
首次记录实际使用生物修复是在1972年,于美国宾夕法尼亚州的Ambler清除管线泄露的汽油。1989年,美国阿拉斯加海域受到大面积石油污染以后才首次大规模应用生物修复技术[5]。除美国外,欧洲各国、加拿大等在生物修复方面也有很大的发展。
2.可用于生物修复的微生物类群
根据来源不同可以把起作用的微生物分为3类:土著微生物,外来微生物和基因工程菌(GEM)[6]。目前在实际的生物修复工程中应用的大多是土著微生物,土著微生物无论在数量上还是在降解潜力上都是巨大的。当土著微生物由于种种原因不能用来作为修复污染土壤菌种时,就需要在污染的土壤中接种一些高效的外来微生物。实验表明,在实验条件下,30℃时每克土壤接种10个PCP降解菌,可以使PCP的半衰期(T1/2)从2周降到l天。近年来,由于生物工程技术的飞速发展,构建更高效的修复污染土壤的基因工程菌引起了人们极大的兴趣。目前生物修复正朝着构建能够快速降解某些特定污染物的工程菌的方向发展,科学家利用基因工程把不同的降解基因移植到同一菌株中,创造出了具有多种降解功能的超级微生物[7]。
3.微生物修复的机理
微生物修复污染的土壤必须具备2个方面的条件:一是土壤中存在着多种多样的微生物,这些微生物能够适应变化了的环境,具有或产生酶,具备代谢功能,能够转化或降解土壤中难降解的有机化合物,能够转化或固定土壤中的重金属;二是进入土壤的有机化合物大部分具有可生物降解性,即在微生物的作用下由大分子化合物转变为简单小分子化合物的可能性,进入土壤的重金属具有微生物转化或固定的可能性[8]。只有具备了上述2方面的条件,微生物修复才有实现的可能。
受污染的土壤中有机物和重金属除小部分是通过物理、化学作用被稀释、扩散、挥发及氧化、还原、中和而迁移转化外,主要是通过微生物的作用将其降解转化和固定的,因此,在生物修复中首先应考虑适宜微生物的来源。其次,微生物的代谢活动需在适宜的环境条件下才能进行,而受有机物和重金属污染土壤的条件往往较为恶劣,因此我们必须人为提供合适的环境条件以强化微生物对污染土壤的修复作用。
二、影响微生物修复的环境因素
1.营养
微生物的生长需要维持一定量的C:N:P比例,需要多种营养物质及某些微量营养元素。许多研究者[9-10]对微生物修复的最佳生态条件建议指出,C:N:P最佳比值为100:10:1。在环境胁迫下,微生物维持生存可能需要更多的能量。如重金属可引起脱氢酶活性下降,脱氢酶活性与土壤有机碳之比可作为确定向重金属污染的土壤中添加营养的重要参考指标。
2.电子受体
微生物氧化还原反应的最终电子受体包括溶解氧、有机物分解的中问产物和无机酸根(如硫酸根、硝酸根和碳酸根等)。土壤中污染物氧化分解的最终电子受体的种类和浓度极大地影响微生物作用的速度和程度。研究表明,好氧条件有利于大多数有机物和重金属污染物的微生物降解和转化。充分的氧气供给是微生物修复重要的一环[11]。受污染的土壤中的溶解氧(DO)往往会消耗殆尽,造成缺氧环境,而不利于好氧微生物的降解和转化作用。许多研究者[12-13]对微生物修复的最佳生态条件建议指出:在单因子实验条件下,氧代谢最适水平为溶解氧>0.2mg/L和10%最低空气填充孔隙空间,厌氧代谢最适水平包括O2。的体积百分数
3.电子供体
大量基质的降解需要有电子受体的充分供应。当被修复主体的溶氧耗尽时,必须采取人工供氧的办法以增加电子供体――氧气。此外,在紧急情况下也可向污染环境中投加双氧水,过氧化钙等产氧剂以及添加硝酸盐、硫酸盐类电子受体,它们都能暂时改变环境中的厌氧生境以发挥好氧微生物对污染物的氧化分解作用。
4.共代谢基质
微生物不能依靠某种有机物生长不一定意味着这种污染物能够抵抗微生物的攻击,因此当存在其他底物时,这种污染物就会通过共代谢(Cometabolism)作用而生物降解。所谓共代谢是指某些难降解的有机化合物,通过微生物的作用能被改变化学结构,但并不能被用作碳源和能源,微生物必须从其他底物获取大部或全部的碳源和能源。许多微生物都有共代谢的能力,各种各样的底物都可能被利用,其降解反应可能涉及除氧化作用外的各种反应。资料表明[9],在厌氧条件下,DDT的降解过程也经受了共代谢作用过程,其共代谢转化产物可被好氧微生物降解。
三、微生物修复技术类型
原位修复不需要将土壤挖走,直接向污染土壤中投加N、P等营养物质和供氧。这种方法不仅操作简单、成本低、而且不破坏植物生长所需要的土壤环境,污染物氧化安全、无二次污染、处理效果好,是一种高效、经济和生态可承受的清洁技术。原位修复的主要方法有投菌法、生物通气法、生物培养法等。投菌法是直接向污染土壤中投入高效降解菌,同时提供微生物生长所需的营养。生物培养法是定期向土壤中投加过氧化氢和营养物,满足土壤微生物的代谢,将污染物充分矿化成二氧化碳和水。以上两种方法在生物修复中实际应用较多,尤其在重金属、石油、农药污染土壤的微生物修复方面已有一定的应用,但需要借人大量外源菌才能迅速开始生物降解。生物通气法是在污染的土壤上打上几口深井,安装鼓风机和抽真空机,将空气强行排人土壤中,然后抽出,土壤中的挥发性有机物就随之去除了。在通入空气时,加入一定量的氨气,可为土壤中的降解菌提供所需要的氮源,提高微生物的活性,增加去除效率。该方法可应用在石油污染的土壤上,为土壤中的微生物提供充足的电子受体,强化对石油污染物的氧化降解作用。
