继电保护的灵敏性范文

时间:2023-12-15 17:30:05

导语:如何才能写好一篇继电保护的灵敏性,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

继电保护的灵敏性

篇1

【关键词】 继电保护 可靠性 风险研究

电力覆盖范围的逐渐扩大,需要提高继电保护的可靠性,防止事故的发生,保证电力系统的正常的运行,是当前电力系统面临的主要问题。继电保护的可靠性需要对继电保护进行风险评估,分析继电保护的可靠性。

1 关于继电保护

1.1 继电保护的工作原理

继电保护存在的风险性,需要对继电保护的工作原理和装置要求做出分析。从继电保护的工作理论判断,继电保护装置可以区分被保护元件的运行状况,在发生故障的时候,对故障做出区内和区外的辨别,对比整个电力系统发生故障前后的监测数据,根据电气量的变化,做出判断和处理,实现对继电的保护功能。

1.2 继电保护的工作装置

对继电保护进行风险评估,要根据继电保护的工作装置和相应的配备设置,在技术上提高对继电保护的速动性、选择性、可靠性和灵敏性,降低继电保护的风险评估难度,完成对继电保护的风险评估辅助措施。

(1)继电保护的选择性:当电力系统发生设备或者线路短路的情况时,继电保护会对发生故障的设备进行保护和故障切除,发挥继电保护的选择,实行对继电保护的风险评估。如果继电保护的选择性出现故障,会增加电力系统全面瘫痪的风险。(2)继电保护的速动性:继电保护的速动性是继电保护工作装置的另一个要素,是通过继电保护装置及时有效的切除故障,减少电流过大和电压较低状态下设备的运行时间,避免设备的损坏,提高电力系统的稳定运行功能。良好的继电保护装置的速动性,可以减少继电保护的风险性。(3)继电保护的灵敏性:继电保护的灵敏性体现在,在保护的范围内,当电气设备或者线路发生故障,电力系统不能正常运行的情况下,继电保护的灵敏性反应能力。继电保护灵敏性的灵敏系数,提供了有效的继电保护风险评估参数,保证电力系统在规定范围内,无论发生任何故障,都能够准确及时的做出反应。(4)继电保护的可靠性:继电保护的可靠性包括继电保护的安全性和信赖性。安全性是继电保护不误动,就是在继电保护过程中,在不需要动作时不发生动作,而信赖性是继电保护不拒动,是指在规定的保护范围内对发生了故障的动作进行可靠性动作。根据理论研究结果,发现继电保护的误动和拒动都会对电力系统造成危害,对继电保护的工作装置进行合理、安全和高效的保护,提高继电保护的可靠性、速动性、灵敏性和选择性的性能。

1.3 对继电器的选择

继电器是继电保护装置重要的组成部分,是继电保护对风险评估的一个项目参考。继电器决定了继电保护的潜在风险,选择正确、合适和高品质的继电器,排除环境使用的不同、输入信号的不同和参量输入的不同、负载情况等综合因素的影响,最大限度的发挥继电器的安全作用,实现电力系统的良性发展。

2 提高继电保护可靠性的方法

(1)严格控制质量:在制造和选购过程中要严格对继电保护装置进行质量管理,提高继电保护装置设备的质量。(2)保证继电保护装置定值区的正确性:重视继电保护装置的检验。对继电保护装置进行定期的检验,保证继电保护装置定值区的正确性,严格的对检验工作进行管理。(3)完善继电保护设备:对校验设备进行及时的更新和维修,完善电力系统。结合配电自动化,对故障实施快速隔离,逐渐完善电力系统的的继电保护设备和继电保护技术设施。(4)提高处理故障的能力:制定事故解决措施,提高继电保护装置的可靠性。经常对继电保护装置进行检查,检查的时候,确定设置的正确性和精确性,杜绝继电保护的保护拒动和误动隐患。

3 关于继电保护的风险性

3.1 风险评估的定义

风险评估是在发生风险事件前或者发生风险事件后,都会对生活、生命和财产安全造成影响的事件发生的可能性,进行量化评估的工作。简单来说,风险评估就是对事件造成的影响或者损失的可能性进行量化测评。

3.2 在继电保护中影响风险评估的因素

电力系统发生故障风险和电力系统的负载率,线路平均负载率和波动系数有关。例如,系统负载率是0.375或者0.467的时候,发生故障的风险值很小;如果系统负载率变大,线路的平均负载率和波动系数就会增加故障风险值的可能性。线路平均负载率和波动系数过大,故障风险值也会变大(如图1)。

根据分析数据显示,保证系统负荷的均匀分布,才能降低风险故障值。所以,系统操作人员在运行电网系统的时候,使系统总负荷保持分布均匀的状态,可以有效的降低电力系统发生故障的风险性。

3.3 建立风险评估机制

电力系统容量和规模的不断增加,加大了多重故障和灾害天气引发的风险,目前电力系统面临的严重挑战就是大范围断电现象的产生。所以,对电力系统进行风险评估,需要掌握突发事故和天气灾害发生的规律和机理,做好预防和监管工作。

4 结语

继电保护是电力系统的重要条件,是保证电网安全运行的重要因素。对继电保护的重要性和可靠性因素、原理进行充分了解,对继电保护装置进行定期的检查和维护,才能保证电力系统的正常运行。

篇2

Abstract: In order to cut off the fault circuit in a very short period of time and maintain the continued work of non-faulty equipment when power system failure or abnormal operating,protection devices must be used. In order to make protection device can play a better role,timely and correctly complete its main tasks,the distribution system proposed requirements of selectivity,speed and mobility,sensitivity and reliability of relay protection.

关键词:供电系统;继电保护;要求

Key words: power supply system;relay protection;requirement

中图分类号:TM77 文献标识码:A文章编号:1006-4311(2010)33-0094-01

1继电保护的任务及原理

1.1 继电保护的任务当被保护的设备或装置发生故障时,保护装置应迅速动作,有选择地将故障部分断开,以保证非故障部分继续工作;当设备出现不正常运行状态时,保护装置将发出相应信号,以便通知值班人员及时采取必要措施。

继电保护装置的主要作用是防止电力系统事故的发生和扩大,限制事故的蔓延,提高供电的可靠性。所以说,继电保护装置是电力系统的一个重要组成部分,它对保证电力系统的安全运行起着十分重要的作用。

1.2 继电保护的基本原理为了对电力系统发生故障或不正常运行状态时,实现其相应的保护作用,继电保护装置通常由测量部分、逻辑部分和执行部分组成。

测量部分主要由测量元件构成,其作用是反映和转换被保护对象的电气参数,如电流增大、电压降低以及电压与电流之间的相角差等,经过测量元件的转换后与给定值进行比较并送至逻辑部分。

逻辑部分的作用是根据测量部分输出的结果进行逻辑判断,即判断被保护设备的状态,确定保护装置是否动作,以及如何动作(瞬时或延时)等。

执行部分的作用则是根据逻辑部分的判断,最后完成保护装置的使命,即跳闸、发出信号或不动作。

2对继电保护的基本要求

2.1 选择性当电力系统中任何一个环节发生故障时,继电保护要保证使最靠近故障点的断路器首先跳闸,将故障部分切除,使停电范围尽量缩小,以保证其他元件继续正常运行。要使保护装置具备能正确挑选并切除故障部分、以减小故障停电范围的能力即保护动作的选择性要求。满足这种要求的目的,是为了减小故障停电造成的损失,提高系统供配电的可靠性。

2.2 速动性为了减轻短路故障电流对电气设备的破坏程度,继电保护装置在发生短路故障时应尽快动作将故障切除。快速切除故障部分可以防止故障范围扩大,加速系统电压的恢复过程,减少用户在故障时低电压下的工作时间,有利于电动机的自启动,提高电力系统运行的稳定性和可靠性。

