高分子材料在医学中的应用范文
时间:2023-12-15 17:34:05
导语:如何才能写好一篇高分子材料在医学中的应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:医用高分子;医疗器械;生命质量;共价键连接
中图分类号:R197 文献标识码:A 文章编号:1009-2374(2013)11-0002-02
1 医用高分子的发展简史
在各种材料中,高分子材料的分子结构、化学组成和理化性质与生物体组织最为接近,因此成为各种医疗器械材料的最佳选择。医学领域的飞速发展,使功能型高分子材料在医学界应用提供了可能。当人体组织和器官受到严重外伤时,进行组织和器官修复最常用的方法是器官移植。在少数情况下,人体自身的组织和器官可以满足需求。然而对于某些特殊的组织器官,为了满足医学治疗的需求,人们自然设想利用其他材料修复或替代受损器官或组织。进入20世纪,功能型高分子材料的研究因医学领域的发展而提上日程,合成高分子材料的出现为新型医用材料的选择提供了更多的选择。
1936年有机玻璃用于假牙齿制作;1943年赛璐珞模拟人工肾用于血液透析;1950年出现可以制作人工肋骨的有机玻璃类材料;20世纪50年代广泛应用有机硅聚合物;1951~1954年开始制作人工血管、食道、心脏瓣膜、心肺;1958年出现跨越性的变化,开始了人工肾的制作。
已经使用的医用高分子材料有上百种,由此而制造的各种不同性能的材料则有上千种,但这些材料都是简单的使用或适当改性。随着科学的发展,新型功能高分子材料不断推出。在相当长一段时间内,生物相容性材料、组织工程与再生学材料、纳米生物材料、生物矿化材料和仿生材料,都是医用高分子材料研究中的热点和难点。
2 医用高分子材料的特殊要求
医用高分子材料的选择应用的要求相当严格,相关的医用材料研发周期较长,材料使用前必须经过体外实验、动物实验、临床实验等不同阶段。相关医疗器械的市场化之前,要通过国家药品和医疗器械检验部门的批准,且申报审批程序周密而复杂,所以医用高分子材料比一般性的材料研发成本高。医用高分子材料及器械在人体临床的要求,通常可以概括为以下六个方面:(1)功能性:因生物材料的用途而不尽相同,例如药物缓释的性能;(2)相容性:医用材料或器械与生物体之间的相互作用,指应用材料的无毒性、无致癌性、无热原、无免疫排斥等各种反应;(3)稳定性:主要指耐生物老化性;(4)可加工性:能够加工成各种人体器官的复杂形状;(5)机械强度:在极其复杂的人体环境中,长期植入体内不会减小机械强度;(6)抗消毒性:能接受环氧乙烷气体消毒、酒精消毒、紫外灭菌、高压煮沸等而不产生变性。
3 医疗器械发展趋势
医疗器械加工将呈现出国际化、新材料、微型化的趋势,新材料如液体硅橡胶体、固体硅橡胶,可用于医用导管和球囊的制作、整形外科和护理伤口,各种硅橡胶都具有良好机械性能与医疗安全性能。目前使用的软触感热塑弹性体材料TPE,广泛应用于手术排液管、止血带、蠕动泵软管、导尿管、手术室围帘、各种疗伤用品等的生产。塑性体、弹性体、纤维树脂、线性聚乙烯、聚碳酸酯树脂已长期应用于医疗设备和装置的生产以及保健卫生用品的生产。超高分子量聚乙烯广范应用于过滤和低磨耗功能件在医学整形领域中。医用微挤出成型技术挤出直径仅为0.002英寸(0.0508毫米)的医用导管,应用于微创手术等医疗领域。
19世纪60年代,医用高分子材料开始进入一个崭新的发展时期。美国国立心肺研究所,多学科的交叉融合,品种丰富,性能完善,功能齐全。在21世纪,医用高分子开始跨入全新时代。除大脑之外,所有的组织和脏器几乎都可以用各种高分子材料来取代。从应用情况看,人工器官的功能从部分取代向完全取展;从短时间应用向长时期应用发展;从大型向小型化发展;从体外应用向体内植入发展;从与生命密切相关的部位向人工感觉器官、人工肢体发展。
4 生命质量在社会医学领域的研究进展
随着经济文化的飞速发展,生命质量越来越受到各国人们的广泛关注,生命质量逐渐成为衡量社会文明程度的重要标志。如何提高人们生命的质量成为社会医学、经济学等学科领域面临一个重要课题。生命质量的研究,对人类社会发展的定义、历史、进展的方向、历史性问题等都具有重要的意义。
社会医学领域内生命质量的研究已经经历了3个时期。一是研究早期,早在1929年,Ogburn就对生命质量的研究表示了极大的兴趣,开始了对生命质量现象的研究。二是成熟期,1957年Gurin联合美国多所院校的心理生理卫生学院在全国范围内进行了抽样性质的调查,研究人民的精神健康和关于幸福感的观念。三是分化期,生命质量研究在社会学和医学的交叉学科领域得到了跨越性的发展,并逐渐呈现出关于生命质量研究热潮。
医用高分子在医学临床的使用是生命质量提高的一个重要体现。人工器官的移植使人们免除异体移植而可能带来的抗体免疫之苦。医用高分子人工心脏瓣膜、支架为心血管患者生命的延续提供了可能。血液透析的赛璐珞薄膜使肾病患者免受病痛的折磨。医用高分子的应用不仅能够使患者的生命得以延续,更能够减轻甚至消除病人因疾病而带来的痛苦,是生命质量得以提高的一个重要体现。
5 结语
生命质量的研究首先从人的生物属性作为基本起点,进一步研究人的各种社会属性,从多维的角度反映人类个体、在群体中的健康情况。生命质量的研究同时需要医学、心理学、经济学、社会学等多种学科的共同参与,医用高分子材料和医疗器械的应用更符合社会发展和人们对于提高生命质量的真实需求。
参考文献
[1]赵成如,夏毅然,史文红.医用高分子材料在医疗器械中的应用[J].中国医疗器械信息,2006,12(5):9-10.
[2]张承焱.医用高分子材料的应用研究及发展(二)[J].中国医疗器械信息,2005,(11):17-22.
[3]冯新德.展望21世纪的高分子化学与工业[J].科学中国人,1997,(11).
[4]王守德,刘福田,程新.智能材料及其应用进展[J].济南大学学报(自然科学版),2002,(1).
[5]李鹃,王宏,.生命质量在社会医学领域的研究进展[J].中国社会医学杂志,2010,27(2):65-67.
[6]胡国清,孙振球,黄正南.生活质量研究概述[J].湖南医科大学学报(社会科学版),2001,3(2):48-51.
篇2
关键词:新课标;教育价值;基本策略
一、高中化学新教材的价值价值取向
(一)化学与新材料、新技术。材料是当今社会三大支柱产业之一,也是人类赖以生存和发展的物质基础,是人类进步的一个重要里程碑。新教材在高一教材中介绍了高温结构陶瓷、光导纤维、C60等新型无机非金属材料;在高二教材中介绍了金属陶瓷、超导材料等金属材料,功能高分子材料、复合高分子材料等新型有机高分子材料;高三教材中氯碱工业里新型的离子交换膜等。材料是科学技术的先导,没有新材料的发展,不可能使新的科学技术成为现实生产力。通过对新材料的学习,使学生明确学习化学的目的,提高学习兴趣。
新教材在“绪言”中首先介绍中科院北京真空物理实验室研究院人员以超真空扫描隧道显微镜(STM)为手段在Si晶体表面开展原子操纵研究,取得了世界水平的成果;李远哲教授与交叉分子束方法的研究等新科技的介绍。这既是很好的爱国主义教育,又把化学科学的进步与人类物质文明、精神文明的关系讲明,使学生理解学习化学的重要性,激发学生学好化学的社会责任感。
(二)化学与能源。能源也是现代社会三大支柱产业之一。随着人类经济活动的日益增大,人们对能源的需求急剧增加。化学反应所释放的能量是现代能量的主要来源之一,研究化学反应中能量变化具有非常现实的意义。高中化学新教材首次在化学教学中渗透了能量观点,如,在高一化学
第一章里提出如何提高燃料的利用率,开发新能源等与社会相关的问题。在卤素中新增了“海水资源及其综合利用”,在几种重要金属中增加了“金属的回收和资源保护”,在原电池一节介绍了化学电源和新型电池等。化学与能量、能源观点的建立,不仅仅是为了教育学生节约能源,树立环境保护意识,更侧重培养学生创新意识和创新能力,增强社会进步责任感。尤其是在第二轮新教材改革中增加了一些开放性问题的研究,有利于培养学生的创新能力、实践能力、团结协作能力等。
(三)化学与环境。保护环境已成为当前和未来的一项全球性的重大课题。新教材中介绍了臭氧层的破坏、酸雨、温室效应、光化学烟雾、白色垃圾、土壤以及水污染等环境污染问题及其防治。并将“居室中化学污染及防治”、“生活中常见污染物和防治污染”放在选学教材中。在治理这些环境污染问题中,化学已经并将继续发挥重大作用,大幅度地增强了学生的社会环保责任感,增强了学习化学的兴趣。与化学和能源一样,化学与环境从可持续发展的角度来看,在化学教育中增强了化学与社会的联系部分,因为环境科学是一门综合性的学科,而环境化学是解决环境问题的“钥匙”,环境教育与能源问题的提出对提高学生的创新意识和实践能力,培养公民综合素养有着重要的作用。这正是现代化学教育的蓝图规划,现代化学教育价值观的一种重要体现。
二、化学教育价值实现的基本策略
(一)主题型教学策略。“化学―人类进步的关键”是高中化学新课程的总主题,在整个高中化学教学过程中应该尽可能体现这一主题。如“糖类、蛋白质、油脂”可以“人类重要的营养物质”为主题;氮族元素结合生物圈中氮的循环以固氮为主题;硅和硅酸盐工业、金属和合成材料以材料为主题;化学反应与能量、原电池原理以开发新能源为主题;烃以石油化工为主题。主体型教学策略可以使学生认识到自己所学内容的社会价值及其实用性,有利于学生学习兴趣的激发和保持。
(二)用途联系型策略。在元素化合物教学中应该将现代最新的有价值的有关元素化合物用途纳入教学之中。如在学习NO的性质时,可联系医学新成就,介绍NO对人体某些疾病的治疗作用,然后提出问题:为什么大量NO吸入人体有害,而少量的NO吸入却能治疗某些疾病?在学习有机高分子材料时,可联系智能高分子材料、导点高分子材料、医用高分子材料、可降解高分子材料、高吸水性高分子材料等;在卤素学习时,可联系海水化学资源的开发、利用和饮水与消毒化学;在硅和硅酸盐学习时,可联系新型无机高分子材料等。
篇3
论文摘要:目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。
1应用于生物医学中的纳米材料的主要类型及其特性
1.1纳米碳材料
纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。
碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 K~1473 K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。
1.2纳米高分子材料
纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。
1.3纳米复合材料
目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。
此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。
2纳米材料在生物医学应用中的前景
2.1用纳米材料进行细胞分离
利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。
2.2用纳米材料进行细胞内部染色
