高分子材料导论范文
时间:2023-12-15 17:33:20
导语:如何才能写好一篇高分子材料导论,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词 高分子科学导论 案例教学 考核机制
包装材料对包装的发展起到巨大的推动作用,有时甚至引起发展上质的飞跃。①高分子材料作为现代包装材料的一个极为重要的组成部分,是包装工程专业学生必须掌握的知识。高分子科学导论主要包括高分子的合成与化学反应、高分子结构与性能的关系、高分子的分析与表征、典型高分子材料的性质与应用,以及高分子科学的发展历程和研究前沿。②知识点多,内容繁杂,而教学时数只有48学时。如何安排好教学的内容、教学重点,按照包装工程专业是需求进行课程建设,成为一个非常有意义的课题。课程内容丰富、实用性强,是包装工程专业学生的必修课程。如何强化学生的参与意识,提高教学效果,本文从以下三个方面进行了探索和总结。
1 教学内容上,突出以专业特点为导向
教学大纲的完善和更新是教学内容建设的基本骨架。现代教学理念认为,教学大纲不是教学内容的堆砌,而是教学的指导性文件。③④课程大纲的完善是以创新教育理念为指导,传授知识和培养能力为主线,并要充分地展示课程教学设计思想。根据我校高分子科学导论教学时数少,同时专业方向又是以包装材料和包装工艺为主要方向,以食品、药品及化妆品包装为主要应用领域,如何选择甚至编写合适的教材,如何确定本课程包含的各部分内容,合理分配学时,成为提升高分子科学导论教学效果的一个非常重要的因素。在本课程的教学中,在对第一部分高分子合成化学部分的学习中,主要精力集中在对于反应基本原理的认识和各种高分子化合物的命名及分子量的影响因素。而不对聚合理论做深入探讨。在第二部分,高分子材料结构与性能的相关知识中,对材料的力学性能进行了着重介绍。作为包装容器的设计、加工和使用,这是考察材料的关键点,同时还需要介绍相关的耐热、耐化学性及其他一些基本性能。使得学生在课程学习后,对材料的基本理化性能有一个初步认识。第三部分是将材料的加工,对于包装材料而言,如何将粒料通过注射、吹塑、模压等方式制备成包装容器,这是一个能激发学生学习兴趣的部分,也是与学生将来从事包装职业联系最紧密的部分。因此,从内容上、从学时上予以加强。尤其是针对我校包装专业比较偏重的食品包装,各种液状货品的包装容器(如各种瓶、壶、桶)以及各种薄膜的主要原材料( PE、PP、PET、PA 等)和主要加工工艺(挤出吹塑成型、注塑吹塑成型、注塑成型、单/双向拉伸等)进行了较为详细的展开。
2 在教学方法上,辅助以案例教学
掌握和运用好的教学方法是提高教学质量的重要手段,也是课程建设的重要内容。⑤案例教学是一种非常行之有效的教学方式,能更加直观地让学生理解书本知识,联系实际。例如在讲高分子材料的应用的内容时,对身边的包装产品进行举例,例如牙膏是我们生活中不可或缺的日用品,因此市场竞争十分激烈。国际牙膏巨头美国高露洁公司在进入我国牙膏市场以前,曾做过大量的市场调查发现,牙膏包装的同质化竞争严重。针对这些特点,高露洁采用了创新的复合管塑料内包装。结果大获成功,在短短的几年时间内,迅速占领了我国1/3的牙膏市场份额。这个例子,充分让学生认识到,高分子材料对于传统材料的替代作用及其适用范围十分广阔,从而激发了学生的学习兴趣。在讲述高分子注射成型工艺时候,拿出在工厂收集的残次样品,对气眼、流痕、欠注、银纹/水花、缩痕、熔接痕等常见问题进行分析。以气眼为例,是由于困在型腔内气体不能被及时排出,易导致出现表面起泡,制件内部夹气,注塑不满等现象。其改进方法,从产品结构设计上,减少厚度的不一致,尽量保证壁厚均匀。这些处理手段,又都可以通过前期所学的高分子化学和高分子物理相关的链段运动、熔体流动、聚集态变化等相关知识进行解释。从而使所学知识得到综合体现,提高了学生的联想、归纳能力,深化了对理论知识的理解,同时有助于其将来在工作中分析并解决一些实际问题。
3 优化考核模式,多重手段调动学生学习积极性
构建课堂教学模式时,主要采用教师引导,充分地调动学生的主动性教学方法,而考核方式的优化,则是对学生一种非常有效的激励方式。为了提高学生的学习兴趣,将考核方式改为论文+PPT讲述+期末考试的模式,其中平时考勤、作业占二十分,论文占二十分,PPT讲述占二十分,期末考试占四十分。考虑到学生还处于大二阶段,尚未接触到文献调研等课程,经过简单教授学生如何使用百度等网络搜索引擎以及初步学习使用中国知网,重庆维普等中文数据库,武装了学生的文献调研手段,同时也充分调动学生的积极性,促使学生发挥主观能动性去查阅文献资料和标准,并按照正规的综述论文格式规范进行撰写。学生虽然还比较稚嫩,在专业领域几乎尚无法真正领会,但初步的锻炼,拓展了专业视野,深化了对本专业的认识,提高了用所学知识去发现问题、分析问题并进行归纳的能力。虽然还不能提出和解决较为复杂的问题,但这种锻炼已经起到了非常显著的效果。大二第二学期,包装专业学生就可以以高分子材料为出发点,申请大学生创新的科技项目,其申请数每年都占到本专业的很大部分。另一个考核内容是将学生按四人一组进行分组,每组做个PPT并请一位同学进行讲述,考核成绩作为该组四位同学的成绩。通过做PPT讲述,学生需要自行组织图片和说明,并进行PPT的设计,直至最后讲述。十分钟的讲述和五分钟的提问,有助于并在一定程度上能集思广益,学生之间相互交流和讨论。再经过最后的考试,学生需要对所学课程进行一个全面的复习和总结,三者结合,使得学生对整个学习内容都有较为直观、详尽的认识。
篇2
关键词:高分子化学与物理;教学改革;科学研究;创新能力培养
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)43-0083-02
一、《高分子化学与物理》课程特点
经过高分子科学与技术的快速发展,高分子的理论发展与应用已经渗透到物理学、化学、材料学、生物学等各个学科与领域,具有鲜明的学科交叉特色。高分子化学与物理的研究成果已经进入了我们日常生活的每个方面[1-6]。作为一门多学科交叉、实用性很强的学科,高分子对各个工业部门和科技领域的渗透作用已成为不争的事实,所以在现行中国高等教育的本科专业中,如化学、应用化学、材料化学、材料物理、复合材料、轻化工程、包装工程、纺织工程、生物工程和环境工程等许多非高分子专业都将高分子相关知识作为必修课和选修课。
非本专业《高分子化学与物理》教学的侧重点在于阐述现代高分子科学已成熟的基本概念、基本知识、基本原理和基本测试方法,对涉及高分子科学研究前沿的理论、测试方法以及高分子的新产品介绍等内容点到为止,该课程的学习为轻化工程专业学生开启了一扇通往高分子科学的窗户,引导学生了解高分子化学在高分子学科中的地位,通晓课程的主要研究对象和研究内容,为后续专业基础课的学习和高分子在染整中的应用奠定基础[1,2]。通过多年的教学实践证实,对于轻化工程专业(染整方向)的本科生来说,《高分子化学与物理》课程教学呈现以下几方面的特点。
(一)基础课程,衔接不够
对于轻化工程专业(染整方向)的本科生,高分子的学习显得尤为重要,一方面后续课程(如《纤维化学与物理》、《染整工艺原理》和《染料化学》等)的学习必须以高分子为学科背景,另一方面大学生的生产实习、创新学分实验、创新训练计划和本科毕业论文等实践性环节的开展也必须要有高分子基础,因此为了让染整方向的本科生了解和掌握高分子的基本理论知识和应用,开设了《高分子化学与物理》学科平台课程。该课程的学习必须以《有机化学》、《物理化学》和《无机化学》的课程学习为基础,但江南大学轻化工程专业将《高分子化学与物理》课程设置在大二下学期,《物理化学》等课程也在此学期开设,因此课程开设时间过早,缺乏基础课程的知识,建议在大三上学期开设,以期获得较好的教学效果。
(二)内容多、学时少,课时紧张
《高分子化学与物理》课程主要包括高分子化学和高分子物理两个部分,其中高分子化学部分包括高分子科学的发展历史、发展趋势,基本概念、分类与命名、基本原理、高分子合成反应与方法等,涉及逐步聚合、自由基聚合、离子聚合、配位聚合和共聚合等;高分子物理部分则侧重于高分子的结构(如链结构、聚集态结构等)、分子运动、力学状态与转变,物理性能等。对于高分子专业的本科阶段,通常会开设《高分子化学》和《高分子物理》两门课程,分别在32至48学时不等;而对于轻化工程专业,只开设了《高分子化学与物理》一门课程,48学时,相对来说内容多、课时少。在这样的情况下,教学活动的有效开展、课程体系的完善、讲授内容的连贯与取舍等都显得非常重要,对任课老师是一种不小的挑战。
(三)注重理论,缺乏实践
《高分子化学与物理》是一门以实验为基础的自然科学,但轻化工程专业只开设理论学习课程,没有相关实验课程。为了使学生能够更好地掌握课程学习内容,同时培养学生的动手能力和分析、解决问题能力,提高学生的实验技能,相应的实验课程的开设显得非常迫切,能够让所学知识与理论在实验中得到验证,注重理论与实践的结合,让学生从最初的原料出发,选择合适的聚合方法与聚合反应,得到在实际生活中真正用得上的高分子产品。
二、教学改革举措
