继电保护基本原理范文
时间:2023-12-15 17:29:28
导语:如何才能写好一篇继电保护基本原理,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
中图分类号: F406文献标识码:A
一、前言
随着经济的发展,电力系统在社会发展中的作用越来越重要,而继电保护技术在电厂中具有非常重要的作用,对电力继电保护技术的基本原理及其应用进行分析和研究,对于促进电力继电保护技术的发展具有重要作用。
二、电力系统继电保护技术概述 1.继电保护基本概念 在电力系统运行中,由于外界因素和内部因素都可能引起各种故障及不正常运行的状态出现,常见的故障有:单相接地;三相接地;两相接地;相间短路;短路等。电力系统非正常运行状态有:过负荷,过电压,非全相运行,振荡,次同步谐振,同步发电机短时异步运行等。电力系统继电保护和安全自动装置是在电力系统发生故障和不正常运行情况时,用于快速切除故障,消除不正常状况的重要自动化技术和设备。 2.电力继电保护的工作原理 继电保护的工作原理,是根据电力系统发生故障前后电气物理量变化的特征为基础来构成,电力系统发生故障后,工频电气量变化的主要特征是:
电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。
电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。
电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°。
测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值,正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。利用短路故障时电气量的变化,便可构成各种原理的继电保护。
3.继电保护在电力系统安全运行中的作用 一个可靠稳定的继电保护系统是整个机电系统安全运行的保障。通常来说继电保护的稳定性能主要是由搭配合理的技术终端和安全可靠的继电保护设施来决定的,它们是整个电力系统安全运行的基本保障。
继电保护在电力系统安全运行中的作用如下:
(一)保障电力系统的安全性 当电力系统元件在受保护的状态中发生故障的时候,保护该元件的继电保护装置应及时准确的通过距离该原件最近的断电保护,使得故障元件能够快速的的与电力系统脱离,最大程度的减少对整个电力系统元件的破坏,把对整体供电系统的影响降低到最小。
(二)对电力系统的不正常工作进行提示
对于没有正常运行的电气设备,要根据不同的故障情况和设施运作过程中的不同情况,来发出相应的提示信息,以便值班的工作人员对故障进行相应的处理,比如:有系统进行自动的调整;手动使故障的电气设备脱离系统;手动脱离故障连带的设备。同时在设备发生不正常工作的时候,允许继电保护装置有一定的延迟,以免过度敏感的保护装置发生误报。
4.电力继电保护技术的重要性 用电设备在运行中都会发生故障致其不能正常运行,最常见的就是短路现象,短路可能产生严重的后果,它能损害发生故障的元件,也能减少元件的使用寿命甚至能影响广大人民群众的生命财产安全,继电保护技术的出现可以将其伤害降到最低,它分为测量、执行、逻辑三部分,当用电设备发生短路故障的时候,它能够快速、正确地将发生故障的元件从电力系统中撤除,避免其受到更多的损害,这样也能保障其他正常元件不会受其影响继续正常运行。并且这种保护技术还能够根据自身所处的环境,元件受损伤的程度,选择合适的方式,做出保护动作。
三、电力继电保护的基本要求1.可靠性是指保护该动体时应可靠动作。不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。继电保护的可靠性主要由配置合理,质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。任何电力设备都不允许在无继电保护的状态下运行。220KV及以上电网的所有运行设备都必须由两套交,直流输入,输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时,能由另一套继电保护装置操作另一级断路器切除故障。在所有情况下,要求这套继电保护装置和断路器所取的直流电源都经由不同的熔断器供电。2.选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护,线路保护或断路器失灵保护切除故障,为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件的选择性,其灵敏系数及动作时间,在一般情况下应相互配合。3.灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具备必要的灵敏系数,各类保护的最小灵敏系数在规程中具有具体规定。选择性和灵敏性的要求,通过继电保护的速定实现。4.速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装设速动保护,充分发挥零序接地瞬时段保护及相间速断保护的作用,减少继电器固有动作时间和断路器跳闸的时间等方面入手来提高速动性。
四、电力继电保护技术的主要特点
继电保护技术的主要特点是:
自主化运行率提高,计算机的数据处理技术能够使得继电设备具有很强的记忆功能,加之自动控制等技术的综合运用,使得继电保护能更好地实现故障分量保护,提高运行的正确率。
兼容性辅助功能强,继电保护技术在保护装置的制造上采用了比较通用兼容的做法,便于统一标准,并且装置体积小,减少了盘位数量,在此基础上,还可以扩充其它辅助功能。
操作性监控管理好,该技术主要表现在一些核心部件不受外在化境的影响,能够产生一定的使用功效。与此同时,该保护技术能够通过计算机信息系统,具有一定的可监控性能,大大降低了成本。
五、电力继电保护技术的应用工厂和企业的高压供电系统和变电站都会运用到继电保护装置。在高压供电系统分母线继电保护的应用中,分段母线不并列运行时装设的是电流速断保护和过电流保护,但是在断路器合闸的瞬间才会投入,合闸后就会自动解除。配电所的负荷等级如果较低,就可以不装设保护装置。变电站常见的继电保护装置有线路保护、母联保护、电容器保护、主变保护等。 1.线路保护 ,通常采用二段式或者三段式的电流保护。其中一段是电流速断保护,二段是限时电流速断保护,三段是过电流保护。