比利时的De Mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3 nm~40 nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10 nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。
2.3纳米材料在医药方面的应用
2.3.1纳米粒子用作药物载体
一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm[7],引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。
磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。
2.3.2纳米抗菌药及创伤敷料
Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。
2.3.3智能—靶向药物
在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。
2.4纳米材料用于介入性诊疗
日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。
2.5纳米材料在人体组织方面的应用
纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。
目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。
纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。
瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。
纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。
参考文献
[1]Philippe P,Nang Z L et al.Science,1999,283:1513
[2]孙晓丽等.材料科学与工艺,2002,(4):436-441
[3]赖高惠编译.化工新型材料,2002,(5):40
[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214
[5]崔大祥等.中国科学学院院刊,2003,(1):20-24
[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133
[7]胥保华等.生物医学工程学杂志,2004,(2):333-336
[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510
[9]刘新云.安徽化工,2002,(5):27-29
[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71
[11]李沐纯等.中国现代医学杂志,2003,13:140-141
篇4
邱宁(南京财经大学招生办老师):金融学专业与金融工程专业的区别较小,这两个专业师出同门,都属于同根生的经济学学科门类,专业基础课大体相同,都要求掌握现代金融理论和方法。但是,金融学专业历史久远,主要是研究资金融通方式、金融市场和金融机构的职能与运作的专业。国内传统的金融学包括货币银行和国际金融两部分,研究理论问题、质的问题较多,知识多属文科范畴。金融工程专业是金融学中的新贵。我国对金融工程的理论研究起步较晚,与西方发达国家存在一定的差距,所以对此类人才的培养和需求显得较为迫切。2002年,西南财经大学和中央财经大学等四所大学在国内高校中首先招收金融工程专业本科生。学生主要学习现代金融理论、现代数理工具和计算机信息技术,较注重数学和计算机在金融产品及衍生品技术开发、资产定价等方面的应用,研究数理技术、量的问题较多。因而,金融工程专业一般只招理科生,对数学的要求比较高。
金融学专业的毕业生主要面向银行、证券、投资、保险及其他经济管理部门,从事相关的业务和管理工作;金融工程专业的毕业生的就业去向主要是商业银行、证券公司、保险公司、基金管理公司等金融机构和其他相关单位,从事资产定价、金融风险管理、金融产品设计等工作。
前者属工商类,后者属经济类
邱宁(南京财经大学招生办老师):财会专业与财政学专业都是财经类中带“财”字且引人注目、较为看好的专业,但两者的学科门类、培养目标等并不相同。财会专业一般指会计学、财务管理等,学科大类属于工商管理类,而财政学专业属于经济学学科大类。财会专业主要侧重于培养会计、审计、财务、投资、金融等方面管理的专门人才,就业涉及面广,有政府机关、企事业单位,也可具体到某个会计事务所,单位不论性质与大小,都有用武之地,是“吃百家饭的”。而财政学专业主要侧重于培养财政资金分配、政府预算、资产管理、资本运作、税收规划与咨询等方面的专门人才,特别是利用财政税收来合理配置各种资源、调节收入分配,对宏观经济进行调控和监督,就业面向国家及地方政府的层面需求要多一些。从这点上来说,该专业培养的是国家税务部门的“会计”,是“吃公务饭的”。就职业特点来说,财会专业人士的特点以按部就班、忠于职守,以逻辑的头脑、对数字的敏感性而著称,性格内向些、思想保守些也无妨。而财政学专业人士的特点则在于精通税收理论与实务,在强调“核算”能力的同时,擅长灵活把握与策划财力保证、关注横向协调等方面。
前者研究基因,后者学制药
褚惠萍(南京师范大学生命科学学院副书记):南京师范大学的生物工程专业从生物技术专业延伸出来,其前身是生物技术的生物制药方向,2008年升格为生物工程专业并开始招生。这两个专业的最大区别是,生物技术专业的学生学习与生物相关的技术知识,课程相对来说偏理论,毕业生拿理学学士学位,成为生物技术领域相关的科技人才。近一半优秀学生通过保送或考研进入国内著名大学和研究机构继续研究生学习,也会在高等学校、科研机构及医药、化工、食品、农林、牧渔、环保、园林等行业的企事业单位和管理部门,从事与生物技术相关的应用研究、技术开发和推广、生产管理、行政管理等工作。
生物工程专业偏重于生物医药方向,主要培养与生物制药领域相关的生物工程科技人才。前两年的基础课程和生物技术类似,但后两年的专业课主要与药学相关,比如药事管理、生物制药等课程,所学知识应用性更强,毕业生拿工学学士学位。毕业生能够在生物医药、生物化工等行业的高新技术企业从事相关产品、工艺及装备的研究、开发、设计、管理及市场营销等工作,也可在商检、药检、药事、海关、工商、税务和政府管理部门从事相关的监督管理工作。
前者是传统的中文系,后者高等数学、计算机等课程都要学
骆冬青(南京师范大学文学院副院长)、李葆嘉(南京师范大学语言科技研究所所长):汉语言文学专业与汉语言专业的区别很大。汉语言文学专业就是传统的中文系,在我国起步较早,目前国内的很多高校都开设有汉语言文学专业。该专业的学生主要学习汉语和中国文学方面的基本知识,受到有关理论、发展历史、研究现状等方面的系统教育和业务能力的基本训练。汉语言文学专业培养具备一定的文艺理论素养和系统的汉语言文学知识,能在新闻文艺出版部门、高校、科研机构和机关企事业单位,从事文学评论、汉语言文学教学与研究工作,以及文化、宣传方面的实际工作的汉语言文学高级专门人才。
汉语言专业则是南京师范大学文学院在2001年6月成立的,国内目前只有南京师范大学开设有该专业。这门专业本应叫“语言科学与技术系”,是在当时的普高本科专业目录框架内设置的,旨在培养语言科技跨学科的复合型人才的汉语言专业(语言信息处理方向),但由于国家规定的专业名称中没有“语言科学与技术专业”,因此就采用了“汉语言”这个名称。该专业招收文、理科学生,一般每年招收20人左右,以理科为主。目的是用科学的手段来研究语言,以语言学为本,沟通计算机科技、应用数学和认知科学等相关学科。学生要修读语言学、计算机、认知科学、数学等专业。目前南京师范大学设有该专业的本科生、硕士生、博士后培养点,毕业生就业范围较广,可以从事软件开发、网站研发方面的工作。
前者强调应用,后者注重研发
周华(南京工业大学药学院党总支书记):生物医药是我国七大战略性新兴产业之一。制药工程专业与药学类专业的相同点在于同属于生物医药领域,就业前景好。不同点在于所属的学科门类不同,培养方向也有侧重。制药工程专业属于工科专业,学生毕业后被授予工学学士学位;药学类专业属于医学专业,学生毕业后被授予医学学士学位,目前开设药物化学、药理学、药物分析及药物制剂四个专业方向,其中药物制剂方向的毕业生也可被授予工学学士学位。
以南京工业大学为例,制药工程专业以工程应用研究为主,专业学习主要围绕药物制造过程中的工艺技术、生产设备和药品质量控制等方面进行。依托学校教育部首批“卓越工程师”试点高校的平台,注重培养学生的工程实践能力,打造“卓越制药工程师”。大四时,学生将进入大中型医药企业接受工程实践方面的训练。学生就业后大多进入知名药企,从事医药企业的工程技术、生产管理和质量控制等领域的工作。药学类专业偏重学生科研能力的培养,主要以新药开发为主。专业学习围绕新型药物设计制造、药物安全性评价、药物新剂型开发和药品质量控制方法等方面进行。依托江苏省药物研究所、江苏省中美转化医学研究院等学科平台,学生毕业后可胜任新药研发、药品质量检验及药品临床应用等领域的工作。
前者偏化学,后者偏物理
徐蔡余(南京理工大学招生办主任):在研究领域方面,高分子材料与工程专业顾名思义,是研究材料中种类非常丰富的一个大类――有机高分子材料(橡胶、塑料等);材料科学与工程专业主要研究金属材料、无机非金属材料(陶瓷、水泥、混凝土材料)以及各种新型材料的研制方法,另外本专业也着眼于一些功能材料和复合材料的研制以及材料改性方面的研究,例如如何提高金属材料的强度、韧性、使用寿命等。
在课程设置上,高分子材料与工程专业主要学习四大化学(无机化学、分析化学、有机化学、物理化学)、高分子化学和物理、高分子材料成型加工原理和设备等基本理论课程,相比较而言更偏向于化学方向,尤其是有机化学和高分子材料合成与制备;材料科学与工程专业则有很多物理理论的课程,如固体物理、量子力学、材料物理等,比较强调对原子物理结构的认知,要求学生有良好的物理基础和求知欲。
在就业方向上,高分子材料与工程专业的学生的就业领域主要包括科研院所等事业单位和在化工、汽车、电子、医药、航空等国有及外向型企业从事研发和管理工作,如陶氏化学、京东方等;材料科学与工程专业的学生的就业领域主要包括与金属材料相关的大型传统机械制造类企业(汽车、航天、船舶、重工业)、电子类制造业、建筑类行业、特种材料制造加工单位、环保检测行业、科研院所、高校和一些特殊的认证类机构等。
前者强调金属的提炼,后者注重金属的使用
马立群(南京工业大学材料科学与工程学院教授):冶金工程专业关注的是金属产业的前期过程,主要是从矿石中冶炼提取金属与合金,包括黑色冶金的炼铁、炼钢、轧钢和有色冶金的炼铜、炼铝、炼锌等,偏重于化学知识的运用。就业一般面向黑色冶金行业的炼钢厂、炼铁厂、设计院等,有色冶金行业的铝业公司、铜业公司等。目前冶金行业的人才需求量大,就业形势很好。
金属材料工程专业关注的是金属产业的后期过程,主要是将已经提炼出的金属与合金进一步进行铸造、锻造、焊接、热处理、形变处理和腐蚀防护,使其广泛应用于工业生产和人民生活。注重金属材料的结构、性能和应用的结合,物理知识和化学知识均有所涉及。就业一般面向金属、机械、汽车、化工等与金属材料相关的行业。