针对轻化工程专业《高分子化学与物理》的课程特点,结合本校的实际情况,要求学生在理解基本概念和掌握基础理论的基础上能够了解高分子的应用,重点培养他们的实践与创新能力,作者经过几年的教学实践和摸索,总结了几点教学改革举措。
(一)规划本科培养方案,合理调整课程设置
目前我校轻化工程专业的课程设置还存在一定的问题,建议对本科培养方案进行修改,在《高分子化学与物理》授课前完成《有机化学》、《物理化学》和《无机化学》等基础课程的学习,这样才能提高学生的学习效率,增强他们的学习兴趣,便于更好地掌握相关理论与知识。
(二)多媒体资源课件与传统板书有效结合
多媒体课件具有丰富表现力、良好交互性和极大共享性等特点,它可以将枯燥乏味的理论知识直观化和形象化,能够充分调动和发挥学生学习的积极性和主动性。但在运用多媒体教学的同时也出现了诸如教师几乎不写板书,学生不记笔记等问题,严重影响了教与学的质量。建议对任课教师的教学大纲、考核方式、教学难点与重点等相关教学文件进行监督,要求授课过程中课件放映与传统板书相结合,将学生上课情况、学生主动参与积极性、平时作业等与学生的最终成绩挂钩,进行综合评定。
(三)增设实验课程,提高学生实践能力
《高分子化学与物理》是一门理论与实践相结合的课程,实验课是对理论课学习的有效补充,通过直观的现象和结果验证理论学习的真实性,帮助学生理解所学理论知识,因此实验课的教学显得尤为重要,建议在轻化工程专业开设实验课程,但涉及的实验众多,要求任课老师充分考虑实验的可操作性、重复性和可行性等方面,认真编写实验讲义。此外,学校和学院应重视实验室配套设施建设,突破实验教学完全依附于理论课程教学的传统框架,增加启发式实验和创新性实验所占比例额,注重验证性实验、启发式实验和创新性实验有效结合,开动学生的思维,发挥学生的潜质,提高学生的创新意识。
(四)理论联系实际,注重启发式教学
《高分子化学与物理》是一门相对来说比较抽象、枯燥的课程,但它也是一门应用性很强的课程,高分子材料用途广泛,遍及现代社会生活中衣、食、住、行、用等各个方面,因而在课程讲授时注重理论联系实际,将抽象的概论、理论与实际应用有机结合,将对课堂教学效果起到重要的促进作用。
三、创新能力的培养
(一)培养方案中开设新生研讨课和专业导论课
为了提高学生对专业的认同感以及学生的学习兴趣和热情,可以尝试在本科培养方案中针对大学新生开设新生研讨课和专业导论课,以趣味讲座和座谈的方式进行专业介绍,了解专业背景,告知学生轻化工程这个专业是以化学与高分子为学科背景的,加强学科平台课程的学习至关重要。
(二)实施学生双导师制
全面推进学生双导师制是确保创新型人才培养的重要手段,企业导师和校内导师组成课程小组,共同确定课程教学大纲、教学内容、教材及承担教学任务,使专业理论课程与行业实际需求紧密结合。
(三)强化实验课程学习和创新能力培养
实验课程采用自主设计实验,在实验大纲的规范下完成实验要求,将验证性实验、启发式实验和创新性实验有机结合。在国家大学生创新创业计划项目、江苏省大学生创新创业计划项目和江南大学大学生创新训练计划项目等资助下,实现学生创新训练的全参与和全覆盖,指导教师从选题开始就应该注重基础理论知识在创新实验中的应用,达到学以致用的目标。
(四)强化学生的毕业论文(设计)指导
毕业论文(设计)是学生毕业离校前最后一个实践性环节,也是所学基础理论知识得到充分应用的关键环节,因此可以从课题的选择、采取的技术路线、拟采用的研究方法和达到的预期目标等方面进行合理规划与设计,充分发挥学生所学知识与理论的应用,提升学生运用知识的综合能力,强化学生的专业基础。同时,轻化工程专业的毕业生中从事与高分子相关行业的人数众多,学科交叉特色鲜明,为学生的出国深造、攻读研究生和就业奠定坚实的高分子基础。
四、结语
根据国内外行业需求和自身特色,通过教学改革与实践,围绕复合型、创新型染整专业技术人才的培养目标,通过理论与实践相结合、教学和科研相结合、校内与校外相结合、科学素养与人文情怀相结合的人才培养模式,注重理论知识的传授与学生创新能力的培养相结合,全面提高和调动学生的学习积极性和学习兴趣,为学生的学习与工作奠定坚实的基础。
参考文献:
[1]徐晓冬.非高分子专业《高分子化学与物理》教学中的几点体会[J].高分子通报,2010,(5):74-78.
[2]刘兆丽,曹亚峰,谭凤芝,李沅.非高分子专业高分子化学与物理教学的几点探索[J].科教导刊,2013,(1):82-83.
[3]喻湘华,鄢国平,李亮,吴江渝,郭庆中,曾小平.高分子化学与高分子物理课程教学改革与探索[J].化工时刊,2011,25(3):68-70.
[4]胡建设,周爱娟,王宏光.高分子化学与物理实验教学探索与实践[J].高分子通报,2010,(5):70-73.
篇3
关键词 材料成型与控制工程 课程体系 教学改革
中图分类号:G642 文献标识码:A
新能源主要包括太阳能、地热能、风能、海洋能、生物质能、氢能和核聚变能以及由可此衍生出来的各种非常规能源。相对于传统能源,新能源普遍具有储量大、可再生、污染少的特点。因而也常被称为可再生能源或清洁能源。在2010年制定的全省“十二五”能源发展规划中,积极推进可再生能源发电。重点发展生物质能发电和太阳能发电。以湖北省为例,预计2015年湖北电网发电装机容量6220万kw,其中水电装机3771万kw,火电装机2332万kw,新能源发电装机120万kw(风力发电20万kw、光伏发电30万kw、生物质能50万kw、垃圾发电20万kw)。①
新材料与新能源是国民经济和社会发展的命脉,广泛渗透于人类的生活之中,影响着人类的生存质量。新材料是高新技术与产业发展的基础性与先导性行业,每一次材料技术的重大突破都会带动一个新兴产业群的发展,其研发水平及产业化规模已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。新能源的迅速发展,最终离不开新材料推进。新能源材料的开发已经越来越引起世界各国研究机构的广泛重视,新的技术和成果不断涌现。可以说,新能源材料的开发和利用已成为社会可持续发展的重要影响因素。
为适应时代的需要,国家大力培养这一新兴产业的专业人才。工学材料类专业的调整幅度最为突出。新设置的材料类冶金工程、金属材料工程、无机非金属材料工程、高分子材料工程等四个专业从原则上覆盖了原来的(1993年教育部颁布的高等学院本科专业目录)材料类的有色金属冶金、冶金物理化学、冶金、金属材料与热处理、金属压力加工、粉末冶金、复合材料、腐蚀与防护、铸造、塑性成形工艺及设备、焊接工艺及设备、无机非金属材料、硅酸盐工程高分子材料与工程以及化工类的高分子材料及化工等近十五个专业。近几年来我国材料科学教育改革的迅速发展,几乎全国所有设有有关材料专业的院校均已程度不同地参与了材料学科教育改革,并且开始出现了力图根本突破原教育模式的新思路新方案。教育部2010年7月批准在浙江大学、华中科技大学、中南大学等十一所高校设立新能源科学与工程专业,在四川大学、中南大学、湘潭大学等十五所高等院校设立新能源材料与器件专业。目前,湖北省武汉市共有高校26所,大部分的工科院科都设置有材料学科,且教学和科研实力都较强。其材料专业中以金属材料、无机材料、高分子材料为主,华中科技大学、武汉大学等一流大学已经进入了新能源材料的研究。
1 当前课程体系存在的问题
自1998年国家教育部将原铸造、锻压、焊接、热处理等专业合并成为“材料成型及控制工程”专业后,原铸造、锻压、焊接、热处理等老专业变成了新专业所包含的学科方向。我国新的“材料成型及控制工程”专业的专业课程设置、教学计划、教学大纲等,总体上的一致之处是压缩了原来的专业知识的教学内容,但目前还没有形成统一模式。②“材料成型及控制工程”是宽口径的新专业,办学历史很短,完善的课程体系尚处于初始探索阶段。现行的材料成型及控制工程专业课程体系中以金属材料为主要方向,与新能源产业的高速发展不适应,对学生的就业也造成一定影响。
1.1 学科导论课定位不准
在目前“材料成型及控制工程专业”的课程体系中,金属材料仍占有较大的份量,教学内容对非金属材料,特别是新型复合材料的阐述较少,没有体现新能源的发展对新材料的重大影响。
1.2 课程分配没有结合新材料的发展
虽然在现行的课程体系中,理论课时较多,但专业课程中力学基础理论课时少,相关的基础理论支持性理论不全面,综合性和设计性实验项目较少,致使学生面对大型结构件材料的认识不足,对新能源领域中计算机软件的接触机会较少。
1.3 所开课程与实际应用联系不够紧密
目前开设的课程中,学生的实际应用环节较少,生产实习中,学生大多以参观的形式进入相关企业,时间仓促,无法深入地认识企业。实验设备有限,与新能源材料相关的实验设备更少。学生很难理解课程内容,实际应用更难。在课程体系中,只注意传统材料科学与技术教学的设置,不能满足现代工程教育的需要。
1.4 实践教学目标不明确
实验教学中采用金属材料工程的设置内容较多,大多数为对理论教学内容与知识的验证。实践教学的系统性不强,缺乏创新性的设计性强的动手实践内容,不能对学生进行全方位系统的工程思维进行训练。实践课程设置形式单一,理想状态下的实验实训脱离了“面向岗位”的宗旨。③
2 面向新能源发展的优化方向