为了满足选择性,企业供配电系统的继电保护需要一定时限,允许切除故障的时间一般为20~55s。速动性和选择性往往是矛盾的,一般应首先满足选择性。但应在满足选择性的情况下,尽量缩短切除故障的时间。切除故障所需要的时间等于继电保护装置整定的延时时间及其动作时间与断路器跳闸至灭弧时间的总和,为此,应尽量采用快速继电保护和快速断路器。但在允许有一定延时来切除故障的场合,不一定要选用快速动作的断路器和继电保护装置,以便降低设备投资费用。保护装置在无法兼顾选择性和速动性的情况下,为了快速切除故障以保护某些关键设备,或为尽快恢复系统的正常运行,有时也只好牺牲选择性来保证速动性。

2.3 灵敏性灵敏性是指在所规定的保护范围内发生所有可能发生的故障或不正常工作状态时,保护装置的迅速反应能力。希望的保护范围是指在该保护范围内故障时,不论故障点的位置以及故障的类型如何,保护装置都能敏锐且正确地使继电保护装置的启动元件启动。反应能力是用继电保护装置的灵敏系数(灵敏度)来衡量。如果保护装置对保护区内极轻微的故障都能及时迅速地反应和动作,就说明保护装置的灵敏度高。继电保护装置的灵敏度一般是用被保护电气设备故障时,通过保护装置的故障参数,例如短路电流与保护装置整定的动作参数例如动作电流的比值大小来判断的,这个比值叫灵敏系数,亦称灵敏度,其大小代表灵敏度高低。

对于反映故障时参数量增加而动作的保护装置,其灵敏度的为灵敏度=保护区末端金属性短路时的最小计算值/保护装置动作参数的整定值。

对于反映故障参数量降低而动作的保护装置,其灵敏度的涵义为:灵敏度=保护装置动作参数的整定偷保护区末端金属性短路时的最大计算值。

对不同作用的保护装置和被保护设备,所要求的灵敏度是不同的。要求保护装置不但在最大运行方式下三相金属性短路时能可靠地动作,而且在最小运行方式和经过较大的过渡电阻两相短路时(最不利于启动的情况)也能可靠地动作。最大运行方式是指被保护线路末端短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。

最小运行方式是指电力系统处于短路阻抗为最大,短路电流为最小的状态的一种运行方式。即指被保护线路末端短路时,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。

校验保护装置的灵敏度,应根据对保护装置动作最不利的条件进行计算,即把灵敏度校验点选在保护区末端,只校验在最小运行方式下该点发生两相短路时,保护装置的灵敏度是否满足要求。

2.4 可靠性可靠性是当保护范围内发生故障和不正常运行状态时,保护装置能可靠动作,不应拒动或误动。继电保护装置的拒动和误动都会造成很大损害。为保证保护装置动作的可靠性,应尽量选用质量好、结构简单、工作可靠的继电器组成保护装置;保护装置的接线要力求简单,使用最少的继电器和触点;正确调整保护装置的整定值;注意安装工作的质量,加强对继电保护装置的维护。

保护装置的选择性、速动性、灵敏性、可靠性对一个具体的保护装置,不一定都是同等重要的。在各项要求发生矛盾时,应进行综合分析以选取最佳方案。例如,为了满足保护装置的选择性,往往要降低一些速动性要求;而有时为了保证速动性。

参考文献:

[1]夏蕾,等.浅谈供电系统继电保护的可靠性[J].科协论坛,2010,1.

[2]时敏,胡松.小议10kV供电系统继电保护[J].科技资讯,2009,2.

篇3

1.1继电保护装置。

继电保护装置是组合一个或者多个保护元件和逻辑元件,实现对电力系统中继电保护作用的装置。当电力元件或者电力系统发生故障,影响电力系统的正常运行时,继电保护装置会发出警报或者跳闸,防止事故的继续发展。

1.2继电保护装置的基本要求。

继电保护装置的基本要求就是:可靠性、选择性、速动性和灵敏性。保证电力系统的正常运行,需要实现继电保护的可靠性;继电保护的可靠性取决于继电保护装置的基本要求,所以维持电力系统的正常运行也需要保护继电保护装置的正常运行。

1.3继电保护装置的作用。

电力系统中,继电保护装置最为主要的职能就是对电力系统进行保护,最大限度的保障其正常稳定的运行,在实际的工作中,继电保护装置也会更具不同情况,对系统中所出现的各种问题进行分析和研究,进而做出最为合理的处理,具体如下:

1.3.1对电力系统的运行进行监管。

继电保护系统有很多功能,其中对于电力系统的监管是一个非常重要的方面,通常情况下,继电保护装置在发现其所保护的电力系统中出现问题的时候,会马上跳闸,这样就会使电流无法进行流通和传播,切断危险源头,进而最限度的降低了危险系统与事故范围,实现了对电力系统的安全保障。

1.3.2对电气设备中的异常进行反应。

继电保护装置能够对电气设备的工作情况如实的进行反应,在日常的工作中,如果是其设备的数据出现反常,那么继电保护装置就会首先对其进行分析,然后,根据实际的情况进行分析,并发出信号,不同的情况其所发出的信号也会不同,这样工作人员就能够由此分辨出问题的种类,进而采取正确的处理方法,进行处理,及时将故障排除。

1.3.3实现电力系统的自动化。

继电保护装置最大的特点之一,就是其自身的智能性与选择性,这决定了其动作的准确性和灵敏性,一个合格的继电保护装置应该具备快速准确分析事故的能力,在科技发现的今天,信息化的继电保护装置其工作效率以及质量有了巨大的飞跃。因此电气设备的远程控制和检测已经实现,并且随着时代的进步,电力系统还将得到更进一步的发展,那么继电保护装置也将随之更加完善,更加智能化,自动化。

2继电保护存在的问题

2.1设备管理存在漏洞:

继电保护管理在设备管理和质量管理上存在工作漏洞,没有及时、有效的进行完善和改进,可能会使事故扩大。例如在设备管理工作中,对继电保护装置的定制整定计算错误,不注意对定值设备的维护和保养,致使继电保护元件老化或者损坏,受到温度和湿度的影响,定制漂移等问题,都会造成定值不够精准的现象,影响继电保护装置的灵敏性。

2.2缺乏监督:

继电保护的技术监督力度不强,不能及时发现设备和运行中出现的问题。例如在保证地理系统正常运行的电源问题上,输出功率不稳定造成电源的逆变稳压;因为直流熔丝的配置不当和直流电源的插件质量,会造成电源的故障,影响继电保护装置的正常运行。

2.3合作意识低下:

继电保护装置的调度部门和操作部门缺乏交流沟通,使得资源的调用与实际操作不相符合,浪费了电力资源,减少了电力运行的时间,不利于电力系统的发展。

2.4不能与时俱进:

电力系统的管理和配置需要适应社会和经济的发展,保证电力的正常运行,提高经济效益。所以在对继电保护装置进行保护、调试、检验和故障分析的时候要格外认真、仔细,及时反映继电保护装置的异常现象,提高继电保护装置的技术,防止电力事故的发生。

3继电保护事故的应对措施

3.1提高对继电保护的重视。

继电保护作为电力系统正常运行的重要因素,应该高度重视,强化继电保护装置的专业知识,加大思想教育力度,保持继电保护的稳定运行。

3.2建立继电保护规章制度。

电力工程在为社会提供帮助和效益的同时,也会因为电力故障给国民经济造成损失,所以我们需要在保证电力系统正常运行的情况下,做好继电保护风险评估工作,防止故障的发生。建立健全继电保护规章制度和继电保护风险评估体系,有效对继电保护故障作出预防。