前者偏应用,后者重理论
张鹏(南京航空航天大学招生办主任):这两个专业相当于信息家族中绝代双骄的“两兄弟”,名称相近,却大不相同。信息工程专业主要培养具有信息处理系统分析、设计、开发、集成及应用等方面基础知识的人才,具备通信系统、移动通信、卫星通信、广播电视、信息处理以及航空、航天、民航等领域的专业应用技术,能够独立设计、开发专门化信息处理系统。
篇5
【关键词】医学;职业技术教育;生物医学工程
【中图分类号】R318.0-4 【文献标识码】B【文章编号】1004-4949(2014)02-0316-02
基金项目:重庆市教委人文社科基金资助项目(10SKS02)
随着近20年来世界范围内高新技术的迅猛发展,职业教育在形式和数量上都有了突飞猛进的增长。基于此,联合国教科文组织(UNESCO)推出最新版本“国际教育标准分类”ISCED1997,虽然将高等职业教育仍定位于ISCED5为“第三级教育第一阶段”,但是作为“不直接通向高等研究资格证书”(not leading directly to an advanced research qualification)获得的教育层次,它将初版中分属两个不同层次的大学专科(原ISCED5)和本科(原ISCED6)以及“所有博士学位以外的研究课程”(原ISCED7中的博士前课程部分)纳入了同一层次之中,从此突破了高等职业教育(尤其是在中国)仅仅局限于专科层次的教育瓶颈,为各类职业教育建立本科乃至硕士层次的教育提供了可能[1]。与普通本科教育并行的“立交桥式”发展之路由此拉开序幕。目前我国由于临床医学、中医学、口腔医学、药学等专业要求学生掌握一定的科学技术知识以达到“能进入一个高精技术要求的专门职业”。医学本科院校在医学主干专业的人才培养定位与水平上均高于医学类高职高专院校。本文将以生物医学工程学的国内外现状为例,来探索职业教育互补于普通医学本科教育的发展之路。
1生物医学工程国内外发展现状
生物医学工程学是理、工、医相结合的边缘学科,是多种工程学科向生物医学领域渗透的产物。它是运用现代自然科学和工程技术的原理与方法,从工程学的角度,在不同层次上研究人体的结构、功能及其相互关系,揭示其生命现象,为防病治病、促进健康提供新技术手段的一门综合性的高技术学科。
1.1 80年代起生物医学工程学步入新起点 50年代是生物医学工程学发展的初期,工程技术与生物医学间的交差、渗透是从临床医学开始的,其中尤以人工器官的出现,可视为现代医学的一个重大特征。在经历了60年代的早期发展和70年代以医学影像技术为代表,所标志的生物医学工程学取得突破性进展的基础上,80年代起,生物医学工程学除继续向临床领域横向扩展外,开始在向纵深方向发展方面出现新的转折。如医学影像技术中的MRI、DSA、ECT、彩色多普勒超声诊断装置、图像文档与通讯系统等;出现了全实验室自动化系统、体外碎石机和除颤器等治疗装置以及微波、射频、激光、超声等各种治疗技术。
1.2 90年代与更多的学科交叉、融合 组织工程:是生物医学工程、细胞生物学、分子生物学、生物材料、生物技术、生物化学、生物力学,以及临床医学等学科间的不断交叉、渗透与融合,而形成的新的前沿科学。所涉及的组织有软骨、皮肤、胰腺、肝脏、肾脏、膀胱、输尿管、骨髓、神经、骨骼肌、肌键、心瓣膜、血管、肠、等,其中皮肤已有初步产品进入临床应用。我国自90年代初开始了有关的基础研究工作,并列入了国家重点基础研究发展规划(973),成为国家的重点支持项目。生物芯片:在实施人类基因组计划的推动下,DNA微探针阵列的基因芯片是最重要的生物芯片之一。它可以在同一时间内分析大量的基因,实现生物基因信息的大规模检测。微米/纳米技术:是指量度范围分别在0.1?100微米(?m)和0.1?100纳米(nm)内的物质或结构的制造技术。其最终目标是,人们将按自己的意志直接操纵单个原子、分子或原子团(小于10nm)、分子团,制造具有特定功能的产品,包括纳米材料学、纳米电子学、纳米机械学、纳米生物学、纳米显微学等等新的高技术群。我国在大尺寸纳米氧化物材料制备方面,已成功地研制出致密度高、形态复杂、性能优越的纳米陶瓷,从而进入了国际领先行列。日本研制出的“万能医用微型机器人”,可在不损害任何人体器官的情况下,沿着血管或胃肠道行进到发病部位进行检查,医生可指令机器人取组织样品、直接释放药物、清除血栓、切断或接通神经和进行细胞操作等精细手术。家庭保健工程(Home Health Care, HHC):美国、日本和欧洲等均已将HHC作为重要内容列人21世纪的生物医学发展战略,成为优先资助的领域之一。即将家庭保健管理系统、疾病早期预报、家庭治疗和康复仪器、家庭急救支援系统等技术和产品作为重点开发项目。我国开展HHC的研究与开发以家用治疗产品为最多。通过采用电话传输监护网的方式进行心脏监测和急救,已在我国北京、上海、天津、南京、广州等大城市相继开展起来。
1.3 生物医学工程学传统领域的发展 生物材料:自50年代出现合成高分子材料以来,生物材料取得了很大发展;如今,合成高分子材料,天然高分子材料,医用金属材料,无机生物医学材料,以及由活体材料和非活体材料构成的杂化生物材料,几乎在临床医学各个领域得到广泛的应用,并最终导致了标志着本世纪现代医学重大特征之一的人工器官的出现;在此基础上,90年代生物材料又在向着复合/杂化型、功能型和智能型的方向发展。医学影像技术:在生物医学工程学中,像X射线、超声波、磁共振、放射性核素、红外线等物理源的医学影像技术,对医学的发展起了很大的推动作用,数字化、网络化、综合化已成为目前医学影像技术的总体发展方向。生物医学工程学所涉学科尚有生物力学、医学电子学、人工器官等等。
2国内生物医学工程专业建设情况
生物医学工程专业属工科专业,具有很强的多学科交叉性和前沿性,强调数理科学、电子信息和计算机技术等理工科知识与生物医学知识的有机结合。本专业课程设置除数理化及工程基础课外,主要专业课程有:电路、信号与系统,模拟与数字电子技术,数字信号处理,生物医学传感器与检测技术,微机原理与应用,单片机在医学中的应用,生命系统分析与仿真,生物医学信号处理,生物医学仪器,医学成像技术,医学图像处理,医学超声波,工程生理学,人体解剖学,组织胚胎学,自动控制,计算机与信息系列课程等,并开设多个专业课程设计,做到教学与实验设计并重。目前国内开设生物医学工程专业的学校,一部分是医科院校,一部分是各大综合类院校。排名前十的有浙江大学、四川大学、上海交通大学、东南大学、西安交通大学、天津大学、清华大学、华中科技大学、南方医科大学、大连理工大学。而在香港大学,生物医学工程学由工程学院与医学院合办,学生将学习到有关工程和生命科学的原理,理解不同类型的先进医学工程系统之设计和运作,掌握工程技术在医学领域的应用。
3医学职业教育可以在生物医学工程专业中寻找“立交桥式”发展契机
医学职业教育类院校,应该与本科院校错位发展。以生物医学工程专业为例,应该培养计算机网络技术服务和各类大型医疗设备的操作与维护方面的专业人才;计算机网络技术包括:数字化医学中心,医学图象处理及多媒体在医学中的应用,生物信息的控制及神经网络生物医学信号检测与处理。要求学生深入掌握电子技术,计算机技术,信息处理理论医学与工程相结合的科研能力,解决生物医学领域中的科学研究,医疗仪器研制,产品开发以及大型医疗设备的操作,维修管理等问题,同时也能胜任其他领域的电子技术及计算机技术。学生主要学习生命科学、电子技术、计算机技术和信息科学的基本理论和基本知识,受到电子技术、信号检测与处理、计算机技术在医学中的应用的基本训练,具有生物医学工程领域中的研究和开发的基本能力。
3.1 生物信息技术 实现生物技术和信息技术以及其他学科的有机结合,发展生物信息高通量、高效、快速的提取方法,发展疾病检测的新方法和新技术,发展研究药物与靶标作用的新方法,发展基因组数据、蛋白质组数据和结构基因组数据的计算机处理、分析和可视化方法,解析生物大分子结构和功能之间关系等,提高生物信息处理、分析和利用的水平,为我国生命科学和生物技术的源头创新奠定基础。
3.2 医学图像与医学电子学 医学图像处理和分析、计算机辅助诊断和治疗、医学物理等,以及生物、医学和工程学等领域理论和方法,并通过这些学科的交叉形成了新型学科。
3.3 生物与医学纳米技术 包括纳米生物材料、纳米生物器件研究、纳米生物技术在临床诊疗中的应用、纳米材料与器件的计算模拟。
3.4 生物与医学纳米技术 生物医用材料研究,用于人体、器官的诊断、修复、替换或增进其功能。
3.5 医学信息学及工程 应用系统分析工具这一新技术来研究医学的管理、过程控制、决策和对医学知识科学分析。
4以生物医学工程为例,探讨医学职业教育的前景
生物医学工程专业修业年限为四年或五年。授予学位是工学学士。就业前景良好,由于科学技术的发展,各类大型医疗设备的应用越来越广泛,大型医疗设备的操作、维修及管理人员是各大医院及公司急需的人才。毕业后可从事医学机构中医疗器械的维护、使用、销售和和医疗电子系统的开发与维护,辅助医生观察、诊断、治疗疾病。职称由卫生部组织统一考试评定,颁发临床医学工程技术(初级士、初级师、中级等)证书。
医学职业教育不仅要解决国家发展急需的基层卫生人才的培养问题,更重要的是要引领区域经济向先进领域拓展,提升地方行业水平。建设西部教育高地,需要在技术类专业中大胆创新,走别人没有走过或者没有走出规模的路。其重要意义体现在以下几点:①医学应用技术类专业虽然具有办学成本高、难度大等不利因素,但也具有技术含量高、可直接转化为现实生产力的巨大优势。②医学应用技术类专业走向产业化,对引领区域经济发展、拓展地方行业布局和提升地方行业水平都具有重要的现实意义。③医学应用技术类人才培育专业群的建成,将为地方输出高素质的技能型人才,同时也能提供高水平的就业岗位,有助于拉动地方经济,整体提高地方生产力。④医学应用技术类专业人才的聚集,与提高区域人才质量、推动地方经济发展进程直接相关。斯坦福大学在成立之初不被看好,但坚持将硅谷建设与学校成长联系在一起,最终成为世界名校就是例证[2]。
5结语
在国家拉动内需、教育优先的有利政策指引下,在医学职业教育领域大力发展医学应用技术专业是切实可行的。用教学做一体化培养医学技术专业人才,为地方医学应用技术产业化发展提供智力支撑,其意义也是深远的。创立医学应用技术专业基本原则是按照专业设计,分步骤解决专业基本格局,建设教学做一体化生产性实训基地,逐步提升专业办学水平和内涵质量,最终构建具有影响力的专业群。在全国众多的医学类高职高专院校中同质化办学的现象非常突出,上海医疗仪器高等专科学校涉足生物医学工程领域外,还没有一所学校开设生物医学工程的相关专业[3]。现代医疗活动是建立在庞大的医疗仪器设备的辅助诊断和治疗基础上的,急需医学工程技术的大量人才。只有大力拓展医学相关技术领域的办学,才能真正在传统医学专业之外办出既有生命力又有制高点的医学职业技术教育。
参考文献
[1]Issenberg SB,Mcgaghie WC,Petmsa ER,Gordon DL,Scalse AJ.Features and uses of high―fidelity medical simulations that lcad to effective learning:a BEME systemic review.Medieal Teacher,2005;27:10-28.