为满足社会需求,材料成型及控制工程专业培养的人才应比原来单一专业的人才所具备的知识结构应更合理,知识面应更宽,所具备的综合素质应更好,适应性应更强。④课程体系的可从以下几个方面进行优化。
2.1 面向新能源的快速发展,提升专业的方向特色
随着新能源的不断发展,新型复合材料及大型材料结构件的覆盖面越来越广,与其他学科间的交叉渗透也在不断加强,本学科目前的专业设置和学科研究方向要能满足本学科相关行业今后对人才的需求,结合地理优势加强特色内容的教学,不断通过专业课程的调整和改革,培养出合格人才,推动区域经济的发展。
2.2 优化课程体系,培养综合素质,突出“实践、实用”
课程体系可按图1的模式进行优化,在完善现有的培养方案的基础上,注重知识体系的构建和课程内容的设计,体现培养的科学性和专业化。从知识结构、能力培养来满足新能源发展的素质要求,同时抓好课程内容和实践环节,梳理完整的学科结构,重视生产技术的应用和获取知识的科学方法,以综合能力的提高为目标,并推动专业建设的可持续性发展。
2.3 模块分类强化,突出“实践、实用”教育理念
对课程体系进行模块分类(如图2)后,逐一完善和改进。新的课程体系强化核心基础课程,形成理论力学——材料力学——结构力学——工程热力学等不同层次的力学知识体系。引进新能源材料的热点,加入杆塔设计、大型材料结构件设计方向的课程。实践学习类课程加强对当前新能源科技发展信息的吸取,增加应用软件的学习,以工程软件实训的形式加强计算机应用能力。在人文社会科学类模块中,加入锻炼学生的沟通及表达能力的课程,如学术讲座、论文写作、沟通与交流等内容,培养未来现代工程的职业精神。优化的课程体系既夯实基础又提高综合素质,学生也具有了相应的材料应用维护、管理所必需的设计和测试能力,突出了“实践、实用”教育理念。
2.4 探讨专业新需求,实现本专业的可持续发展
对“材料成型及控制专业”毕业生的社会就业情况进行全面的社会调查,研究本学科专业的发展态势和对专业人才的知识结构、能力结构、人文素质、创新素质的具体要求,探讨新能源的发展对“材料成型及控制工程专业”的课程新需求,一方面实现可持续发展的专业办学特色;另一方面,通过课程体系的优化,促进教学思想的不断更新,以“新材料”推动师资培训的“新发展”,以合理的课程体系帮助学生顺利就业。
3 结语
在结合当前新能源快速发展的条件下,探索“材料成型及控制专业”课程体系特色,新的专业培养模式既要体现国内外的“大材料”思想,又要具有较为鲜明的新能源和地方特色,以适应专业发展的要求。优化的课程体系既满足“大材料”通才教育,又合理规划好新能源发展条件下“材料成型及控制工程”专业的新内涵和外延,突出金属材料、复合材料的在新能源行业的应用和设计专业范围,探索新的专业课程结构和完整的培养体系。
注释
① 周世平.新能源技术与湖北能源发展综述[J].湖北电力,2011.35(5):1-6.
② 樊自田,魏华胜,陈立亮,等.建设新型课程体系 培养宽知识面人才[J].高等工程教育研究,2004(1):11-12.
篇4
关键词:大材料;综合素质;培养模式;创新人才
中图分类号:G640 文献标志码:A 文章编号:1674-9324(2013)35-0189-02
高校是国家培养高素质专业技术人才和创新人才的主要基地,一直以来为推动我国的经济发展发挥了巨大的作用。材料科学是现代科学技术三大支柱之一,而我国原有的材料学科教育受制于专业,人才培养模式比较单一,已不能适应当今社会发展的需要。急需探索一种新型的开放式的人才培养模式,以应对市场经济对毕业生就业越来越高的要求[1]。2005年美国的教育界就提出[2],工程师应兼备“分析能力、实践经验、创造力、交流能力、商务与管理能力、领导力、伦理道德和终身学习能力”。因此,高校应当根据自身学科发展的特点、教学资源的实际情况等适当调整人才培养模式,重新对培养模式进行合理定位,以培养出更多能适应社会主义市场经济发展的高级工程技术人才。
一、当前人才培养模式中存在的不足
1.专业设置过细,学生培养存在局限性。当前,材料类专业开设的有:无机非金属材料、高分子材料、金属材料、材料物理、材料化学、包装材料、绿色建材、耐火材料等专业。我校开设的专业有:无机非金属材料工程、高分子材料工程、材料物理、材料化学等专业,由于专业间彼此界限分明,知识体系关联较少,一直以来,对于学生的考核依据也主要看学习成绩,所以学生几乎把所有的精力都放在自己所学专业上,致使学生学科基础薄弱,知识面狭窄,特别是在涉及交叉学科领域倍感吃力。
2.学生考核方式单一,学生缺乏自主学习的积极性。学生进入大学后,就已经各自都有自己的专业,不管是公共基础课的学习,还是专业课的学习,考核方式就是期末考试。学生学得好与不好就以考试成绩来定性,评奖评先也以考试为依据。这种过于单一的考核方式,导致学生缺乏创新意识,缺乏开拓视野的兴趣。容易造成两个极端,一部分优秀的学生把所有的精力都放在学习上,学业成绩优秀,可是知识面狭窄;另一部分成绩不优秀的学生,由于没有评奖评先的机会,也找不到自己的位置,会逐渐失去对于学习的兴趣,极大地影响了个人身心的全面发展。另一方面,由于绝大部分学生在步入大学前对于自身所选专业的了解并不深入,对于即将要学习的专业的认识更多是停留在字面上,所以在教学过程中普遍存在大部分同学对于所学内容不感兴趣或者对于专业发展前景感觉迷惘从而逐步失掉学习的兴趣。从上课的注意力不集中,可能逐步就发展为上课迟到早退甚至逃课,继续发展到学业成绩不及格,最后学生面临的可能是无法毕业或者由于课程跟不上导致的心理性格问题等,这些都可能会影响学生的一生。
二、“大材料”学科背景下人才培养模式的探索
1.先大后小,先博后专。学校材料专业统一按照材料科学与工程专业一级学科对外招生,学生进校后全部按照“大材料”的培养模式进行培养,先开始学习公共基础课,夯实基础,并在此基础上开设针对各小专业的特色专业课,让每个学生都能充分了解各专业的特点,帮助学生找到适合自身发展的方向。开设公共专业课,如材料科学基础、材料测试方法等,让每个学生对于材料专业有一个宏观的认识和把握。在此基础上再重新按照原专业分班,充分尊重学生自主选择的意愿,分班的过程既兼顾学生兴趣又保留专业特色。在专业课程学习阶段,我院又尝试设置了特色班,所谓特色就是淡化传统的专业界限,打破专业壁垒,允许学生在“大材料”教育背景下根据导师意见及自身兴趣在合理范围内自主设计、调整自身的培养计划,真正做到以学生为本,培养具有更宽专业视野,对材料学科领域适应性更强的通用型人才。
2.营造多样化的学术氛围,培养学生的学习兴趣和创新能力。绝大部分本科生进校之初对于专业的认识都是相对模糊,自己喜欢什么专业,适合学什么专业大家都是懵懂的。通过构筑“大材料”的学习平台,采取开设材料导论课程、举办学术讲座、动员学生进实验室、研究生与本科生帮扶对接等方式为学生营造良好的学术氛围,以达到充分调动学生学习的积极性,培养学生的学习兴趣和创新能力的目的。摒弃传统的培养模式中的不足,充分调动学生学习的积极性以及教师参与教学的积极性,加大师生互动教学环节的比例,强化师生沟通的效果,实现师生关系的和谐双赢。老师能更好地完成传道授业解惑的使命,学生能更好地理解老师认可学校并茁壮成长,最终让自己成一个优秀的全面发展的综合型创新人才。
3.构造全方位,立体化培养体系,不断提升学生的综合素质。原有培养模式主要依托学生所学专业,重点培养学生的专业综合素质,缺乏针对学生个性的培养,学生自主选择空间有限。而当今社会需要的综合型创新人才应该能够适应科学技术和社会发展需要全面发展、且具有鲜明的个性的创新人才。因此需要调整培养目标,优化培养方案,建立全方位、立体化的培养模式。通过“大材料”培养模式的构筑,可为学生提供多样化的学习内容和学习方式,制订交叉扩展和相互融合的培养方案,通过双向交流、学科交叉和多元互动,可以充分调动学生学习的积极性和创造性,让学生尽早确立自身的学业规划,同时基本确立今后的个人发展规划或职业生涯规划。让每个学生都有自己努力的方向和追求的目标,从而最终实现让每个学生都能学有所成的培养目标。
4.建立资源共享的开放平台,为学生成才创造条件。由于学院公共实验室资源相对有限,无法完全实现对所有本科生开放。为解决这个矛盾,同时为了适应“大材料”培养模式的需求,我们建立了以重点实验室、公共实验室、教授科研室为基础的交叉学术科研平台,将公共实验室开放时间延长,所有资源对本科生开放,最大限度地容纳学生,努力构建全员育人的良好氛围,力求让每个学生都有锻炼和展示的平台。鼓励所有学生积极参与科研、高效综合利用实验室。探索建立保障研究性学习的长效机制,发挥学科整合优势,联合进行实践活动,实现教学效果和科研效果的双赢,为学生成才创造最优越的条件。
我校材料科学与工程学院根据目前我院的生源特点和学科发展趋势,结合我院学科建设特色,在人才培养模式上进行创新性探索,提出了对学生按照材料科学与工程学科“大材料”的模式进行培养的机制。新的培养模式使学生可根据自身特点和兴趣合理定位发展方向,充分调动了学生学习的积极性,使我院的人才培养模式多元化。
参考文献:
[1]朱志云,陈一胜,张雪辉.“大材料“学科背景下人才分流培养模式的探索[J].出国与就业:就业教育,2011,(15):61-62.