异位修复是把污染土壤挖出进行集中生物降解。它的方法主要有预制床法、堆制法及生物反应器法等。预制床法是在平台上铺上沙子和石子,将污染的土壤以15cm~30cm厚度平铺在上,并加入营养液和水,必要时加入表面活性剂,定期翻动充氧,以满足土壤微生物对氧的需求,处理过程中流出的渗滤液,即时回灌于土层上,以彻底清除污染物。该方法在PCP、杂酚油、石油、农药等污染土壤的修复中已获得了一些成功的案例。堆制法是将污染土壤与有机废弃物(如木屑、秸秆、树叶)、粪便等混合起来,使用机械或压力系统充氧,同时加入石灰以调节pH值,经过一段时间依靠堆肥过程中的微生物作用来降解土壤中有机污染物。生物反应器法是把污染的土壤移到生物反应器,加水混合成泥浆,调节适宜的pH值,同时加入一定量的营养物质和表面活性剂,底部鼓人空气充氧,满足微生物所需氧气的同时,使微生物与污染物充分接触,加速污染物的降解。该方法的修复效率较高,但它的处理成本也相对较高。
四、几种受污染土壤的微生物修复
1.受农药污染土壤的微生物修复
随着农业的发展,农民使用农药的量越来越多,由此而造成的危害也越来越大。据统计,中国每年使用50多万吨农药。这些农药主要包括杀虫剂、杀菌剂和除草剂等,多是有机氯、有机磷、有机氮、有机硫农药,这些农药对土壤硝化作用呼吸作用和固氮作用均会产生暂时的或永久性的影响,因为在施用农药时,不管采取什么方式大部分农药都会落入土壤中,同时附着在作物上的那一部分农药以及漂浮在空气中的农药也会因风吹落人土壤。另外,使用浸种、拌种等施药方式更是将农药直接混入到土壤中,所以,土壤中的农药污染是相当严重的,已引起土壤生产力和农产品质量的明显下降。实验证明,环境中农药的清除主要靠细菌、放线菌、真菌等微生物的作用。如DDT可被芽孢杆菌属、棒杆菌属、诺卡氏菌属等降解;五氯硝基苯可被链霉菌属,诺卡氏菌属等降解;敌百虫可被曲霉、青霉等降解。残留于土壤内的农药,经过种种复杂的转化、分解,最终将农药分解为二氧化碳和水。如果将土壤进行高压灭菌或采用抑菌剂处理,农药在土壤中的降解速度就会降低、甚至停止。研究表明,在未经消毒的土壤中,除草剂“敌草隆”的降解速度明显高于用熏蒸消毒的土壤。前者,6周内敌草隆降解近半;后者,仅降解1/10。微生物降解农药的方式有2种,一种是以农药作为唯一碳源和能源,或作为唯一的氮源物质,此类农药能很快被微生物降解,如除草剂一氟乐灵,它可作为曲霉属的唯一碳源,所以很易被分解;另一种是通过共代谢作用,共代谢指微生物利用营养基质的同时将污染物分解代谢成无害物质,从而达到降解目的。其具体表现为:(1)依靠环境提供营养物质。例如,只有在蛋白质类物质存在时,直肠梭菌才能降解666;(2)依靠其它微生物的协同作用。例如,链霉菌和节杆菌可协作降解农药二嗪农的嘧啶环,两菌单独存在则均不能作用;(3)需有诱导物存在。如,只有经正庚烷诱导后,铜绿假单胞菌才能产生羟基化酶,使链烷羟基化为相应的醇。再如,放线菌浅灰链霉菌在磺酰脲类除草剂存在的情况下,也可产生诱导性的共代谢,发生羟基化,去烷基化或去酯化反应。进一步对脱细胞提取液进行研究发现,放线菌浅灰链霉菌脱细胞提取液是依靠NAD(P)H进行磺酰脲类代谢,结果表明在浅灰链霉菌中存在着诱导性的、依赖细胞色素P。的磺酰脲代谢系统。在磺酰脲类除草剂存在下,放线菌浅灰链霉菌细胞中可溶性细胞色素P的量大大提高,这是由于一种主要的P4。形态出现,这种形态的P4在用除草剂处理过后,数量增加,而且水解酶活性也加强[14]。
2.受重金属污染土壤的微生物修复
随着工农业的迅速发展,每年有大量工业和城市垃圾作为有机肥进入农业土壤中。这些垃圾往往含有较多的重金属元素,如汞、铜、锌、镍、铅、铬等,这些金属离子作为微量元素是。生物代谢所必需的,然而超过一定浓度时,便会导致土壤微生物大量下降和活性降低,尤其对土壤中有益微生物如自生固氮菌等影响更为明显。所以,重金属污染已日益成为威胁人类健康的、影响人类生活质量的一种全球性的环境公害。重金属对人的毒性作用常与它的存在状态有密切的关系。一般地说,金属存在形式不同,其毒性作用也不同。微生物可以对土壤中的重金属进行固定、移动或转化,改变它们在土壤中的环境化学行为,可促进有毒、有害物质解毒或降低毒性,从而达到生物修复的目的。重金属污染土壤的微生物修复原理主要包括生物富集(如生物积累、生物吸着)和生物转化(如生物氧化还原、甲基化与去甲基化以及重金属的溶解和有机络合配位降解)。研究表明,许多微生物,包括细菌、真菌和藻类可以生物积累和生物吸着环境中的多种重金属。