母联保护 ,限时电流保护装置联同过电流保护装置一起装设。
电容器保护,包括过流保护、过压保护、零序电压保护和失压保护。 4.主变保护,包括主保护(重瓦斯保护、差动保护),后备保护(复合电压过负荷保护、过流保护)继电保护技术在目前已经得到飞速的发展,各种各样的微机保护装置正逐渐被投入使用,微机保护装置是有各种不同,但是其基本原理和目的都是一样的。
六、结束语
随着时代的进入,科研的深入,加强继电保护技术的应用对于提高社会生产力和生产效率具有重要作用,是社会发展的必然趋势。
参考文献:
[1]齐俊玲.继电保护在电力系统中的应用[J].民营科技,2013(1):43.
[2]王金明.浅谈电力继电保护[J].大科技,2012(12):86-87.
篇2
Abstract: With the development of power system protection technology, power technology continues to develop with innovation. This paper reviews several stages of development of the mechanical and electrical technology and describes technological innovations details of relay, which provides a theoretical basis for future progress.
关键词:电力系统;继电保护;技术创新
Key words: power system; relay protection; technology innovation
中图分类号:TM77 文献标识码:A文章编号:1006-4311(2010)36-0198-01
1继电保护技术的发展史
随着电力系统的出现,继电保护技术就相伴而生。以数字式计算机为基础而构成的继电保护起源于20世纪60年代中后期。我国从20世纪70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用。
从继电保护的基本原理上看,到21世纪20年代末普遍应用的继电保护原理基本上都已建立,迄今在保护原理方面没有出现突破性发展。从实现保护装置的硬件看,从1901年出现的感应型继电器至今大体上经历了机电式、整流式、晶体管式、集成电路式、微型计算机式等发展阶段。纵观继电保护将近100年的技术发展史可以看出,虽然继电保护的基本原理早已提出,但它总是根据电力系统发展的需要,不断地从相关的科学技术中取得的最新成果中发展和完善自身。
2继电保护技术创新
2.1 机电技术网络化创新在计算机领域,发展速度最快的当属计算机硬件,按照著名的摩尔定律,芯片上的集成度每隔18~24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机DSP芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。硬件技术的不断更新,使微机保护对技术升级的开放性有了迫切要求。网络特别是现场总线的发展及其在实时控制系统中的成功应用充分说明,网络是模块化分布式系统中相互联系和通信的理想方式。如基于网络技术的集中式微机保护,大量的传统导线将被光纤取代,传统的繁琐调试维护工作将转变为检查网络通信是否正常,这是继电保护发展的必然趋势。微机保护设计网络化,将为继电保护的设计和发展带来一种全新的理念和创新,它会大大简化硬件设计、增强硬件的可靠性,使装置真正具有了局部或整体升级的可能。继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现微机保护装置的网络化。
2.2 机电技术智能化创新进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络(ANN)和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。人工神经网络(ANN)具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题。近年来,电力系统继电保护领域内出现了用人工神经网络(ANN)来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
2.3 继电保护中自适应控制技术创新自适应继电保护的概念始于20世纪80年代,它可定义为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。这种新型保护原理的出现引起了人们的极大关注和兴趣,是微机保护具有生命力和不断发展的重要内容。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。针对电力系统频率变化的影响、单相接地短路时过渡电阻的影响、电力系统振荡的影响以及故障发展问题,采用自适应控制技术,从而提高保护的性能。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。
2.4 继电保护中自动化技术创新现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。实现继电保护和综合自动化的紧密结合,它表现在集成与资源共享、远方控制与信息共享。以远方终端单元(RTU)、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变电所的占地面积和设备投资,提高二次系统的可靠性。综合自动化技术相对于常规变电所二次系统,主要有以下特点:①设备、操作、监视微机化;②通信局域网络化、光缆化;③运行管理智能化。
参考文献:
[1]杨奇逊.微型机继电保护基础[M].北京:水利电力出版社,2008.
