重金属对环境的污染范文
时间:2023-12-15 17:53:18
导语:如何才能写好一篇重金属对环境的污染,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
1 重金属废水的来源
重金属废水主要来自于冶金以及电子和电镀行业,尤其是电子和电镀行业的工业废水,其成分尤为复杂,除却酸碱性废水和含氰(CN-)废水外,可以根据重金属废水中所含的化学元素进行划分。例如:含汞(Hg)废水、含砷(As)废水、含铜(Cu)废水以及含镉(Cd)废水等。
各种重金属废水,对于环境的污染极大,在重金属废水的处理问题上国内外都非常重视,通过有针对性的处理工艺,治理各式各样的重金属废水;将有毒化为无毒、有害化为无害。并且回收重金属废水中较为昂贵的重金属,将处理后的废水再次循环使用,减少重金属的排放量。
2 重金属废水对环境的污染
重金属并不能被生物降解成为无害物。重金属废水排入河流或海域后,除一部分被水生物以及鱼虾等吸收以外,剩余大部分都被水中各种有机物质和无机胶体以及微生物吸附,之后经过聚集沉降与水底。
2.1 汞(Hg)对环境的危害
汞污染主要来自于燃煤电厂以及树脂厂和水泥生产厂等,而由于汞可以通过大气以及河流进行远距离的传输,使得汞可以造成跨界污染和区域性污染,最让人记忆深刻的就是,美国环境调查局层发表说,中国的汞污染已经通过大气污染到了美国的河流。这也对汞污染在防范上造成了极大的困难。
而值得注意的是微量的液体汞在吞食后是无毒的,相关记载中有着明确的注释,微量的液体汞在生物体内会形成有机化合物。但是汞蒸气和汞盐都是有剧毒的,在口服或吸入和接触后会导致脑部和肝功能损伤。毒性最大的为二甲基汞[(CH3)2Hg],人体皮肤只需要接触几微升的二甲基汞[(CH3)2Hg]就会导致死亡。而即使是毒性小的汞在对人类的危害上也很大,由于汞可以在生物体内累积,极易被皮肤和呼吸道以及消化系统吸收,会出现水俣病症状,破坏生物的中枢神经系统。
2.2 砷(As)对环境的污染
砷(As),民间的说法就是砒霜,在化学元素周期表中处于第四周期。含砷(As)的废水主要来自于冶炼厂,其可以通过大气、地表水和土壤进行传播污染。
砷(As)在日常生活中的作用非常多,如除了可以作为除草剂以及杀虫剂外,还可以作为干燥剂和防腐剂来使用。而含砷(As)的药物经过大量以及长期的使用后会使得大部分砷(As)进入土壤中并残留下来,进而影响植物的生长甚至发生毒害事故。
含有砷(As)的废水没有得到有效的处理就排放,会导致河流以及排放地地质的污染,会导致生物体内细胞中的酶与巯基结合,进而致使酶功能系统发生障碍,影响细胞的正常代谢,引发神经系统疾病和毛细血管等病害。
3 重金属废水的处理措施
重金属废水的处理措施有很多种,具体需要根据其处理的效果和成本以及初始浓度和废水中的共存离子要求出水,最后水质达标后根据情况是循环再次利用还是直接排放。
3.1 生物处理法
生物法是众多化工企业的首选,不光投资小,而且回报率还高。针对不下沉的悬浮物有很好的效果。生物处理分为好氧和厌氧两大类处理方法,还有像土地处理法、活性污泥法、稳定塘法、等多种工艺。污水生物处理从宏观上来讲,就是通过微生物将废水中的重金属进行吞食,也就是说通过微生物的代谢将重金属降解,使得废水达到相应指标。但需要注意的是在使用污水生物处理的时候必须采用BOD5/CODCr等法案来判断污水中的污染物是否可以被降解。
3.1.1 好氧生物处理法。好氧生物处理工艺,投资少、回报高,一直被各大化工企业广泛的使用。其操作也极为简单:将活性污泥投放与废水中,对有机污染物进行吸附、凝聚和分解最后产出合成的细胞体以及二氧化碳和水。
3.1.2 厌氧生物处理法。厌氧生物处理法在相对密封、无氧的环境下,极为有用,厌氧分子可以将废水中的有机污染物分解成二氧化碳以及甲烷等气体,与此同时将部分有机物质合成细菌胞体。厌氧生物法是指在没有分子氧的条件下,通过厌氧微生物(包括兼性厌氧微生物)的作用,将废水中的有机物分解为甲烷和二氧化碳等物质的过程,同时把部分有机质合成细菌胞体方法。厌氧生物处理工艺有厌氧生物滤池以及上流式厌氧污泥床反应器(UASB)等。厌氧处理的优势是耗能低、微生物食物量少以及污泥产生量低。
两种处理工艺各有其优势,具体还是需要根据环境来选择使用。在废水中污泥含量小的情况下,一般都使用好氧处理法,反之则使用厌氧处理法。值得注意的是,虽说厌氧处理的主要对象为有机污泥,但近年来由于有机废水浓度增高,通常都会先使用厌氧处理法,之后根据处理效果以及现场情况再使用好氧法进行处理。
3.2 电解处理法
该工艺根据Fe/C原电池反应的原理进行处理废水,也可以称作铁屑过滤法,其在废水处理的各项指标上都非常好。加快氧化速度、吸附还有氧化还原等都是电解法的具现化。作为生化处理法的前提,保证“预处理技术”,电解处理技术可以使得有机物浓度急剧降低,有效的减少废水中各种重金属的毒素,进而使得生化处理法可以有效实施。由于其适用范围极为广泛、污水处理效果极佳并且使用的寿命也很长并且不需要配备任何电力,具有“以废治废”的意义。
3.3 化学沉淀法
化学沉淀法也是重金属废水处理常用的处理方法,主要的工作原理是通过化学反应使得废水中呈溶解状态的重金属转变成不溶于水的重金属化合物,在通过过滤以及分离最后除去水溶液中的沉淀物,具体有沉淀处理法、铁氧体共沉淀处理法和硫化物沉淀处理法等。但由于环境以及沉淀剂的客观影响,初次沉淀的出水浓度无法达到相应标准,这时就需要根据情况,添加相应的化学物,再次循环沉淀,直到出水达标位置。
4 重金属废水处理的改善措施
重金属随着工业废水排除后,及时浓度小于国家标准,也会造成环境污染,因其具有产期的持续性,特别是汞以及砷还有铜等重金属,很难通过土壤或河流将其降解,因其无法降解,作为生物链顶端的就人类会出现各种重金属中毒的事故。
未来的重金属废水处理的方案必须进一步的完善,通过细节的改变,使得重金属废水浓度进一步降低;例如化学沉淀工艺在处理废水时,根据废水所含的重金属,将沉淀剂更换、加减量等措施使得废水重金属浓度减少;再如生物处理法,在预处理时,根据情况,增加或减少处理时间,将废水中的重金属有效的吸附量以及降解效果增加,最后在处理时使得废水重金属含量小于标准。对重金属废水处理的完善,就是对人类自身和生活环境的负责,有效完善的处理工艺都是现在废水处理的当务之急。
5 结束语
重工业的存在有着其必然性,而生态环境保护的提高也势在必行,有效的重金属水污染处理措施,可以使得污水得到有效的净化,而净化的污水使得污水排放好后对水源的污染减少。而所有的处理措施都有着相应的弊端,如何完善这些弊端都是现阶段研究的目标,相信重金属废水处理的提高可以使得我们生存的环境进而改善。
参考文献
[1]黄镨瑶,郑兴,李天龙.浅谈重金属废水处理工艺及应用[J].电子制作,2014(2)
篇2
关键词:重金属土壤污染治理途径
现阶段我们国家的资源能源短缺,如何高效合理的运用这些资源,是我们面临的重要问题。现代社会工农业发展及其迅速,重金属对土壤的污染越来越严重,如何合理利用有限的土地资源,在原本土地资源匮乏的状态下又增加了一大难题。土壤中重金属含量过高,对动植物的生长会产生极大的影响,而且对人类的身体健康也会产生威胁。如何对重金属污染的土壤防护治理,我们对其进行了研究。
一、重金属引起土壤污染的综合情况
重金属引起的土壤污染说的是在外界重金属的影响下,土壤中大部分原有的成分逐渐消失,而重金属所占的比例不断增加,影响了土壤的正常使用并且给影响了正常的生态平衡。使土壤污染的重金属的种类繁多,对土壤污染比较主要的几个金属是Fe、Mn、Cu、Zn、Cd、Ni等,这类金属的密度都比较大。
重金属对土壤的破坏是从多个方面来衡量的。当然土壤中所含的重金属含量越高那么对土壤的污染就越严重。但是也与土壤中重金属存在形式和重金属在土壤中占有的比例也是分不开的。重金属在土壤中主要的存在形态有三种:水溶态、交换态和残存态。其中水溶态和交换态的生存活性比较强,毒性比较大。而残存态的重金属相对来说活性毒性就小很多了。当重金属在离子交换态的状态下的话,那么它的活动毒性是最强的,易被土壤中的植物吸收。或者与其他物质发生反应产生新的存在状态。
二、重金属对土壤污染的危害分析
(一)植物方面的危害
土壤的重金属污染对植物的危害是非常大的。对其危害主要体现在植物根和叶的变化。被重金属污染的土壤使植物在营养成分的吸收上不能得到保证。植物不能从土壤中吸收营养反而吸收了重金属后,与植物体内的某种物质发生反应产生有害的物质。这样就会导致植物不能正常的生长。也有可能导致植物的一部分发生坏死。如果污染严重植物吸收不到养分,那么就会使植物停止生长直至死亡。
(二)生物方面的危害
土壤对生物方面的影响也很大。它是许多微小生物和动植物生活的家园。土壤中存在着多种微小生物,微生物的多样性使土壤保持一个良好的状态。如果土壤受到重金属污染,土壤中生物所需的影响成分大大减少,在土壤中生存的微生物和小动物们的生命也会受到威胁。这样对土壤的状态也会产生严重的影响。
(三)土壤酶方面的危害
土壤酶是一种生物催化剂,其能够综合反映出土壤的肥力及活性状况。由于土壤的物理、化学性质及生物活性会显著的影响到土壤酶的活性,因此土壤环境一旦遭受污染,就会严重影响到土壤酶的活性。例如重金属元素Hg能够较为敏感的抑制土壤中脲酶,因此一旦土壤中的Hg超标,则土壤中所包含的脲酶也会显著的降低。
(四)人身健康方面的危害
土壤中重金属的超标对生物的影响非常大,对我们人的身体方面的危害那就更不用说了。如果吸收了过多的土壤中的重金属,身体所承担的后果都是难以人们承受的。大量的Cd元素会使人体的器官产生病变,对骨质生长产生极大的影响;吸收过量的Pb元素,会使人体的免疫机制不工作,容易生病:吸收过量的Ni元素可以使人们的鼻子和肺部感到不适,严重的还会导致鼻癌和肺癌。土壤中重金属超标严重的影响着人们的身体健康,对于土壤重金属污染方面我们要高度重视起来。
三、对于土壤重金属污染的防治修复措施分析
(一)物理修复