篇6
关键词:模型牙;离体牙;根管治疗术
中图分类号:R-3 文献标志码:A 文章编号:1674-9324(2015)49-0274-02
根管治疗术是目前治疗牙髓根尖周疾病的最有效方法,根管治疗术的临床操作技巧性很强;需要操作者对牙体解剖结构有良好的掌握,才能够顺利建立根管直线通路,彻底疏通并有效清理根管系统中的感染物质,从而实现根管系统的严密充填封闭。根管治疗术是口腔医学专业学生临床学习的重点内容之一。
在根管治疗临床前期教学中,选择适合的牙齿或牙齿代用品并准确模拟临床状况成为教学中的一个重要问题。通常应用包埋在石膏模型中的离体牙,但离体牙的解剖变异大,且来源受限收集困难,并不利于本科生的学习应用。目前高分子材料制作的模型牙具有规格统一、操作简便、便于学习应用等特点,高分子材料的仿头模模型及模型牙逐渐广泛应用于临床前期教学中。树脂透明牙模型具有直观的优点,但操作在口外环境直视下进行,不利于学生临床思维能力和想象力的培养和锻炼。
为探索根管治疗术临床前期教学中适宜的根管模型,我们在部分学生中分别应用根管模型牙及离体牙进行操作培训,并进行评估以便为教学提供参考。
一、材料与方法
1.材料:
(1)透明根管模型牙24颗,由日进齿科材料(昆山)有限公司提供,分别为上颌中切牙、上颌第一双尖牙、上颌第一磨牙、下颌第一磨牙各6颗,均置入相应的仿真牙列模型备用。
(2)离体牙模型:选择拔除后较完整的人离体牙24颗(上前牙6颗、双尖牙6颗、上颌第一磨牙、下颌第一磨牙各6颗),用戊二醛浸泡消毒处理后,按照牙位依次置入标准橡胶阴模内,缓慢注入石膏并置振荡器上振荡防止气泡产生,60分钟后石膏硬固后脱模备用。
2.方法。6名学生分别使用固定在仿头模型上的4颗模型牙和4颗离体牙进行开髓、牙髓摘除、根管预备和充填,并采用拍摄术中、术后X线片法对模型牙、离体牙的根管预备及根管充填情况进行评价。
3.操作顺序。操作按从易到难的顺序进行,依次为模型上颌中切牙、离体上前牙、模型上颌第一双尖牙、离体双尖牙、模型上颌第一磨牙、离体上颌第一磨牙,模型下颌第一磨牙、离体下颌第一磨牙;分根管预备及根管充填两步完成根管治疗。使用逐步后退法进行根管预备,试尖后采用热牙胶垂直加压根管充填,术前、试尖及根管充填后均摄X片。
4.分别计算每颗牙齿学生所花费的开髓时间、标准开髓洞型数量及比例、根管疏通率、根管预备花费时间、根管充填所花费时间,以评价应用模型牙及离体牙的教学效果。
5.根充结果评价:根管充填情况依据X片进行评判,评价标准[1]为:恰填:充填物严密封闭根管,并距解剖根尖孔0.5~1.0mm;欠填:充填物之间或充填物与根管壁不密合,或充填物距解剖根尖孔大于1.0mm;超填:充填物与解剖根尖孔的距离小于0.5mm,或充填物超出解剖根尖孔。
6.统计分析:所有数据应用SPSS11.0进行统计分析。
二、结果
6名学生共充填模型牙根管54个(前牙6根管,双尖牙12根管,磨牙36根管)、离体牙根管63个(前牙6根管,双尖牙12根管,磨牙45根管),充填结果及预备及充填情况见表1。
同一牙位进行比较时,模型牙相对于离体牙所用开髓时间短,所制备的标准开髓洞型比例相对较高;应用模型牙进行根管预备所花费时间及根管充填时间均少于离体牙所费时间。经t检验,各项指标在模型牙与离体牙两组间具有显著性差异。
而对6名学生应用仿真牙、离体牙根管充填情况进行统计分析表明:模型牙根管恰填比例(25/54,46.30%))虽高于离体牙(22/63,34.92%),但两组间并无统计学差异;而两组牙齿欠填率、超填率则均有统计学差异。
三、讨论
牙体牙髓病学是一门实践性很强的学科。除了理论课教学外,实验课教学是重要环节。以往牙体牙髓病学实验课教学中,常常是手持离体牙进行口外操作,与临床实际情况相差较大,无法让学生体会操作中的调节、支点运用、前后牙位及上下颌位的变化,照明及口镜操作也得不到训练。这导致了实验课教学与临床实践的脱节,影响了教学效果;部分实验课虽然使用离体牙灌注全口模型口内操作,但也存在一些不足,随着牙齿保存技术的提高,符合学生实验练习需要的离体牙收集越来越困难。因此,将离体牙与标准化的模型牙结合应用于教学,有助于提高教学效果[2]。
恰填是确保根管治疗术远期疗效的基本要求。通过对根管充填情况分析发现,模型牙、离体牙的恰填率均不理想,同一牙位模型牙的恰填率模型牙略高于离体牙,但无统计学差异;而两组牙的欠填率、超填率均具有显著性差异。一方面可能是由于学生在仿头模型上操作不够熟练、对根管充填标准掌握不够准确的原因。另一方面也与所使用的牙齿相关:模型牙根管较粗而直、根尖孔大而缺少生理性根尖孔狭窄区,这些特点往往导致模型牙根管超填率较高;而实验教学中离体牙多选择相对完整的离体牙,这类牙齿通常是来源于老年人因牙周病拔除的患牙,多数牙齿根管发生钙化而纤细且弯曲,学生进行根管预备相对困难,往往不能顺利达尖,故而离体牙的欠填率相对较高。
模型牙与天然牙大小一致,可方便地安装在仿头模上;仿真模型牙的硬组织部分设计成牙釉质和牙本质两种质地,硬度与天然牙较为接近;模型牙通常具有清晰、典型的髓腔结构和根管系统。模型牙髓腔的髓室壁还可使用染料进行染色,可方便而清晰指示根管内壁所附感染物是否清除完全,从而使得操作具有良好的统一性。
仿真模型牙具有操作简便、标准统一、便于学习掌握的特点,仿真模型牙的应用为学生在教学实验室中模拟口腔环境进行临床前操作训练提供可能。本研究结果也显示相对于离体牙上操作时间,在模型牙上完成开髓、根管预备、根管充填等三项操作的时间均有明显缩短;而模型牙上标准开髓洞型比例、根管疏通比例均高于离体牙。这提示学生在模型牙上进行根管治疗术的操作练习可能会较离体牙相对更为容易些[3]。
当然,模型牙仍存在诸多不足,例如:模型牙是由高分子材料制造,物理机械性能方面并不能完全模拟天然牙釉质和牙本质,从而影响学生进行牙体预备窝洞及根管预备扩挫时的真实手感;而模型牙的髓腔、根管的设计相对粗大,根尖1/4形态多不完整,没有根尖区生理性缩窄,缺少正常根管的弯曲和狭窄,常常影响学生对髓腔、根管形态和根管变异的正确认知,无法准确把握根管预备的工作长度,从而使根管治疗术的训练受到一定程度的影响。
由于模型牙的髓腔结构、根管形态较为标准,更易于帮助学生对根管系统解剖形态的认知,有利于学生初步掌握根管治疗术基本步骤;相对而言在离体牙上进行根管治疗术操作则复杂性及难度较大。因此,建议在使用仿真模型牙训练后再进行离体牙练习,则更接近临床实际,使学生能较为真实的感受牙釉质、牙本质硬度,初步感知根管系统形态和变异,弥补模型牙结构简单手感差等缺点,并复习操作步骤,掌握治疗要点,从而提高实验教学效果。
综上,根管治疗术实验教学选用何种牙齿将直接影响教学的效果。合理安排教学内容,在应用模型牙的同时配合使用离体牙,可以有效弥补模型牙及离体牙各自的缺点,促进学生对根管系统的认知和对根管治疗术基本步骤的初步掌握,获得令人满意的教学效果。
参考文献:
[1]Schaeffer MA,White RR,Walton RE. Determining the optimal obturation length:a meta-analysis of literature[J].J Endod,2005,31(4):271-274.