篇5
【关键词】材料化学;改革;探索
中图分类号:G64 文献标识码:A 文章编号:1006-0278(2011)10-098-03
现代高科技的竞争在很大程度上依赖于人才的培养,因而社会对人才的综合素质提出了更高的要求。培养专业知识面宽、实践能力强、具备创新精神的高素质人才,是高等院校义不容辞的责任,是历史赋予的使命。近年来,为了全面推进素质教育,提升大学生的社会竞争力,学院以教学为中心,不断深化课程教学改革,创新教学体系,取得了显著的成效。实践表明,课程教学改革是一项围绕人才培养目标而展开的系统工程,需要学校各方面的支持、配合以及全体师生的共同参与。笔者结合本校的课程教学改革实践对《材料化学》课程进行了定位,并讨论了该课程教学方法和内容的改革探索与实践。
一、材料化学的定位
(一)材料化学的定义
材料化学是一门研究材料的制备、组成、结构、性质、应用及其相互关系的科学,它是材料科学的一个重要分支,又是核心内容。材料化学是一门新兴的边缘学科,是在学科的生长和发展中互相交叉、互相渗透下形成的,是作为基础学科的化学更直接地介入到材料科学中的一个具体体现。因此,可以说《材料化学》课程是化学基础课和材料学专业课程之间的一个重要桥梁。
为打破原有专业划分的界限,在制定《材料化学》的教学内容时,必须进行以加强基础、拓宽专业知识面和加强实践训练为主要目的的课程改革;在课程建设中,必须结合实际,明确了《材料化学》课程的定位:通过对这一课程的理论学习,使学生在掌握材料化学的基本原理基础上,学习运用基础化学理论解决实际问题。
(二)材料化学教材的选择
材料化学学科的着眼点是培养创新型人才,而课程教学是实现高素质创新型人才培养的重要环节,它对全面加强学生知识、技能、能力、创新精神和综合素质培养有着举足轻重的作用。随着现代科学技术的快速发展与知识的不断更新,教材的选择是关键点。自从2005年开设《材料化学》这门课程,我国出版的教材在质上发生了一些微妙的变化。最早的教材是1994年厦门大学丁马太教授出版的《材料化学导论》,该教科书还被复旦大学、西北大学等采用,但内容相对比较陈旧。其后,北京师范大学李奇老师主编了《材料化学》,上海交通大学唐小真教授主编了《材料化学导论》以及南京师范大学周志华教授主编了《材料化学》等。直到2008年,中山大学曾兆华老师根据自己多年的教学经验和实践体会出版了《材料化学》教材,前半部分涉及材料的制备、结构、性能等材料化学的基本内容,后半部分则以金属材料、无机非金属材料、高分子材料和复合材料四大类材料为主线,对不同种类的材料进行介绍,其中涉及各种现代先进材料如高性能金属材料、电子信息材料、纳米材料、功能陶瓷、感光材料、生物医用材料、航空航天材料、能源材料等,并叙述各种材料的性能和行为与其成分及内部组织结构之间的关系,这些内容与本课程以前的教学内容不谋而合。总之,教材是指引学生入门的工具,作为教师一定要把好教材关,找到适合自己学生的教材,方能做到事半功倍。
二、材料化学课程教学改革探索与实践
虽然材料化学是一门理论性较强的专业基础课程,但随着材料科学的飞速发展,材料化学领域的研究成果逐渐得到应用。例如Motorola、保洁等公司每年都会招聘材料化学方向的人才到其研发中心进行新产品新工艺的开发。因此,从培养创新型人才角度来看,教学过程中应加强实践性教学内容,增强材料化学理论知识与科研、生产实践中的实际问题的联系,从而提高学生综合运用材料化学知识解决实际问题的能力,培养学生创新意识和创新能力。然而,由于受传统教学方法的影响,其教学主要以教师、课堂、教材为申心教学模式。该模式过于依赖理论教学,由于材料化学综合了材料学,普通化学等方面的内容,涉及的理论知识较为抽象,内容较为难懂,因此,单纯地采取传统教学模式,在授课过程中,教师很难将复杂的知识简单化,把抽象的知识具体化,降低了学生对该课程的学习兴趣。我们要培养创新型人才,就必须建立有利于培养创新型人才的教学体系,因此,进行材料化学课程的教学模式改革是十分必要的。
(一)教学方法与手段的改革探索与实践
(1)采用循环式教学方法,加强理论与实际的联系
科学地组织教学内容,采用循环式教学方法,使学生在学习理论知识的同时,加强能力的培养和训练。在教学过程中,首先从生活或生产实际出发,让学生了解一些材料的性能及应用知识,激发学生学习本课程的基本理论的兴趣,再运用材料化学基本理论来解释材料结构与功能之间的关系,凝炼出材料设计与制备的原理和方法,并以此原理和方法来设计和制各出有一定社会需求的新型材料。这种循环式教学方法既能提高学生的理论水平,又能培养学生解决实际问题的综合能力。
2、实施三结合教学方式,营造生动活泼的教学氛围
在教学中,我们采用自创三结合教学方式,即讲解与讨论相结合、讲授与自学相结合、期末考试与平时小论文相结合。我们改革了传统的“注入式”教学,建立了“启发式”教学模式,采取“以学生为主体、教为引导”的方式,突出学生的学习主导地位。在教学过程中注意调动学生参与教学的积极_陛,随时让学生提出问题,然后大家共同讨论,以此不断提高他们分析问题的能力和对问题的理解、认知和表达能力。通过我们有意识地将讲解与讨论相结合,较大力度地变教师为主的传统教学方式为教师与学生互动的教学形式。在教学过程中我们发现,最新的科研成果往往最能激发学生的兴趣和开发学生的思维。因此在相应的章节教学中,我们会及时有效地插入一些最新的研究成果与数据,通过这种方式培养学生掌握学科最新发展动态和开拓知识的能力。
通过近几年教学实践表明,我们的教学方法在培养学生的新思维和新思路方面发挥了独到的作用。通过三结合教学方式进一步锻炼了学生解决问题的能力、表达能力、自学能力以及撰写科技论文的能力,有利于学生综合素质的提高。
3、丰富教学手段,提高学生的学习兴趣
现代化教育技术的应用在很大程度上促进了教学手段的多元化,首先在参考其他学校相近课程课件的基础上结合本课程的教学内容制作了《材料化学》电子课件。综合运用图片、动画、文字等多种形式向学生提供丰富的感性材料,直观而又形象地揭示事物的本质和内在联系,有效地突破教学难点,提高课堂教学质量。例如在绪论部分,将材料科学发展的相关图片做成课件在课堂上放映,使学生对本课程的发展、意义、主要内容有生动而深刻的印象;在纳米材料章节中,一些纳米材料的图片能更形象、直观,有效地帮助学生理解和掌握 知识点。此外,我们还充分利用flas直观易理解的优势,例如在材料的结构一章中,插入14种空间点阵结构模型,金属晶体的3种典型堆积模型,晶体间隙的形成、缺陷和位错的形成等:在材料的制各一章中,插入多个物理气相沉积和化学气相沉积装置动画;在无机非金属材料一章中针对石英光纤的制各,插入了多幅动画。在整个教学过程中,该课件产生了很好的教学效果极大地提高了学生的学习兴趣。
另外,互联网也是老师和学生、学生与学生之间交流的平台,将主讲教师的电子信箱告诉学生,学生可以给教师发电子邮件谈学习、谈思想,交流学习中存在的问题,以及学习、生活中的感受和困难,利用现代化的手段,拉近师生间以及学生之间的距离。
(二)教学内容改革探索与实践
材料化学是从化学的角度研究材料的制备、组成、结构、性质及其应用的一门科学。它既是材料科学的一个重要分支,又是化学学科的一个组成部分,具有明显的交叉学科、边缘学科的性质,并且是材料科学的核心部分,具有明显的应用理科性质,在理论和实践上的重要性是不言而喻的。
1、优化课程结构
优化课程结构的重点在于突出理论知识的应用和实践能力的培养,基础理论教学以应用为目的,专业课教学强调针对性和实用性。在构建新的课程体系过程中一方面要规划好专业的主干课程,另一方面以技术应用能力培养为主线,理顺相关课程开课顺序,加大实践教学的比例,强化实践性教学环节,实现理论教学和实践教学并重。我院在课程设置上力求反映材料化学专业的培养目标、专业特点和培养要求,注意改变知识简单任意拼凑、课程之间相互脱节的状况,整个课程以通识教育课程、学科类基础课程、专业必修课、选修课、跨学科任意选修课和实践教学构成。选修课开设的原则是:有利于培养学生的一专多能、拓宽学生的知识面以及培养学生的实际工作能力和创新精神等。根据专业方向的不同,开设课程也有所区别。同时,结合专业特点,在课程体系中实施改革,增加人文教育内容,强化人文素质教育,促进专业教学质量的提高。
2、教学内容与特色学科建设相结合
材料化学以普通化学基础和材料学理论为基础,涉及的理论知识比较抽象,从学习的角度将,要求学生在学习过程中从宏观的概念转化到微观。如从电子,原子、分子水平来理解材料的基本性能。因此,教学难度比较大,如果单纯地采用单一的教学方式,会导致理论与试剂脱离,增加了教学难度,在一定程度上不利于培养学生对本课程的学习兴趣。所以,在教学过程中,应该结合我院材料学科建设的特点,拓宽教材内容,结合我院材料学科的优势和特色,在教学内容中融入我院金属材料、无机纳米材料的物理化学性能,以使学生更加容易接受,增强教学效果。同时结合材料的最新研究动态,理论联系实际地将新兴材料的最新进展向学生介绍,从而提高学生学习的兴趣和实际应用能力。