主要使用的物理修复技术有三种,分别是电动修复、电热修复和土壤淋洗。电动修复对土壤环境要求比较高,就是给土壤通电像电池一样,让土壤中的重金属离子做定向的移动,把含量超出标准的离子进行处理。但是不能大规模的处理。电热修复就是给土壤进行加热,使重金属离子在达到一定温度的情况下从土壤中分离。但是该种修复技术对土壤会产生极大的危害。土壤淋洗修复技术指的是向土壤中加入淋洗液,让重金属在淋洗液的作用下转换成液态的形式,然后对液态的重金属进行回收,对其进行相应的处理。这种方法发现的比较早,技术方面相对于电动修复和电热修复来说比较成熟,运用的比较多。
(二)化学固定修复
化学固定修复的方法就是在被重金属污染严重的土壤中加入一些能与重金属产生反应的一些有机元素,让重金属离子与之产生物理化学反应,改变其原有的活性,使其沉淀、发生氧化等。这样就会降低重金属土壤对动植物和微生物的危害。因为突土壤中超标的重金属元素是不相同的,所以也要根据重金属元素的性质再向土壤中添加物质。虽然这种修复方法在操作上面比较简单,但是对土壤中的重金属元素不能彻底处理。只是改变了其原有的性质,并没有从土壤中清除,所以也有可能再一次的污染土壤。
(三)植物修复
还有一种修复技术是植物修复。在被重金属污染的土壤中种植植物。有一些种类的植物可以把土壤中重金属物质吸收到体内,清除土壤中的重金属元素。这种修复技术运用的比较广泛,因为不用投入太多的成本,只需种植超富集植物就可以了。而且对生态环境还不会造成影响。因为这类植物可以免疫重金属的危害,吸收到体内后可以适应重金属元素的存在。也不会影响该类植物的生长。该类比较常见的植物有香草、芥菜等。而且在不断的研究中也发现了许多植物中都有这个特性,对重金属污染土壤的改善也有了很大的帮助。
四、结语
城市化进程的加快及工业生产等导致土壤中重金属污染现象十分严重,严重制约了土壤的高效利用。由于重金属元素的种类较多,在选用防治措施的时候,一定要因地制宜,结合土壤中重金属污染的具体情况,合理选用治理修复技术,最大程度的降低其危害,同时降低对周边环境的二次污染,确保土壤的肥性,促進农业的快速发展提供良好的土壤基础。
参考文献:
[1]曾跃春,刘永林.探析土壤重金属污染的修复技术与治理途径[J].工程技术:全文版,2016,(12).
篇3
关键词:超富集植物;生态毒理;氮素代谢;重金属
中图分类号:[S19] 文献标识码:A 文章编号:1674-0432(2010)-10-0045-2
0 前言
随着现代工农业的迅速发展、城市的急剧扩大,自然环境中的重金属污染日益严重。重金属污染不仅导致土壤退化、农作物产量和品质降低,而且可能通过直接接触、食物链传递等途径危及人类的生命和健康。根据现存的技术包括用机械去除和化学修复方法去清除重金属污染的土壤较为困难,并且处理费用较为昂贵。近年来,对土壤扰动少、成本低且能大面积推广应用的重金属污染植物修复技术受到了越来越多的关注。
通常现在采用较多的是Baker在1983年提出的参考值为:植物叶片或地上部(干重)Cd含量达到100mg/kg,Co、Cu、Ni,、Pb含量达到1000g/kg,Mn、Zn的含量要达到10000mg/kg。超富集植物对重金属的吸收机制也受到了广泛的关注,目前,在超富集植物的研究方面,着重对重金属的生态毒理和氮素代谢机制的研究,为了更好的利用超富集植物来修复受重金属污染的土壤,本文就超富集植物对重金属的生态毒理和氮素代谢机制影响作一个综述。
1 超富集植物对重金属的生态毒理机制
1.1 细胞壁沉淀和细胞区室化作用
重金属离子进入植物体内时会有一部分沉淀在细胞壁上,从而阻止过多的重金属离子进入细胞原生质使其免受伤害。细胞内区室化作用与超富集植物耐受和超富集重金属密切相关。邓华在研究锰对短毛蓼亚细胞分布的结果表明:短毛蓼不同器官90%的以上的锰分布在细胞壁和可溶性部分。在组织和细胞水平,重金属在超富集植物内呈区室化分布。组织水平上,重金属大多积累在表皮细胞、亚表皮细胞和表皮毛中,一定程度上减轻叶片细胞结构及生理功能所受的伤害;至于细胞内,重金属贮存在液泡中,减少了重金属对细胞质及细胞器中各种生理代谢活动的伤害。
1.2 植物体对重金属的螯合机制
目前在超富集植物体内发现的螯合重金属的物质有草酸、苹果酸、柠檬酸、组氨酸和谷胱甘肽(GSH)等小分子物质和重金属结合蛋白(MBP)大分子物质。GSH是含非蛋白硫基的小分子量多肽,它在抵御植物细胞受活性氧攻击过程中,参与调控细胞内的氧化还原平衡和H2O2的水平,所以它起着非常重要的作用。GSH在植物螯合肽合成酶催化下,聚合成对重金属亲和力较强的植物螯合肽(PCs),它是植物组织中富含-SH的多肽,通常PC在植物组织中的含量较低,但是在重金属的诱导下,PCs合成酶可以在半胱氨酸为底物的条件下合成植物络合素。并能与重金属离子螯合成无毒化合物,减轻重金属离子对植物的毒害。因此,植物诱导PCs的合成是其解毒机制之一。据吴灵琼等人报道,PCs能与重金属如Cd+在根部细胞内形成区室化以阻止重金属对根部的进一步损伤。刘可慧等人研究了小白菜通过植物体中非酶物质(SH、GSH、PCs)含量的增加来缓解重金属Cd引起的毒害。
1.3 抗氧化酶系统激活保护作用
超富集植物在重金属胁迫下,可激活超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)组成的抗氧化酶系统,并有效的清除产生的过多的活性氧,从而减轻重金属对植物的毒害。闫研研究了李氏禾对重金属铬诱导的氧化胁迫实验中表明随着铬胁迫时间的延长,SOD、POD、CAT酶活呈现逐步升高的趋势。随着铬胁迫质量浓度的增加,MDA逐渐升高,膜透性增大,3种抗氧化酶先升后降。植物体内的抗氧化物酶(SOD、POD、CAT)在清除活性氧自由基方面起着重要的作用。SOD在抗氧化酶中处于核心地位,是重要的含Zn酶类,在供Zn不足的条件下,一般植物的正常生长会受到抑制,体内SOD或Cu/Zn-SOD活性会显着下降,而在过量供Zn的条件下,过量的Zn会破会细胞的结构,对植物产生毒素,使得SOD活性下降或短暂升高;它将02-歧化为H2O,同时催化Fenton反应产生更多的OH。一旦植物细胞中的保护酶系统的平衡遭到破坏,导致植物体内活性氧的产生和清除失衡,必将使植物的生理代谢紊乱加速植物体的衰老和死亡。
2 重金属对超富集植物氮素代谢影响机制
重金属对植物的毒害作用归因于其对植物的光合作用、呼吸作用、矿物营养、植物的水分状态、氮素代谢以及诱导其受到氧化胁迫。氮素代谢对重金属的毒性的响应是很重要的,用Cd对植物进行处理后,植物会通过氮素代谢合成一组含N的代谢产物,氮素代谢影响了植物功能的所有水平,从代谢到资源分配,植物的生长和发育。
2.1 重金属对植物无机N同化的影响
氮是许多植物体中所必须的矿物元素,占植物体干重的1.5-2%。在大多数的农业土壤中,硝酸盐是植物最重要的N的来源,氮素代谢受到各种植物中存在的重金属的影响。Ewa揭示了Ni不仅抑制了小麦叶片木质部中NO3-的吸收和运输使NH4+的大量累积,而且也抑制了NR和NiR的活性从而对硝酸盐的同化产生了很大的影响。NR是氮同化的限速酶,对重金属的胁迫很敏感。在植物中,从硝酸盐同化为氨基酸涉及以下的反应:硝酸盐首先通过NR和NiR还原为NH4+,这一步是N-NO3-转变为有机N的关键。铵的累积对细胞具有较大的毒性,需被快速的同化。于方明等人在研究Cd对超富集植物圆锥南芥氮素代谢的过程中,发现随着Cd浓度的增加圆锥南芥植物体中的NH4+含量明显增加。
2.2 重金属对植物有机N同化的影响
通常NH4+的同化过程有两条高效的调控途径:铵与α-酮戊二酸在谷氨酸脱氢酶(GDH)的作用下合成谷氨酸;NH4+然后通过GS/GOGAT循环结合成谷氨酰胺和谷氨酸:在GS 的催化作用下,铵与谷氨酸结合生成谷氨酰胺,而GOGAT催化谷氨酰胺与α-酮戊二酸结合,形成2分子谷氨酸。谷氨酰胺和谷氨酸是主要的含N化合物(氨基酸、核酸、蛋白质、叶绿素、生物碱等)生物合成的供体,在植物面对重金属的胁迫过程中起着重要的作用。除了大多数氨基酸合成的基质,谷氨酸也是游离脯氨酸的产物,游离脯氨酸可以保护植物免受Ni的胁迫。经过Ni处理的水稻叶片中,伴随着谷氨酸含量的减少游离脯氨酸含量的增加。GS是高等植物体内氨同化的关键酶之一。因此,在植物体铵同化的初级阶段,GDH所起的作用相对较小或不起作用。
3 存在的问题及展望
利用超富集植物修复重金属污染的土壤是一种高效、经济、绿色的方法。目前,虽然我们在超富集植物对重金属的吸收特性和贮存机制等方面做了大量的研究,但对超富集植物的超富集功能的生理生化机制、分子生物学机制等方面还缺乏足够的了解,这成了我们以更加优化的模式应用超富集植物以及获得更大经济、社会效益的障碍。所以在未来的研究过程中还是有几方面需要进一步的研究和完善。
应更深入的进行微观方面的研究,可以把超富集植物的基因转移到一般植物中,以提高普通植物对重金属污染土壤的耐性和修复性;可以考虑植物-微生物复合体系,以提高植物修复污染土壤的效率;由于大多数的超富集植物的生物量小,生长较慢,应进一步对重金属超富集植物进行筛选,建立重金属超富集植物的物种资源库。加强转基因植物修复的研究,在筛选出的原有超富集植物的基础上培育出生长快、高生物量的更加优越的转基因植物,以满足对受重金属污染土壤植物修复的需要和达到较好的效果;对重金属胁迫超富集植物机理的研究尤其是对氮素代谢影响的研究也是将来发展的一个方向。清楚了解超富集植物对重金属的耐受机制将会有助于成功而有效的设计对受污染土壤的修复体系,以及有利于利用超富集植物的基因增强一般植物的修复和提取污染物的能力。
参考文献
[1] Baker A J M, Brooks R R, Pease A J, et al. Studies on copper and cobalt tolerande in three closey related taxa within the genus SilenceL. (Caryophyllaceae) from Zaire[J]. Plant and Soil. 1983,73:377-385.