一些微生物,如动胶菌、蓝细菌、硫酸盐还原菌以及某些藻类,能够产生胞外聚合物如多糖、糖蛋白等具有大量的阴离子基团,与重金属离子形成络合物。如,Bargagli在Hg矿附近土壤中分离得到很多高级真菌,一些菌根种和所有腐殖质分解菌都能积累Hg达到100 mg/kg土壤干重。汞所造成的污染最早受到关注汞的微生物转化主要包括三个方面:无机汞的甲基化;无机汞还原成Hg-;甲基汞和其它有机汞化合物裂解并还原成Hg-。包括梭菌、脉孢菌假单胞菌等和许多真菌在内的微生物具有甲基化汞的能力。能使无机汞和有机汞转化为单质汞的微生物有铜绿假单胞菌、金黄色葡萄糖菌、大肠埃希氏菌等。微生物对其它重金属也具有转化能力,硒、铅锡、镉、砷、铝、镁、钯、金、铊也可以甲基化转化。还有研究表明,土壤中分布着多种可以使铬酸盐和重铬酸盐还原的微生物,如产碱菌属、芽孢杆菌属、棒杆菌属、肠杆菌属、假单胞菌属和微球菌属等,这些菌能将高毒性的Cr6+转化为低毒性的Cr3+[15]。
3.受石油污染土壤的微生物修复
烃类化合物包括烷烃、烯烃、炔烃、苯、甲苯、二甲苯等多种复杂芳香烃,是石油的主要组成成分,是重要的工业原料,同时又是燃料与能源。因为这些物质(尤其是多环芳烃)能够致癌、致基因突变、致畸,所以在石油的开采、运输、贮藏和加工过程中,由于意外事故或管理不当,排放到农田、地下水后,往往也会造成土壤的污染,影响土壤的通透性、降低土壤质量、阻碍植物根系的呼吸与吸收、破坏植被,从而直接影响人类的生产和生活。许多学者就石油污染物(尤其是烃类化合物)的微生物代谢机制进行了研究。从烃类污染土壤的生物处理系统中分离到的各类优势微生物均具有解脂酶活性,有解脂酶活性的菌株,就有降解石油烃的能力。添加优势真菌,可以提高生物处理烃类污染土壤的效果。在受烃类污染的土壤中,利用石油烃为碳源的细菌较多,真菌数量较少。细菌虽数量较多,但类群没有真菌丰富。细菌以革兰氏阴性杆菌为优势,其中以动胶菌属为主,其次是黄杆菌属,革兰氏阳性杆菌以芽孢杆菌为主。真菌以毛霉菌属,小克银汉菌属占优势,其次是镰刀菌属、青霉菌属、曲霉菌属,酵母菌属最弱。放线菌以链霉菌为优势[16-17]。真菌和细菌降解石油烃类化合物可形成具有不同立体构型的中间产物。真菌将石油烃类化合物降解成反式二醇,而细菌几乎总是将之降解为顺式二醇[18]。
4.矿山修复地的修复
矿山废弃地是指在采矿活动中所破坏的未经一定处理而尢法使用的土地。十壤结构破坏,养分流失,植被丧失是矿山废弃地的共同特征,尾矿厂的废渣、酸性废水及矸石堆自然产生的大气污染是周围环境的严重污染源,因此对矿山废弃地进行土壤改良和生态恢复就显得十分重要[19]。在废弃地系统中,植物可利形态的氮素来源干有机质的分解、土壤中氮微生物的固氮作用以及降雨中的NO3和NH3。束文圣等的研究表明根瘤菌对锌的耐性最大,其ECl0值和EC50 (Effective concentraiton to reduce by l0%and50%)最高,分别超过300 mg/L和600 mg/L[20]。
矿藏开采、冶炼厂等使用后的土地的复垦与再利用一直比较困难,闪为这类土地不但污染严重,而且土壤的团粒结构和理化性质都发生了很大变化,根本不适于作物生长。但菌根可在修复该类土壤中发挥特殊作用。NoydRK等把菌根真菌根内球囊霉(Glomusintraradices);匠明球囊霉(Glomusclaroideum)接种到牧草,成功地恢复了矿渣地的植被,达到了修复和复垦的目的。韩桂云等在霍林河露天煤矿脆弱生态地带的生态修复中,应用菌根生物技术,发现供试的菌根菌剂中OIOA和B菌剂对贫瘠和渗透率低的土壤条件表现出较强的调控能力。泥岩氯化对其理化条件虽能有所改善,但氯和磷聚集使幼成活时间甚短[21]。
五、结语与展望
从目前来看,微生物修复是最具发展和应用前景的生物修复技术,人们在微生物材料、降解途径以及修复技术研发等方面取得了一定的研究进展,并展示了一些成功的修复案例。但是针对复杂的污染土壤生态系统,每种微生物修复技术不仅要克服自身原有的不足,而且还需要进一步认识和解决在修复过程中出现的新现象和新问题。如:引入外源微生物的条件与原则问题;生物修复过程中微生物的适应性机制与影响因素的研究问题;有机污染物降解过程中的次生污染物问题等。还有,今后还需在以下几个方面展开深入研究:如,继续筛选和驯化新的降解菌株;进一步解析典型污染物降解基因的结构、功能与调控机制,阐明降解过程的分子生物学机理;解决复合污染土壤的修复问题;利用土地翻耕、农艺措施、添加物质、高效微生物、植物修复、季节更替等创造现场的修复条件构建出一套合理可行的污染土壤田问修复工程技术等等。总之,相信随着科学的发展,大规模利用微生物降解土壤污染物、治理环境污染不久将会成为现实。
参考文献:
[1]宋玉芳,宋雪英,张薇等.污染土壤生物修复中存在问题的探讨[J].环境科学.2004,as(e):129~155.