3、教学内容体现材料化学专业人才的培养方案
针对材料化学课程特点,依托学科特色,围绕培养和造就富有创新意识和能力的宽口径、厚基础、高素质、显个性的人才培养理念并结合本专业现有的教学科研条件,对材料化学学课程进行了改革和探索。材料化学教学内容的选材要体现基础宽、起点高、内容新、知识活的原则,强调从化学角度提出问题、分析问题、解决问题的方法和思路。教学内容应让学生了解材料学科的概况和发展趋势;了解材料制各过程中的化学现象和反应特征;了解所制得材料的形貌、物相和物理化学性质之间的关系:掌握材料制备过程中的化学原理与方法:了解材料的化学改性方法和新材料设计和开发的研究方法,同时也要培养学生的创新思维、创新意识、创新能力和创新精神。实践证明,通过改革,学生的实践能力、创新能力和综合素质明显得到提高。
(三)教师队伍的建设
高校师资队伍是学校发展的根本所在,是学科建设的重中之重。一所高水平大学必须拥有一支高水平的教师队伍。师资是衡量大学水平的最重要的指标和要素。由于材料化学课程是介于材料学和化学之间的一门边缘学科,所涉及面较广。单纯有纯化学背景的教师或纯材料学背景的教师上课,由于知识面的问题,会导致教师教的费劲,学生学得困难。对于材料化学课程教师队伍应该持续充电,完善知识结构。要鼓励材料材料化学课程教师积极对外交流,这样有利于学科交叉和吸取其他高校的成功经验,同时还要做到教学和科研相结合,紧跟材料科学研究的前沿。在教学过程中,教师要对教学内容进行延伸,不仅仅是单纯地讲述课本上的内容,这样就使本来很单调的内容变得比较有趣,活跃了课堂气氛,让学生学到最新和最现代的知识和技术。因此,在材料化学课程教学改革探索与实践中,必须加强高校师资队伍建设。
篇6
关键词先进陶瓷,结构陶瓷,研究进展
1前言
20世纪60年代以来,新技术革命的浪潮席卷全球,计算机、微电子、通信、激光、新能源、航天、海洋和生物工程等新兴技术的出现和发展,对材料提出了很高的要求,能够满足这些要求的先进陶瓷材料应运而生,并在这些技术革命中发挥着重要的作用[1~4],同时也极大地促进了陶瓷科学的发展和应用,使陶瓷材料又一次焕发出了青春, 在尖端科学领域得到广泛的应用, 如航天、航空、汽车、体育、建筑、医疗等领域[4,5]。
先进陶瓷是有别于传统陶瓷而言的,不同国家和不同专业领域对先进陶瓷有不同叫法。先进陶瓷也称高技术陶瓷、精细陶瓷、新型陶瓷、近代陶瓷、高性能陶瓷、特种陶瓷、工程陶瓷等[1]。先进陶瓷是在传统陶瓷的基础上发展起来的,但远远超出了传统陶瓷的范畴,是陶瓷发展史上一次革命性的变化。通常认为,先进陶瓷是指采用高度精选的原料,具有能精确控制的化学组成,按照便于进行的结构设计及便于控制的制备方法进行制造、加工的,具有优异特性的陶瓷。
先进陶瓷按用途可分为结构陶瓷和功能陶瓷两大类。结构陶瓷是指用于各种结构部件,以发挥其机械、热、化学相生物等功能的高性能陶瓷。功能陶瓷是指那些可利用电、磁、声、光、热、弹等性质或其耦合效应以实现某种使用功能的先进陶瓷。先进结构陶瓷材料由于具有一系列优异的性能,在节约能源、节约贵重金属资源、促进环保、提高生产效率、延长机器设备寿命、保证高新技术和尖端技术的实现方面都发挥了积极的作用。本文着重介绍近年来结构陶瓷的研究进展及发展趋势。
2先进结构陶瓷及其应用
先进结构陶瓷若按使用领域进行分类可分为:(1)机械陶瓷;(2)热机陶瓷;(3)生物陶瓷;(4)核陶瓷及其它。若按化学成分分类可分为:(1)氧化物陶瓷(Al2O3、ZrO2、MgO、CaO、BeO、TiO2、ThO2、UO2);(2)氮化物陶瓷(Si3N4、赛龙陶瓷、AlN、BN、TiN);(3)碳化物陶瓷(SiC、B4C、ZrC、TiC、WC、TaC、NbC、Cr3C2);(4)硼化物陶瓷(ZrB、TiB2、HfB2、LaB2等);(5)其它结构陶瓷(莫来石陶瓷、MoSi陶瓷、硫化物陶瓷以及复合陶瓷等)[1]。
由于先进结构陶瓷具有耐高温、高强度、高硬度、高耐磨、耐腐蚀和抗氧化等一系列优异性能[4],可以承受金属材料和高分子材料难以胜任的严酷工作环境,已成为许多新兴科学技术得以实现的关键,在能源、航空航天、机械、交通、冶金、化工、电子和生物医学等方面有着广泛的应用前景。
2.1 耐高温、高强度、耐磨损陶瓷
2.1.1 氮化物陶瓷[6~8]
氮化物陶瓷是近20多年来迅速发展起来的新型工程结构陶瓷。氮化硅陶瓷和一般硅酸盐陶瓷不同之处在于其中氮和硅的结合属于共价键性质的键合,因而有结合力强、绝缘性好的特点。
氮化硅的烧结与一般陶瓷的烧结工艺不同,采用的是反应烧结法,此法制造的氮化硅陶瓷,不能达到很高的致密度,一般只能达到理论密度的79%左右,不能制造厚壁部件。提高氮化硅陶瓷致密度的有效方法之一就是在高温下进行加压烧结,由此可得到热压氮化硅陶瓷,其室温抗弯强度一般都在800~1000MPa。如果在其中添加少量氧化钇和氧化铝的热压氮化硅,室温抗弯强度可达到1500MPa,在陶瓷材料中名列前茅,硬度很高,是世界上最坚硬的物质之一;极耐高温,强度一直可以维持到1200℃的高温而不下降,受热后不会熔成融体,一直到1900℃才会分解;有惊人的耐化学腐蚀性能,能耐几乎所有的无机酸(氢氟酸除外)和30%以下的烧碱溶液,也能耐很多有机酸的腐蚀,同时又是一种高性能电绝缘材料。由于其热膨胀系数小,抗温度急变能力很强,因此氮化硅陶瓷具有优良的力学性能,在工程技术的应用上已占有重要地位。
氮化硅陶瓷制品的种类很多,应用也日益广泛,例如可做燃气轮机的燃烧室、晶体管的模具、液体或气体输送泵中的机械密封环、输送铝液的电磁泵的管道和阀门、铸铝用永久性模具、钢水分离环等。利用氮化硅摩擦系数小的特点用作轴承材料,特别适合作为高温轴承使用,其工作温度可达1200℃,比普通合金轴承的工作温度提高2.5倍,而工作速度是普通轴承的10倍;使用陶瓷轴承还可以免除系统,大大减少对铬、镍、锰等原料的依赖。氮化硅作为高温结构陶瓷最引人注目的就是在发动机制造上获得了突破性进展。美国用热压氮化硅制成的发动机转子成功地在5000转/min的转速下运转很长时间。
2.1.2 碳化硅陶瓷[9,10]
工业化生产碳化硅的方法是将石英、碳素(煤焦)、木屑和食盐混合,在电炉中加热到2200~2500℃下制成。碳化硅陶瓷和许多陶瓷的不同之处,在于它在室温下既能导电,又耐高温,是一种很好的发热元件。用碳化硅制成的电热棒叫硅碳棒,在空气中能经受1450℃的高温;质量好的重结晶法制成的硅碳棒甚至可耐1600℃的高温,远高于金属电热元件(除了铂、铑等贵金属外),这是因为它在高温空气中会氧化生成一层致密的氧化硅薄膜,起到隔离空气的作用,大大减慢了内层碳化硅的进一步氧化,从而使它能在高温下工作。用热压工艺可以制得接近理论密度值的高致密碳化硅陶瓷,它的抗弯强度即使在1400℃左右的高温下仍可达到500~600MPa,而其它陶瓷材料在1200℃以后,强度都会急剧下降。因此,碳化硅是在高温空气中强度最高的材料。
高温燃气涡轮发动机要提高效率,就必须提高工作温度,而解决问题的关键是找到能承受高温的结构材料,特别是发动机内部的叶片材料。碳化硅陶瓷在高温下有足够的强度,且有良好的抗氧化能力和抗热震性,这些优良品质都使它极其适合作为高温结构材料使用。用于在1200~1400℃下工作的高温燃气涡轮发动机叶片的材料,许多科学家认为它和氮化硅陶瓷是最有希望的候选材料。
碳化硅陶瓷的热传导能力仅次于氧化铍陶瓷。利用这一特性,可作为优良的热交换器材料。太阳能发电设备中被阳光聚焦加热的热交换器,其工作温度高达1000~1100℃,具有高热传导性的碳化硅陶瓷很适合做这种热交换器的材料,从试验情况来看,碳化硅陶瓷热交换器的工作状态良好。此外,在原子能反应堆中碳化硅陶瓷可用作核燃料的包封材料,还可作为火箭尾喷管的喷嘴及飞机驾驶员的防弹用品。
此外,为了提高切削刀具的切削性能,20世纪以来,刀具材料经过了高速钢和硬质合金两次发展过程,目前正在进入陶瓷刀具大发展的阶段。新型陶瓷以其耐高温、耐磨削的特点,已在20世纪初引起了高速切削工具行业的注意。陶瓷刀具不仅红硬性高,而且具有高硬度、高耐磨性,因此便成为制造切削刀具的理想材料。目前,制造陶瓷切削刀具的材料主要有氧化铝、氧化铝-碳化钛、氧化铝-氮化钛-碳化钛-碳化钨、氧化铝-碳化钨-铬、氮化硼和氮化硅等[11]。以这类材料制作的刀具没有冷却液也可以工作,比起硬质合金来具有切削速度高、寿命长等优点。目前,欧美各国都已广泛使用陶瓷材料做钻头、丝锥和滚刀;原苏联确定了7000多个品种的合金刀具,用喷涂表面陶瓷涂层的办法来提高车刀的工作速度和使用寿命。