[2] 邓华,李明顺,等.锰在短毛蓼不同器官中的亚细胞分布及化学形态[J].广西师范大学学报:自然科学版,2010,28(1):58-62.
[3] 吴灵琼,成水平等.Cd2+和Cu2+对美人蕉的氧化胁迫及抗性机理研究[J].农业环境科学学报,2007,26(4):1365-1369.
[4] 刘可慧,于方明,等.镉胁迫对小白菜(Brassica campestris L.)抗氧化机理的影响[J].生态环境,2008,17(4):1466-1470.
[5] 闫研,李建平,赵志国等.超富集植物对重金属耐受和富集机制的研究进展[J].广西植物,2008,28(4):505-510.
[6] Ewa Gajewska, Maria Sklodowska.Nickel-induced changes in nitrogen metabolism in wheat shoots[J].Journal of plant physiology 2009;166:1034-44.
篇4
路边蔬菜――铅的“回收站”
铅对人体的危害主要是造成神经系统,造血系统和肾脏和损伤。环境中的容易污染的食品主要是蔬菜,由于环境中的铅在土壤中以凝结状态存在,因此通过作物根系吸收量不大,主要是通过叶片从大气吸收,所以蔬菜中铅含量富集程度以叶菜最高,其次是根类、茎类、果类。对食品中铅含量的调查显示,靠近公路两侧的蔬菜的铅含量远远高于远离公路的蔬菜,这既说明含铅汽油是污染源,也说明了铅的放大作用途径。
鱼――汞的“浓缩器”
汞在人体内可引起蓄积中毒,而且可通过血脑屏障进入大脑,影响脑细胞的功能。海水中汞的浓度为0.0001mg/L时,浮游生物体内含汞量可约0.01~0.002mg/L,小鱼体内可达0.2~0.5mg/L,而大鱼体内可达1~5mg/L,大鱼体内含汞量比海水高1~6万倍。鱼龄越大,体内富集的汞就越多。不同鱼种体内汞含量大于食草鱼,吃鱼的鸟在体内蓄积的汞更多。
芹菜叶――镉的“储蓄箱”
镉对机体的危害是破坏肾脏的近曲小管,造成钙等营养素的丢失,使病人骨质脱钙而发生骨痛病。海产品中镉的含量是海水的4500倍。作物的根系也可吸收土壤中的镉,镉污染地区的蔬菜、粮食等食品中的镉含量远高于无污染地区。不同作物对镉的富集程度不同。镉含量也不尽相同,比如蔬菜中的镉含量顺序是(按富集系数大小排列):芹菜叶(0.1150)>菠菜(0.0956)>莴笋(0.0469)>大白菜(0.0452)>油菜(0.0437)>小白菜(0.0417)>芹菜茎(0.0390)>韭菜(0.0365)>茄子(0.0240)>圆白菜(0.0105)>黄瓜(0.0062)>菜花(0.0059)。
为了防止重金属通过食物链的生物放大作用造成对人、生物和环境的污染,就必须采取一些措施。
首先,在源头上下功夫,减少重金属对环境的污染。比如,对于铅的污染,除了使用无铅汽油以减少污染和铅在食物链中的富集放大,还应禁止在冶铁厂附近等铅污染严重的地区种植富集铅的作物,而应选择在一些不易富集铅的作物。
篇5
关键词 重金属;污染;水产品;巢湖
中图分类号 TS254 文献标识码 A 文章编号 1007-5739(2016)08-0263-02
Abstract Use the wet digestion method to digest Exopalaemon modestus, Cipangopaludina fluminalis, Heemisalanx prognathus Regan and detect heavy metal (Cu,Pb, Cd and Fe) content of them. The results showed that the heavy metal in three kinds of aquatic animals for the distribution of the content of Fe,Cu were higher than Pb and Cd; In the same organization, the content of Cu was the highest,the content of Pb was the lowest; The same biological content of heavy metal in innards than any other organization, shrimp and shellfish shell of heavy metals in the content was higher, the muscle of the heavy metal content was the lowest. Through various levels of heavy metals in body and in the study of distribution, and drew the conclusion that the fish in the Chaohu Lake included very trace amounts of heavy metal, Chaohu Lake aquatic products had mild heavy metal pollution.
Key words heavy metal; pollution; aquatic product;Chaohu Lake
重金属在自然界乃至生命体内都是以极少量存在的,人们把这些在自然生态系统内以低浓度存在的元素称为微量元素[1]。近年来,随着人们生活水平的逐渐提高和对生命健康越来越重视,对于这些微量金属的研究也在不断深入。在现在重金属研究领域中,砷(As)、氟(F)、硒(Se)虽是非金属元素,但在环境污染研究中通常被当作重金属对待,这是因为其化学性质及环境表现行为与其他重金属相似[2]。生物体内的重金属元素可分为必需和非必需两类。必需的微量元素生物体内必不可少,但是当这些金属的含量过高的时候便会对人体有毒害作用。非必需元素对生物体是有毒的,称为有毒元素[3]。重金属进入人体后,能干扰酶的功能,破坏和影响正常的代谢系统,严重威胁人们的身体健康。重金属是典型的难降解、累积性污染物,可通过食物链传递并在生态系统中积累,在某些条件下还可转变为毒性更大的金属有机化合物[4]。美国环保局(EPA)把铜、锌、铅等列入环境优先污染物名单[5]。
巢湖是我国五大淡水湖之一,巢湖盛产银鱼、白虾等水产品。由于被巢湖市、合肥市环抱的特殊地理位置,它成为了江北的“鱼米之乡”。近年来,由于长江上游的污染以及巢湖地方经济的发展,工业“三废”、农业排水和生活污水的排放量正在不断增加,这些排放物可以导致有机污染、无机污染和重金属污染,严重威胁着水生生物的生存和以这些水产品为食的人类的生命健康[6]。 其中重金属的污染会因为生物的富集作用而更加严重[7]。特别是巢湖闸的设立,阻碍了巢湖水系和其他水系的交流,降低了巢湖水系的自净能力,加重了巢湖的污染。目前,国内外学者已对重金属在水生生物体内富集和分布做过一些研究,如Itow等[8]研究了重金属对马蹄蟹步足再生的影响,Svobodova等 [9]研究了重金属汞在11种鱼体内的富集情况,Nogami等[10]研究了食物中的镉对罗非鱼生长发育的影响。关于巢湖市鱼、虾、贝类重金属富集的研究已有不少,如童军华等的《巢湖水体重金属污染评价》[11]。本研究以巢湖银鱼、白虾、田螺作为样品,研究Cu、Pb、Cd和Fe 4种重金属在鱼、虾、贝类体内富集、分布规律,目的是了解巢湖水产品体内重金属含量污染的现状和变化趋势,以期为巢湖重金属污染的监控和防治提供一定的理论依据和参考。
1 材料与方法
1.1 试验材料
银鱼(Heemisalanx prognathus)、白虾(Exopalaemon mod-estus)、田螺(Cipangopaludina fluminalis),所有材料均采于巢湖(表1)。分别在巢湖的四周随机捕捉新鲜的银鱼、白虾、田螺分组后冻存(温度控制在-20 ℃左右)。试验时从冰柜取出样品,室温融化,用蒸馏水冲洗干净,吸水纸吸干水分,用不锈钢解剖刀解剖:取银鱼的鱼肉、鱼鳃,背部两侧肌肉、内脏;取白虾的虾壳和肌肉;取田螺的外壳、肌肉和内脏。装入保鲜袋中,冷冻保存待用[12]。
1.2 试验方法