[2]张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000.
[3]葛耀中.自适应继电保护及其前景展望[J].电力系统自动化,2007,21(9):42-46.
[4]吴斌,刘沛,陈德树.继电保护中的人工智能及其应用[J].电力系统自动化,2005(4).
[5]杨晓敏.电力系统继电保护原理及应用[M].北京:中国电力出版社,2006.
篇3
关键词:变电站;继电保护;基本原理;瑕疵;完善
中图分类号:TM77 文献标识码:A 文章编号:1009-2374(2012)30-0103-02
在变电站的电力供应过程中,电力系统的检修和维护尤为重要,同时也是为电力系统提供持之以恒供电能力的一个重要渠道,在检修和维护中,继电保护则为重中之重,所谓的继电保护就是指在研究电力系统发生故障或者电力运行出现问题的情况下,在发展的过程中主要用有触电接触点的继电器来检修和保护电力系统以及发电机、变压器、输电线路等基本元件,使这些电路设备免受损害的一种具有针对性强的电力保护措施,在这种保护的基本原理中,用电力设备中最小的代价维护、检修其中的最大量的元件,达到检修成本最小的目的,同时也是对高科技元素的一种有效利用。这与我们通常所说的电力保护有所不同,它的基本任务是在电力系统发生故障时,利用最短的时间实现最大区域内的电力保护,其自动将故障设备从整个电力系统中切断或者由智能设备发出通报,使得维修人员迅速发现故障根源,减轻电路故障引起的危险。
1 变电站继电保护作用与基本组成
2 变电站继电保护的现状及问题
首先,人工智能手段的引入。人工智能体系引入继电保护过程中是对变电站系统管理的一大进步。如专家系统、人工神经网络ANN等被广泛地应用于非线性问题障碍的排除上,我们知道,电力系统的继电保护是一种较为典型的离散控制方式,它分布于电路系统的各个环节中,对于电路的正常或者故障状态都能进行常态评估,这也是进行保护的关键步骤。由于AI的逻辑能力以及逻辑思维的存在,AI已经成为在线评估的重要工具,在现实的电力系统的应用中也表现得越发频繁。与此同时,变压器保护、发电机保护以及自动重合闸保护等领域也对此进行了广泛的应用。但是在继电保护的电力应用中,人工智能手段的引入无疑也存在可靠与否等方面的考验或者说存在该方面的弊端,不得不引起电力研究领域的重视。
其次,继电保护系统与高科技领域紧密结合。在电力系统中,网络化的电力保护技术也已经成为主导,也就是说在进行电力保护的过程中实现网络化管理,把现有的高科技手段应用于电力测量、控制、保护以及通信一体化的数据传输方面,这都对电力保护起到了翻天覆地的变化。如数字变电站内光互感器、智能终端、GOOSE、SV等新技术的应用,在变电站内的继电保护方面应用高科技手段,大大减少了电路运行的危险性,使得各个需要保护的单元与重合闸装置在分析和处理数据上相互协调,达到匹配,即实现网格化管理,这虽然实现了变电站内继电保护的基本目的,但是这种技术在继电保护领域还处于初始阶段,很多关键技术还不成熟,不能成为主流,对国外先进技术的引入成为继电保护的一大问题。
最后,微机系统在继电保护中被大量使用。微机已经在20世纪开始大规模应用于各个领域,在变电站内的继电保护方面也应用频繁。微机进行保护主要的优点在于先进的计算能力和逻辑处理能力,能够提高继电保护的性能,近些年来,为了强化这种稳定性和敏锐性,必然就出现了对微机保护的改进措施,但是随着科技的发展,电力系统内引入微机保护的效率应该引起重视,如果滞后于微机技术的发展,继电保护就无实效性可言。
3 完善变电站内继电保护的基本思路
变电站内的小功率机器的继电保护在现阶段已经引起了足够的重视,如何实现继电保护的长效性、科学性,是一个亟需解决的课题,随着多年来的电力维修和保护的实践,总结出如下几点继电保护的基本思路:
首先,完善继电保护的可靠性与速度性。这种可靠主要体现在保护装置的可靠性方面,也就是说在电力系统出现故障时,保护装置能够及时有效地反映出电力所出现的具体问题,速度既体现在发现故障方面,还体现在维修速度方面,不能够出现误差,同时不能对整个电力系统的运作有较大的影响。电力系统是一个多元素构成的有机整体,机构相对复杂,并且在适用上各个元件所体现的价值寿命是不同的,因此可靠性显得尤为重要,要对各种设备的基本功能进行完善修整,实现操作无误差。
其次,继电保护实现选择性与灵敏性。在变电站的继电保护中,选择性是指在发生故障时,系统有选择地将元件与故障系统隔离分开,使之不受到更大的损害,不受损害的部分仍然能够继续工作,这个过程既要求选择性,同时也要求灵敏性,需要对受到损害的元件与未受损害的元件进行区分,并使之与系统有效隔离,实现系统的完整性运转,避免不必要的损失,快速保护动作时间在0.06~2.12s之间,最快可达0.01~0.04s。
最后,实现科技贯穿于整个继电保护过程。以上文中我们了解到,继电保护需要在高科技支撑下进行运作,也只有这样的运作能够对变电站电力系统的维护有一定的作用,对于吸收继电保护的先进科技是实现继电保护的有效途径,也是实现电力系统稳定发展的巨大支撑。
4 结语
变电站的继电保护是电力传输系统的一个重要环节,其工作的稳定性,需要我们对变电站安全运行以及电力系统的稳定进行全面掌握,对继电保护的上述研究只是其中的一个弱小方面,加强变电站的继电保护需要对整个电力产业以及电力科技的发展有较为熟悉的掌握,使得继电保护能够成为变电站电力系统维护的一个重要举措,同时也是我们电力行业发展的一个重要使命。
参考文献
[1] 郝治国,张保会,褚云龙.变压器励磁涌流鉴别技术的现状和发展[J].变压器,2005,(7).
[2] 桂林,孙宇光,等.发电机内部故障仿真分析软件的应用实例[J].水电自动化与大坝监测,2003,(6).
[3] 艾恒.继电保护装置初析[J],中小企业管理与科技(下旬刊),2011,(7).
篇4
[关键词]高压电网;继电保护;运行研究
中图分类号:TM77 文献标识码:A 文章编号:1009-914X(2016)03-0099-01
电力系统出现错误或者是发生某些故障,有很大的原因是由于高压电网继电保护的运行出现了错误,因为高压电网继电保护是整个电力系统中电网装置的重要核心。如果是因为高压电网继电保护的运行出现了问题,而导致电力系统的运行以及管理也出现了问题,将会给电力企业带来不小的经济损失,同时也会给工作人员带来不可忽视的安全威胁,因此,需要加大对它的分析力度,同时加强对它的重视,进而确保高压电网继电保护能够正常、稳定的运行。
一、 高压电网继电保护运行的基本原理
高压电网继电保护对于电力系统能否稳定、安全地运行,有着非常重要的作用。高压电网因为经常会受到火灾、雷击以及风灾等情况的威胁,也可能是因为其设备自身存在的一些缺陷,还有工作人员出现操作失误等因素的干扰,在高压电网正常运行的过程中,常常会因为上面几种因素的干扰问题,其工作的状态出现问题,或者直接造成了线路短路的情况,进而发生安全事故,不管是给电力企业,还是给工作人员都有可能带来经济以及人身安全等方面的损失与损害。如果高压线路与电网中的设备发生了故障,那将很有可能在故障发生的前后,出现一些物理量变化,比如说,我们将线路中的电流或者是电压这些物理量,当做是变量,那在这些变量的值超过了一个固定的值以后,其对应着的保护系统就将会慢慢的把逻辑环节启动,进而让对应的控制服务器发出信号,最终将故障切断。而上述的这个过程就是高压电网继电保护运行的基本原理。同时也正是因为这样,在高压电网内部逐渐形成了故障防卫系统。简单来讲就是,当高压电网出现了线路短路的情况,或者是线路发生了断路情况的时候,为了尽快的解决这些故障,高压电网中的故障防卫系统会依据线路中,电流量的情况、电压的情况以及线路本身的阻抗情况等,做出相应的变化。怎样快速的检测高压电网是否出现了故障,工作人员一般是根据继电保护来判断的,因为高压电网发生故障时,分为外部故障与内部故障,而如果真的发生了故障,那么继电保护两侧的电流就会发生变化。继电保护正常运行的时候,其设备两侧的电流量一般不会出现任何变化,如果出现了故障则表示发生了故障。区分高压电网发生外部故障或者是内部故障,则是依靠电流的大小还有相位来进行明确的判断[3]。