篇7
1.1细胞分离与染色
纳米细胞分离技术的出现有助于解决生物医学中快速获取细胞标本的难题。将15~20nm的SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮(PVP)溶液中,利用梯度原理,通过离心技术快速分离所需要的细胞[1]。用这种方法很容易将怀孕仅8周左右的孕妇血样中极少量的胎儿细胞分离出来,通过对其染色体的分析,判断胎儿是否有遗传缺陷。应用纳米免疫磁珠检测早期肺癌患者循环血液中的肿瘤细胞,可以监测肺癌的转移情况[2]。
纳米颗粒也为建立新的细胞染色技术提供了新的途径。段箐华等[3]用联吡啶钌配合物[Ru(Ⅱ)(bpy)3]2+、异硫氰酸罗丹明B(TRITC)、异硫氰酸荧光素等荧光分子标记SiO2纳米颗粒,实现了体外对B淋巴细胞、肝癌细胞、早期凋亡乳腺癌细胞、系统性红斑狼疮细胞的特异性识别。异硫氰酸荧光素标记的SiO2纳米颗粒表面接特异抗体,可用于免疫学检测[4]。
1.2纳米造影剂
无机纳米粒子因其形状、尺寸和组成的不同而具有独特的物化性能,可用作新型生物造影材料,能提供良好的检测信号对比度和生物分布度,提高诊断效率,并有望将现有的解剖学层面的造影技术推向分子水平,即“分子造影”[5-7]。纳米造影剂一般需要3个组成部分:(1)无机纳米粒子核,如金、氧化铁等,用以实现造影增强效果;(2)水可分散的壳层,如聚乙二醇等,用以提高无机纳米粒子核的溶液稳定性;(3)赋予靶向功能的生物活性分子,如蛋白、多肽和抗体等。
高分子修饰的氧化铁纳米粒子,如葡聚糖包裹的超顺磁性氧化铁纳米粒子已被用于临床以提高解剖学层面的磁共振造影[8],也被用于分子造影[9]。传统的检测方法对Ⅰ、Ⅱ期癌症检出率小于15%,使用高磁共振对比度的造影剂能够提高早期癌症的检出率。例如,乳腺癌细胞过度表达人上皮增长因子受体2基因(HER2/neu)[10],将磁性纳米粒子(MNPs)偶联上HER2的抗体赫赛汀,就可以将SK-BR-3乳腺癌细胞检测出来[11]。用MNPs偶联赫赛汀探针还可以测出不同细胞的HER2表达量[12]。同样,可以用偶联了rch24抗体的Fe3O4靶向癌胚抗原来诊断结肠癌[13];用偶联了HmenB1抗体的FePt-Au来靶向成神经细胞瘤细胞(CHP134)过度表达的聚唾液酸(PSA)[14]。合金MNPs,如FePt@CoS2等兼具造影和治疗功能。
FeP@tCoS2纳米粒子被HeLa细胞摄入以后,在癌细胞的酸性环境中释放出的Pt+能导致癌细胞凋亡[15]。SiO2@Fe3O4@Au纳米粒子可以用于磁共振造影和治疗,当其与抗HER2基因抗体偶联后有明显的T2加权造影效果,再加上持续的光照,由金壳产生的能量能将癌细胞杀死,起到治疗作用[16]。
金纳米粒子因为其独特的表面等离子共振效应被用作光学造影剂和传感器[17-19]。利用金纳米粒子的表面易于功能化的特性,El-Sayed等[20]在金纳米粒子表面偶联表皮生长因子抗体(anti-EGFR),使金纳米粒子靶向富集在表皮生长因子高表达的口腔上皮癌HOC313细胞上。与普通上皮细胞HaCaT相比,经表面改性的金纳米粒子在HOC313细胞中表现出了更清晰的造影效果。以壳聚糖为纳米载体的复合微球成功地将包覆的金纳米粒子与药物一同送入细胞核,起到了细胞核给药和细胞核造影的双重功能,实现了金纳米粒子的多功能化[21-22]。
半导体纳米粒子(又称量子点)已经被用作荧光探针,用于细胞标记和光学探针[23-24]。美国华盛顿大学的研究人员用蛋白将一个量子点内核包裹在一个直径为3nm的超薄金壳中,使两部分的光电特性不受彼此的干扰,从而首次实现了将半导体和金属纳米粒子结合在一起而仍能保留各自的功能,量子点可用于荧光成像,金球则可用于散射成像。
1.3纳米传感器和新型纳米诊断技术
虽然对纳米传感器的研究时间较短,但其优点是不容置疑的。由生物大分子构成,利用化学能进行机械做功的分子马达纳米传感器,使其尖端插入活细胞内而又不干扰细胞的正常生理过程,来获取活细胞内多种反应的动态化学信息、电化学信息。如利用ATP酶作为分子马达的纳米传感器能进入人体细胞,完成在人体细胞内监测和药物释放等任务,可以连续监测体内代谢变化,对肺部小血管内NO和CO的监测结果对于高血压和心血管疾病的诊断和治疗具有重要意义[25]。其他的分子马达还包括RNA聚合酶、肌球蛋白和驱动蛋白等[26]。在糖尿病治疗中可将纳米生物传感器置于真皮层检测葡萄糖水平,从而指导给药。斯坦福大学的科学家最近利用纳米科技及电磁效应发明了一种生化传感器,这种传感器可以及早发现癌症的早期症状,利于对患者及时进行治疗。
随着隧道扫描显微镜和原子力显微镜的问世,人们能够在纳米尺度上了解生物大分子的精细结构及其与功能的关系,并动态获取生命信息[27]。利用原子力显微镜可以在纳米水平揭示肿瘤细胞的形态特点,通过寻找特异性的纳米结构改变实现对肿瘤的早期诊断,从而解决肿瘤诊断的难题[28]。
2纳米药物载体和纳米药物
纳米药物与传统的分子药物(molecularmedicine)的根本区别在于它是颗粒药物(particulatemedicine)。广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等。二是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物[29]。
2.1纳米药物载体
实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料有金属纳米颗粒、生物降解性高分子纳米颗粒及生物活性纳米颗粒等[30]。理想的纳米药物载体应具备以下性质:毒性较低或没有毒性;具有适宜的制备及提纯方法;具有合适的粒径与形状;具有较高的载药量;具有较高的包封率;对药物具有良好的释放特性;具有良好的生物相容性,可生物降解或可被机体排出;具有较长的体内循环时间,并能在疗效相关部位持久存在等。
2.1.1抗肿瘤药物载体肿瘤的纳米靶向治疗以纳米粒为载体,将药物或制剂定向于肿瘤部位,可以大幅度提高药物的生物利用率,提高疗效,降低用药量,减少毒副作用,已成为国际肿瘤药物研制中的热点和前沿。
恶性肿瘤周围及其实质有大量的新生毛细血管形成,这些血管通透性高,400~600nm以下的纳米颗粒可穿过血管到达肿瘤组织。Alexiou等[31]在动物模型上用磁性纳米粒负载抗癌药物进行区域动脉灌注,外加磁场定位浓集,发现纳米粒子随血液流入肿瘤部位并渗透到肿瘤组织内,提高了药物的治疗指数。Mu等[32]将生物可降解聚合物PLGA纳米粒、VitaminE、TPGS和抗肿瘤药物紫杉醇混合在一起,药物可较容易地到达肿瘤部位而发挥靶向效应作用。杨凯等[33]在治疗口腔癌颈淋巴结转移灶时,将抗癌药物葫芦素BE装载到聚乳酸纳米微粒上,发现药物可靶向到达病变部位,毒副作用和局部刺激作用显著减小。
恶性肿瘤的纳米粒磁导靶向热疗也是有效的方法,热疗本身可以破坏肿瘤细胞。将磁性纳米粒子经包裹或修饰后选择性地注射到肿瘤部位,然后施加交变磁场,纳米粒子受到交变作用而产热,可提高放疗和化疗的效果。口腔颌面部肿瘤位置相对表浅,是最适合作磁导靶向化疗和磁导靶向热疗的部位。此外,由于纳米脂质体载体具有较好的药物、基因和成影剂包封率,在肿瘤造影成像等方面显示出较好的优势[34]。
2.1.2中枢神经系统(CNS)药物载体血脑屏障对于维持CNS的相对稳定起着重要作用,但其毛细血管连接紧密,大多数药物很难通过血脑屏障进入CNS。因此,如何使CNS药物跨越血脑屏障从血液进入脑内且发挥药效是药物传递系统需要解决的一个难题。纳米粒子作为药物载体,为不能透过血脑屏障的CNS药物入脑提供了新途径。Sun等[35]以聚乳酸为基质,制备了装载异硫氰酸荧光素-右旋糖酐的纳米粒,并将纳米粒用聚山梨酯-80包衣,给小鼠尾静脉注射后发现纳米粒可主动靶向脑组织。Kepan等[36]同时给小鼠注射采用聚山梨酯-80包衣的甲氨蝶呤聚氰丙稀酸丁酯纳米粒子(PBCA-NP),未包衣NP及甲氨蝶呤溶液,通过检测脑脊液及脑组织内药物浓度显示,采用聚山梨酯-80包衣的甲氨蝶呤PBCA-NP能显著提高脑内甲氨蝶呤药物浓度。Petri等[37]研究显示,泊洛沙姆-188包衣的PBCA-NP与聚山梨酯-80包衣的PBCA-NP均能显著提高阿霉素的抗脑肿瘤活性。
Oliver[38]发现,用聚山梨酯-80修饰的PBCA-NP通过血脑屏障的机理,部分是由于载体降解产生的毒性打开了脑血管内皮的紧密连接。Ulbrich等[39]发现,用人血清白蛋白纳米粒子包无跨血脑屏障能力的药物洛哌丁胺(loperamide),并与转铁蛋白或转铁蛋白受体的单克隆抗体OX26共价结合后,能够借助血脑屏障上转铁蛋白受体介导的胞吞作用进入脑组织,产生强烈的抗伤害性药效。将神经生长因子载入表面经聚山梨酯-80修饰的PBCA-NP,注射帕金森病小鼠模型后可在21d内持续发挥抗帕金森病的疗效[40]。抗菌药物环丙沙星(ciprofloxacin)装载入表面修饰了HIV-1反式激活蛋白(TAT)的聚乙二醇纳米粒子,利用TAT能将异源蛋白导入细胞内或穿过血脑屏障的特点,通过检测发现该抗菌药物能被人类星型胶质细胞摄取,此法还可用于使其他抗生素跨越血脑屏障,从而治疗脑部感染[41]。