1.2.1 湿法消解。湿法消解又称湿灰化法或湿氧化法[13],在适量的样品中加入氧化性强酸,并同时加热消煮,使有机物质分解氧化成CO2、水和各种气体,为加速氧化进行,可同时加入各种催化剂,这种破坏样品中有机物质释放重金属的方法就叫做湿法消化。在本次试验中是对含有大量有机物的生物样品进行消解,所以采用HNO3-HClO4(4∶1)体系的湿法消解。消化管中出现白色烟雾即是消解终点,最后再加适量蒸馏水赶酸。
1.2.2 原子吸收光谱分析。原子吸收光谱法是一种基于物质产生的原子蒸气对特定谱线(通常是待测元素的特征谱线)的吸收作用来进行定量分析的一种方法。以空心阴极灯作为光源,可以发射一定波长的特征光,当特征光通过一定厚度的原子蒸气时部分被蒸气中基态原子吸收而减弱。通过单色器和检测器得到特征光被减弱的程度,即可求得试样中金属离子的含量。本试验需要对Cu、Pb、Cd、Fe 4种重金属进行分析,具体参数见表2。
具体步骤如下:从冰箱里取出样品,称量1~2 g样品于消化管中称重,向每个消化管(设2个空白管)中加入提前配好的硝酸和高氯酸的混合液(4∶1)10 mL后,过夜,并于第2天放入电子控温加热板上,于120 ℃下加热消化。消化过程中如出现炭化现象,需再加入酸混合液[14]。待样品充分消解,大约余下0.5 mL后移下,降到室温。加入少量超纯水,倒入事先准备好的刻度比色管中,用少许超纯水清洗消化管 2~3次,倒入比色管中,定容至10 mL。用AA370MC型原子吸收分光光度计测量样品中的Cu、Pb、Cd、Fe的含量。每个样品测量3次,取其平均值。
2 结果与分析
2.1 高营养级生物内体重金属含量比低营养级生物高
由于重金属在生物体内很难被代谢掉,所以会随着生物体生命的延长而在生物体内富集,因而从理论上来猜测,高营养级生物的重金属含量应该高于低营养级的生物[15]。本试验在处理银鱼的时候有意将个体较大的银鱼分为一组,个体较小的分为一组,结果表明:个体较大的一组体内重金属含量明显高于个体较小的一组(表3)。这是因为银鱼特殊的生活特性决定的,幼小的银鱼主要是以水藻为食,属于低营养级生物,而成年银鱼却是肉食性动物,属于高营养级生物[16]。
2.2 相同的金属在生物体不同组织的含量不同
从表3可以看出,内脏特别是肝、肾、腮中重金属的含量要明显高于其他部位。虾和螺蛳的壳中的重金属含量比其他部位要高。因为肝脏等内脏是生命体代谢的主要场所,重金属的代谢富集过程也是在内脏中进行的。重金属在肝脏和肾脏中的富集主要与重金属诱导肝脏、肾脏中金属硫蛋白的合成并与之结合有关[15]。腮更是大多数水生生物的呼吸器官和过滤器官,直接与外界进行物质交换。鳃的特殊结构有利于水中离子渗透,使鳃成为水生动物直接从水中吸收重金属的主要部位[16]。虾和螺的壳中重金属含量偏高则因为不溶的重金属盐是壳的重要组成部分。
2.3 相同组织不同重金属含量不同
即使在相同的组织相同部位中,不同的重金属含量也不相同(表3)。原因可能是由于这些组织所处的外环境的差异导致的。这种差异性主要表现在外环境中不同重金属含量的不同。当然,相同组织对不同重金属的吸收能力也不尽相同。
2.4 必需元素的含量大于非必需元素含量
重金属盐虽然是很难被生物体分解的,但是并不是完全不能被代谢掉的。在本试验中,必需元素如铜、铁在样品中的含量则远大于其他重金属含量。这是因为铜、铁是生物体的必需元素,这些元素被生物体吸收后直接转化为机体的组分或者参与代谢活动。而非必需元素含量则会因为生物体对重金属有限的代谢作用而降低。因此,才会导致必需元素的含量大于非必需元素的情况。
3 结论
通过对巢湖水产品体内重金属含量的分析,得出巢湖鱼、虾、贝类的重金属污染较轻,但仍然不能忽视。相信随着经济的不断发展,重金属以及其他污染是有可能更为严重,所以要加强防控,防患于未然。此外,在饮食中,尽量不要吃水产品的内脏,特别是肝肾;缩短养殖鱼的生长周期和适量缩短捕捞周期,减少鱼类的富集作用。
4 参考文献
[1] 不破敬一郎.生物体与重金属[M].王子亮,译.北京:中国环境科学出版社,1985:11-14,20,45.
[2] 弗斯特纳U,维特曼GTW.水环境的金属污染[M].王忠禹,姚重华,译.北京:海洋出版社,1988:1-327.
[3] 谢建春.水体污染与水生动物[J].生物学通讯,2001,36(6):10-11.
[4] 李少著,王桂忠.重金属对日本对虾仔虾存活及代谢酶活力的影响[J].台湾海峡,1998,17(2):115-120.
[5] 曾丽漩,陈桂珠,余日清,等.水体重金属污染生物监测的研究进展[J].环境监测管理与技术,2003,15(3):12-15.
[6] 刁维萍,倪吾钟,倪天华,等.水环境重金属污染的现状及其评价[J].广东微量元素科学,2004,11(3):1-5.
[7] 廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1989:72,165.
[8] ITOW T,IGARASHI T,BOTTON M L,et al. Heavy metalsinhibit limb rege-neration in horseshoe crab larvae[J].Archives of Evironmental Contamil-ation and Toxicology,1998,35(3):457-463.
[9] SVOBODOV A Z,DUSEKL,HEJTMANEK M,et al.Bioaccumulation of mercury in various fish species from Orlik and Kamyk water reservoirs in Czeck Repu[J].Ecotoxicology and Environmental Safety,1999,43(3):231-240.
[10] NOGAMI E M,KIMURA CC,RODRIGUES C,et al. Effects of dietary cadmium and its bioconcentration in Tilapia Oreochromis niloticus[J].Ecotoxico-logy and Environmental Safety,2000,45(3):291-295 .
[11] 童军华,黄祥明,陈勇,等.巢湖水体重金属污染评价[J].安徽农业科学,2006(17):189-190.
[12] 刘丹赤,邵长明.鱼体内重金属含量测定及其分布状况的研究[J].中国测试技术,2007,33(4):121-122,132.
[13] 侯天平,王松君,曹林,等.微波消解ICP-AES法检测动物毛被中微量元素的方法研究[J].光谱学与光谱分析,2008,28(8):1933-1937.
[14] 董绪燕,孙智达,戚向阳,等.武汉淡水鱼中重金属含量分析及安全性初步研究[J].卫生研究,2006,35(6):719-721.
篇6
关键词:重金属;食用鱼;污染评价;黄石市;磁湖
中图分类号:X171.5 文献标识码:A 文章编号:0439-8114(2013)11-2653-04
湖北省黄石市是一座老工业城市,随着几十年工矿业的发展,老工矿区环境污染与保护问题近年来已倍受关注。重金属是重要的环境污染物,其在水体中会被沉积物或悬浮物所吸附,并在生物体内富集成为持久污染物,对环境会造成严重的污染。
磁湖是黄石市区最大的湖泊,具有调蓄、防洪、渔业生产、生态旅游等多种功能。由于历史和地理原因,磁湖成为黄石市中心城区工业和生活废水中沉积物、工业固体废物和生活垃圾的纳污体,加上水土流失以及填湖建设,导致磁湖面积萎缩、湖床增高、湖容减少,水体的污染降低了磁湖的生态功能[1]。分析磁湖水体重金属的污染状况,对评价其污染程度,研究其变化迁移规律均具有重要的现实意义。重金属释放至环境中后易通过食物链传递和累积[2],本研究通过分析食用鱼体内重金属分布情况并对重金属污染进行评价,初步探讨了重金属在鱼体内的富集迁移规律,旨在为分析研究磁湖水体中重金属元素的迁移转化规律以及监测和防治磁湖水体环境污染提供基础科学数据。
1 材料与方法
1.1 样品采集
根据磁湖布局的特点和鱼类在水体中活动范围以及采样条件等因素综合考虑,选取了磁湖南片区团城山公园(杭州东路)和磁湖北片区楠竹林(磁湖路)作为取样点进行取样。鱼样均用渔网捕获。
1.2 样品处理
2.2 鱼体内不同重金属含量
表2列出了3种鱼体内各重金属元素的含量。鱼体内金属元素含量排序均为Cu>Cd>Cr>Pb,其中Cu含量鲫鱼体内最高,Cd、Cr和Pb含量鲢鱼体内均最高。