[2]沈萍.微生物学[M].北京:高等教育出版社,2000:305~310.
[3]张从,夏立江.污染土壤生物修复技术.北京:中国环境科学出版社,2000 51~55.
[4]Lobos J H,Leib T K,Su T M Biodegradation of biphenols and other bisphenols by gramnegative aerobic bacterium.App1ied&Environmenta Microbiology,1992,58(6):1823~1831
[5]Rojas Ave1izapaN G,Rodriguez Vazquez R,Saval Bohorquez S,et al.Effect of C/N/P ratio and nonionic surfactant on polychlorinated bpheny1biodegradation.Wor1d Microbiology&Biotechnology,2000,Journal of 16(4):319~3243.
[6]徐哑同,史家梁,张明.生物修复技术的作用机理和应用.上海化学,2001(19):4~7
[7]Meysami P,Baheri H.Prescreening of fungi and bulkjng agents for contaminated.Advances in Environmental Research.2003,7(4):881~887.
[8]闻长虹.磺酰脲类除草剂的微生物降解及转化[J].池州师专学报,2004,189(5).
[9]滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境,2002, 11(1):85~89.
[10]丁克强,孙铁衍,李培军.石油污染土壤的生物修复技术[J].生态学杂志,2000,19(2):50~55.
[11]黄义雄,方祖光.南方高岭土采矿废弃地生态恢复试验研究[J].水土保持通报.2005;23(4):1516.
篇7
[关键词]无公害 蔬菜 栽培技术
从世界范围来看,对于无公害蔬菜的基本概念,先后出现过许多相似的提法,诸如清洁蔬菜、健康蔬菜、无农药污染蔬菜、天然食品等等,至今尚未对无公害蔬菜的概念形成统一的说法。笔者认为:以国家颁布的《食品卫生标准》为衡量尺度,农药、重金属、硝酸盐、有害生物(包括有害微生物、寄生虫卵等)等多种对人体有毒物质的残留量均在限定的范围或阀值以内的蔬菜产品,可统称为无公害蔬菜。
早在20世纪20年代,国外就开始发展无公害蔬菜,其主要生产方式是无土栽培。据不完全统计,世界上单用营养液膜法(NFT)栽培无公害蔬菜的国家就达76个。在新西兰,半数以上的番茄、黄瓜等果菜类蔬菜是无土栽培的。日本、荷兰、美国等发达国家,采用现代化的水培温室,常年生产无公害蔬菜。此外,在露地蔬菜的无公害生产技术方面,也进行了较为深入的研究探讨并进行了大面积的推广。我国无公害蔬菜的研究和生产始于1982年,该年召开全国生物防治会议,江苏省率先提出用生物防治代替化学农药防治。1983年,在全国植保总站的大力支持下,全国23个省、市开展了无公害蔬菜的研究、示范与推广工作。通过几年的研究实践,探索出一套综合防治病虫害、减少农药污染的无公害蔬菜生产术。1985年全国推广无公害蔬菜生产面积4万hm2(60万亩)。目前,该项工作仍在不断往前推进。
一、无公害蔬菜研究与生产现状
我国自开展无公害蔬菜的研究与生产以来,取得了一批既有一定理论深度又有广泛适用性的研究成果。这些成果在全国大、中城市郊区蔬菜基地应用后,取得了较好的经济效益、生态效益和社会效益。
1. 研制开发了一批高效、无毒生物农药,总结出一套以生物防治为重点的蔬菜病虫害综合防治技术
所谓生物防治,笼统地讲,是指病虫草等有害生物的生物学防治或植物保护的生物学防治方法。确切地说,生物防治是利用生物或其代谢产物来控制有害动、植物种群或减轻为害程度的方法。我国广大的蔬菜科技工作者和蔬菜种植示范户在长期的研究与生产实践中,探索总结出一套以生物防治为重点的蔬菜病虫害综合防治技术,即:在加强农业防治(如选择优质抗病品种、实行轮作、深耕烤土、施腐熟粪肥等)的前提下,在蔬菜病虫害发生期使用高效、无毒生物农药,并设法保护天敌;万一上述措施不奏效时,科学合理地选用高效低毒低残留化学农药,并严格控制农药的安全间隔期,尽量减少施药次数和降低用药浓度。自80年代以来,我国先后研制出Bt乳剂7216、棉铃虫病毒NPV、Bt病毒复合剂、苏力保、螨虫素、拒食剂、环宝乳油剂、菜青虫产卵抑制剂等生物杀虫剂与生物拒避剂;井岗霉素、农用链霉素等生物杀菌剂;弱毒疫苗A等病毒抑制剂。这些生物农药对蔬菜病虫害有较好的防治和控制效果。