2.1.3其他胰岛素(insulin,INS)的降糖疗效明显,但普通制剂的INS口服给药不易吸收,且容易被胃蛋白酶、胰蛋白酶和肠激酶等降解,因此目前临床上INS的常规给药途径为注射给药。大量的研究工作证实,口服纳米囊可保护INS不被酶破坏,提高INS的生物利用度,减少用药次数。Mesiha等[42]制备的聚氰基异丁酯丙烯酸纳米粒可将药物作用时间从6h延长至72h,生物利用度更好。Merisko等[43]制得INS纳米粒,通过体外实验证明其有良好的缓释能力。Christiane等[44]用生物聚合物和非生物聚合物复配制得纳米粒子,可将INS包裹在纳米粒子的内核,对INS的包封率可达到约96%,并且实验证明有很好的缓控释效果。纳米药物控释系统还被用来防治血管再狭窄[45]。
再狭窄是冠状动脉经皮腔内成形术(PTCA)后常见而严重的并发症,运用微孔球囊介入导管将纳米粒子自由分散形成的乳状悬浮液置于PTCA部位,可以达到防治再狭窄的效果。另外,载药纳米粒子进入动脉壁后,随着可降解材料的逐渐水解,其内含的药物便缓慢持续释放出来,从而实现药物在动脉内局部定位。用纳米颗粒,包括纳米胶束、纳米脂质体等作为基因转移载体,已引起医学界广泛重视。其原理是纳米颗粒作为载体将DNA、RNA、PNA(肽核苷酸)、dsRNA(双链RNA)等基因治疗分子包裹其中,或者通过静电引力或吸附将治疗分子固定在其表面形成复合物,在胞吞作用下纳米颗粒进入细胞,释放基因治疗分子,发挥治疗效能[46]。
2.2纳米药物
直接以纳米颗粒作为药物的应用之一是抗菌药物。纳米抗菌药物具有广谱、亲水、环保、遇水后杀菌力更强、不会诱导细菌耐药性等多种性能。以这种抗菌颗粒为原料,成功地开发出了创伤贴、溃疡贴等纳米医药类产品。例如,纳米二氧化钛树脂基托材料具有一定的抗变形链球菌和抗白色念珠菌的效果,当树脂基托中抗菌剂的浓度达到3%时,即可达到满意的抗菌效果[47]。郭春兰[48]用纳米银医用抗菌敷料对142例患者的手术切口进行护理,所有切口均无感染并Ⅰ期愈合,同常规使用普通无菌敷贴覆盖切口的方法相比,平均每例的愈合时间提前1.69d。
无机纳米颗粒作为新型的抗癌药物为肿瘤治疗提供了新的思路。Liu等[49]用Gd@C82(OH)22处理荷肝癌的小鼠,在10-7mol·kg-1的注射剂量下能有效地抑制肿瘤生长,同时对机体不产生任何毒性。其抑瘤效应不是通过纳米颗粒对肿瘤的直接杀伤起作用,而是可能通过激活机体免疫来实现对肿瘤的抑制作用。纳米羟基磷灰石在体外对恶性肿瘤细胞产生明显的抑制作用,而对正常细胞作用甚微,可望通过进一步的研究获得一种区别于传统的化疗药物的纳米无机抗癌药物[50-51]。此外,有的物质纳米化后出现新的治疗作用,如二氧化钛纳米粒子可抑制癌细胞增殖[52];二氧化铈纳米颗粒可以清除眼中的电抗性分子并防治一些由于视网膜老化而带来的疾病[53]。
3组织修复和再生医学中的纳米材料
将纳米技术与组织工程技术相结合,构建具有纳米拓扑结构的细胞生长支架正在形成一个崭新的研究方向。相对于微米尺度,纳米尺度的拓扑结构与机体内细胞生长的自然环境更为相似。纳米拓扑结构的构建有可能从分子和细胞水平上控制生物材料与细胞间的相互作用,引发特异性细胞反应,对于组织再生与修复具有潜在的应用前景和重要意义[54]。将纳米纤维水凝胶作为神经组织的支架,在其中生长的鼠神经前体细胞的生长速度明显快于对照材料[55]。向高分子材料中加入碳纳米管可以显著改善原有聚合物的传导性、强度、弹性、韧性和耐久性,同时还可以改进基体材料的生物相容性。研究发现,随着复合物中碳纳米管含量的增加,神经元细胞和成骨细胞在复合材料上的黏附与生长也越来越活跃,而星形细胞和成纤维细胞的活性则呈现同等程度的下降[56-57]。Freites[58]设计的人造红细胞输送氧的能力是同等体积天然红细胞的236倍,可应用于贫血症的局部治疗、人工呼吸、肺功能丧失和体育运动需要的额外耗氧等。Murphy等[59]成功合成了模拟骨骼亚结构的纳米物质,该物质可取代目前骨科常用的合金材料,其物理特性符合理想的骨骼替代物的模数匹配,不易骨折,且与正常骨组织连接紧密,显示出明显的正畸应用优势。
纳米自组装短肽材料RADA16-I与细胞外基质具有很高相似性,RADA16-I纳米支架可以作为一种临时性的细胞培养人工支架,它能很好地支持功能型细胞在受损位置附近生长、迁移和分化,因而有利于细胞抵达伤口缝隙,使组织得以再生。有研究人员[60]利用RADA16-I纳米支架修复了仓鼠脑部的急性创伤,并且恢复了仓鼠的视觉功能。RADA16-I形成的水凝胶可用作新型的简易止血剂,用于多种组织和多种不同类型伤口的止血。
4纳米中药
“纳米中药”是运用纳米技术制造的粒径小于100nm的中药有效成分、有效部位、原药及其复方制剂[61]。纳米中药不是简单地将中药材粉碎至纳米数量级,而是针对组成中药方剂的某味药的有效部位甚至是有效成分,进行纳米技术加工处理,赋予传统中药以新的功能。
中药纳米化可以使细胞破壁,大大提高中药有效成分的渗透性或溶解度,提高生物利用度;利用纳米化的中药所具有的缓释功能和靶向给药功能,在提高药效的同时降低毒副作用;利用中药的纳米包覆技术能改变一些中药制剂的亲水、亲油性,提高临床疗效。例如,用纳米粉碎技术将中药黄芩、黄连、黄柏、地榆超微粒化,添加纳米锌、硒等微量元素,加广谱强效纳米银系(AT)抗菌剂、麦饭石纳米粉、远红外二氧化钛、电气石在传统中药配方基础上制成的纳米中药,用于烧烫伤的治疗,提高了药物疗效[62]。将超临界二氧化碳萃取技术用于中药挥发油提取和中药有效成分的提取,通过包覆技术把中药挥发油和中药有效成分制备成纳米药物。超临界二氧化碳萃取技术已广泛用于对菖蒲根、金丝桃叶、月桂叶、肉豆蔻、苍术、高良姜等的有效成分进行提取和对紫苏、香薷、防风、辛夷、苍术、厚朴、细辛、木香等挥发油的提取[63]。
对中药挥发油采用包合技术制备包合物,用纳米尺度的分子材料(主要是环糊精类)作为载体材料,形成不到2nm的药物超微粒,其内径为0.7~0.8nm,可容纳几个药物分子,这样的包合物又称为分子型包囊[64]。由于载体是种多羟基物质,且羟基排列于筒状结构的外壁,极易分散于水中,筒内侧可包裹水难溶性的药物分子,从而大大提高水难溶性药物在水中的溶出和体内的吸收,提高生物利用度,还可降低药物的刺激性,增加药物的稳定性。药物脂质体制剂在纳米中药的研制中也得到了日益广泛的关注。如纳米雄黄脂质体[65]、辛夷挥发油纳米脂质体[66]、马钱子碱脂质体的研究[67];鱼腥草挥发油纳米脂质体的制备及其肺靶向效果[68]等。
纳米中药的研究和应用仍处于起步阶段,存在许多亟待解决的问题,如纳米中药的药效不确定性及可能的毒副作用、纳米中药的有效成分和稳定性难以控制等。但目前已经取得的一些成果表明,纳米中药的研究极大地丰富了中药的剂型,对中药的研究和开发产生了巨大的推动作用。这方面研究的深入能在纳米中药的制药技术、药效等诸方面建立更多具有自主知识产权的专利技术和创新方法,促进中药制剂的标准化和国际化,提升中药的市场竞争力。
5纳米医学材料的安全性
纳米材料在医学领域已应用于药物载体、癌症治疗、基因治疗、抗菌材料、组织工程、医学诊断等方面,给人类带来了许多好处。然而,有关纳米材料毒理学的报道也很多[69-70]。由于纳米材料具有小尺寸效应、表面和界面效应以及量子尺寸效应等特性,可能引发特殊的生物学效应,给人类健康和环境带来负面影响。例如,Yeo等[71]指出具有抗菌效果的纳米银可在水生环境中蓄积,对斑马鱼胚胎发育有毒性作用。
从纳米医学材料大小与DNA、蛋白质、病毒等生物分子的尺寸相当这一事实很容易想到,即使化学组成相同,纳米物质的生物毒性也可能不同于微米尺寸以上的常规物质[72]。根据常规物质研究所得到的毒理学数据库与安全性评价结果,可能不适用于纳米物质;现有的安全评价方法、技术又都不太适用于纳米医学材料对人体风险评价[73]。这些问题正是目前纳米医学材料安全性评价的困难所在。
纳米材料的安全性评估是一个全球性关注的问题,美国、欧盟、日本纷纷斥巨资展开纳米材料的安全性研究,我国也已将其列入国家“973”重点基础研究规划项目。纳米技术涉及很多学科,如电子、生物、物理、化学等等。因此,对医用纳米材料安全性的评估不是单一的某个学科可以完成的,而是需要临床医学、基础医学、毒理学、物理学、分子生物学、化学和环境科学等多学科的融合,充分利用各种先进的分析技术,开展多学科的综合研究。
6展望
虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪是纳米科技的世纪,人们将以全新的角度和视野看待生物医学问题,在纳米水平上可以更加深入地研究各种组织的结构和功能,并充分发挥其优势。纳米医学技术的发展必将为基础与临床研究带来新的机遇,为现阶段尚不能解决的问题带来新的思路和方法。
篇8
“当然不是什么自设专业。生物医学工程是交叉学科,可是个大热门,我也许会做个工程师吧。”我笑着应答。
“是不是也要和典型工科男一样,整天对着电脑看数据,或是画图呢?”