2.3 同种重金属在不同组织中的含量
图1列出了4种元素分别在3种鱼不同组织中的含量。不同重金属在不同组织中的含量大体符合如下规律:Cu:肠>鳞>鳃>腹>肉;Cd:鳞>鳃>肠>腹>肉;Cr:鳞>肠>肉>鳃>腹;Pb:鳃>肠>鳞>肉>腹。鱼类对重金属离子都有较强的吸收和蓄积能力,不同组织器官中重金属的含量不同。重金属在鱼体不同部位的含量存在显著差异,以肌肉中的含量最低,鳃、肠中的含量普遍偏高,但不同部位的含量与重金属的种类有关:Cu在肠、鳞中含量较高;Pb在鳃中含量较高,Cd和Cr在鳞中含量较高。
而同种组织器官中不同的重金属的含量差别也较大,Pb含量最低。鱼类通过它们的鳃不断吸收水中溶解的氧,从而使重金属离子不停地经过鳃。由于鳃的特殊结构有利于水中离子穿过,鳃就成为直接从水中吸收重金属的主要部位。重金属在鱼体中的积累主要与肝脏中的金属硫蛋白MT的诱导作用有关,金属硫蛋白MT主要的生物学功能是调节鱼体内自由金属离子的浓度,减少重金属离子特别是Pb、Cd这两种非生物必需元素的毒疗作用[5]。
鱼体内的重金属主要来源水体中,通过鳃和内脏吸收以及体表渗透进入体内,同一重金属离子在同种鱼的不同器官中的积累趋势各不相同。Cu的含量最高,Pb的含量最低,说明同种鱼的不同器官对同一重金属的代谢机制不同。
2.4 同种组织中不同重金属含量
从图2可以得出,同一重金属离子在同种鱼的不同器官中的积累趋势虽然不同,但不同重金属在同种鱼同一组织中的积累分布是相似的,大体积累趋势是:Cu>Cd>Cr>Pb。这可能是重金属在鱼体内的积累分布与组织器官的生理功能密切相关。但不同鱼种的相同组织器官中的重金属含量也有较大差异。鲫鱼肠中重金属含量高于鳊鱼和鲢鱼,这可能与鲫鱼、鳊鱼和鲢鱼的体重、水体中生活时间长短以及生理、代谢差异有关。
由于不同重金属对生物体生命作用的差异,同一类组织器官中重金属的含量存在着显著差异;对同种重金属而言,其在不同组织中的含量也存在着显著差异。Cu作为生命必须元素在鱼体内的含量较高,这主要与它们的生理作用有关。生命非必需元素在鱼体内的含量较低,且主要积存于鳞、鳃中,这主要是由于重金属进入鱼体内的重要途径是通过饵料的摄食、体表渗透和鳃膜的吸附[6]。
2.5 不同鱼种同种组织中的重金属含量
不同鱼种同种组织中的重金属含量也不相同。生物的生活习性是影响生物体内重金属含量的重要因素,同一生态系统中相同营养级具有不同食性特征、不同生活环境的生物具有不同的重金属累积特征。3种鱼食性和生活环境不尽相同,为了分析生活习性对生物重金属富集程度的影响,将鱼体内重金属含量进行了对比,鲫鱼对除Pb外其他各种重金属富集程度均大于鳊鱼和鲢鱼。不同鱼种对水体重金属富集规律存在很大差异。从试验结果来看,同一水体中生长的鱼类,鲫鱼组织某些重金属含量是鲢鱼组织重金属含量的数倍至数十倍以上。
造成上述重金属在生物体内表现出不同的富集规律可能有两方面原因:食物链中处于高营养级的生物富集程度高于低营养级生物,而鲫鱼属于杂食性鱼类,相对于草食性鱼类来说,因其在食物链中处于较高营养级,所以其重金属元素的富集程度高于鳊鱼和鲢鱼。这与Bank等[7]的试验结果一致。水体底泥中的重金属在一定条件下可通过“泥-水”界面向水中释放,造成水体的持续污染和底层重金属浓度的增加。因而生活在水体下层的鲫鱼重金属富集程度会大于上层鱼类。
2.6 磁湖鱼类重金属污染评价
由于食用鱼类产品时需要综合考虑各种重金属的污染情况,因而采用均值型综合污染指数法[8]对4种重金属的污染状况进行评价。取各种重金属在鱼体中残留量指数(I)的均值作为综合污染指数。I值大小可表示某重金属单一污染程度[9], 综合污染指数均值大小可表示各种重金属的综合污染程度。I值计算公式为:
I=Ci/Csi
式中,Ci为鱼体内i类重金属残留量,即实测值,mg/kg; Csi为重金属允许残留量,mg/kg。
Cu、Pb、Cd、Zn、Cr的评价标准按照NY/T 5073-2006无公害食品水产品中有毒有害物质限量计算(Pb,0.5 mg/kg;Cd,0.1 mg/kg;Cr,2 mg/kg;Cu, 50 mg/kg),目前国内尚无明确的污染等级划分标准,因此采用常用的划分标准进行评价,即综合污染指数均值1.0为重污染水平。
各种鱼体中重金属的污染评价结果见表3。由表3可知,Cu、Cr、Pb的残留量指数均小于1,说明这3种重金属的单一污染程度均较低;但Cd的超标率都较高,其残留量指数远大于1,说明磁湖鱼类均受到了较严重的Cd污染。重金属Cd的污染对鱼类危害严重,研究表明Cd是一种致毒快、损害重的毒物,能在鲫鱼肝脏中富集,并影响其抗氧化系统[10]。Pb能影响斑马鱼的胚胎活性、鲫鱼活力及鲤鱼的免疫系统和体内的一些酶类活性[11,12]。研究还发现重金属如Pb、Cd等对生物具有遗传毒性,干扰DNA的代谢,并可导致染色体和DNA分子的变异。Cr过量可影响体内氧化、还原、水解过程,并可使蛋白质变性,使核酸、白沉淀,干扰酶系统而引起生物中毒。Cu2+可使肝溶酶体膜磷脂发生氧化反应,导致溶酶体膜的破裂,水解酶大量释放,从而引起肝组织坏死。此外当重金属在体内积累到一定程度之后,多余的重金属就会转移到生物体的肝肾等器官中,与其体内的其他生物分子,包括酶和核酸等生物大分子相互作用,引起中毒现象,造成致命的创伤[13-15]。因此,有关部门应该引起足够的重视,加大对磁湖Cd污染的控制力度。
3 小结与讨论
鱼体中同一种重金属的在不同组织中含量不同,鳃、肠、鳞中重金属含量明显高于肉、腹,其食用部分重金属含量均低于非食用部分;同一组织不同重金属的含量也不尽相同,Cu在鱼体内各个部位含量均较高,Cr次之,Cd、Pb的含量较低,部分鱼样未检出Pb;同种重金属在不同鱼体同一组织内含量也有差异,其中鲫鱼对重金属的富集能力最强。鱼类不同组织器官对各种重金属积累能力明显不同,这可能与鱼类对重金属的吸收方式和生理功能、鱼的组织器官代谢方式、生活环境、年龄以及重金属是否为生物体必需元素等因素有关。根据评价标准,调查的鱼体中Cu的含量较高,但未超标。至目前,鱼可食用部分Cd含量超标,重金属含量残留指数为9.50~16.67,经常食用存在潜在危害,希望有关部门予以重视,并采取相应治理措施,以保证食品安全。
参考文献:
[1] 刘红瑛,李锦伦,王桂珍.磁湖底质重金属污染变化趋势分析[J].环境科学动态,2004,34(1): 15-16.
[2] 祝 惠,阎百兴,张凤英.松花江鱼体中重金属的富集及污染评价[J]. 生态与农村环境学报,2010,26(5):492-496.
[3] 张韵华.原子吸收法测定重金属的预处理方法讨论[J].云南环境科学,2004,23(Z):213-214.
[4] 曹 珺,赵丽娇,钟儒刚.原子吸收光谱法测定食品中重金属含量的研究进展[J].食品科学,2012,33(7):304-309.
[5] 黎 虹,许梓荣.重金属镉对动物及人类的毒性研究进展[J].浙江农业学报,2003,15(6):376-381.
[6] 董绪燕,孙智达,戚向阳,等.武汉淡水鱼中重金属含量分析及安全性初步研究[J].卫生研究,2006,35(6):719-721.
[7] BANK M S, CHESNEY E, SHINE J P, et al. Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico[J]. Ecological Applications,2007,17(7):2100-2110.
[8] 杨婉玲,赖子尼,魏泰莉,等.北江清远段水产品中铅含量调查[J].淡水渔业,2007,37(3):67-69.
[9] 马成玲,周健民,王火焰,等.农田土壤重金属污染评价方法研究——以长江三角洲典型县级市常熟市为例[J]. 生态与农村环境学报,2006,22(1):48-53.
[10] 张玉平,孙振中,郝永梅.镉对大弹涂鱼肝脏超氧化物歧化酶活性的影响[J]. 水产科学, 2008,27(2):79-81.
[11] 成 嘉, 符贵红,刘 芳,等.重金属铅对鲫鱼乳酸脱氢酶和过氧化氢酶活性的影响[J]. 生命科学研究,2006,10(4):372-376.
[12] 叶菲菲,谢 炜,吴孔土.铅对鲫鱼活力影响的观察[J].渔业致富指南,2005(12):57-57.
[13] 蓝伟光,杨孙楷.水污染物对对虾毒性研究的进展[J].福建水产,1990(1):41-45.