陶瓷除作切削刀具外,利用其耐磨、耐腐蚀的特性还可用作各种机械上的耐磨部件。如用特种陶瓷制作农用水泵、砂浆泵、带腐蚀性液体的化工泵及有粉尘的风机中的耐磨、耐腐蚀件或密封圈等都已取得良好的实用效果。此外,高纯氧化铝(刚玉)可制作金属拉丝模,尤其在高温下的热拉丝更显示出陶瓷的优越性;工业陶瓷中纳球磨筒和磨球,金属表面除锈用的喷砂嘴,喷洒农药用的喷头等。总之,凡是需要耐磨、耐腐蚀的场合,几乎都会看到特种陶瓷的存在。
2.2 耐高温、高强度、高韧性陶瓷
新型陶瓷具有高强度、高硬度、耐高温、耐磨损、抗腐蚀等性能,因此在冶金、宇航、能源、机械等领域有重要的应用。由于陶瓷的韧性差,因此也限制了它的使用范围。1975年澳大利亚的伽里耶(Garie)首次成功地利用添加氧化锆来大大提高陶瓷材料的强度和韧性,自那时起世界各国利用氧化锆增韧这一办法,开发出多种具有高强度和高韧性的陶瓷材料,掀起了寻求打不碎陶瓷的热潮。
氧化锆能够增加陶瓷材料韧性和提高强度的原因,至今虽没有完全搞清楚,但研究结果已经表明,它和均匀弥散在陶瓷基体中的氧化锆晶粒的相变有关。一种增韧理论认为相变膨胀导致的微裂纹可以阻止造成脆断的裂纹扩展;另一种理论认为应力诱导相变,而相变可吸收应力的能量,从而起到增韧的作用[12~14]。总之,在某些陶瓷材料中引入一定量亚稳氧化锆微粒,并使其均匀分布都可大大提高陶瓷材料的强度和韧性。
氧化锆增韧陶瓷已在工程结构陶瓷研究中取得重大进展,经过增韧的陶瓷品种日益增多。现在已经发现可稳定氧化锆的添加物有氧化镁、氧化钙、氧化镧、氧化铈、氧化钇等单一氧化物或它的复合氧化物。被增韧的基质材料,除了稳定的氧化锆外,常见的有氧化铝、氧化钍、尖晶石、莫来石等氧化物陶瓷,还有氮化硅和碳化硅等非氧化物陶瓷。日本在氧化铝基质(强度为400MPa、断裂韧性为5.2 J/m2)材料中,添加16%体积百分数的氧化锆进行增韧处理,制得材料的强度高达1200MPa,提高了3倍,断裂韧性达到15.0J/m2,几乎也提高了3倍,基本达到了低韧性金属材料的程度[12]。最近的研究表明,强度和韧性是相互制约的。尽管如此,许多陶瓷材料通过氧化锆增韧,大大拓宽了应用领域,增强了取代某些金属材料的能力,出现了喜人的应用前景。利用氧化锆增韧陶瓷可替代金属制造模具、拉丝模、泵机的叶轮、特种陶瓷工业用的磨球、轴承,替代手表中的单晶红宝石。日本用增韧氧化锆做成剪刀,既不会生锈,又不导电,可以放心地剪断带电的电线。氧化锆增韧陶瓷还可用于制造汽车零件,如凸轮、推杆、连动杆、销子等。
2.3 耐高温、耐腐蚀的透明陶瓷[4,15]
现代电光源对构成材料的耐高温、耐腐蚀性及透光性有很高的要求,而同时满足这些性能的材料直到20世纪50年代后期才开始得到发展。1957年,美国通用电器公司的科布尔等人在平均尺寸只有0.3μm的高纯超细氧化铝原料中,添加氧化镁,混匀后压成小圆片,放在通氢气的高温电炉中烧制,意外地发现它像玻璃一样透明。科布尔还发现,把透明的陶瓷片放在显微镜下观察,几乎看不到微气孔。经过多次实验观察和研究分析发现,陶瓷的透光能力和内部气孔大小有很大关系,当微气孔的大小在1μm左右时,厚度为0.5mm的陶瓷试样只要含有千分之三的气孔就能使光线的透过率减少90%。一般氧化铝陶瓷中所含的气孔都超过这个数字。因此,构成氧化铝陶瓷的刚玉小晶体本身能够透过光线,而陶瓷还是不透明。使陶瓷透明的关键,是坯体中只能有一种晶型的晶体,而且对称性愈高愈好,否则会发生双折射,此外气孔要愈少愈好,有人做过试验,当气孔小到埃的数量级时,光会沿着微气孔发生绕射现象,这有助于透明度的提高。
氧化铝陶瓷是高压钠灯极为理想的灯管材料,它在高温下与钠蒸气不发生作用,又能把95 %以上的可见光传送出来。这种灯是目前世界上发光效率最高的灯。在相同功率下,一只高压钠灯要比2只水银灯或10只普通白炽灯发出的光还要亮,寿命比普通白炽灯高20倍,可使用2万小时以上,是目前寿命最长的灯。人眼对高压钠灯的黄色谱线十分敏感,而且黄光能穿过浓雾,特别适合街道、广场、港口、机场、车站等大面积的照明,效果极好。目前,许多国家正在推广使用,其发展速度之快,超过了以往任何一种电光源。由此不难看出,新型透明氧化铝陶瓷的出现,引起了电光源发展过程中的一次重大飞跃,带来了巨大的社会经济效益。
除半透明氧化铝陶瓷外,研究得较多的还有氧化镁、氧化钙、氧化铍、氧化锆、氧化钇、氧化钍、氧化镧等。透明氟化镁、氰化钙、硫化锌、硒化锌、硒化镉等也有报道。用氧化铝和氧化镁混合在1800℃高温下制成的全透明镁铝尖晶石陶瓷,外观极似玻璃,但其硬度、强度和化学稳定性都大大超过玻璃,可以用它作为飞机挡风材料,也可作为高级轿车的防弹窗、坦克的观察窗、炸弹瞄准具,以及飞机、导弹的雷达天线罩等。
2.4 纤维、晶须补强陶瓷复合材料[12,16~18]
近年来,以陶瓷为基体、纤维或晶须补强的复合材料由于其韧性得到提高而受到重视。碳化硅晶须增韧的氧化铝陶瓷刀具在20世纪80年代初开始研究,1986年已作为商品推向市场。碳化硅晶须的加入大大提高了氧化铝陶瓷的断裂韧性,改善了切削性能。用碳纤维和锂铝硅酸盐陶瓷复合,材料的强度已接近或超过1000MPa,其断裂功高达3000J/m2,即达到了铸铁的水平。用钽丝补强氮化硅的室温抗机械冲击强度增加到30倍;用直径为25μm的钨丝沉积碳化硅补强氮化硅,这种纤维补强陶瓷的断裂功比氮化硅提高了几百倍,强度增加60%;用莫来石晶须来补强氮化硼,其抗机械冲击强度提高10倍以上。可以认为,继20世纪70年代出现的相变增韧热后,晶须、纤维增强、均韧复合陶瓷已成为结构陶瓷发展的主流。高性能(强度、韧性)、高稳定性、高重复性的晶须、纤维复合陶瓷材料的获得,除要求晶须、纤维与基体间化学、物理相容性较好以外,从复合工艺上,还必须保证晶须纤维在基体中能均匀地分散,才能获得预期的效果。最近,利用“织构技术”,在某些陶瓷坯体中生长出纤维状态针状第二相物质如莫来石晶体进行“自身内部”复合,这种复合增韧是一项简便易行的陶瓷补强新技术。目前高性能陶瓷复合材料,还处在深化研究阶段,关键在于改进工艺和降低成本,提高其实际应用的竞争力。
2.5 生物陶瓷[4,5,19]
生物陶瓷材料是先进陶瓷的一个重要分支,它是指用于生物医学及生物化学工程的各种陶瓷材料。它的总产值约占整个特种陶瓷产值的5%。生物陶瓷目前主要用于人体硬组织的修复,使其功能得以恢复。全世界1975年才开始生物陶瓷的临床应用研究。但是,最近10多年间,各国在这方面的基础应用研究很活跃。
目前生物植入材料在人体硬组织修复中应用的有:金属及合金、有机高分子材料、无机非金属材料和复合材料。材料被埋在体内,在体内的严酷条件下,由于氧化、水解会造成材料变质;长期持续应力作用会造成疲劳或者破裂、表面磨损、腐蚀、溶解等,这些都可引起组织反应,腐蚀产物不仅在种植体附近聚集,还会溶入血液和尿中,引起全身反应。因此,对生物植入材料的要求是严格的、慎重的。陶瓷材料作为生物植入材料和其他材料相比,它和骨组织的化学组成比较接近,生物相容性好,在体内的化学稳定性、生物力学相容性和组织亲和性等也较好,因此,生物陶瓷越来越受到重视。目前国内一些高等院校已对羟基磷灰石及氧化铝陶瓷等进行了研究,并已开始临床应用。
随着人类社会物质文明的发展,人们对提高医疗保健水平和健康长寿的要求必然成为广泛的社会需要。可以相信,生物陶瓷材料今后必将会有重大发展。
3结构陶瓷的发展趋势
当今世界,材料,特别是高性能新材料由于以下原因而得到迅速发展:(1)国际军事工业激烈竞争,航空航天技术的发展需要;(2)新技术的需要促进了新材料的发展;(3)地球上金属资源与化石能源越用越少,石油、天燃气等在本世纪末将用尽,开发与节约能源成为当务之急;(4)科学技术的进步为新材料的发展提供了条件[14]。目前使用的金属合金,在无冷却条件下,最高工作温度不超过1050℃,而高温结构陶瓷,如Si3N4和SiC则分别在1400℃和1600℃以上仍保持着较高的强度和刚性[16]。先进结构陶瓷所表现出的优异性能,是现代高新技术、新兴产业和传统工业改造的物质基础,具有广阔的应用前景和巨大的潜在社会经济效益,受到各发达国家的高度重视,对其进行广泛的研究和开发,并已取得了一系列成果。但结构陶瓷的致命弱点是脆性、低可靠性和重复性。近20年来,围绕这些关键问题已开展了深入的基础研究,并取得了突破性的进展。例如,发展和创新出许多制备陶瓷粉末、成形和烧结的新工艺、新技术;建立了相变增韧、弥散强化、纤维增韧、复相增韧、表面强化、原位生长强化增韧等多种有效的强化、增韧方法和技术;取得了陶瓷相图、烧结机理等基础研究的新成就,使结构陶瓷及复合陶瓷的合成与制备摆脱了落后的传统工艺而实现了根本性的改革,强度和韧性有了大幅度的提高,脆性得到改善,某些结构陶瓷的韧性已接近铸铁的水平。