的具体指的是之间的某一个数值。
假设电网继电保护的运行评价结果为f(x),f(x0)为不同段继电保护运行电流变量,则可得出继电保护运行与电流变量之间的关系,并得出其中的难点,采取有效措施应对。
二、 高压电网继电保护运行以及发展
首先就是高压电网继电保护的开关不够稳定。主要体现在电力系统发生故障的时候,当电力系统出现了一些故障,继电保护就可以较为及时的运行,但是这个时候的开关却没有起到任何作用,也就是是说开关失去了它本身的作用,而造成这种情况的主要原因就是高压电网继电保护运行和开关实际上是联系在一起的,所以当继电保护运行的时候就逐渐失去了它的基本作用。工作人员通过对电路的分析,发现有一部分开关的器件因为长时间的运行,其开关本身的器件常常会对继电保护的灵活性、可靠性以及稳定性等方面都带来较大的影响,只有将故障快速的切除才能将危险系数降低,这中间最主要的影响分别是开关开始不稳定、机械开始老化、连杆开始变得迟钝、弹簧逐渐失去作用等等。当高压电网的开关发生拒动的时候,就会很容易导致电力系统出现跳闸事故。
其次就是高压电网继电保护运行的电流感应器常出现故障。我国电力行业的快速发展,使得越来越多的高压电网出现短路故障的可能性逐渐升高,而如果高压电网的出口真的发出现了短路故障那么它的电流往往会使非常大的,甚至有时候会将是电流感应器每次侧定电流的很多倍。但是当短路故障的高压短路电流越来越大的时候,其高压电流中的感应器所出现的误差也会越来越大,同时电流速断保护可能会因为它的灵敏度逐渐降低拒绝所有动作。而当高压电网的线路出现短路的时候,再加上现在的电流感应器非常容易出现故障,这时候的电流感应器每次侧电流时它的值基本上是接近零,进而使得定时限过流的保护装置开始拒绝所有动作。如果电力设备出现了某些故障,则还要通过母联将断路器等设备的一些相关保护装置来将故障消除掉,这样不仅能够将故障发生的故障时间加长,同时也会将故障的范围逐渐扩大[2]。
最后就是电力企业的工作人员水平需要进一步提升。高压电网继电保护工作人员因为对微机的保护了解存在一些欠缺,所以会给进高压电网继电保护运行的维护造成一些偏差,例如回事的维护工作不能够全面,会使得结果发生误差,进而导致高压电网继电保护出现误跳闸的情况。然而保护装置的调试质量就会直接影响到继电保护可不可以正确的运行,所以高压电网继电保护的工作人员不管是在专业知识方面,还是在技术水平方面都需要进一步的加强,同时他们的工作态度也要更加的严谨,特别是高压电网进行模拟实验的时候绝不可以有丝毫的马虎。
为了更好地发展我国的电力行业,做好高压电网继电保护运行的工作,相关的部门还应当加强资金的投入,将高压电网继电保护运行的相关设备,全部都进行有效的更新,进而使得高压电网继电保护运行的更加安全以及可靠。因为高压电网继电保护能否正常的运行,离不开设备以及电网的保护。所以工作人员需要定期的对相关的设备进行查看,需要更换的设备及时的更新,这样就可以使高压电网继电保护运行更加稳定[1]。
结束语
通过上述文章内容我们可以看出,要想做好高压电网继电保护运行的分析与研究工作,需要对高压电网继电保护运行的基本原理以及相应的流程或者是技术有所了解,最好是对高压电网继电保护运行的基础能够熟练的掌握,只有这样才能够做好高压电网继电保护运行的研究工作。高压电网继电保护运行过程中,离不开工作人员的维护,所以电力企业也应当加强对工作人员的教育,进一步提升工作人员的专业技能水平,进而认真的做好高压电网继电保护运行的工作,促进我国电力行业更好地发展。
参考文献
[1] 杨小东.对高压电网继电保护运行的探讨[J]. 通讯世界,2014,02:96-97.