篇7
*国产干电池的含铅量一般高于25%,尚达不到绿色环保电池的要求。
*通过垃圾分离回收的干电池比例很低,以上海为例,回收的废电池仅为生产量的10%左右。
*废干电池及铅酸蓄电池中含有汞、铅、镉等重金属,随城市生活垃圾被简单地埋入地下后,铅、镉等重金属可以直接污染土壤,间接污染水源和植物,成为破坏环境的慢性“火药桶”。
对有关电池生产、消费现状等简单回顾之后,我们可以毫不夸张地说:废电池是个“环境杀手”。其实,它不但污染环境,而且还会进一步影响人体健康。
健康大敌
废电池中所含铅等重金属对土壤、水源的污染,只是一种短期内的危害,对生态环境的潜在危害则是长期的。土壤具有一定的孔隙,对有机物或含碳、氧、磷、硫等化合物进行降解后,可生成无毒或低毒物质,表现出一定的自净能力。但是,汞、铅、镉等重金属进入环境后,却不易被降解,长期蓄积在土壤中,破坏土壤的自净能力,使土壤成为污染物的“储存库”,最终降低土壤的肥效。在这样的土地上种植农作物,重金属被植物根系吸入植物体内,引起农作物减产,或长出的粮食、蔬菜等含有毒有害重金属。在土壤中的重金属,还能不断地迁移到相邻的环境介质中,如被雨水冲刷后渗透到深层土壤中;随地下水进入江河水源;腐烂后被风扬散到大气中。当人体摄入含重金属的农作物及家禽,或者饮用被污染的水、吸入被污染的大气时,就会出现多系统、多器官的慢性损害。
重金属对人体的危害,主要侵犯神经系统。曾暴发在日本水俣湾的“水俣病”,正是由于人们吃了被汞污染水域的鱼类而出现的慢性汞中毒,主要症状为感觉和语言障碍、智力减退及全身震颤无力。铅对人体健康的危害很大,尤其是儿童,可导致儿童智力低下和多动症。铅中毒还能损伤造血系统,导致贫血;损伤神经系统,导致手腕无力下垂,以及引发脑病;损伤肾脏,导致肾功能障碍。人长期接触重金属镉后,也能导致骨质疏松和骨软化,如镉中毒者的一个典型表现就是全身骨骼酸痛。
解决办法
为了避免上述危害,生产绿色环保电池和对废电池进行回收,就成为世界各国普遍采取的两种方法。我国已明确规定,2006年起禁止生产和销售非“绿色环保电池”。在过渡时期,政府和一些民间机构在全国范围内开展废旧干电池回收行动。
市售的干电池有含汞及无汞两种,含汞废电池再利用的代价很大,发达国家都以安全填埋方式处理为主,即以无砂混凝土、防渗层、保护层等组成填埋场,以确保电池中的重金属无渗透、蔓延的可能。无汞废电池回收后可被利用,如碳棒和金属壳可成为再生资源。但是,要将小小电池从大量的生活垃圾中分离出来极为困难,因此,在日常生活中应养成垃圾分拣的习惯,并将拣出的废电池交到指定地点,由有关部门统一处理。可以说,建造美好生活环境,需要我们每一个人的配合,就让我们从废电池的分拣做起。
上海:在一些大商场或大学校园中,设有废电池回收箱。另外,可以把废电池交到所在地的居委会。
天津:南开大学、天津大学的学生曾组织过废电池回收活动,目前尚未全面统一回收。
北京:在新街口商场、长安商场等200多家商场设有废电池回收点。单位或个人废电池回收量达到30千克,需回收废电池者可与北京有用垃圾回收中心联系,他们免费上门回收(电话为010-63560015)。
南京:目前尚未开展全面分类收集,但某些学校、居委会中可收集废电池,然后交到市环境保护局储存场统一储存。具体工作可与市容委员会联系。
武汉:在1726个居委会设立废电池回收站,以方便居民回收废电池。
沈阳:共有100多只电池形状的回收箱,分别布置在商业区、机场、车站、省市机关办公楼、部分工厂、院校等,居民可就近投放。回收箱上标有联系电话,这些回收的电池将由工业废物交换中心专车定期回收。在沈阳市,已建立危险废物填埋厂,用于处理各种危险废物。
篇8
1、生态环境严重破坏
由于金属矿山的开采力度加大,加上矿山企业缺乏经验以及忽视了日常环保工作,这导致了严重的环境污染与生态破坏。a)由于低下采矿的力度加大,金属矿山地表出现严重的地表下沉、破裂以及塌陷等现象,这不仅威胁到了地面建筑物的安全,而且严重破坏了金属矿山的土地资源。同时,开采金属矿产使地表排水与地下水出现截断和导流,这影响了金属矿山周围地下水资源的质量以及日常水供应,进而影响金属矿山的生态资源;b)在中国金属矿产开采过程中,经常从事露天矿业爆破作业、穿孔作业以及矿产运输等作业,这产生了大量的粉尘及汽车尾气,从而使金属矿山地区的空气质量严重下降,进而影响金属矿山地区及周围地区的大气环境;c)目前,中国在开采金属矿山过程中,采富弃贫以及采大弃小等现象很严重,这导致了矿产资源的严重浪费,同时也造成了生态环境污染。在开采金属矿山时,金属矿山地区存在大量的矿产废渣,这破坏了金属矿山地区的地理景观,并破坏了金属矿山地区的植被,进而造成水土流失以及生态失调等生态问题。
2、存在严重的重金属污染
金属矿山的污染多为复合性污染,与有机污染物不同,重金属不能被生物分解,但却可以在生物体内富集并转化为毒性较大的甲基类化合物。金属矿山地区的重金属主要是通过与有机物形成混合物的形式存在于土壤以及空气中,其对水、大气造成严重污染。同时,重金属污染也造成土壤污染,但是,土壤污染通常需要分析化验方能检测出来,而且其破坏程度较严重。重金属对空气、水资源、土壤等造成的污染易随着气流以及水流的变化而变化,在其达到一定浓度时,其会对金属矿山地区及周围的植物、农作物等造成严重危害。当前,金属矿山地区存在的重金属污染,需引起社会的高度重视,并利用先进技术及时治理污染,从而保护金属矿山地区的生态环境。
二、金属矿山环境污染的整治对策
1、采用传统的整治措施
传统的酸水整治措施是指在酸性废水中如加入碱性中和剂,通过充气、絮凝和沉淀,来整治酸性废水。当前,中国金属矿山地区存在严重的硫化物的氧化现象。整治硫化物中的酸性废水的碱性中和剂一般是NaOH,其中,重金属通常是以微溶或不溶性的氢氧化物呈现出来。在整治硫化的氧化问题时,我们可以采用一些整治措施,例如,金属矿山企业通过向矿业废水中注入H2S溶液,并应用瑞典的Laiswail,从而析出沉淀物,其中,铅通常是以PbS的形式沉淀析出;为了去除重金属,金属矿山企业可以在溶液中注入废铁,并通过电化学还原以及离子交换方式而析出铜元素,并利用反渗透和电解方式回收铜。
2、采用微生物处理技术
微生物处理技术是针对AMD的形成机理,利用能产碱和稳定金属的微生物来治理AMD,其成本低,技术含量高,针对性强。当前,国外很多国家已经开发并应用先进的微生物处理技术来整治金属矿山地区的环境污染,例如,RAPS技术、PRB技术、Iron-oxidisingBioreac-Tors技术等。因此,中国整治金属矿山环境污染应引进先进的外国微生物处理技术,并结合中国金属矿山的实际情况,采取有效的治理措施。例如,中国应加强对金属矿山中的重金属元素的研究以及重金属元素的微生物性质以及生物地球化学形状的研究,从而开发出适合中国金属矿山的微生物治理技术。
3、修复金属矿山地区的植被
目前,中国在开采金属矿产资源过程中,由于缺乏经验以及环境保护意识,金属矿山地区存在大量的矿山废渣以及矿坑等,周围的植被也受到了不同程度的破坏,因此,在整治金属矿山地区的环境污染时,我们可以采用植被修复技术,即通过种植能富集重金属的植物进行金属矿山地区植被修复,从而减少金属矿山地区的水土流失以及重金属污染。
4、贯彻以防促治防治结合
在整治金属矿山环境污染的过程中,我们应贯彻以防促治、护防治结合的理念,在治理环境污染的过程中,应树立防治意识,在开发金属矿山资源时,应注意环境保护。例如,中国可以对矿山企业进行一定的技术改造,并将消除污染作为技术改造的重要内容。对于金属矿山地区存在的环境污染,我们可以采用分期分批的方式进行治理。对于新建的工程,我们应严格执行环境保护设施与主体设施同时进行,从而防止新的污染产生,进而保护金属矿山的生态环境。
三、结语
篇9
关键词 重金属;河道整治;修复;东大沟上游河道;甘肃白银
中图分类号 X522 文献标识码 A 文章编号 1007-5739(2013)16-0224-01
白银市地处黄河中上游,东大沟地区作为白银市的主要工业区之一,流域内分布着以资源开发、加工为主的有色金属、化工行业企业,流域周边企业排放废水和废渣中含有大量重金属,重金属具有高度迁移性,长期堆置不仅造成大量有价金属流失,而且对土壤、地下水等周边生态环境构成潜在污染威胁[1]。
1 东大沟污染现状
1.1 水环境质量现状
东大沟流域多个断面水质监测数据均不能满足《污水综合排放标准(GB 8978-1996)》中一级标准的要求。水质偏酸,氟化物含量超标,上游Zn、Cd的污染较为突出,下游COD、Cu、As污染显著。
1.2 土壤质量现状
东大沟上游有色金属加工企业重金属粉尘、尾水、废渣排放,导致河岸两侧土壤中重金属严重超标,土壤中重金属主要富集在地表以下0~20 cm,部分区域污染深度达到50 cm,土壤污染现状呈现以Zn为主的多种重金属复合污染现象。
1.3 底泥质量现状
底泥的污染来源于有色金属加工企业冶炼废渣堆放以及含重金属废水排放,通过对底泥样品的采样调查,底泥中重金属As、Pb、Cu、Zn的含量最高值均高于加拿大制订的NOAA标准,Pb、Zn 2种重金属的最大峰值分别出现于20、80 cm,而Cu的最大峰值则出现于40、80 cm,As的最大峰值出现于80 cm。
2 治理工艺及技术可行性
重金属污染河道治理工程主体工艺包括废渣及表层污染底泥异位贮存,表层污染底泥重金属固化/稳定化修复工程以及重金属污染植物修复[2-3]。
2.1 废渣及表层污染底泥异位贮存
2.1.1 治理工艺。由于河道自身情况较为复杂,底泥的深度也难以在抽样调查中完全体现,根据已有的调查数据,研究区域河道底泥挖掘深度拟定为50~120 cm,具体的挖掘情况应根据现场挖据底泥的颜色等进行定性判断,并且在挖掘过程中对50 cm深度的底泥进行再次取样分析,如果效果仍不能达标,需要继续向下挖掘,具体深度视分析结果而定。
河道疏浚的目的是对污染底泥沉积层采用工程措施,最大限度地将储积在该层中的污染物质移出,改善水生态循环,遏制自然水体退化。该次治理区域大部分底泥含水量较低,为了不增加底泥的水力负荷以及废水处理强度,采用机械疏浚的方式,底泥自然蒸发脱水干化与废渣密闭运至弃渣场妥善处置。