先进结构陶瓷今后的重点发展方向是加强工艺-结构-性能的设计与研究,有效地控制工艺过程,使其达到预定的结构(包括薄膜化、纤维化、气孔的含量、非晶态化、晶粒的微细化等),重视粉体标准化、系列化的研究与开发及精密加工技术,降低制造成本,提高制品的重复性、可靠性及使用寿命。目前,高性能结构陶瓷的发展趋势主要有如下三个方面:
3.1 单相陶瓷向多相复合陶瓷发展
当前结构陶瓷的研究与开发已从原先倾向于单相和高纯的特点向多相复合的方向发展[20]。复合的主要目的是充分发挥陶瓷的高硬度、耐高温、耐腐蚀性并改善其脆性,其中包括纤维(或晶须)补强的陶瓷基复合材料;异相颗粒弥散强化的复相陶瓷;自补强复相陶瓷(也称为原位生长复相陶瓷);梯度功能复合陶瓷[21]。以往研究的微米-微米复合材料中,微米尺度的第二相颗粒(或晶须、纤维)全部分布在基体晶界处,增韧效果有限,要设计和制备兼具高强度、高韧性且能经受恶劣环境考验的材料十分困难,纳米技术和纳米材料的发展为之提供了新的思路。
20世纪90年代末,Niihara教授领导的研究小组报道了一些有关纳米复相陶瓷的令人振奋的试验结果,如Al2O3-SiC(体积分数为5%)晶内型纳米复合陶瓷的室温强度达到了单组分Al2O3陶瓷的3~4倍,在1100℃下强度达1500MPa[8~12,22~26],这些都引起了材料研究者的极大兴趣。从那时直到现在,纳米复相陶瓷的研究不断深入[13~17,27~31],我国也相继开展了一系列的工作,目前对纳米复相陶瓷的研究已处于国际一流水平[18~22,32~36]。
3.2 微米陶瓷向纳米陶瓷发展
1987年,德国Karch等[37]首次报道了纳米陶瓷的高韧性、低温超塑。此后,世界各国对发展纳米陶瓷以解决陶瓷材料脆性和难加工性寄予了厚望。从20世纪90年代开始,结构陶瓷的研究和开发已开始步入陶瓷发展的第三个阶段,即纳米陶瓷阶段。结构陶瓷正在从目前微米级尺度(从粉体到显微结构)向纳米级尺度发展。其晶粒尺寸、晶界宽度、第二相分布、气孔尺寸以及缺陷尺寸都属于纳米量级,为了得到纳米陶瓷,一般的制粉、成形和烧结工艺已不适应,这必将引起陶瓷工艺的发展与变革,也将引起陶瓷学理论的发展乃至建立新的理论体系,以适应纳米尺度的需求。由于晶粒细化有助于晶粒间的滑移,使陶瓷具有超塑性,因此晶粒细化可使陶瓷的原有性能得到很大的改善,以至在性能上发生突变甚至出现新的性能或功能。纳米陶瓷的发展是当前陶瓷研究和开发的一个重要趋势,它将促使陶瓷材料的研究从工艺到理论、从性能到应用都提升到一个崭新的阶段。
纳米陶瓷的关键技术在于烧结过程中晶粒尺寸的控制。为解决这一问题,目前主要采用热压烧结、快速烧结、热锻式烧结、脉冲电流烧结、预热粉体爆炸式烧结等致密化手段[39~43],但总的来说,以上各种手段,虽对降低烧结温度、提高致密度有一定作用,但对烧结过程中晶粒长大的抑制效果并不理想,大块纳米陶瓷的制备一直是目前国际上纳米陶瓷材料研究的前沿和难点。目前纳米陶瓷在商业应用方面尚未取得突破性进展,若能制备出真正意义上的纳米陶瓷,则将开创陶瓷发展史上的新纪元,陶瓷的脆性问题也将迎刃而解[44]。大量的研究结果表明[45~49],将等离子喷涂技术与纳米技术相结合,以纳米陶瓷粉末为原料经等离子喷涂技术制备的纳米陶瓷结构涂层表现出极其优异的性能,已经使纳米材料的应用逐步进入大规模实用化的阶段。
3.3 由经验式研究向材料设计方向发展
由于现代陶瓷学理论的发展,高性能结构陶瓷的研究已摆脱以经验式研究为主导的方式,陶瓷制备科学的日趋完善以及相应学科与技术的进步,使陶瓷材料研究工作者们有能力根据使用上提出的要求来判断陶瓷材料的适应可能性,从而对陶瓷材料进行剪裁与设计,并最终制备出符合使用要求的适宜材料。
陶瓷材料常常是多组分、多相结构,既有各类结晶相,又有非晶态相,既有主晶相,又有晶界相。先进结构陶瓷材料的组织结构或显微结构日益向微米、亚微米,甚至纳米级方向发展。主晶相固然是控制材料性能的基本要素,但晶界相常常产生着关键影响。因此,材料设计需考虑这两方面的因素。另外,缺陷的存在、产生与变化、氧化、气氛与环境的影响,对结构材料的性能及在使用中的行为将产生至关重要的作用。所以这也是材料设计中要考虑的重要问题,材料的制备对结构与缺陷有着直接影响,因此人们力求使先进陶瓷材料的性能具有更好的可靠性和重复性,制备科学与工程学将在这方面发挥重要作用。
陶瓷相图的研究为材料的组成与显微结构的设计提供了具有指导性意义的科学信息。最近提出的陶瓷晶界应力设计,企图利用两相或晶界相在物理性质(热膨胀系数或弹性模量)上的差异,在晶界区域及其周围造成适当的应力状态,从而对外加能量起到吸收、消耗或转移的作用,以达到对陶瓷材料强化和增韧的目的[1]。为克服陶瓷材料的脆性而提出的仿生结构设计,通过模仿天然生物材料的结构,设计并制备出高韧性陶瓷材料的新方法也成为研究热点[12,50]。
4结语
先进结构陶瓷材料在粉体制备、成形、烧结、新材料应用以及探索性研究方面取得了丰硕的成果,这些新材料、新工艺、新技术,在节约能源、节约贵重金属资源、促进环境保护、提高生产效率,延长机器设备寿命以及实现尖端技术等方面,已经并继续发挥着积极的作用,促进了国民经济可持续发展、传统产业的升级改造和国防现代化建设。
先进结构陶瓷材料的研究,需要跟踪国际科技前沿,对新设想、新技术进行广泛探索。自蔓延高温燃烧合成技术(SHS)、凝胶注模成形技术、微观结构设计已成为研究热点。
陶瓷材料的许多独特性能有待我们去开发,所以先进陶瓷的发展潜力很大。随着科技的发展和人们对陶瓷研究的深入,先进陶瓷将在新材料领域占有重要的地位。
参考文献
1 郑昌琼主编.新型无机材料[M]. 北京:科学出版社,2003
2 朱晓辉,夏君旨. 从材料科学的发展谈陶瓷的发展前景[J].中国陶瓷,2006,42(5):7~9
3 韩以政. 高技术陶瓷发展简论[J].陶瓷研究与职业教育,2007,2:45~48
4 耿保友. 新材料科技导论[M]. 杭州:浙江大学出版社,2007
5 尧世文,王华,王胜林.特种陶瓷材料的研究与应用[J].云南冶金, 2007,36(8):53~57
6 代建清,马天,张立明. 粉料表面氧含量对GPS烧结氮化硅陶瓷显微结构的影响[J].稀有金属材料与工程,2005,34,2:8~11
7 祝昌军,蒋俊,高玲. 氮化硅陶瓷的制备及进展[J].江苏陶瓷,2001,34 (3):10~13
8 吴明明,肖俊建. 氮化硅陶瓷在现代制造业中的应用[J].机电产品开发与创新, 2004,17(2):1~4
9 李 缨,黄凤萍,梁振海.碳化硅陶瓷的性能与应用[J].陶瓷,2007,5:36~41
10 黄凤萍,李贺军等.反应烧结碳化硅材料研究进展[J].硅酸盐学报,2007,5:49~53
11 仟萍萍. 氧化铝基复合陶瓷的制备和性能测试:硕士学位论文[D]. 合肥:合肥工业大学,2004
12 穆柏春等.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002
13 王柏昆. 结构陶瓷韧化机理的研究进展[J].中国科技信息,2007,19:264~273
14 王正矩,余炳锋. 陶瓷基复合材料增韧机理与CVI 工艺[J].中国陶瓷,2007,43(6):11~14
15 李双春. 激光陶瓷的粉体制备研究:硕士学位论文[D]. 西安:西安电子科杖大学,2006
16 周玉编著. 陶瓷材料学(第二版)[M].北京:科学出版社,2004
17 李 缨. 碳化硅晶须及其陶瓷基复合材料[J].陶瓷,2007,8:39~42
18 王双喜,雷廷权. 碳化硅晶须增强氧化锆复相陶瓷材料的组织观察[J]. 中国陶瓷,1998,34(2):9~11
19 孙玉绣. 羟基磷灰石生物陶瓷纳米粒子的制备、表征及生长机理的研究:博士学位论文[D]. 北京化工大学,2007
20GUO J K.The Frontiers of Research on Ceramic Science[J]. J Solid State Chem,1992,69(1):108~110
21 郭景坤,诸培南.复相陶瓷材料的设计原则[J].硅酸盐学报,1996,24(1):7~12