“这会是工作的一部分,因为有不同的分支,就业也有很大的不同。”
很多人听说我学生物医学工程专业,都表现出惊诧的眼神,不知道会学些什么。当他们得知我在医学院,眼里的惊讶就又升了一个等级。是的,我在医学院读工科博士学位,梦想着能成为一个为医学事业效力的工程师。
下一个诺贝尔奖的产出地
生物医学工程是一门新兴的交叉学科,它是工程学、生物学和医学的完美结合。通过研究人体系统的状态变化,运用工程技术手段去控制这类变化,来解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。如果说医生是在临床上给予病人直接的救助,那么生物医学工程师就是通过研发的方式,为医生提供技术支持。
现代医学的迅速发展,离不开高新设备的推动。手术室中高端器械,如高频电刀、激光刀、呼吸麻醉机、监护仪、X射线电视、超声、核磁共振成像技术等,都是生物医学工程高速发展的产物,生物医学工程研究者就是这些医用电子仪器的研发者。当你看扣人心弦的美国医疗剧时,医生常常使用的挽救了无数生命的除颤仪,就得力于医学工程师的研究和设计。
生物材料制作也是生物医学工程的重要组成部分之一。在我国器官捐献还较少,而很多终末期器官衰竭者又在等待新的器官来延续生命,于是人工器官应运而生。生物材料为各种人工器官提供物质基础,器官制造直接关乎生命,是个大学问。制作人工器官的材料必须要充分考虑强度、硬度、挠度、韧性、耐磨性及表面特性等各种物理、机械等性能。由于这些人工器官大多数是植入体内的,所以要求具有耐腐蚀性、化学稳定性、无毒性,还要求与机体组织或血液有相容性。这些材料包括金属、非金属及复合材料、高分子材料等,其中轻合金材料的应用较为广泛。所以,从事这一领域研究不仅要有丰富的医学知识作为基础,还要对物料、材料等方面有深入了解和研究。相信在未来随着技术的成熟,我们会设计出质量高而又成本低的人工器官,为人类的健康作出更大贡献。
最有趣、最前沿的要数神经网络的研究了。大脑是人体最复杂的器官,对脑神经的研究是目前世界各国科学家掀起的一个新热潮。这是一个可能引起重大突破的新兴边缘学科,它研究人脑的思维机理,将其成果应用于研制智能计算机技术。运用智能原理去解决各类实际难题,是神经网络研究的目的,现在这一领域已取得可喜的成果。也许,下一个诺贝尔生物或医学奖的获得者就是研究该领域的生物医学工程科学家。
除此之外,生物医用陶瓷材料、纳米医学、微创医学、生物力学、生物信息学、远程医学与健康信息学等,都是生物医学工程的重要分支。
英语想不好都难
单看这个专业的名字,就能看出这个新兴的交叉学科的三大板块――生物、医学、工程,缺一不可。
第一板块:生物。在该领域,学生要修读化学生物学、生物传感与分析、生物信息学、生物电子学等相关课程。不仅要掌握这些理论基础,还要有生物科学的基本实验技术,能从事试验工作。
第二板块:医学。在医学方面,学生要修读人体生理学、人体解剖与组织学、神经科学、医学统计学等。同时要学习生物医学仪器的基本原理、设计方法,并了解相关仪器的发展趋势,掌握现代医学影像技术的基本原理、技术现状和发展趋势。此前我对医学影像学一无所知,后来去医院和一些厂家实际参观,一张张生动立体的器官美图、核磁共振检查带来的精确诊断,让我领略了生物医学工程的巨大魅力。
第三板块:工程。尽管此专业在很大程度上是为了服务于医学领域,但是在学习的过程中,涉及工科的课程最多,也最复杂。生物力学是必修课,但是有其自身特点,这是一个应用力学原理和方法对生物体中的力学问题进行定量研究的学科。像生物流体力学、生物心血管系统、飞行等与水动力学、空气动力学、边界层理论和流变学等有关的力学问题,学习者了解了这些后可以对自己的身体有更深的认识。除此之外,纳米科学技术引论、成像理论与技术、信息可视化技术、电路与电子技术、计算机硬件与软件、信号处理与分析等实践性较强的课程也是必修课。
作为工科专业,它对实践能力的要求很高,较强的动手能力也是毕业生将来就业的基础。在研究生阶段,我们要学习硬件电路设计与调试,要像“码农”一样,熟练掌握计算机编程。此外,如果你以为生物医学工程学生外语是弱项的话,那你就大错特错了。也许你入学的时候英语刚刚到国家线,甚至是自己的减分项,那么通过两三年的研究生学习,你也能成为英语高手。因为生物医学工程专业在欧美国家发展强劲,我们用的一些教材都是英文原版,如《磁共振成像原理》《系统与计算神经科学》等。同时我们也要阅读大量的外文文献,了解国外前沿动态。一些专业课还要全英文教学,在这样的语言环境中,英语想不好都是难事。
篇9
关键词:无机非金属;材料应用;材料发展
非金属材料是由非金属元素或化合物构成的材料,自19世纪以来,随着生产和科学技术的进步,尤其是无机化学和有机化学工业的发展,人类一天热的矿物、植物、石油等为原料,制造和合成了许多新型非金属材料,如水泥、人造石墨、特种陶瓷、合成橡胶、合成树脂、合成纤维等;这些非金属材料因具有各种优异的性能,为天然的非金属材料和某些金属材料所不及,从而在近代工业中的用途不断扩大,并迅速发展。非金属材料的种类比较多,它分为有机金属材料和无机金属材料两种。而无机金属材料是与有机高分子材料和金属材料并列的三大材料之一,市场前景非常好。
1 无机非金属材料行业存在的问题
我国在无机非金属新材料上虽然有一些不错的成绩,但是由于起步比较晚,基础太差、投入少,目前,我国无机非金属材料行业与发达国家相比,仍然处于落后的地位。其主要表现在四个方面:(1)基础落后,产品等级偏低。(2)材料性能低,质量不稳定。(3)生产设备落后,资源利用率太低。(4)技术滞后,生产成品率低等。我国的无机非金属新材料的制作设备落后,技术也落后,这些是造成产品研制周期长、生产规模小、经济效益低等问题的关键所在。
2 无机非金属材料的特点和应用
以往的无机非金属材料的品种比较多,主要包括水泥、陶瓷与建筑材料等,而建筑材料是最贴近人们生活的。新型无机非金属材料是后来才出现的,现如今它是现代新技术,新产业和生物医学中不可或缺的材料。
2.1 无机非金属的特点
传统的无机非金属缺点非常多,而现代的无机非金属材料的优点相对就明显很多。其主要表现在以下几点:(1)整体性,无机非金属材料抗腐蚀性强,这对材料的完整性非常重要。(2)防高温性能,因为其本是就是无机物,属于非燃烧材料。(3)防水性能,因为无机非金属其内部结构非常的密集,所以其有防水渗透的能力。(4)防腐蚀性,因无机非金属的物理化学性能,决定了其有一定的防腐蚀性和对一般生物侵害时,也可以正常使用。(5)耐磨性,无机非金属材料的耐磨性能是生物医学最看重的一点,比如陶瓷在生物医学上的作用,因它的耐磨性能比一般的合金金属好,所以它可以代替传统的人工关节置换的金属材料。
2.2 无机非金属材料的应用
无机非金属新材料具有独特的性能,是高技术产业不可缺少的关键材料。例如稀土掺杂石英玻璃广泛应用于导弹、卫星及坦克火控武器等激光测距系统,耐辐照石英玻璃应用于各种卫星及宇宙飞船的姿控系统;光学纤维面板和微通道板作为像增强器和微光夜视元件在全天候兵器中得到应用;航空玻璃为中国各类军用飞机提供了关键部件;人工晶体材料中激光、非线性光学和红外等晶体,用于弹道制导、电子对抗、潜艇通讯、激光武器等。特种陶瓷中,耐高温、高韧性陶瓷可用于航空、航天发动机、卫星遥感,可制作特殊性能的防弹装甲陶瓷及特种纤维及用于电子对抗等。目前已开发了近四千种高性能、多功能无机非金属新材料新品种。这些高性能材料在发展现代武器装备中起到十分重要的作用。
3 无机非金属材料的发展趋势
目前,科学技术的不断发展,带来了技术上的革新。不管是传统无机非金属材料还是无机非金属材料都有了长足的进步。其在未来的趋势主要表现在三个方面:(1)走可持续化发展道路,西方发达国家运用生态环境来影响着世界资源可持续性的发展,并且已经取得了很好的效果;但我们国家在这方面还只能望其项背,特别是缺乏立法支持与技术标准的指导以及相应组织的管理与监督,使中国的传统无机非金属材料工业发展还有很大的提升空间;面对资源和环境对中国经济发展的严峻考验,国民经济的可持续发展战略显得愈加重要。(2)节约资源,以往的无机非金属材料在工业上的消耗非常巨大。可世界资源正在短缺,那么怎么做好资源的节能、以及找到可替代资源的重要性就不言而喻了。在未来,材料的使用寿命也将会是一个值得关注的问题。提高材料的使用寿命将大大节约资源。(3)集中生产,以后将不会是像现在一样,各个工业之间各自为营的生产,未来工业的需求必须要将单条生产线的产能提高的同时,除了注意产品的质量问题,还应能降低能源的消耗。为此,将水泥工业、陶瓷工业等集中在一起走向大型化是未来的一个趋势。
4 结语
随着技术的进步和生活水平的提高,建筑材料的安全性智能诊断等智能技术将更多的应用于建筑中。目前,国内无机非金属材料的应用越来越广泛,在国民经济建设上也越来越重要。它在工业上的运用已经大大超过了其自身的范畴,它为国家科学的发展事业添了砖,也为经济建设加了瓦。
参考文献
[1] 刘佳欣.无机非金属材料的应用与发展趋势[J].中国粉体工业,2014 (5).