2. 初步探索出治理菜田土壤重金属污染的办法,蔬菜产品中的重金属污染问题获得有效的解决途径
蔬菜产品的重金属污染问题早就引起我国蔬菜科技工作者的重视,同时对重金属在土壤中的存在状态、环境容量、迁移规律以及在植物体内的富集状况等做了大量的研究。实践表明,增施有机肥,可明显改善土壤理化性状,增加土壤环境容量,提高土壤还原能力,从而可以使铜、镉、铅等重金属在土壤中呈固定状态,蔬菜对这些重金属的吸收量相应地减少。臧惠林等人对白菜受镉污染进行了研究,结果显示,菜田土壤中施用石灰、钢渣和高炉炉渣均可明显降低白菜茎叶内的镉含量,并从理论的高度提出,控制白菜吸收镉的有效措施提高土壤pH值的相关系数r=-0.94。对其他重金属的污染也有有效的防治措施,如在土壤中添加FeSO4或Fe2(SO4)3可以减轻砷的危害;控制土壤pH
3. 对蔬菜中的硝酸盐污染问题进行了系统研究,蔬菜产品中的硝酸盐污染得到有效控制
从1979年开始,中国农科院蔬菜花卉所的沈明珠等人就对蔬菜中硝酸盐的分布水平、累积规律和控制途径等进行了系统研究,得出北京地区常见蔬菜品种中硝酸盐的大致含量,指出蔬菜中的硝酸盐含量除与蔬菜的种类、品种及蔬菜的生长部位有关外,还受外界光照、施肥等环境条件的影响。1986年后,湖北职业技术专科学校的周伯瑜、上海市农科院土肥所的梅宇珠等人,根据土肥条件对蔬菜中硝酸盐污染的施肥技术。其要点是减少氮肥用量,多施有机肥少施化肥,多施铵态或酰铵态氮肥等。目前,受氮肥直接污染的蔬菜主要是菠菜、甜菜、小白菜等。据研究,利用荫棚遮光栽培菠菜,与露地栽培相比,其产品中的硝酸盐含量明显降低;凡增施化肥,菠菜、小白菜全株可食部分硝态氮含量比施厩肥者高1-4倍,施用化肥,大白菜叶片中的NO3-含量明显提高。上述研究成果广泛应用于蔬菜生产实践中,从蔬菜品种选择、施肥技术、栽培环境控制等多途径综合控制蔬菜产品中的硝酸
盐污染,效果明显。
二、无公害蔬菜的发展对策
1.加强对无公害蔬菜生产的行政、组织与协调工作,建立和完善产前、产中、产后一条龙服务体系。
强有力的行政领导,加上优质的产、供、销一体化服务,是我国无公害蔬菜生产健康、持续、稳定发展的根本保证。建议在全国各大、中城市设立两类机构,即无公害蔬菜领导机构和无公害蔬菜服务机构。前者由市(区)乡(镇)蔬菜办的主要领导组成,其主要职能是负责所在市(区)、乡(镇)范围内无公害蔬菜发展的有关政策制定、战略规划和组织协调工作,并以行政的手段约束菜农的某些技术不当行为。如上海宝山区大场镇政府曾印发上千份“安全使用农药责任书”,与农户逐一签约:坚决不在菜地使用化学农药,对现有农药封存,万一发生中毒事故要承担赔偿责任。后者由市(区)乡(镇)蔬菜技术推广部门的业务技术骨干组成,其主要职能是:产前进行无公害蔬菜生产基地的环境监测,提供高抗病虫害的蔬菜优质种子、高效无毒生物农药等生产资料;产中组织无公害蔬菜生产技术培训与技术咨询;产后提供无公害蔬菜产品的质量检测,提供销售信息,疏通销售渠道。强化科研投入,增加科研力量,建议设立国家无公害蔬菜工程专项研究基金,成立国家无公害蔬菜工程技术研究协作小组,从财力、人力上给予重点扶持。着重加强微生物对土壤中有机污染物(薄膜、农药、垃圾等)的生物降解机理、高效无毒生物农药的研制、高抗病虫害蔬菜品种的选育等与无公害蔬菜有关的基础理论与开发技术研究。
2.建立一套规范化的无公害蔬菜生产技术体系
无公害蔬菜的生产,需要一套规范化的技术体系(或规程)加以指导。无公害蔬菜生产技术体系,主要应把握以下三关:一是生产基地选址关。首先,对无公害生产基地进行生态环境的状况调查,在对大气、水质、土壤等主要环境因素进行多种污染项目检测的基础上,选择诸环境要素综合指标较好的地域作为试验基地。例如,研究表明,镉、砷、铅三种重金属在蔬菜土壤中的临界浓度分别为0.2mg/kg、100 mg/kg、100-200 mg/kg,选择无公害蔬菜生产基地时,就应以此为标准。二是种植过程无害化关。采取控制农药、化肥、生物和重金属污染的综合技术病虫害的蔬菜优良品种;采取施有机肥为主、化肥为辅,化肥中又以氮、磷、钾平衡配方的施肥技术等等。三是蔬菜残留毒物检测关。在蔬菜上市前,由质量检测部门对蔬菜中重金属、化学农药、化学肥料等有毒物质残留状况进行全面检测,保证产品的各项指标符合国内(或参照国际)的食品卫生标准或相应地区的有关标准。