2.1.2 技术可行性。含Cu、Pb、Zn、As等重金属的废渣、底泥及土壤均未列入《国家危险废物名录》。根据对研究区域废渣及表层污染底泥的重金属浓度监测,pH值均在6~9,未超出《危险废弃物鉴别标准——浸出毒性鉴别(GB5085.3-2007)》中要求的pH值范围,属于一般工业固废。采用异位贮存方式是一种最为经济、适宜处理大量工业废渣且不受工业废渣种类限制的处理方式。
2.2 表层污染底泥重金属固化/稳定化修复
2.2.1 治理工艺。通过采样分析,选取含As、Zn、Cu、Pb等重金属离子污染程度均严重区域底泥进行固化/稳定化修复,由于底泥中含有As、Zn、Cu、Pb等多种重金属离子,且所含各种重金属离子的种类和含量存在不稳定性,为确保固化/稳定化处理达标,需要根据污染元素和污染浓度来选取药剂。
针对Zn、Cu、Pb的固化,通过加入天然矿物质混合药剂,经氧化还原反应、矿化作用、分子键合反应和共沉淀反应将交换态重金属离子转化为重金属的单质、硅铝酸盐、硅酸盐和多金属羟基沉淀物等自然环境中极稳定的物质,防止其被植物的根系所吸收;针对As的固化,采样铁锰复合氧化物,经吸附、氧化作用,实现重金属污染底泥的固定化修复。
2.2.2 技术可行性。固化/稳定化是向污染底泥、土壤或废渣中投加固化/稳定化制剂,改变土壤的酸碱性、氧化还原条件或离子构成情况,进而对重金属的吸附、氧化还原、拮抗或沉淀作用产生影响的稳定化技术,实现重金属污染土壤的修复。采用该工艺处理后底泥中重金属的浸出浓度低于一般工业固废的入场标准,满足Pb浸出毒性低于5 mg/L、Cu浸出毒性低于75 mg/L、Zn浸出毒性低于75 mg/L、As浸出毒性低于2.5 mg/L的要求。
2.3 重金属污染植物修复
2.3.1 治理工艺。在清除废渣和浅层底泥后回填基质土种植重金属超富集植物,对剩余底泥和部分河岸进行植物修复。普通植物体内Pb含量一般不超过5 mg/kg,Cu的正常含量为5~20 mg/kg,过量重金属对普通植物有很大的毒性,在Zn、Pb、Cu复合污染土壤中,种植普通植物很难达到从污染土壤中快速清除Zn、Pb、Cu复合污染物目的。因此,需要选择对重金属有较强耐受及吸收能力的植物作为首选修复物种,并且超富集植物必须适应白银市当地气候,能够在当地很好地生长,才能保证较好的修复效果[4]。根据白银市当地土质情况及需修复的土壤现状,选取的修复植物为枸杞、红柳、沙枣、国槐、火炬、垂柳、土荆芥、披碱草、芦苇、紫花苜蓿等。
研究发现,禾本科多年生草本植物披碱草具有修复Pb污染土壤的潜力,狗尾草等对As有一定累积效果,且生物量大,为适宜的土壤重金属污染修复植物。紫花苜蓿等牧草对Pb等有较强的富集能力,是土壤Pb污染的理想修复植物,且拥有强大的根系和顽强的生命力,兼具水土保持效果,可用于干旱地区重金属污染的修复。灌木灯心草中的Pb含量测定符合Pb超富集植物,地上部分Pb富集量大于1 000 mg/kg的临界标准,转运系数大于1,在重金属污染土壤修复方面具有潜在的应用价值。上述植物均为当地常见物种,可以很好地适应当地环境,确保生长,同时对重金属具有一定的修复效果。
2.3.2 技术方案可行性。植物修复技术是利用植物来转移、容纳或转化污染物,通过植物的吸收、挥发、根滤、降解、稳定等作用达到土壤修复目的的方法,是一种成熟且发展迅速的清除环境污染的绿色技术[5]。该项目建设区表层50~120 cm表层污染底泥、废渣经处理后,剩余底泥仍具有不同程度的污染,需种植适应在当地生长的重金属超富集植物,以达到较好的治理效果。植物修复技术成本低廉,能增加土壤有机质肥力,且环境扰动小,大面积处理易为公众所接受,并有很好的绿化作用。
3 结语
由于长期遭受重金属毒害作用,东大沟河道生态功能已经完全丧失。针对东大沟典型重金属复合污染问题及生态脆弱的现状,采用异位贮存、固化/稳定化修复以及植物修复等重金属治理技术对区域内的底泥、废渣等介质进行无害化处理与处置,并建立重金属污染土壤植物修复示范区,可实现河道生态恢复和景观重建,初步恢复遭到重金属污染胁迫的东大沟河道生境。
4 参考文献
[1] 黄河上游白银段东大沟流域重金属污染整治与生态系统修复规划[M].北京:北京大学出版社,2012.
[2] 蒋培.土壤镉污染对芦蒿生长和品质安全的影响及调控措施研究[D].南京:南京农业大学,2009.
[3] 卜全民,李凤英.污染河道生态修复技术研究[J].安徽农业科学,2008(36):16084-16085,16090.
篇10
关键词:日本B木(Aralia elata var. inermis);重金属胁迫;生理生化特性
中图分类号:S567.1+9 文献标识码:A 文章编号:0439-8114(2017)08-1463-05
DOI:10.14088/ki.issn0439-8114.2017.08.016
The Effects Analysis of Heavy Metals Stress on Physiological and Biochemical Characteristics of Aralia elata var. inermis
HE An1,LI De-sheng1,LI Xiao-jing2,PENG Ling1,WANG Shuo1,ZHANG Cai3
(1.College of Environmental Science and Safety Engineering, Tianjin University of Technology,Tianjin 300384,China;
2.College of Environmental Science and Engineering, Nankai University,Tianjin 300071,China;
3.Forestry Bureau of Rushan City,Rushan 264500,Shandong,China)
Abstract: The pot experiment was conducted to study the effects of different heavy metals (Pb,Cd) on the effects of physiological and biochemical characteristics of Aralia elata var. inermis,including the membrane system, photosynthetic system and antioxidant enzyme system, by analyzing the soluble protein content, chlorophyll content, lipid peroxidation(MDA) content and oxidation protective enzyme activity and so on. The results showed that the proline and MDA contents increased first, then deceased with increasing concentration of heavy metals, the soluble protein content was opposite. Along with the increase of metal levels,the chlorophyll content showed the trend of firstly increased then decreased and firstly decreased then increased and decreased again separately under the stress of Pb and Cd. The activity of peroxidase (POD) in A. elata var. inermis decreased with increasing the concentration of both Pb and Cd,but the catalase(CAT) was opposite. In addition, when the Pb concentration in soil reached 1 000 mg/kg,the activity of CAT decreased. At the same time, it could be found that these contents analysis under the stress of Pb were higher than the stress of Cd,besides the activity of CAT. And the ability of resistance of A. elata var. inermis under the stress of Pb was higher than Cd.
Key words: Aralia elata var. inermis; the stress of heavy metals; physiological and biochemical characteristics
伴随着城市建设步伐的加快以及工业化进程的发展[1],中国城市环境受到严重的影响,尤其是重金属污染较为严重。通过对中国部分城市公园和居民小区[2-5]重金属污染状况的调查显示,土壤重金属污染的情况十分严重。重金属一旦进入土壤中,具有持续时间长、不易在物质循环和能量交换中分解的特性[1],同时通过食物链等途径易被人体吸收并引发疾病。因此,解决土壤中重金属的污染问题始终是诸多学者的一个重要研究方向。
目前重金属对植物的影响研究主要集中于重金属对草本蔬菜[6]、木本园林植物[7,8]等研究,较少偏重于木本蔬菜的研究,且研究方向主要趋向于单一重金属污染[9,10]及复合重金属污染[11-13]。在自然条件下,植物会经常受到多种重金属的共同胁迫,然而每种重金属对植物的毒性机理与解毒机制可能有所差异,因此需要对不同重金属对同一植物的生理生化指标响应进行比较分析,为土壤重金属污染修复及植物的应用提供参考。