篇5
【关键词】继电保护;整定;电力系统
1.反时限过电流保护
1.1什么是反时限过电流保护
继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。
1.2继电器的构成
反时限过电流保护是由GL-15(25)感应型继电器构成的。这种保护方式广泛应用于一般工矿企业中,感应型继电器兼有电磁式电流继电器(作为起动元件)、电磁式时间继电器(作为时限元件)、电磁式信号继电器(作为信号元件)和电磁式中间继电器(作为出口元件)的功能,用以实现反时限过电流保护;另外,它还有电磁速断元件的功能,又能同时实现电流速断保护。采用这种继电器,就可以采用交流操作,无须装设直流屏等设备;通过一种继电器还可以完成两种保护功能(体现了继电器的多功能性),也可以大大简化继电保护装置。但这种继电器虽外 部接线简单,但内部结构十分复杂,调试比较困难;在灵敏度和动作的准确性、速动性等方面也远不如电磁式继电器构成的继电保护装置。
1.3反时限过电流保护的基本原理
当供电线路发生相间短路时,感应型继电器KA1或(和)KA2达到整定的一定时限后动作,首先使其常开触点闭合,这时断路器的脱扣器YR1或(和)YR2因有KA1或(和)KA2的常闭触点分流(短路),而无电流通过,故暂时不会动作。但接着KA1或(KA2)的常闭触点断开,因YR1或(和)YR2因“去分流”而通电动作,使断路器跳闸,同时继电器本身的信号掉牌掉下,给出信号。
在这里应予说明,在采用“去分流”跳闸的反时限过电流保护装置中,如继电器的常闭触点先断开而常开触点后闭合时,则会出现下列问题:
(1)继电器在其常闭触点断开时即先失电返回,因此其常开触点不可能闭合,因此跳闸线圈也就不能通电跳闸;
(2)继电器的常闭触点如先断开,CT的二次侧带负荷开路,将产生数千伏的高电压、比差角差增大、计量不准以及铁心发热有可能烧毁绝缘等,这是不允许的。
2.定时限过电流保护
2.1什么是定时限过电流保护
继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。
2.2继电器的构成
定时限过电流保护是由电磁式时间继电器(作为时限元件)、 电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般采用直流操作,须设置直流屏。定时限过电流保护简单可靠、完全依靠选择动作时间来获得选择性,上、下级的选择性配合比较容易、时限由时间继电器根据计算后获取的参数来整定,动作的选择性能够保证、动作的灵敏性能够满足要求、整定调试比较准确和方便。这种保护方式一般应用在10~35KV系统中比较重要的变配电所。
2.3定时限过电流保护的基本原理
10KV中性点不接地系统中,广泛采用的两相两继电器的定时限过电流保护的原理接线图。它是由两只电流互感器和两只电流继电器、一只时间继电器和一只信号继电器构成。当被保护线路只设有一套保护,且时间继电器的容量足大时,可用时间继电器的触点去直接接通跳闸回路,而省去出口中间继电器。
当被保护线路中发生短路故障时,电流互感器的一次电流急剧增加,其二次电流随之成比例的增大。当CT的二次电流大于电流继电器的起动值时,电流继电器动作。由于两只电流继电器的触点是并联的,故当任一电流继电器的触点闭合,都能接通时间继电器的线圈回路。这时,时间继电器就按照预先整定的时间动作使其接点吸合。这样,时间继电器的触点又接通了信号继电器和出口中间继电器的线圈,使其动作。出口中间继电器的触点接通了跳闸线圈回路,从而使被保护回路的断路器跳闸切断了故障回路,保证了非故障回路的继续运行。而信号继电器的动作使信号指示牌掉下并发出警报信号。
由上不难看出,保护装置的动作时间只决定于时间继电器的预先整定的时间,而与被保护回路的短路电流大小无关,所以这种过电流保护称为定时限过电流保护。
3.电流速断保护
瞬时电流速断保护最大的优点是动作迅速,但只能保护线路的首端。而定时限过电流保护虽能保护线路的全长,但动作时限太长。因此,常用略带时限的电流速断保护来消除瞬时电流速断保护的“死区”。要求略带时限的电流速断保护能保护全线路。因此,它的保护范围就必然会延伸到下一段线路的始端去。这样,当下一段线路始端发生短路时,保护也会起动。 为了保证选择性的要求,须使其动作时限比下一段线路的瞬时电流速断保护大一个时限级差,其动作电流也要比下一段 线路瞬时电流速断保护的动作电流大一些。略带时限的电流速断保护可作为被保护线路的主保护。略带时限的电流速断保护的原理接线和定时限过电流保护的原理接线相同。
4.三段式过电流保护装置
由于瞬时电流速断保护只能保护线路的一部分,所以不能作为线路的主保护,而只能作为加速切除线路首端故障的辅助保护;略带时限的电流速断保护能保护线路的全长,可作为本线路的主保护,但不能作为下一段线路的后备保护;定时限过电流保护既可作为本级线路的后备保护(当动作时限短时,也可作为主保护,而不再装设略带时限的电流速断保护。),还可以作为相临下一级线路的后备保护,但切除故障的时限较长。
在实际中还常采用三段式电流保护。就是以瞬时电流速断保护作为第一段,以加速切除线路首端的故障,用作辅助保护;以略带时限的电流速断保护作为第二段,以保护线路的全长,用作主保护;以定时限过电流保护作为第三段,以作为线路全长和相临下一级线路的后备保护。
因为这种保护的设置可以在相临下一级线路的保护或断路器拒动时,本级线路的定时限过流保护可以动作,起到远后备保护的作用;如本级线路的主保护(瞬时电流速断或略带时限的电流速断保护)拒动时,则本级线路的定时限过电流保护可以动作,以起到近后备的作用。
5.零序电压与电流保护
电力系统中发电机或变压器的中性点运行方式,有中性点不接地、中性点经消弧线圈接地和中性点直接接地三种方式。10KV系统采用的是中性点不接地的运行方式。