3.3提高继电保护操作人员的专业素质。

继电保护是一门综合性的科学。继电保护装置是指能反应电力系统电气元件发生故障或不正常运行状态,并动作断路器跳闸或发出信号的装置。在继电保护运行过程中,继电保护工作人员除了能对继电保护的动作行为进行分析外,还要对继电保护装置进行试验和调试。例如在普通试验室、电力系统动态模拟试验室、计算机仿真系统和现场进行各种试验和调试等。继电保护的调试、整定、试验是每一个现场继电保护工作者必须掌握的基本技术。

3.4健全监督管理制度。

继电保护具有选择性、灵敏性、可靠性和速动性,继电保护装置的可靠性决定了继电保护的安全运行。建立健全的监督管理制度,对继电保护装置的设备和系统进行科学、合理的规定,预防继电保护的故障发生。

4结束语

篇4

[关键词]:电厂 继电保护 应用 策略

一、引言

发电厂是我国生产电能的主要基地,继电保护设备是发电厂内部电力系统运行必不可少的装置,它能够及时检测到系统运行的突发故障或异常运行方式,既可在短时间内发出报警信号,也能直接对故障部分采取切断、隔离处理,为发电厂电气设备的运行提供了安全、稳定的环境。根据发电厂设备运行记录分析,继电保护装置会受到多种内外因素的干扰,造成其保护功能明显降低。因此,及时采取有效策略抵制干扰是发电厂继电保护需要尽快处理的问题。

二、发电厂继电保护的作用与要求

发电厂继电保护的主要功能是对异常状况及时检测报警,对可能发生的故障提前采取应急处理措施。发电厂内部电力系统的继电保护装置具有很强的故障判断力。当系统在运行期间产生异常之后,可利用继电保护装置尽快切断故障源,避免造成设备损坏或系统运行中断。发电厂采用继电保护之后应详细分析其功能作用及运行条件,实现最大的设备保护效果。

2.1继电保护的作用与组成

电力是国民经济健康平稳运转的重要能源之一。目前,我国的发电厂生产电能的方式主要是火力发电、水力发电等。每一种电能生产模式都要使用各种自动化电气设备。将继电保护装置应用于电气设备发挥监测故障的作用,如:继电保护在发电厂设备故障发生前能感应到异常信号,从而立刻把故障元件与电力系统隔离,防止设备内部构件受到损坏。同时,继电保护的紧急处理也防止停电时间过久带来的不便,让发电厂设备保持正常的运行状态。

继电保护动作的实现要借助于整套装置功能的发挥,其通常由测量元件、逻辑元件、执行元件等结构组合而成,每一个部分都是影响继电保护功能的重要因素。具体情况:测量元件,通过对发电厂电气设备的元件参数综合测量,将所得参数与标准值对比后判断设备的实际状态,以命令继电保护装置是否动作;逻辑元件,根据相对应的逻辑关系对设备故障详细分析,确定具体的类型、范围,再确定断路器跳闸、传输信号等动作;执行元件,继电保护信号传输完成后,执行元件则按照信号执行命令.如:跳闸、切断等。

2.2继电保护的基本要求

鉴于继电保护对发电设备故障的检测、报警、切断、隔离等多项功能,发电厂在配置继电保护装置时必须要考虑到继电保护动作运行的基本要求。只有满足继电保护装置运行的条件,才能使其保护功能得到正常发挥。一般情况下,继电保护的基本要求应当符合选择性、灵敏性、快速性等方面的要求。具体如下:

(1)选择性

继电保护动作的选择性是指保护动作装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

(2)灵敏性

灵敏性是衡量继电保护装置反应能力的指标,发电厂设备出现短路故障之后,保护装置动作时间越短则灵敏性越强。作为继电保护的基本要求,装置的灵敏性必须能在规定时间内判断故障的位置、种类、影响及处理方法,让继电保护装置能正确反应动作。如:发电厂系统最大运行方式下三相短路动作正常,同时在系统最小运行方式下两相或单相短路故障时同样动作正常。

(3)快速性

快速的切除故障可以提高电力系统并列运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。因此,在故障发生时,应力求保护装置能迅速动作切除故障。

(4)可靠性

保护装置的可靠性是指在该保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护不该动作的情况下,则不应该误动作。

三、继电保护的干扰因素

继电保护在发电厂生产期间起到了关键性的保护作用,既能对设备异常状态有效检测,也可在故障发生时紧急切断处理。但从实际保护状态分析。发电厂继电保护受到了多方因素的干扰,造成继电保护装置的性能减弱,这对于发电厂安全稳定运行是不利的。

3.1雷击因素

雷电对发电厂设备的破坏力较大,且自然雷击形式多样,如:直击雷、感应雷、球形雷等。若发电厂的接地元件、避雷器受到雷电袭击后,因电厂内的地网为高阻抗,使得雷击造成的高频电流在变电站的地网系统中造成暂态电位的升高。这种高阻抗干扰状态下,发电厂继电保护装置的误动作率明显上升,保护装置的灵敏性、可靠性等性能大大减弱。

3.2高频因素

发电厂设备内隔离开关动作时间过长、动作速度过慢,在隔离开关触点之间则形成“电弧闪络”,由此形成过电压、高频电流等。这种高频状态会使得母线附近形成强烈的电场、磁场,使得二次回路、二次设备的运行发生异常状况,若干扰强度大于装置逻辑元件承受范围时便会使继电保护装置动作异常,干扰了发电厂继电保护装置的运行。

3.3辐射因素

为了满足电能生产调控的需要,发电厂内部电力系统也配备了相应的移动通信设备。通信设备在使用期间会形成强辐射电场、磁场。通信设备引起的辐射也会对继电保护造成一定的干扰,如:变化的磁场耦合到附近的弱电子设备的回路中,而回路则感应出高频电压而产生假信号源,这往往会误导继电保护装置的正常动作,影响了设备保护的效果。

四、发电厂继电保护的有效策略

继电保护是维持发电厂正常生产重要的关键环节,维持继电保护装置正常可靠动作是工程设计人员及运行人员需要深入分析的内容。考虑到继电保护干扰因素带来的不利影响,发电厂在生产运行期间要重视继电保护装置的管理,对潜在的干扰因素及时防范处理。根据笔者的工作经验,发电厂继电保护抵抗干扰的措施包括以下几个方面。

4.1安排保护人员

发电厂应安排专业人员对继电保护装置监测观察,当装置发生异常状态后及时采取措施处理。通常对发电厂继电保护装置要充分安排继保、运行等人员的工作,让发电厂继电保护装置保持良好的运行,专业人员必须经过专业的培训和学习,经过专业机构的测评,并对相关设备的运行状态建立运行数据,以作为资料储备。

4.2完善规章制度

不同发电厂的生产模式各不一样,发电厂要根据自身采用的继电保护装置特性,制定完善的规章制度加强管理。如:继电保护设备台账、运行维护、事故分析、定期校验、缺陷处理等。

4.3实行状态监测

随着微机保护和微机自动装置的自诊断技术的发展,变电站继电保护故障诊断系统的完善为电气二次设备的状态监测奠定了技术基础。对保护装置可通过加载在线监测程序,对相应的干扰因素及时处理。

4.4配电线路保护

当前,国内配网线路均以lO kv电压等级为主,但是10 kV配电线路结构特点是一致性差。这就要求技术人员参照电网保护配置情况及运行经验,利用规范的保护整定计算方法对继电保护参数准确计算。

4.5智能网络控制

科学技术的发展促进了人工智能技术在电力系统中的广泛运用,如:神经网络、遗传算法、进化规划、模糊逻辑等。发电厂可以利用计算机网络平台,创建智能化的网络控制系统,引导继电保护装置正常的动作秩序。