发展适度规模的简易无土栽培。无土栽培即不用土壤,而以砂砾、泥炭、蛭石、浮石、锯木屑等化学惰性物质作为培养基质,然后供给含所有必需元素的营养液的一种科学栽培植物的方法。无土栽培以其清洁卫生的生产环境,生产优质的新鲜蔬菜,成为无公害蔬菜生产的一条重要途径。目前已有20多个省、市开始了蔬菜的无土栽培与生产,北京、上海、南京等大城市还先后引进了荷兰、以色列等国生产的智能型温室,进行蔬菜的高度集约化、智能化生产。
篇8
【关键词】 环境保护 建材机械加工 水泥生产线
我国是世界上最大的发展中国家,随着我国社会经济的发展,对建筑材料的需求量也与日俱增。水泥生产工业是建筑工业中的重要组成部分,水泥生产水平和质量关乎到整个建设工程的质量。近年来,我国水泥生产过程中出现了较为严重的颗粒物排放和有害气体排放等问题,对环境造成了极大的危害。新形势下,必须将环保的理念引入到建材机械加工的过程中来,促进水泥生产工业朝着节能、环保的方向发展。
1 我国建材机械加工行业和水泥行业的现状
近年来,随着我国经济的高速发展,建筑行业获得了前所未有的发展,建材机械加工作为建筑行业中一个重要的环节,对于保障建材质量、保障整个建筑工程的质量有着至关重要的作用。但是,在建材机械加工的过程中容易对环境造成污染,再加上我国传统的建材机械加工模式不注重对于环境的保护,对环境造成了很大的破坏。
随着我国社会主义建设事业的发展,我国水泥生产行业也获得了快速的发展。我国是水泥生产和消耗的大户,其水泥消耗量占世界能源总消耗量的百分之五。同时,水泥消耗量的过大也对环境造成了很大的危害,我国颗粒排放物占工业排放总量的百分之三十,因此,如何在水泥行业进行节能降耗成为我国水泥行业需要重点关注的问题。
2 环保概念在水泥生产加工中的重要性
随着我国建材机械加工行业的发展,我国的水泥生产行业获得了巨大的发展,但是我国当代的水泥生产加工水平与国外相比还有着很大的差距。很多企业在生产水泥的过程中没有贯彻环保理念,只顾经济效益而忽略了社会效益,很多企业的粉尘排放浓度超标,现有的粉尘污染依然没有得到有效的治理,环境保护的任务十分艰巨。
3 将环保的概念引入建材机械加工
3.1 建立健全相关的法律法规
建立健全建材机械加工工业相关的法律法规是确保水泥生产工业得到良性发展的根本性保障措施,能够使水泥生产工业中的环保要求有据可依,保证环保理念在水泥生产工业中得到深入的贯彻与落实。国外很多工业发达的国家在很早就重视水泥生产行业中的重金属污染问题,对回转窑系统中重金属的挥发性进行研究,并根据本国重金属污染的实际情况制定了切实可行的重金属排放指标,对相关的重金属排放问题进行了立法工作。如德国就规定了在回转窑掺烧废弃物时必须遵守的排放极限,如下图所示:
上表中,Hg、T1、Cd、Pb、As都是易挥发和高挥发类的重金属元素,其中Hg是指的汞,T1是指的钛,Cd是指的镉、Pb是指的铅,As是指的砷,这些重金属元素都会对土壤造成一定的负面影响。
对于水泥生产过程中污染物排放的问题,我国也制定了《水泥厂大气污染物排放标准》等法律法规,限定了水泥生产工业中重金属排放的上限标准。但随着水泥生产中废弃物的增加,迫切需要对其他有关污染物进行排放限值的规定,确保在水泥生产的过程中做好环境保护工作,促进水泥生产行业的良性、健康发展。
3.2 加强对气态污染物和颗粒物的处理
水泥生产过程中使用的原料中都含有少量的硫,水泥生产的过程中会以硫化物的形式排放出来,落后的生产工艺中缺少烟气的脱硫装置,使大量的二氧化硫等有害气体排放到大气中去,造成了对环境的危害。因此,可以在水泥生产线中加大对二氧化硫等有害气体的控制,例如运用带预热器的回转窑对水泥进行煅烧,可以使排放到大气中的二氧化硫成分减少,可以在水泥生产工业中的煅烧环节进行使用和推广。此外,对于气体污染物的排放,我国要制定相关的具体排放标准,并加强对水泥生产工业的监督与监管,减少在水泥生产工业中气态污染物的排放。
颗粒物对环境的污染是不言而喻的,我国建材机械加工过程中颗粒物的随意排放对环境造成了严重的污染,限制了我国建材机械加工工业的长效发展。为此,要督促相关水泥生产单位积极引进先进的除尘技术设备,减少颗粒物排放。
3.3 革新污泥处置方法
污泥处置是水泥生产行业中必不可少的一个重要环节,随着环保理念在建材机械加工行业的深入贯彻,我国现阶段的水泥生产技术已经从协同污泥处理技术到先对污泥进行干化,然后进行回转窑焚烧的阶段,大大促进了我国水泥生产工业中污泥的处理技术与水平,既带来了很高的经济效益,也带来了很高的社会效益,减少了对环境的污染,是在环境保护这一主导性原则发展下的新型水泥生产中的污泥处理技术。
4 结语
可持续发展是我国目前提倡的一种社会经济发展模式,是科学发展观的具体要求。目前我国在水泥生产工业中还存在着很多的问题,必须在水泥生产线这一类的建筑工业中贯彻落实可持续发展的原则,在工业生产的过程中引入环保概念,做好环境保护工作,促进水泥生产工业的可持续发展。