篇10
【关键词】引导骨再生膜术; 骨形态发生蛋白; 组织工程骨
【中图分类号】R274.1【文献标识码】A【文章编号】1004-4949(2012)09-0175-02
随着组织工程和基因工程的发展,GBR、BMP及复合BMP的组织工程骨在临床医学中的应用越来越广泛。现就其在口腔科的应用和发展现状作一综述。
1引导骨再生膜技术在口腔科的应用
引导骨再生膜技术(guided bone regeneration,GBR)是继引导组织再生技术(guided tissue regeneration,GTR technique)的发展和推广。它是采用生物材料制成的生物膜在牙龈软组织与骨缺损之间人为地竖起一道生物膜屏障,阻止软组织中成纤维细胞及上皮细胞长入骨缺损区,确保成骨过程在无成纤维细胞干扰的前提下逐渐完成,最后实现缺损区完全的骨修复[1]。随着生物材料的不断更新,该技术已经越来越完善和成熟,已被广泛应用于口腔科。
引导组织再生技术最早应用在牙周病学中,其后推广到口腔种植外科、口腔修复及口腔颌面外科中。在口腔种植外科中被应用于种植体周围骨量不足的治疗中,为种植体周围骨组织提供足够的、稳定的生长空间,起一定的骨引导的作用。在口腔颌面外科中已被应用于牙槽嵴裂的整复、外伤后造成的牙槽骨缺损的修复以及颌骨囊肿的治疗中。其与复合组织工程骨的联合应用,有望在不久的将来用于修复大段颌骨的缺损[2]。
1.1 常用材料:在GBR中,其膜材料常分为可降解和不降解两种,不可降解材料中常见的有膨体聚四氟乙烯,该材料柔韧性好,易于操作且生物相容性好,此外不可吸收性膜材料还有微孔滤膜、生物性硅酮膜等。但不可吸收性膜由于在人体内不能降解吸收,需二次手术取出,增加了患者的痛苦、医疗费用,而且二次手术容易造成对术区周围组织的损伤,缺点甚多。其逐渐被可降解的生物膜所取代。由此,可降解吸收材料逐渐成为了研究热点。究其在人体中的作用过程,其应满足的条件有:1、有选择性的引导组织生长;2、有良好的生物相容性;3、易于操作;4、降解与引导组织再生在时间上要协调。在现阶段常用的材料有:1、天然高分子材料:胶原膜、冻干异体骨膜、聚羟基丁酸酯;2、合成聚合物材料:聚乳酸、聚羟基乙酸和GA/LA[3]。
1.2复合膜材料: 以往的膜材料起的主要是机械隔离的作用,随着生物技术的发展,人们在膜材料改进的同时,使其与生长因子、诱导剂等相结合,改善其理化性以及提高其生物相容性,使其具有传到、诱导的能力[4,5]。如与骨形态发生蛋白与生物膜复合后引导缺损骨组织再生。
2骨形态发生蛋白以及复合组织工程骨在口腔科的应用
2.1骨形态发生蛋白: 骨形态发生蛋白(bone morphogenetic protein,BMP)是多功能生长因子,是一组具有类似结构的高度保守的功能蛋白,能够在体内诱导骨和腱样组织形成的因子,并在肢体生长,软骨内骨化,骨折早期及肌腱修复时表达,对骨骼的发育和再生修复以及肌腱的再生修复起重要作用[6]。在口腔科其被应用于口腔种植外科、口腔颌面外科骨的缺损诱导修复,牙槽嵴裂以及腭裂的修复中。其次,随着对其应用的不断深入研究,有望在对颌面部神经的修复中起重要作用[6]。
2.1.1骨形态发生蛋白7:在至今被发现的20多种BMP家族成员中,骨形态发生蛋白7已有研究阶段转入临床应用阶段[7]。现对骨形态发生蛋白7作一重点介绍:骨形态发生蛋白7(BMP-7)又称为成骨蛋白1(osteogenic pro-tein,OP-1)。其已应用于牙槽骨缺损、牙槽嵴裂以及腭裂的修复中。在牙周病的手术治疗中,应用膜引导组织再生技术,依靠膜的屏障作用及牙周膜细胞成骨能力完成牙槽骨缺损的修复,而BMP-7的应用是对修复的牙槽骨起主动的诱导分化成骨的作用。其次,也用于诱导腭裂区骨的形成以及种植体周围骨组织的形成。另外,在用牵引成骨技术治疗先天性或后天性颌骨畸形、下颌骨的缺损修复以及正颌外科中BMP-7都有广泛的应用空间[8,9,10]。其具体优点体现在:其能加速骨痂的成熟、加速骨的矿化前过程,且有关实验表明:其复合骨髓后能明显增强成骨作用,且能代替自体骨的移植。据有关报道:在牙髓组织中检测到BMP-7,其在动物实验中盖髓及诱导牙本质形成能力已被成功证明。
2.1.2骨形态发生蛋白相关载体: 骨形态发生蛋白具有诱导成骨的优点,但要使其充分发挥其优点,必须要与载体复合才能发挥作用。因为其单独在体内使用会很快被稀释及降解。究其载体应具有如下特点:1、组织相容性好,与机体排异反应小;2、可降解或吸收,对人体无害;3、载体的吸收或降解速度也应与BMP的诱导成骨作用相协调,不能降解或吸收较快或较慢。目前应用的载体有:胶原、羟基磷灰石、脱钙骨基质颗粒、α-聚酯。但各自都存在有缺陷,比如胶原无强度,不利于塑形,而且异种胶原可引起排异反应;羟基磷灰石孔径大小及脱钙骨基质颗粒制备工艺影响到其活性发挥的问题等[11,12,13]。
2.2骨组织工程: 组织工程学的创立和发展为BMP载体材料的研究、更新及发展提供了坚实的基础,为诱导成骨及骨的修复开辟了新的研究空间。骨组织工程其材料包括三部分:1、种子细胞,即有成骨潜能的细胞,如:骨膜、骨髓等来源细胞;2、骨诱导因子,如BMP、多肽生长因子等;3、基质支架,一类为人工合成材料,如聚乙醇胺、聚乳酸、钙磷陶瓷等;另一类为天然生物材料,如胶原、珊瑚骨纤维蛋白透明质酸钠等。复合组织工程骨可用于修复牙槽嵴裂、腭裂、颌骨缺损、种植体周围骨缺损以及牙周病造成的牙槽骨缺损;口腔修复科可用于牙槽嵴的增高等[14,15,16]。随着生物技术、组织工程以及基因工程的发展,支架材料与BMP及骨髓基质干细胞的复合以及寻找新的可降解、吸收支架材料成为今后的研究热点。
3GBR与复合组织工程骨的联合应用
单纯的GBR技术难以保证骨缺损区域有稳定的、足够的成骨空间,影响到骨外形的恢复。另外,由于单纯的只起到屏障隔离的作用,不能缩短骨的愈合时间以及加速骨的形成和诱导成骨,而与BMP复合的组织工程骨可以成功的解决这些问题。膜的存在避免了周围组织长入骨缺损区,为骨缺损区的修复提供了稳定的环境;同时,膜的封闭作用也保证了一定骨缺损修复区域内组织工程骨内BMP的浓度,减缓甚至阻隔了其向周围组织中的扩散,加速了其诱导成骨的作用;同时,复合BMP的组织工程骨,其具有诱导成骨的作用;同时,因为其有基质支架,使其同时具有骨诱导和骨传导的作用[17,18,19]。即能诱导骨组织生长。另外,又因为支架材料的作用使植入膜及骨材料的区域不易塌陷,有利于新生骨的爬行、替代,起到骨传导的作用[20]。
4总结与展望
GBR技术与复合BMP的组织工程骨在口腔科的联合应用,能弥补各自存在的技术缺点,有利于其在临床治疗中的广泛开展。但在现阶段所拥有的已应用到临床中的膜和复合BMP的组织工程骨的降解速度以及支架材料的强度能否与骨再生的速度完全适应,还需长期的临床观察。另外,能否人工合成更理想的支架材料以及能否开发出诱导效果更好的外源性生长因子一直是研究的热点。随着其生物技术的发展,相信骨组织工程、基因技术会给口腔科的治疗带来革命性的变革。
参考文献
[1]邱蔚六 主编.口腔颌面外科学[M].第6版.北京,人民卫生出版社,2008,121
[2]吴恒烜,邹国耀.BMP-CPC-FDDMA 修复节段性骨缺损的实验研究【J】.华夏医学,2005,18(6):920~923
[3]刘亚勇,程为庄.引导组织再生技术材料的研究现状和发展趋势【J】.口腔材料器械杂志,2004,13(2):102~104
[4]Hedner E,Linde A.Eur J Oral Sci,1995,103(4):236~241
[5]Linde A, Hedner E.Calcif Tissue Int,1995,56(6):549~553
[6]张云鹏,白希壮.BMP家族的研究近况【J】.解剖科学进展,2008,14(3):334~336
[7]苏拓,吕长胜.BMP-7在颅颌面外科中的应用进展【J】.中国美容医学,2007,16(11):1605~1607
[8]Terheyden H,Warn ke PH,et al.Acceleration of callus maturation using rhOP-1 in mandibular distraction osteogenesis in a rat model【J】.Int J Oral Maxillofac Surg,2003,32(5):528~533.
[9]Hu J,Qi MC,Zou SJ,et al.Callus formation enhanced by BMP-7 ex Vivo gene therapy during distraction osteogenesis in rats[J].J Orthop Res,2007,25(2):241-151.
[10]Abu-serriah M.Mechanical evaluation of mandibular defects recon-structed using osteogenic protein-1(rhOP-1) in a sheep model: a critical analysis[J].Int J Oral Maxillofac Surg,2005,34(3):287-293
[11]刘竟成,孙磊.骨形成蛋白缓释的研究进展【J】.中国矫形外科杂志,2003,11(3、4):257~258
[12]王敏,韩金祥.骨形成蛋白载体材料研究进展【J】.中国临床康复,2003,7(4):579~580
[13]覃昱,裴国献.骨形态发生蛋白缓释载体的研究进展【J】.中国临床康复,2003,7(23):3242~3
[14]胡稷杰,金丹,全大萍等.负载BMP的新型组织工程骨的构建及骨缺损修复实验【J】.第一军医大学学报,2005,25(11):1369~06
[15]孙明林,李涤尘,王景贵.非陶瓷型人工骨体内降解过程的超微结构观察【J】.武警医学院学报,2006,15(5):406~410
[16]姚辉 组织工程化细胞型植骨材料的体外构建与评估【J】.中华口腔医学杂志2001,36(3):170~173
[17]吴鸿,朱淑云.人工合成材料修复齿槽裂的实验研究【J】.青岛医药卫生2005,37(6):405~408
[18]李武德,李昀生,张嵘嵘.齿槽嵴植骨术与医用组织引导再生胶原膜联合应用修复唇腭裂齿槽嵴裂的临床探讨【J】.口腔颌面外科杂志2001,11(2):174~175