篇5

【关键词】稳定性;继电保护;电力系统

1关于继电保护的概念

可靠性指的是一个设备或是元件在一定的时间范围内及其要求的条件下,达到规定功能的一种能力。可靠性工程设计的方向主要是对元件时效数据的处理以及统计,对系统的可靠性的最终评定,经济性以及可靠性多方面的协调,都要进行综合性考虑。在继电保护装置中有具体的表现,这里的可靠性所指的是,在设备的规定范围内,如果发生了其本应该动作的故障,该装置不可以拒动作,同时其他任何的保护在不可以动作的情形下,其也应是不可以进行误动作的。

在继电保护的过程中从对其运行的维护,以及设计、制造等多个方面进行考虑,是可以有效保障继电保护措施得以有效实施的方法。对于继电保护整个系统可靠性,是通过装置设计的合理性以及可靠性来决定的,而在继电保护装置中,其可靠性具有绝对性的作用。

2继电保护装置过程中的基本要求

在电力系统中,继电保护装置运行可靠的基本要求是要具有选择性、速动性、灵敏性以及可靠性。选择性指的是,每当供电系统在正常工作过程中出现故障时,此继电保护系统能够有选择性的将故障部分切除,将离故障部分最近的断路器断开,从而能够保证电力系统中其他没有发生故障的部分能够正常的运行;速动性指的是,若是电力系统发生短路时,继电系统能够以最快的速度切断故障所在电路,将故障的范围和因故障所造成的破坏与损失降低到最小,从而提高电力系统的稳定性;灵敏性指的是,在电力设备或者线路的被保护范围内发生了金属性短路时,继电保护装置应当具有其必要的灵敏系数,各类保护的最小灵敏系数在电力系统运行时应当有着具体的规定,通过继电保护系统实现了选择性与灵敏性的要求;可靠性指的是,配合各个质量与技术性能优良的继电保护装置元器件以及对其正常的维护和管理来保证系统的稳定性。无论是什么样的电力设备,例如线路、母线、变压器等都决不允许在无保护的情况下运行。若是220KV及以上的电网所需要的运行设备都必须有两套交流电输入、直流电输出的相对独立的回路,并且所能够被分别控制不同的断路器的继电保护装置来对其进行保护。当其中任意一套继电保护装置或者是任意一组断路器出现故障的时候。另一套保护装置能够继续对整个电路系统实施继电保护,并且迅速有效的对故障部分实施切除。在这样的要求下,所有的继电保护装置以及断路器所取的直流装置、储能电源都将经由不同的熔断器进行供电,控制回路不装设熔断器。

3关于保障继电保护运行安全性的措施

3.1对继电保护装置进行检测时应该注意的问题

应注意的问题:在检验的最后进行电流回路升流以及整组的试验,完成这两项工作后,不可以再进行改定值以及拔插件还有改变二次回路以及定值区间等工作网。电压回路的升压以及电流的回路的升流试验,应该也放置在所有实验项目的最后来进行。在一定规定内的检查期间,在设备处于预热状态下或是检验结束后,并且投入运行后没有负荷的情况下,不可以进行负荷的采样以及测量负荷的向量工作。

3.2定值区间的问题

可以有多个定制的区间,是微机保护的一大优势,解决了在电网运行方式多变的情况下,定值进行更改的问题,但是值得注意的是定值区间错误会成为继电工作的一大障碍,需要严谨的检验保证定值的区间。相应的措施是,进行定制的修改结束后,继电保护专业人员应与运行人员、调度值班员核对定值通知单位后录入系统,并导出打印一份放置于现场。

3.3常规的检查

常规性的检查对所有的保护都是极其重要的,但是这一项目却常常被忽略。常规性的检查主要从两方面进行:第一检查连接件有没有存在虚焊机械特性的问题以及有没有禁固焊接的点,在保护屏的后面安装的螺丝比较多,尤其是新安装的装置,在运输的过程中螺丝比较容易松动,现场安装时,应该确保一个不漏的进行检查,排除误动的隐患。再将插件拔下来后,逐一的进行检查,其中包括螺丝是否拧紧,芯片是否按紧还有虚焊点的检查。在检查的过程中,应该将端子箱以及保护测控的螺丝紧固,作为一项重点检查工作来进行。

4分析继电保护过程中事故原因

进行完整设备的检查验收工作,并且确保其正确的操作后,有效的降低了继电保护事故的发生率。在继电保护的过程中,及时的对发生状况进行总结分析,才能有效的在第一时间察觉在继电保护的过程中存在的问题,更深层次的知悉事故发生的真正原因,通过这样的方式对装置的运行进行保护和处理,保证设备可以有效的运行。

4.1对有关数据利用的加强

在继电的保护工作中通常存在着工作的隐蔽性以及连续性等问题,也就是说当保护操作结束以后,设备依然有可能继续一段时间的工作,在这一过程中就会对设备产生一定的损害。并且在继电保护装置的运行过程中,还存在着一定的隐蔽性,也就是在平时的操作过程中,会存在不易被察觉的一些潜在性问题,只有发生故障以后这些问题才会被发现。通过对故障录波以及时间还有微机事件的记录和装置的灯光所显示的信号,这一系列的信息的判断,从而排除隐蔽、连续,可能对装置不利的影响。

4.2有效的区分故障的原因

在继电的保护过程,会遇到各种各样的问题,这些故障的种类以及原因很多,大部分时候很难准确的界定,事故发生的原因是人为的原因还是因为设备的原因,因此对于事故原因的判定,是不应该仅凭经验来作为依据的,而应该是根据一定的数据处理原则以及经验进行检测的。在装置中潜在的问题中,值班运行操作人员应该如实的将这些问题同技术人员进行反映,以此保障技术人员能够做出有效的判断,及时的解决问题将影响降到最小。

4.3正确的进行继电保护的处理工作

在进行处理事故之前,应该保证测试设备处于合格期内。使用前进行自检,确认正常后方可使用。在做好相关的一系列的事故处理的准备工作后,还应该配备与事故的类型相适应的检查方法。检查方法通常有:顺序检查以及整组试验和逆序检查等几种方法。

5结语

为确保继电保护能够可靠的运行,要做好日常的操作工作,以及二次设备的验收工作。改变传统的在发生事故时对继电保护的处理方式。不断的提升在继电保护运行中的网络化,智能化和微机化水平,以此使继电保护可以得到正常运行。

参考文献:

篇6

【关键词】220KV电网;继电保护;变压器;短路计算

1.继电保护的基本原理

继电保护装置应在系统发生故障或不正常运行时,迅速,准确的切除故障元件或发出信号以便及时处理,因此,继电保护装置是电网及电气设备安全可靠运行的保证。继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。电力系统发生故障后,工频电气量变化的主要特征是:

(1)电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。

(2)电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。

(3)电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20o,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60o~85o,而在保护反方向三相短路时,电流与电压之间的相位角则是180o+(60o~85o)。

(4)测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值。正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。

不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。利用短路故障时电气量的变化,便可构成各种原理的继电保护。此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护。

2.继电保护的基本要求

继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。

2.1 选择性

选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。

2.2 速动性

速动性是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。一般必须快速切除的故障有:

(1)使发电厂或重要用户的母线电压低于有效值(一般为0.7倍额定电压)。

(2)大容量的发电机、变压器和电动机内部故障。

(3)中、低压线路导线截面过小,为避免过热不允许延时切除的故障。

(4)可能危及人身安全、对通信系统或铁路信号造成强烈干扰的故障。

故障切除时间包括保护装置和断路器动作时间,一般快速保护的动作时间为0.04s~0.08s,最快的可达0.01s~0.04s,一般断路器的跳闸时间为0.06s~0.15s,最快的可达0.02s~0.06s。