系统运行正常时,三相是对称的,三相对地间均匀分布有电容。在相电压作用下,每相都有一个超前90°的电容电流流入地中。这三个电容电流数值相等、相位相差120° ,其和为零.中性点电位为零。
总之,在电力系统继电保护工作中,只有做好保护定值的整定计算工作,合理的选择保护的定值,才能充分发挥继电保护装置的效能,提高供电的可靠性。
篇6
配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。
二。配电网馈线保护的技术现状
电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。
随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种:
2.1传统的电流保护
过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。
电流保护实现配电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。
2.2重合器方式的馈线保护
实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式「参考文献。参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。同样,分段器B电压恢复后延时合闸。当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此后B将自动闭锁在分闸位置,从而实现故障切除、故障隔离及对非故障段的恢复供电。
目前在我国城乡电网改造中仍有大量重合器得到应用,这种简单而有效的方式能够提高供电可靠性,相对于传统的电流保护有较大的优势。该方案的缺点是故障隔离的时间较长,多次重合对相关的负荷有一定影响。
2.3基于馈线自动化的馈线保护
配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。
这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。
三。馈线保护的发展趋势
目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。但是随着配电自动化技术的发展及实践,对配电网保护的目的也要悄然发生变化。最初的配电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。在配电自动化的基础上,配电网通信得到充分重视,成本自动化的核心。目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:
1)电流保护切除故障;
2)集中式的配电主站或子站遥控FTU实现故障隔离;
3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。
这种实现方式实质上是在自动装置无选择性动作后的恢复供电。如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。
四。馈线系统保护基本原理
4.1基本原理
馈线系统保护实现的前提条件如下:
1)快速通信;
2)控制对象是断路器;
3)终端是保护装置,而非TTU.
在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。基本原理如下:
参见图3所示典型系统,该系统采用断路器作为分段开关,如图A、B、C、D、E、F.对于变电站M,手拉手的线路为A至D之间的部分。变电站N则对应于C至F之间的部分。N侧的馈线系统保护则控制开关A、B、C、D的保护单元UR1至UR7组成。
当线路故障F1发生在BC区段,开关A、B处将流过故障电流,开关C处无故障电流。但出现低电压。此时系统保护将执行步骤:
Step1:保护起动,UR1、UR2、UR3分别起动;
Step2:保护计算故障区段信息;
Step3:相邻保护之间通信;
Step4:UR2、UR3动作切除故障;
Step5:UR2重合。如重合成功,转至Step9;
Step6:UR2重合于故障,再跳开;
Step7:UR3在T内未测得电压恢复,通知UR4合闸;
Step8:UR4合闸,恢复CD段供电,转至Step10;
Step9:UR3在T时间内测得电压恢复,UR3重合;
Step10:故障隔离,恢复供电结束。
4.2故障区段信息
定义故障区段信息如下:
逻辑1:表示保护单元测量到故障电流,
逻辑0:表示保护单元未测量到故障电流,但测量到低电压。
当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。
为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。
4.3系统保护动作速度及其后备保护
为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。
在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms.这样,只要通信环节理想即可实现快速保护。
4.4馈线系统保护的应用前景
馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。由于配电网的通信条件很可能十分理想。在此基础之上实现的馈线保护功能的性能大大提高。馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:
(1)快速处理故障,不需多次重合;
(2)快速切除故障,提高了电动机类负荷的电能质量;
(3)直接将故障隔离在故障区段,不影响非故障区段;
(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。