参考文献:
篇9
“拉夫运河小区事件”
在美国,“毒地”被称为“棕地(Brownfield Site)”:这一个概念诞生于1980年,当时美国国会通过了《环境应对、赔偿和责任综合法》,正式提出了“棕地”的概念。它是一些不动产,因为现实的、潜在的有害和危险物的污染,而影响到了它们的扩展、振兴和重新利用。
美国对受污染土地的关注,可以追溯到著名的“拉夫运河小区案”。
这个小区靠近尼亚加拉瀑布。20世纪70年代,一名家庭主妇5岁大的儿子患上了肝病、癫痫、哮喘、免疫系统紊乱症。小小年纪竟会染上如此多的怪病,让这位母亲百思不得其解。终于有一天,她从报纸上看到,拉夫运河小区曾是一个堆满化学废料的大垃圾场。于是,她怀疑儿子的病与化学废料有关。
她联合了邻居们展开调查,不少家庭都曾出现流产、死胎和新生儿畸形、缺陷等。此外,许多成年人体内也长出了各种肿瘤。
原来,“拉夫运河”在干涸被废弃之后,1942年,胡克化学公司购买了这条大约1000米长的废弃运河,当作“垃圾仓库”倾倒工业废弃物,直到1953年。装满有毒废弃物的运河,被公司填埋封存之后,以1美元的价格卖给了当地的教育委员会,也附上了关于有毒物质的警告。之后,纽约市政府在上面开发了房地产,盖起了一所小学和住宅小区。
让人惊恐的是:从1942年到1953年,倾倒的化学物质多达两万多吨。
在查明之后,纽约卫生局宣布小区处于紧急状态;时任总统卡特也颁布了紧急令,搬迁小区居民。
“拉夫运河小区事件”,最终推动了美国对毒地的立法。1980年12月11日,美国国会通过了《环境应对、赔偿和责任综合法》,即批准设立污染场地管理与修复基金。
这一法案也被称为“超级基金”法。它授权美国环保署对全美的污染场地进行管理,并责令责任者对污染特别严重的场地进行修复。如果没有明确的责任者,或责任者没有修复的能力,“超级基金”可以拨款支付相关费用。
刺激私人资本进行投资
按照受污染的严重程度,“棕地”还被分为了不同的等级。级别高的,会被收录到“优先修复排行榜”上。这些“棕地”,以工业用地居多,它们可能是已经被废弃了的,也会是还在利用中的旧工业区。
6年之后,美国又通过了《超级基金修正与再授权法》,要求修复地块的质量必须达到联邦和州政府的相关环境标准,以及《安全饮用水法》规定的污染物含量水平、《清洁水法》中的水质标准。
美国国会在1997年8月,通过了《纳税人减税法》。以税收的优惠,刺激私人资本在污染地块的清洁和振兴上进行投资。这一法案规定,用于污染地块环境清洁方面的开支,在治理期间,免征所得税。这对于吸引私人资本起到了关键的作用。
据美国政府估计,在一年的税收收入中,因税收的刺激而减少3亿美元的收入,却能因此吸引34亿美元的私人投资用于衰落社区的治理和复兴,使8000个污染地块恢复生产能力。
日本曾经的第一号公害病——“痛痛病”
而在上个世纪的30年代~50年代,日本的神通川流域发生了一系列奇怪的病症。患者的腰、手、脚等关节,出现了难以忍受的疼痛。几年之后,全身各部位都发生了神经痛、骨痛、骨骼萎缩、脊柱变形……甚至连呼吸都会疼痛难忍,连咳嗽都能引起骨折。一些人无法忍受痛苦,选择了自杀。
这就是日本的第一号公害病,被称为“痛痛病”。它其实是慢性镉中毒。
日本三井金属矿业公司在当地居民饮用和灌溉的神通川上游,修建了一座炼锌厂。工厂在洗矿石时,将含有镉的大量废水排入了神通川,将整条河都污染了。沿河的居民用河水灌溉,镉通过食物链进入了人体,蓄积在肾脏中,导致肾衰竭,并抑制了维生素D的活性。缺乏维生素D,妨碍了钙、磷在人体骨质中的正常沉着和储存,使得骨骼中的钙大量流失,最终导致骨软化。“痛痛病”在当地流行20多年,造成200多人死亡。
至今,针对“痛痛病”还没有特效的治疗方法,积蓄在人体内的镉也无法安全有效地排除。不仅如此,它的危害是长期持续的;也就是说,即使停止了对镉的摄入,肾衰症状依然会持续。
重金属污染给日本留下的课题远不止于此。从1976年开始,重金属污染检查在日本全境铺开。对只要是有可能产生污染的地方,都进行了调查,比如后来被证明存在镉污染的秋田。在水俣病的发生地熊本、新潟,也分别进行了针对化学元素汞的调查。
日本一共有几十平方公里土地需要深度修复,在过去的几十年里,他们大都通过换土的方式得到了改善。但在今年,日本将执行更严格的世卫组织标准(CDEX ),这意味着日本将多出几乎和原来相等的需要修复的土地面积。在执行新的标准后,复原土壤将会成为一个新的问题。
篇10
关键词:土壤生态系统;稳定性;研究