对于反应不正常运行情况的继电保护装置,一般不要求快速动作,而应按照选择性的条件,带延时地发出信号。

2.3 灵敏性

灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。能满足灵敏性要求的继电保护,在规定的范围内故障时,不论短路点的位置和短路的类型如何,以及短路点是否有过渡电阻,都能正确反应动作,即要求不但在系统最大运行方式下三相短路时能可靠动作,而且在系统最小运行方式下经过较大的过渡电阻两相或单相短路故障时也能可靠动作。系统最大运行方式:被保护线路末端短路时,系统等效阻抗最小,通过保护装置的短路电流为最大运行方式;系统最小运行方式:在同样短路故障情况下,系统等效阻抗为最大,通过保护装置的短路电流为最小的运行方式。

保护装置的灵敏性是用灵敏系数来衡量。

2.4 可靠性

可靠性包括安全性和信赖性,是对继电保护最根本的要求。

安全性:要求继电保护在不需要它动作时可靠不动作,即不发生误动。

信赖性:要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不拒动。

继电保护的误动作和拒动作都会给电力系统带来严重危害。即使对于相同的电力元件,随着电网的发展,保护不误动和不拒动对系统的影响也会发生变化。

以上四个基本要求是设计、配置和维护继电保护的依据,又是分析评价继电保护的基础。这四个基本要求之间是相互联系的,但往往又存在着矛盾。因此,在实际工作中,要根据电网的结构和用户的性质,辩证地进行统一。

3.变压器中性点接地的确定

3.1 变压器中性点接地位置和数目的选择原则

电力系统中性点接地方式有两大类:一类是大接地电流系统;一类是小接地电流系统。

通常,变压器中性点接地位置和数目按如下两个原则考虑:一是使零序电流保护装置在系统的各种运行方式下保护范围基本保持不变,且具有足够的灵敏度和可靠性;二是不使变压器承受危险的过电压,为此,应使变压器中性点接地数目和位置尽可能保持不变。

在中性点直接接地电网发生接地短路时,零序电流的大小和分布与电网中变压器中性点接地数目和位置有很大关系。在系统不失去中性点接地的前提下,安排一部分变压器中性点接地运行,另一部分变压器中性点不接地运行,并使变压器中性点接地数目及位置尽量不变,以保证零序保护动作范围的稳定和具有足够的灵敏性。

(1)在单母线运行的发电厂和高压母线上有电源联络线的变电站变压器中性点应接地。

(2)在具有两台以上的变压器,而且是双母线固定连接方式运行的发电厂和高压母线上有两回以上电源联络线的变电所,每组母线上至少有一台变压器的中性点直接接地,这样当母联开关断开后,每组母线上至少保留有一台变压器的中性点直接接地。

(3)在单电源网络中,终端变电所的变压器中性点一般不应接地。

(4)在多电源的网络中,每个电源处至少应该有一个中性点接地,以防止中性点不接地的电源因某种原因与其它电源切断联系时,形成中性点不接地系统。

(5)变压器低压侧接入电源,当大接地电流电网中发生接地短路而该电源的容量能够维持接地点发生的电弧时,则变压器的中性点应该接地,如果该电源的容量不是足以维持接地电弧时,则中性点不接地。

(6)为便于线路接地保护配合,在低压侧没有电源的枢纽变电所,部分变压器的中性点应直接接地。

(7)接在分支线上的变电所,低压侧虽无电源,但变压器低压侧是并联运行的,为使横差差动保护正确动作,变压器的中性点应接地。

(8)自耦型和有绝缘要求的其它变压器,其中性点必须接地运行。

3.2 变压器中性接地的数目和位置

主变中性点的投入数量和位置直接影响系统的零序阻抗,零序阻抗的变化又改变着零序电流的分布。考虑到零序保护的灵敏性和变压器中性点绝缘,系统过电压,保护整定配合等因素,零序阻抗应基本不变。如你厂接线为双母线,一般应保持一条母线上有一台变压器接地。如为单母线,有两台及以上变压器接在母线上时,就保持一台变压器中性点接地。备用变的220KV侧中性点接地也是算作220KV系统的接地点的,与主变的中性点接地无异。一般情况下,备用变与中性点接地的主变是分别运行于不同母线的。为了接地短路时,变压器不会受到过电压的危害,又能使零序电流的分布基本不变,系统中各变电站的变压器接地情况如表1所示:

表1 变压器中性点接地情况表

变电站名称 A B C D E

变压器台数 1 2 3 4 2

220KV侧中性点接地变压器台数 1 1 2 2 1

4.短路计算

4.1 短路概述

短路是电力系统的严重故障。所谓短路,是指一切不正常的相与相之间或相与地之间发生通路的情况。产生短路的原因有元件损坏、气象条件恶化等。在三相系统中可能发生的短路有:(1)三相短路;(2)两相短路;(3)两相接地短路;(4)单相接地短路。电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路机会最少。从短路计算方法来看,一切不对称短路的计算在采用对称分量法后,都归结为对称短路的计算。

4.2 短路计算的目的

在设计中,短路计算是其中的一个重要环节。计算的目的主要有以下几个方面:

(1)以便选择有足够机械稳定度和热稳定度的电气设备,如断路器等,必须以短路计算作为依据。

(2)为了合理地配置各种继电保护和自动装置并正确整定其参数,必须对电力网中发生的各种短路进行计算和分析。

(3)进行电力系统暂态稳定计算,研究短路对用户工作的影响等,也包含有一部分短路计算的内容。

(4)确定输电线路对通讯的干扰,对已发生的故障进行分析。

实际工作中,根据一定任务进行短路计算时,必须首先确定建设条件。一般包括,短路发生时系统的运行方式,短路的类型和发生地点,以及短路发生后所采取的措施等。从短路计算的角度看,系统的运行方式指的是系统中投入运行的发电、变电、输电、用电设备的多少以及它们之间相互连接的情况,建设不对称短路时,还应包括中性点的运行状态。不同的计算目的,对应的计算条件不同。

4.3 短路计算条件

在实际工作中,根据一定的任务进行短路计算时必须首先确定计算条件.所谓计算条件是指短路发生时系统的运行方式,短路的类型和发生地点,以及短路发生后所采取的措施。为使所选电器具有足够的可靠性、经济性和合理性,并在一定时期内适应电力系统发展的需要,作验算用的短路电流应按下列条件确定:

(1)容量和接线:按本工程设计最终容量计算,并考虑电力系统远景发展规划一般为本期工程建成后的5-10年,其接线应采用可能发生最大短路电流的正常接线方式,但不考虑在切换过程中可能短时并列的接线方式。

(2)短路种类:一般按三相短路验算,若其它种类短路较三相短路严重时,则应按最严重的情况验算。

(3)正常工作时,三相系统对称运行。

(4)所有电源的电动势相位角相同。

(5)电力系统中各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流大小发生变化。

(6)短路发生在短路电流为最大值的瞬间。

(7)不考虑短路点的电弧阻抗和变压器的励磁电流。

(8)元件的计算参数均取其额定值,不考虑参数的误差和调整范围。

4.4 短路类型

由电力系统不对称故障分析,短路电流正序分量可以统一写成:

式中表示附加电抗,其值随短路型式的不同而不同,上角标(n)是代表短路类型的符号。上式表明,在简单不对称短路的情况下,短路点电流的正序分量,与在短路点每一相中加入附加电抗而发生三相短路时的电流相等。这个概念称为正序等效定则。短路电流的绝对值与它的正序分量的绝对值成正比,即:

式中,m(n)为比例系数,其值视短路种类而异,各种简单短路时的和m(n)如表2所示:

表2 简单短路时的和m(n)表

短路类型 m(n)

三相短路 0 1

两相短路接地

两相短路

单相短路 3

目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。

参考文献

[1]贺家李、宋从矩,电力系统继电保护原理[M].中国电力出版社.2004:74-41.