日本B木(Aralia elata var. inermis)树姿优美,根系发达,生长迅速,具有较强的适应性,容易栽培且具有可观赏价值,是一种兼食用、药用、保健为一体的木本蔬菜[14,15]。试验采用盆栽法,探讨不同重金属(Pb、Cd)对日本B木体内的膜脂过氧化作用和植物体内自身的抗氧化防御系统的影响,同时研究不同重金属对植物体内的叶绿素和蛋白质含量的影响,比较分析日本B木在不同重金属胁迫下的生理生化响应,为日本B木应用Pb、Cd污染土壤修复提供科学依据,并为农产品的安全生产提供参考依据,具有一定的生理学意义和经济价值。
1 材料与方法
1.1 材料与处理
试验于2014年12月初在天津理工大学人工气候室进行,温度为(25±2) ℃,光照12 h/12 h(光照/黑暗),光照强度为1 400 lx。供试材料为两年生日本B木幼苗,采自于天津市宝坻区青龙湾苗圃场,长势基本一致。将天津理工大学校园土壤与购自河北省兴农生物工程开发有限公司的营养土以20∶1(质量比)的比例混合均匀作为栽培基质,放入半径为30 cm、高20 cm的花盆中,每盆装5 kg,供试土壤的理化性质如表1所示。再将日本B木幼苗插入土壤中,在人工气候室中培养,待苗木恢复生长后约16 d,进行Pb、Cd胁迫处理,将Pb(NO3)(分析纯)和CdCl2・2.5H2O(分析纯)以溶液的形式加入到土壤中,Pb、Cd各设置4个浓度水平(T1、T2、T3、T4),每个水平3个重复,并以不加重金属为空白对照(CK)。浓度水平设置如表2所示。
1.2 测定指标与方法
采用硫代巴比妥酸法[16]y定丙二醛(MDA)含量,参照植物生理学试验技术的方法[17]测定过氧化物酶(POD)、过氧化氢酶(CAT)以及脯氨酸的含量。可溶性蛋白质的含量采用考马斯亮蓝G-250的方法测定[17]。以上指标均于2015年6月测定。
1.3 数据处理
每个浓度梯度下的植物随机抽取3份进行指标测定,数据以平均值表示。采用Excel 2003软件进行数据整理,并采用Origin 8.5进行制图。
2 结果与分析
2.1 不同重金属胁迫对日本B木丙二醛含量的影响
丙二醛(MDA)是细胞膜脂过氧化的主要产物之一,其含量变化可作为检测逆境条件下植物受伤害程度的指标之一[18]。从图1可以看出,在重金属Pb的胁迫下,日本B木中MDA的含量呈下降趋势,在T2处理水平时达到最低,为对照组的86%,其后MDA的含量随着重金属浓度的增加而急剧上升,在T4处理组时达到最高,为对照组的127%。在重金属Cd的胁迫下,日本B木中MDA的含量也呈先降后升的趋势,但是与Pb处理组不同的是,MDA的含量在T1的时候达到最低,为对照组的85%,随着浓度的增加,MDA在植物体内逐渐积累,并在T4时到达最高,为对照组的121%,其含量低于Pb处理组的含量。从图1中还可发现,除了在T2处理组时,Cd胁迫下日本B木体内的MDA含量高于Pb胁迫下外,其余均是Pb胁迫下的MDA含量高于Cd胁迫下,这可能是Pb比Cd更能促进日本B木体内MDA含量的积累,表明Pb可能对细胞产生毒害作用更大。
2.2 不同重金属胁迫对日本B木脯氨酸含量的影响
脯氨酸是一种重要的渗透调节物质,其积累量可表征植物对逆境适应的能力,所以植物叶片中脯氨酸含量往往被认为是测定逆境胁迫的重要指标[19]。由图2可知,在重金属Pb胁迫下,脯氨酸的含量略有下降,但减少程度仅为对照组的1%。其后,随着重金属浓度的增加,脯氨酸含量急剧上升,但在T2、T3浓度时,上升速度减慢,随后又急剧上升。在重金属Cd胁迫下,在浓度为0.25 mg/kg时,脯氨酸含量达到最低值,为对照组的84%。随着浓度梯度的升高,脯氨酸的含量也相应地急剧上升,在浓度达到5 mg/kg时,脯氨酸的含量增加幅度不大,仅为2%。从图2中还可发现,Pb胁迫下的脯氨酸含量比Cd胁迫下的要高,在T3处理水平时,Pb、Cd胁迫下的日本B木体内的脯氨酸含量相近,相差仅为4%。植物体内脯氨酸含量增加的原因可能是重金属刺激了脯氨酸的合成,也可能是重金属的胁迫抑制了脯氨酸的氧化,或是阻碍了植物体内蛋白质的合成。
2.3 不同重金属胁迫对日本B木抗氧化酶活性的影响
在正常情况下,细胞内的活性氧自由基的产生和清除则处于一种动态平衡状态。当植物受到胁迫时,这个平衡就被破坏,从而导致大量的活性氧自由基在体内积累,对细胞造成损害[20]。然而植物细胞自身配有一个抗氧化防御系统来抵抗伤害,其中过氧化氢酶(CAT)、过氧化物酶(POD)都是含血红素Fe的蛋白质,都能分解H2O2,在植物抗逆性、氧伤害以及器官的衰老中发挥着重要的作用。
2.3.1 不同重金属胁迫对日本B木过氧化物酶活性的影响 过氧化物酶(POD)是一种广泛分布于植物体组织中的一种抗逆适应性酶,它可以反映出植物生长发育、体内代谢以及对外界环境的适应性[20]。由图3可知,无论是在Pb胁迫下还是在Cd胁迫下,日本B木叶片内的POD活性均随着重金属浓度的增加呈下降趋势,这与杨盛昌等[21]的研究结果不一致。在重金属Pb、Cd的浓度分别达到最高浓度1 500和10 mg/kg时,日本B木叶片内的POD含量都达到最低,分别为对照组的72%和46%,因此可以发现Pb对日本B木体内的POD活性影响更小,对于同种浓度水平,可以推测日本B木对重金属Pb的抗胁迫能力较强。在Pb胁迫下,当土壤中Pb浓度达到1 000 mg/kg时,日本B木体内的POD活性基本不变,仅下降了3%,可以推测出当Pb胁迫浓度达到 1 000 mg/kg时,POD的活性达到了一个阈值,日本B木的抗重金属Pb的胁迫能力达到最大。
2.3.2 不同重金属胁迫对日本B木过氧化氢酶活性的影响 过氧化氢酶(CAT)是植物体内的一种重要的氧化还原酶,可以清除在逆境胁迫下产生的H2O2,避免了H2O2对植物组织的伤害,从而还抑制了由Haber-Weiss反应而产生的毒性更强的・OH,维持了活性氧的代谢平衡,保护了细胞膜的完整性[22]。由图4可知,在重金属Pb胁迫下,随着Pb浓度的增加,日本B木体内的CAT活性呈先增后减的趋势,在Pb浓度为1 000 mg/kg时,CAT活性达到最高,与对照组相比活性增加了21%,这与龚双姣等[23]研究Cd对3种藓类抗氧化酶活性的影响得出的结论类似,可以推断出在受重金属迫害较轻时,体内活性氧逐渐增多,促进了抗氧化酶活性的升高;在受重金属迫害较重时,超过了植物自身防御反应的极限,导致植物的结构受到破坏,从而使酶的活性降低。而在重金属Cd胁迫下,随着Cd浓度的增加,日本B木体内的CAT活性急剧上升,在浓度为10 mg/kg时,与对照组相比活性增加了70%,这与孙守琴等[24]的研究结果相反,可能说明Cd有助于促进日本B木CAT活性的增加。在T1处理组时,Pb胁迫下的CAT活性与Cd胁迫下的CAT活性较相近,可能在较低浓度时,重金属Pb或Cd对日本B木的CAT活性影响相近,清除活性氧的能力基本一致。
2.4 不同重金属胁迫对日本B木叶绿素含量的影响
叶绿素是植物进行光合作用的主要色素,其含量高低是植物光合作用效率高低的一个重要指标[25]。由图5可知,在重金属Pb胁迫下,叶绿素的含量有明显的提高,随着Pb浓度的增加,叶绿素的含量呈明显的下降趋势。在Pb浓度为100 mg/kg时,叶绿素的含量达到最高,为空白对照组的114%;在浓度为1 500 mg/kg时,日本B木体内叶绿素的含量达到1.7 mg/g,与对照组相比降低了21%。在重金属Cd胁迫下,随着Cd浓度的增加,日本B木体内的叶绿素含量呈先减后增再减的趋势,在Cd浓度达到 1 mg/kg时,植物体内叶绿素的含量达到最低,为1.68 mg/g,在浓度为5 mg/kg时,叶绿素的含量有所增加,但其含量仍低于对照组5%。从图5还可以发现,在T2处理水平之前,Pb胁迫下日本B木体内叶绿素的含量明显高于Cd胁迫下的含量,但在T3处理水平之后,Cd胁迫下的叶绿素含量要高于Pb胁迫下的含量。有研究表明,重金属胁迫容易导致植物的光合作用受到抑制,叶绿素含量越低,说明植物受胁迫程度越大;反而叶绿素含量越高,植物受胁迫程度越小[26]。因此可以推y在土壤中重金属浓度较高时,Pb对日本B木的胁迫程度要比Cd对植物的胁迫程度大,而在较低浓度时则相反。
2.5 不同重金属胁迫对日本B木可溶性蛋白质含量的影响
蛋白质是衡量植物代谢和生理状态的一项重要指标。由图6可知,在重金属Pb胁迫下,随着Pb浓度的增加,植物体内可溶性蛋白质的含量呈先增后减的趋势。在浓度为100 mg/kg时,蛋白质的含量达到最大值,为对照组的107%,随着Pb浓度的增加,蛋白质的含量呈下降趋势,但在浓度为1 000 mg/kg后的下降程度不大。在重金属Cd胁迫下,日本B木体内的可溶性蛋白质含量也呈先增后减的趋势,这与孙天国等[25]研究的结果相同,表明重金属Cd可以引起可溶性蛋白质含量的增加,这可能是植物为了抵抗重金属Cd对自身的伤害而诱导产生了Cd络合蛋白,从而降低Cd的毒害。可溶性蛋白质含量的增加,有助于维持细胞的正常代谢,增强植物的抗逆性。当土壤中Cd浓度为0.25 mg/kg时,日本B木内的可溶性蛋白质含量达到最高,为对照组的105%。从图6还可以发现,在T1浓度梯度下,无论是Pb还是Cd胁迫下,日本B木体内的可溶性蛋白质的含量都有所提高,且Pb胁迫下的比Cd胁迫下的可溶性蛋白质含量要高,可能是低浓度的重金属Pb较Cd更能促进蛋白质含量的增加,间接地使细胞渗透势和功能蛋白的数量得到增加,有利于维持细胞正常代谢,从而提高了日本B木的抗逆性。
3 小结与讨论
植物在正常生长条件下,活性氧的产生和清除处于一种平衡状态,当处于逆境胁迫时,植物体内活性氧的产生和清除的稳态则会受到破坏,往往会发生膜脂过氧化作用,使植物生长受到了伤害[20]。丙二醛(MDA)是膜脂过氧化作用的最终产物,其含量可以作为膜脂过氧化强弱和质膜破坏程度的重要指标。张凤琴等[22]指出重金属容易导致膜脂过氧化,并且重金属离子的浓度越高,MDA在植物体内就会积累越多。本试验结果表明,在重金属Pb、Cd单一胁迫下,植物叶片内MDA的含量减少,并分别在500、0.25 mg/kg时达到最低,这可能是因为较低浓度的重金属可促进日本B木体内不饱和脂肪酸的合成,或是因为低浓度的重金属对植物体内活性氧自由基的清除能力被诱导加强,导致MDA含量降低。同时也说明不同重金属对同一植物的过氧化作用表现不同。其后,随着重金属浓度的增加,植物体内的MDA含量相应地增加。
- 上一篇:品牌战略分析
- 下一篇:对农村交通发展的建议