前言:土壤生态系统的稳定性主要表现在土壤生态系统的抵抗力和恢复力,其主要作用是衡量土壤的健康程度,土壤生态系统稳定性的评价,对于土壤的健康评价有着重要作用。土壤是人们赖以生存的重要保障,随着经济水平的不断提高和科学技术的大力发展,土壤污染问题日益严重,土壤的健康程度越来越受到各界的关注,这也使土壤生态系统研究得到了进一步的发展。
1 土壤生态系统稳定性的概念
土壤生态系统的稳定性一直是生态学中重点讨论的理论问题之一[1]。在生态学研究中,对土壤生态系统稳定性的概念一般有两种解释。一种认为土壤生态系统稳定性是指土壤系统的抗干扰能力,另一种解释是生态系统的动态稳定性。其中土壤系统的抗干扰能力的具体解释是抵抗力和恢复力,指土壤在经受多种因素干扰后,依旧能够保持原有状态不变的能力和受到干扰并引起变化后,能够恢复到原有状态的能力。
2 土壤系统稳定性研究内容
2.1 干扰因素类型
在进行土壤系统稳定性研究时,首先要分析其的干扰类型,以干扰为依据,将土壤系统的稳定性充分显现出来。不同的干扰方式对土壤生态系统的影响效果不同,因此,在进行研究时,要对干扰类型进行科学合理的分析,深入了解不同干扰因素对于土壤系统的不同影响效果。
干扰因素分为许多不同的类型,分类的标准一般是形势、强度、频率等,干扰因素具有一定的破坏力,能够造成不同程度的破坏事件。常见的干扰类型主要分为三大类:扰动、胁迫和干扰。
扰动主要包括瞬时扰动和持久性扰动两种类型,对土壤生态系统的影响在时间上有一定差异。胁迫则是分为致死性伤害和非致死性伤害,其影响效果分别表现为个体生物死亡和生物量减少。干扰则具有破坏、组分改变、干涉、抑制等作用。在实验中经常会用热、干湿交替、重金属等胁迫方式作为干扰类型进行土壤生态系统稳定性的研究。
2.2 土壤参数与过程
土壤是生态系统中物质循环和能量转化过程的重要场所[2]。土壤生态系统的生命因素主要有微生物和土壤动物[3]。由于土壤生态系统与地面上的生态系统具有很大的差别,因此在进行土壤生态系统稳定性研究时,要注重区别其与其他生态系统中的不同特征。
土壤生态系统过程主要分为生物与物理化学两方面。生物过程主要是将土壤生物的群落结构、活性和功能等作为内容的表征。物理化学过程则是将土壤的孔隙结构、透水性等作为内容的表征。由于土壤的生态过程十分容易受到土壤生物的影响,因此很多关于土壤生态系统的稳定性研究都是从土壤生物的角度进行的。其中通常测定的参数主要包含土壤生长速率、氮素矿化速率等。
3 影响土壤生态系统稳定性研究的外部因素
3.1 土壤污染
现阶段由于科学技术的发展和化学原料的使用,土壤受到了严重的污染。据相关调查表明,在土壤经受过重金属污染后,会出现明显的生物量降低,微生物种类减少等现象。但是相对于实验室的人工污染试验,这种经过外部因素污染的土壤更具有研究意义。
3.2 植被
植被与土壤具有直接关系,两者之间有着能量与物质的交流,一般的植扰,是对土壤的积极性干扰。植被对于土壤的修复有着重要作用,不同的植被类型对于土壤中的化学组成有着不同影响,其中的碳氮量更是土壤生物群的重要影响因素。在碳氮比相对较低时,土壤生物群的稳定性相对较高,当碳氮比较高时则情况相反。
3.3 其他干扰因素
人为干扰和环境胁迫对于土壤生态系统的稳定性也有着重要的影响。相关研究表明,土壤对一般的干扰具有很强的恢复能力,但是大量的使用化肥会使土壤生物群落受到严重的影响,且这些生物群落对于环境胁迫,如人工降雨等的抵抗力也相对较差。
4 土壤生态系统稳定性的内在机制
4.1 土壤物理化学环境
土壤中的物理化学环境是生物群落稳定性的重要影响因素,尤其是土壤质地的影响作用最为显著。有些土壤由于质地原因,可以吸附更多的有机质,能够激发生物活性,达到稳定生物群落的效果。而在土壤中添加有机物,也能够达到同样的效果。另外一些物理化学因素,例如:土壤含水量、PH值、土壤团聚体结构等,对于生物群落德组成都有一定的影响,但是对于其稳定性的影响情况暂时并没有相关数据。
4.2 生物多样性
生物多样性与生态系统稳定性的关系,一直是生态学重点研究课题,但是在研究过程中,很少会将土壤生态系统作为研究对象。现阶段的科学技术发展和社会需求已经不能够满足于仅仅对地表生物的研究,因此,分子技术驱动的土壤微生物研究就此展开。
在研究过程中,学者多次测试了不同土壤与生物多样性的关系,而最终结果并没有证明土壤功能与生物多样性具有直接的关系。由于土壤生态系统稳定机制的研究时间相对较短,土壤生态系统的生物群数量庞大,并没有获取到更多有价值的数据,因此,需要更加重视土壤生态系统稳定性的研究,加大研究力度和资金投入,对土壤生态系统中的微生物群落、干扰因素等进行更深入的了解。
参考文献
[1] 贺纪正.土壤生态系统为生物多样性――稳定性关系的思考[J].生物多样性,2013,4(21):411-420