[2]毛锦庆.《电力系统继电保护实用技术问答》第二版[M],北京:中国电力出版社 1999

[3]谷水清、李凤荣,《电力系统继电保护》[M],中国电力出版社

[4]马长贵.《高点网继电保护原理》[M],北京:水利电力出版社,1987.

篇7

关键词:配电线路;继电保护;问题;策略;探讨

中图分类号:TM59 文献标识码:A

随着经济全球化进程的不断加快,国内产业结构和资源配置也在不断的优化,尤其是电力的需求量日益增加。据调查显示,目前我国年均电能消耗已经增长了50%,如果配电线路中的继电装置出现了问题,那么将可能造成非常严重的后果。因此加强对配电线路中的继电保护问题的研究,具有重大的现实意义,以下将对具体问题进行分析:

一、配电线路继电保护、原理及作用

1配电线路继电保护

继电保护(英文:relay protection),主要是指对电力系统中所出现的故障或者异常情况进行检测,并发出报警信号,或者直接将故障部分进行隔离、切除的一种重要措施。配电线路是电力供应系统中的重要组成部分,其中继电保护又是维护电力运输系统安全性的重要装置,当电力运输系统发生故障导致其难以正常的运行时,继电保护装置将会及时的、自动向工作人员发出预定的报警信号或自动切断电闸等装置,以保护电力运输系统的有效运行,尤其是要保证其安全性与稳定性,以免发生电力事故。配电线路继电保护是电力系统安全运行的重要保障。从实践来看,这种保障主要表现在它具有高度的自动化安全设施方面:在电力系统出现故障时,在一定程度上维护了电力系统的稳定性与安全安全运行,又可减少电力企业的经济损失、保障人身安全。配电线路中的继电保护装置使用,表现出了一定的人性化特点,它是机器人技术的一种表现形式。当电力系统发生故障时,诸多自然空间和地理因素的存在,使工作人员难以在第一时间赶到事故现场进行处理,此时继电保护设备会根据事故的实际情况,采取自动化的的控制措施,来维护电力系统的正常运行。

2配电线路继电保护基本原理

当电力系统中的发电机线路电力元件,或者电力系统自身发生了一些故障危及到电力系统的正常和安全运行时,可以向值班人员及时的发出一些警告信号,或者直接向其所控制的断路器发出跳闸命令,以终止运行事件发展的一种自动化措施和设备,这就是所谓的继电保护装置。从以上阐释可知,继电保护主要是利用电力系统中的一些元件阻止发生短路或者异常情况时的一种电气量,其中包括电压、电流、功率和频率的变化;此外继电保护中还有其他的物理保护动作原理,比如变压器油箱发生故障时,会伴随着大量的瓦斯产生,油的流速也会随着增大或者油压强度随着增高,进而构成了瓦斯保护动作的原理。一般而言,无论反应出哪一种物理量,继电保护装置都会包括测量部分、定值调整部分、执行部分以及逻辑部分。

3继电保护对电力系统的作用

从实践来看,当被保护的电力系统元件出现故障时,一般是由该元件继电保护装置及时准确地将跳闸命令发给脱离故障元件最近的断路器,这样就可以将发生故障的元件第一时间与电力系统断开,从而可以最大限度的减少故障对整个电力系统器件自身的损坏;通过这一方式,也可以有效的降低故障对电力系统自身的安全供电性产生的影响,满足整个电力系统的要求。继电保护装置可及时准确的反映出电气设备异常工作的实际情况,并根据这些不正常工作的情况及相关设备的运行维护条件,发出不同的警示信号,以提醒值班人员对故障位置进行及时的处理,或者由保护装置自动进行调整,将继续运行可能会引起安全事故的电气设备切除。对于那些反应不正常或者存在一定缺陷的继电保护装置,可以允许其带有一定的延时动作。

二、对继电保护装置的要求

从实践来看,配电线路对继电保护装置提出了一定的要求,即可靠性、灵敏性、选择性以及速动性四个方面,这四个方面彼此之间也是紧密联系在一起的,既互相矛盾,又相互统一。具体分析如下:

1可靠性

继电保护装置的可靠性主要是指保护装置设计原理、安装调试以及整定计算等方面,一定要正确无误。同时还要求组成继电保护装置的各各个元件质量安全可靠,运行过程中的维护也一定要得当,整个系统应当尽量的简化有效,从而提高继电保护的可靠性,这是对继电保护装置本身性能的基本要求。

2选择性

继电保护装置的选择性,主要是指由线路故障设备或者线路自身的保护切除过程中出现了故障。一般而言,只有出现故障的设备或者线路自身的保护、断路器拒动时,才会允许由相邻的线路保护、设备保护或者断路器失灵保护等来切除故障。

3灵敏性

继电保护装置的灵敏性,主要是指在保护设备线路被保护的范围之内发生金属性短路时,保护装置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定。选择性和灵敏性的要求,通过继电保护的整定实现。

4速动性

继电保护装置的速动性,主要是指继电保护装置应当尽快的切除发生短路故障的元件,其目的在于提高系统的稳定性;同时,还要减轻发生故障设备及相关线路损坏程度,最大限度的缩小故障的影响范围,从而有效的提高自动重合闸与备用电源、备用设备的自动投入效果。

三、加强配电线路继电保护的有效策略

基于以上对目前我国配电线路分析,笔者认为,要加强配电线路继电保护,可以从以下几个方面着手:

加强继电保护思想重视,避免受外力的影响

只有从根本上强化对继电保护的重视程度,才能真正确保配电线路的安全、稳定运行,避免思想上的麻痹大意。因此,对于配电线路管理人员来说,应当加强对配电线路机电保护装置的重视,通过不断的提高自身综合素质和专业技能,将具体工作落实到实处,不断提高自身责任感与事业感,树立强烈的安全意识,以保证电力系统的稳定和安全运行。实践中,为避免外力对配电线路造成任何的影响,可针对实践中存在的一些问题,采取有效的应对措施。

第一,为避免或者减少因车辆撞架线杆,可在道路旁的塔杆上喷涂一些比较醒目的反光漆,在电线上设置一些反光标志,以引起驾驶员的注意;对于已经遭到碰撞的塔杆,可设置防撞击混凝土墩,同时也在其上面涂上反光漆,如下图所示。

第二,可通过发放传单和宣传画,在墙上书写宣传标语的形式,宣传安全用电和继电设备保护的重要措施,通过加大对破坏、盗窃者的执法力度,来保证配电线路的完整性和运行安全性。

第三,要建立配电线路塔杆和埋地电缆标志牌或者警示牌,及时整顿、清理线路防护区内已经危及到线路安全的一些树木和建筑。

2提高继电保护的可靠性措施

提高配电线路继电保护的可靠性,主要是指在继电保护装置所规定的范围之内,如果发生了动作故障,则其不会拒绝动作;在任何其它的该保护而不该动作的情况下,也不能出现错误的动作。提高配电线路继电保护的可靠性基本措施表现在以下几个方面:第一,加强对继电保护的可靠性管理,进一步提高继电保护的可靠性管理水平;第二,要重视继电保护技术的进步和创新,根据实际供电的可靠性要求,不断的提高继电保护设备和装备的可靠性;第三,采取有效的保护措施,增强安全事故的处理能力与处理效率;第四,加强对实际用电客户的安全管理,并减少因用电原因而造成的各种系统故障及问题;第五,加强舆论宣传,提高全社会对配电线路继电保护装置的保护意识,从而可以有效的减少因外力的破坏而造成的停电及各种安全事故。

结语

总而言之,配电线路继电保护是联系电力系统和用户之间的一个重要环节,由于受到的影响因素比较多,因此只有不断的实现技术创新,才能保障我国电力事业的持续、快速和健康的发展。

参考文献

[1]吴凡新.继电保护配电线路问题分析[J].科学与财富,2011(12).