22 NIIHARA K. New Design Concept of Structural Ceramics-ceramic Nanocomposites[J].J Ceram Soc Japan,1991,99(10):974~982
23 NIIHARA K, NAKAHIRA A. Strengthening and Toughening Mechanisms in Nanocomposite Ceramics[J].Ann Chim Fr,1991,16:479~486
24 HIRANO T,NIIHARA K.Microstructure and Mechanical Properties of Si3N4/SiC Composites[J].Mater Lett,1995,22:249~254
25 HIRANO T,NIIHARA K.Thermal Shock Resistance of Si3N4/SiC Nanocomposites Fabricated from Amorphous Si-C-N Precursor Powders[J].Mater Lett,1996,26(6):285~289
26 SAWAGUCHI A,TODA K,NIIHARA K. Mechanical and Electrical Properties of Alumina/Silicon Carbide Nano-composites[J].J Ceram Soc Japan (Japanese), 1991,99(6): 523~526
27 EBVANSA G. High Toughness Ceramics[J].Mater SciEng,1988,A105/106(11-12):65~75
28 ZHAO J,STEARS L C, HARMER M P, et al. Mechanical Behavior of Alumina-silicon Carbide Nanocomposites. [J].J.Am CeramSoc,1993,76(2):503~510
29 KENNEDY T,BROWN J, DOYLE J,et al.Oxidation Behaviour and High Temperature Strength of Alumina-silicon Carbide Nanocomposites[J].Key EngMats,1996,113:65~70
30 PEZZOTTI G, AKAI M.Effect of A Silicon Carbide Nano-dispersion on the Mechanical Properties of Silicon Nitride[J].J.Am CeramSoc,1994,77:3039~3041
31 NAWA M. Microstructure and Mechanical Behaviour of 3Y-TZP/Mo Nanocomposites Possessing A Novel Interpenetrated Intragranular Microstructure[J].J.Mater Sci,1996,31:2849~2858
32 王 昕,谭训彦,尹衍升等.纳米复合陶瓷增韧机理分析[J].陶瓷学报,2000,21(2):107~111
33 焦绥隆,BORSACE.氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J].材料导报,1996,10(增刊):89~93
34 郭景坤.关于先进结构陶瓷的研究[J].无机材料学报,1999,14(2):194~202
35 SHAO G Q,WU B L,DUAN X L, et al. Low Temperature Carbonization of W-Co Salts Powder[A].Ceramic Engineering & Science Proceedings-23rd Annual Conference on Composites, Advanced Ceramics,Materials, and Structures:A[C]. Ohio: The American Ceramic Society,1999.45~50
36 张志昆,崔作林. 纳米技术与纳米材料[M].北京:国防工业出版社,2000
37 KARCH J, BIRRINGER R, GLEITER H. Ceramics Ductile at Low Temperature[J].Nature,1987,330(10):556~558
38 Liao S C,Mayo W E,Pae K D.Theory of High Pressure/Low Temperature Sintering of Bulk Nanocrystalline TiO2[J]. Acta Mater,1997,45(10):4027~4040
39 Yoshimura M,Ohji T,Sando M,et al. Rapid Rate Sintering of Nano-grained ZrO2-based Composites Using Pulse Electric Current Sintering Method[J]. Mater Let, 1998, 17(16): 1389~1391
40 Kim H G, Kim K T.Densification Behavior of Nanocrystalline Titania Powder Compact under High Temperature[J]. Acta Mater,1999,47(13):3561~3570
41 Li Ji guang,Sun Xudong. Synthesis and Sintering Behavior of A Nanocrystalline Al2O3 Powder[J].J Acta Mater,2000,48:3103~3112
42 李晓贺. 纳米复相陶瓷材料的烧结技术[J].中国陶瓷,2007,43(7):43~46
43 傅正义. 陶瓷材料的SHS 超快速致密化技术[J].硅酸盐学报,2007,35(8):949~956
44 高 濂,李蔚著. 纳米陶瓷[M]. 北京:化学工业出版社,2001
45 B H Kear. Plasma Sprayed Nanostructured Powders and Coatings[J].Thermal Spray Technology,2000,9(4):483~487
46 H Chen, S W Lee,H Du,et al.Influence of Feedstock and Spraying Parameters on the Depositing Efficiency and Microhardness of Plasma-Sprayed Zirconia Coatings[J]. Materials Letters,2004,58:1241~1245
47 E P Song,J Ahn,S Lee.Microstructure and Wear Resistance of Nanostructured Al2O3-8wt.%TiO2 Coatings Plasma-Sprayed with Nanopowders[J].Surface & Coatings Technology,2006,201 (3~4):1309~1315
48 J X Zhang. Microstructure characteristics of Al2O3-13 wt.%TiO2 Coating Plasma Spray Deposited with Nanocrystalline Powders[J]. J. of Materials Processing Technology,2008,197:31~35
49 徐滨士.纳米表面工程[M]. 北京化学工业出版社,2003
50 黄勇等.陶瓷强韧化新纪元――仿生结构设计[J].材料导报,2000,14(8):8~10
Research Progress on Advanced Structural Ceramic Materials
Lu XuechengRen Ying
(Handling Equipment Mechanical Department, Academy of Military TransportationTianjin300161)
- 上一篇:语文继续教育笔记
- 下一篇:高分子材料的性质特点