篇8

关键词:电力系统;继电保护;微机保护;安全措施

前言:

现今电力系统,已经发展为跨区、跨国联网、高度自动化运行的现代化系统。目前,我国的全国性联网也已逐步实现。大电网互联将对电力系统运行带来一系列新问题。电力系统高速发展和新技术的应用,也给电力系统保护与控制带来了新的挑战。尽管现代电网的设计运行技术近些年取得了长足发展,但仍不能完全避免大电网瓦解事故的发生。因此,寻求电网更为有效的保护及控制措施,确保互联电力系统的安全稳定运行是我们面临的又一重要课题。当前分布式发电技术的发展和应用,使得电源结构和分布发生改变,电力系统将因电源原动机特性和电源分布的不同而影响其性能,要求我们进一步研究相应的系统控制策略,开发新的继电保护与控制装置,从而改善系统运行特性,避免电力系统事故的发生。

在电力系统中,继电保护的作用在于:当被保护的电力系统元件发生故障时,该元件的继电保护装置迅速准确地给距离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全运行水平。随着电力系统规模不断扩大和等级的不断提高,系统的网络结构和运行方式日趋复杂,对继电保护的要求也越来越高。

1继电保护的概念及类型

1.1 继电保护的基本概念

继电保护装置就是在供电系统中用来对一次系统进行监视、测量、控制和保护的自动装置。它能反应电力系统中电气元件发生故障或不正常运行状态,并使断路器跳闸或发出信号。其基本任务是自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行。另外,它还能反映出电气元件的不正常运行状态,并根据运行维护的条件,发出信号、减负荷或跳闸。

1.2 继电保护的类型

在电力系统中,一旦出现短路故障,就会产生电流急剧增大,电压急剧下降,电压与电流之间的相位角发生变化。以上述物理量的变化为基础,利用正常运行和故障时各物理量的差别就可以构成各种不同原理和类型的继电保护装置,如:反映电流变化的电流继电保护、定时限过电流保护、反时限过电流保护、电流速断保护、过负荷保护和零序电流保护等,反映电压变化的电压保护,有过电压保护和低电压保护,既反映电流变化又反映电流与电压之间相位角变化的方向过电流保护,用于反应系统中频率变化的周波保护,专门反映变压器温度变化的温度保护等。

2配电系统继电保护的要求

配电系统继电保护在技术上一般应满足四个基本要求,即可靠性、选择性、速动性和灵敏性。这几个特性之间紧密联系,既矛盾又统一,必须根据具体电力系统运行的主要矛盾和矛盾的主要方面,配置、配合、整定每个电力元件的继电保护。

2.1 可靠性

可靠性是对继电保护性能的最根本要求。可靠性主要取决于保护装置本身的制造质量、保护回路的连接和运行维护的水平。一般而言,保护装置的组成元件质量越高、回路接线越简单,保护的工作就越可靠。同时,正确地调试、整定,良好地运行维护以及丰富的运行经验,对于提高保护的可靠性具有重要的作用。继电保护的误动和举动都会给电力系统造成严重的危害。然而,提高不误动的安全性措施与提高不拒动的信赖性的措施是相矛盾的。由于不同的电力系统结构不同,电力元件在电力系统中的位置不同,误动和拒动的危害程度不同,因而提高保护安全性和信赖性的侧重点在不同情况下有所不同。因此,要在保证防止误动的同时,要充分防止拒动;反之亦然。

2.2 选择性

继电保护的选择性,是指保护装置动作时,在可能最小的区间内将故障从电力系统中断开,最大限度地保证系统中无故障部分仍能继续安全运行。这种选择性的保证,除利用一定的延时使本线路的后备保护与主保护正确配合外,还必须注意相邻元件后备保护之间的正确配合。

2.3 速动性

继电保护的速动性,是指尽可能快地切除故障,其目的是提高系统稳定性,减轻故障设备和线路损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装置速动保护、充分发挥零序接地瞬时段保护及相间速断保护的作用,减少继电器固有动作时间和断路器跳闸时间等方面入手来提高速动性。

2.4 灵敏性

继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反应能力。满足灵敏性要求的保护装置应该是在规定的保护范围内部故障时,在系统任意的运行条件下,无论短路点的位置、短路的类型如何,以及短路点是否有过渡电阻,当发生断路时都能敏锐感觉、正确反应。以上四个基本要求是评价和研究继电保护性能的基础,在它们之间,既有矛盾的一面,又要根据被保护元件在电力系统中的作用,使以上四个基本要求在所配置的保护中得到统一。

3微机保护的特点

传统的电磁和电磁感应原理的保护存在动作速度慢、灵敏度低、抗震性差以及可动部分有磨损等固有缺点。晶体管继电保护装置也有抗干扰能力差、判据不准确、装置本身的质量不是很稳定等明显的缺点。随着计算机技术和大规模集成电路技术的飞速发展,微处理器和微型计算机进入实用化的阶段,微机保护开始逐渐趋于实用。

微机保护充分利用了计算机技术上的两个显著优势: 高速的运算能力和完备的存贮记忆能力,以及采用大规模集成电路和成熟的数据采集,A/D 模数变换、数字滤波和抗干扰措施等技术,使其在速动性、可靠性方面均优于以往传统的常规保护,而显示了强大的生命力,与传统的继电保护相比,微机保护有许多优势,其主要特点如下:

(1)改善和提高继电保护的动作特征和性能,正确动作率高。主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护;可引进自动控制、新的数学理论和技术,如自适应、状态预测、模糊控制及人工神经网络等,其运行正确率很高,已在运行实践中得到证明。

(2)可以方便地扩充其它辅助功能。如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。

(3)工艺结构条件优越。体现在硬件比较通用,间隔内部和间隔间以及间隔同站级间的通信用少量的光纤总线实现,取消传统的硬线连接。总体来说,综合自动化系统打破了传统二次系统各专业界限和设备划分原则,改变了常规保护装置不能与调度(控制)中心通信的缺陷,给变电所自动化赋予了更新的含义和内容,代表了变电所自动化技术发展的一种潮流。随着科学技术的发展,功能更全、智能化水平更高、系统更完善的超高压变电所综合自动化系统,必将在中国电网建设中不断涌现,把电网的安全、稳定和经济运行提高到一个新的水平。继电保护技术的未来发展趋势应是向微机化、网络化、智能化,保护、控制、测量、计量、数据通讯一体和人机智能化方向发展。

4确保继电保护安全运行的措施

(1)继电保护装置检验应注意的问题:在继电保护装置检验过程中必须注意: 将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区、改变二次回路接线等工作网。电流回路升流、电压回路升压试验,也必须在其它试验项目完成后最后进行。在定期检验中,经常在检验完成后或是设备进人热备状态,或是投入运行而暂时没负荷,在这种情况下是不能测负荷向量和打印负荷采样值的。

(2)定值区问题:微机保护的一个优点是可以有多个定值区,这极大方便了电网运行方式变化情况下的定值更改问题。但是还必须注意的是定值区的错误对继电工作来说是一大忌,必须采用严格的管理和相应的技术手段来确保定值区的正确性。采取的措施是,在修改完定值后,必须打印定值单及定值区号,注意日期、变电站、修改人员及设备名称,并重点在继电保护工作记录中注明定值编号,避免定值区出错。

(3)一般性检查:不论何种保护,一般性检查都是非常重要的,但是,在现场也是容易被忽略的项目,应该认真去做。一般性检查大致包括以下两个方面:①清点连接件是否紧固、焊接点是否虚焊、机械特性等。现在保护屏后的端子排端子螺丝非常多,特别是新安装的保护屏经过运输、搬运,大部分螺丝已经松动,在现场就位以后,必须认认真真、一个不漏地紧固一遍,否则就是保护拒动、误动的隐患。②是应该将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,还必须将各元件、保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。

(4)接地问题:继电保护工作中接地问题是非常突出的,大致分以下两点:

①保护屏的各装置机箱、屏障等的接地问题,必须接在屏内的铜排上,一般生产厂家已做得较好,只需认真检查。最重要的是,保护屏内的铜排是否能可靠地接入地网,应该用较大截面的铜鞭或导线可靠紧固在接地网上,并且用绝缘表测电阻是否符合规程要求。

②电流、电压回路的接地也存在可靠性问题,如接地在端子箱,那么端子箱的接地是否可靠,也需要认真检验。

(5)工作记录和检查习惯:工作记录必须认真、详细,真实地反映工作的一些重要环节,这样的工作记录应该说是一份技术档案,在日后的工作中是非常有用的。继电保护工作记录应在规程限定的内容以外,认真记录每一个工作细节、处理方法。工作完成后认真检查一遍所接触过的设备是一个良好的习惯,它往往会发现工作中的疏漏,对于每一位继电保护工作人员来说都应该养成这一良好的工作习惯。

篇9

【关键词】继电保护;计算机化;网络化

1.继电保护装置应满足可靠性、选择性、灵敏性和速动性的基本要求

(1)可靠性是指保护该动体时应可靠动作。不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。继电保护的可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。220kV及以上电网的所有运行设备都必须由两套交、直流输入、输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时,能由另一套继电保护装置操作另一组断路器切除故障。在所有情况下,要求这购套继电保护装置和断路器所取的直流电源都经由不同的熔断器供电。

(2)选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障。为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件(如启动与跳闸元件或闭锁与动作元件)的选择性,其灵敏系数及动作时间,在一般情况下应相互配合。

(3)灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定。选择性和灵敏性的要求,通过继电保护的整定实现。

(4)速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装设速动保护(如高频保护、差动保护)、充分发挥零序接地瞬时段保护及相间速断保护的作用、减少继电器固有动作时间和断路器跳闸时间等方面入手来提高速动性。

2.继电保护计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

3.继电保护网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。

对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。由此可见,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

4.保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,进而我国电力系统的未来发展将更为强大。

【参考文献】

篇10

关键词:电力继电保护;基本要求;主要故障;维修技术

Abstract: in the power system protection can respond to the power equipment of the status of the power system and remoe the fault occurred, the fault of power system, the impact of maximum limit to a minimum. At the same time, relay protection and ensure the electric power enterprise continuous, uninterrupted power supply is very important part of the relay protection can improve the operation of the electric accident analysis level and processing level, and know the entire network and the protection of the microcomputer monitoring wave record operation of the plant, to ensure the stability of power system, and healthy. This paper mainly on power relay protection of basic requirements, main fault and maintenance technology memory the analysis.

Key words: electric power relay protection; Basic requirements; Main fault; Maintenance technology

中图分类号:F407.61文献标识码:A 文章编号:

1. 电力继电保护的基本要求分析

1.1 电力继电保护的选择性

当电力系统发生故障时,继电保护不仅要有选择地切除故障路线,而且要在保障可靠性和稳定性的前提下尽量快速地执行,以最大限度地减少故障造成的损失。这种在电流瞬时增大时所进行的电流保护动作就是电流速断保护,传统的速断装置是在离线状态下,假定工作是在最大运行方式下进行,在线路末端发生短路时确定出整定值并让设备依据这个值来进行保护工作。

1.2 电力继电保护的灵敏性

电力继电保护的灵敏性指的是电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,电力继电保护装置的反应能力。能满足灵敏性要求的继电保护,在规定的范围内故障时,不论短路点的位置和短路的类型如何,以及短路点是否有过渡电阻,都能做出正确的反应动作,这不但要求在系统最大运行方式下三相短路时做出可靠动作,还要求在系统最小运行方式下经过较大的过渡电阻两相或单相短路故障时也能做出可靠动作。

1.3 电力继电保护的可靠性

电力系统的可靠主要是由电力设备的可靠性程度来决定,现在电网的容量在不断的增大,用户对供电可靠性的要求也越来越高,电力设备维修管理的地位也得到了提高。电气的二次设备大致包括自动装置、继电保护、故障录波、就地监控,这些设备的正常安全运行对整个电网运行的可靠性起着较大的作用,特别是继电保护装置对电网的运行影响极大,如果继电保护装置出现问题不仅会加深电力系统故障的严重性,甚至还可能导致许多不良的连锁反应进而造成整个系统崩溃,大面积停电与重大的经济损失,严重影响着人们的生产与生活。

2. 电力继电保护主要故障分析

2.1 开关保护设备故障

由于现在的电力企业广泛应用符合密集区建立开关站,电力系统工作人员通过控制开关站向广大用户供电,形成了:变电所—开关站—配电变压器的供电模式。在未实现继电保护自动化的开关站内,电力工作人员应该运用负荷开关或者负荷开关与熔断器的组合器作为开关保护设备。通常情况下,电力企业对于开关站的进口线柜路往往是运用负荷开关进行分合操作以及切断负荷电流,对于带有变压器的出口线柜应用负荷开关和熔断器的组合器。但是,由于电力工作人员将负荷开关和熔断器的组合器应用到带有配电变压器的出口线柜上,很可能会造成电力系统的出口线出现故障,造成开关站越级跳闸,出现大范围停电。

2.2 微机继电保护装置故障

微机继电保护装置最常见的设备故障主要有以下三种:(1)干扰和绝缘因素。由于微机继电保护装置抗外界干扰的能力较弱,再加上设备自身的绝缘性,当其附近有干扰器或者无线电设备使用时,会引起内部元件运行出错,进而威胁到微机继电保护装置的性能;(2)电源问题。电源问题是影响微机继电保护装置能否正常运行的极为关键的因素,电源的输出功率不能满足要求时,输出的电压也就相应降低,下降太多时就会导致电路的电路充电时间缩短、基准值起伏不定等问题,对微机继电保护装置的逻辑配合能力造成影响,甚至会引起微机继电保护装置逻辑功能的判断失误;(3)静电作用。制作工艺的精进让设备元件焊点与导线间的间距很小,微机继电保护装置经过较长时间的运转之,逐渐聚集大量的静电尘埃,造成导电通道发生短路,从而微机继电保护装置出现运行故障。

2.3 电压互感器二次回路故障

PT二次电压回路故障主要体现在以下两个方面:(1)二次中性点接地方式异常。二次中性点接地方式异常主要表现在多点接地或二次未接地,二次未接除了变电站接地网的原因,更多是由接线工艺引起的。PT二次接地相和地网间产生电压,这个电压叠加到保护装置各相电压上,让各相电压产生幅值和相位变化,造成方向元件与阻抗元件的误动或者拒动;(2)PT开口三角电压回路异常。在变压器和电磁型母线保护中,为达到零序电压定值,往往将电压继电器中限流电阻短接,有的使用小刻度的电流继电器,从而大大减小了开口三角的回路阻抗。当出口接地或者变电站内发生故障时,零序电压就会变大,而回路负荷的阻抗较小,回路电流又比较大,电压继电器发生短路,长时间的短路就会将线圈烧断,从而使开口三角电压回路发生断线。

3. 电力继电保护的维修技术分析