四。系统保护展望
继电保护的发展经历了电磁型、晶体管型、集成电路型和微机型。微机保护在拥有很强的计算能力的同时,也具有很强的通信能力。通信技术,尤其是快速通信技术的发展和普及,也推动了继电保护的发展。系统保护就是基于快速通信的由多个位于不同位置的保护装置共同构成的区域行广义保护。
电流保护、距离保护及主设备保护都是采集就地信息,利用局部电气量完成故障的就地切除。线路纵联保护则是利用通信完成两点之间的故障信息交换,进行处于异地的两个装置协同动作。近年来出现的分布式母差保护则是利用快速的通信网络实现多个装置之间的快速协同动作如果由位于广域电网的不同变电站的保护装置共同构成协同保护则很可能将继电保护的应用范围提高到一个新的层次。这种协同保护不仅可以改进保护间的配合,共同实现性能更理想的保护,而且可以演生于基于继电保护相角测量的稳定监控协系统,基于继电保护的高精度多端故障测距以及基于继电保护的电力系统动态模型及动态过程分析等应用领域。目前,在输电网中已经出现了基于GPS的动态稳定系统和分散式行波测距系统。在配电网,伴随贼配电自动化的开展。配电网馈线系统保护有可能率先得到应用。
篇7
(一)10KV供电系统在电力系统中的重要位置
电力系统是由发电、变电、输电、配电和用电等五个环节组成的。在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不可避免的。由于电力系统的特殊性,上述五个环节应是环环相扣、时时平衡、缺一不可,是在同一时间内完成的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。10KV供电系统是电力系统的一部分。它能否安全、稳定、可靠地运行,不但直接关系到企业用电的畅通,而且涉及到电力系统能否正常的运行。因此要全面地理解和执行地区电业部门的有关标准和规程以及相应的国家标准和规范。
(二)10KV系统中应配置的继电保护
按照工厂企业10KV供电系统的设计规范要求,在10KV的供电线路、配电变压器和分段母线上一般应设置以下保护装置:1、10KV线路应配置的继电保护。2、10KV配电变压器应配置的继电保护。(1)当配电变压器容量小于400KVA时:一般采用高压熔断器保护;(2)当配电变压器容量为400~630KVA,高压侧采用断路器时,应装设过电流保护,而当过流保护时限大于0.5s时,还应装设电流速断保护;(3)当配电变压器容量为800KVA及以上时,应装设过电流保护,而当过流保护时限大于0.5s时,还应装设电流速断保护;对于油浸式配电变压器还应装设气体保护。3、10KV分段母线应配置继电保护。
(三)10KV系统中继电保护的配置现状
目前,一般企业高压供电系统中均为10KV系统。除早期建设的10KV系统中,较多采用的是直流操作的定时限过电流保护和瞬时电流速断保护外,近些年来飞速建设的电网上一般均采用了环网或手车式高压开关柜,继电保护方式多为交流操作的反时限过电流保护装置。很多重要企业为双路10KV电源、高压母线分段但不联络或虽能联络但不能自动投入。
二、继电保护的基本概念
在10KV系统中装设继电保护装置的主要作用是通过缩小事故范围或预报事故的发生,来达到提高系统运行的可靠性,并最大限度地保证供电的安全和不间断。在10KV系统中的继电保护装置是供电系统能否安全可靠运行的不可缺少的重要组成部分。
(一)对继电保护装置的基本要求
对继电保护装置的基本要求有四点:1、选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。也就是它应该首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。系统中的继电保护装置能满足上述要求的,就称为有选择性,否则就称为没有选择性。2、灵敏性。灵敏性系指继电保护装置对故障和异常工作状况的反映能力。在保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作。但在保护区外发生故障时,又不应该产生错误动作。3、速动性。速动性是指保护装置应能尽快地切除短路故障。4、可靠性。
(二)继电保护的基本原理
1、电力系统故障的特点。电力系统中的故障种类很多,但最为常见、危害最大的应属各种类型的短路事故。一旦出现短路故障,就会伴随其产生三大特点。即:电流将急剧增大、电压将急剧下降、电压与电流之间的相位角发生变化。
2、继电保护的类型。在电力系统中以上述物理量的变化为基础,利用正常运行和故障时各物理量的差别就可以构成各种不同原理和类型的继电保护装置。
三、几种常用电流保护的分析
1、反时限过电流保护。继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。反时限过电流保护是由GL-15(25)感应型继电器构成的。当供电线路发生相间短路时,感应型继电器KA1或(和)KA2达到整定的一定时限后动作,首先使其常开触点闭合,这时断路器的脱扣器YR1或(和)YR2因有KA1或(和)KA2的常闭触点分流(短路),而无电流通过,故暂时不会动作。
2、定时限过电流保护。继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。
3、零序电流保护。电力系统中发电机或变压器的中性点运行方式,有中性点不接地、中性点经消弧线圈接地和中性点直接接地三种方式。10KV系统采用的是中性点不接地的运行方式。
篇8
关键词:继电保护;供电系统;原理
在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。由于其覆盖的地域广阔、运行环境又很复杂以及各种人为因素的影响,电气故障的发生是不可避免的。在电力系统中任何一处发生事故,都有可能对电力系统的运行产重大影响,因此继电保护系统就是电力系统中的一个重要环节。
1 继电保护装置类型
1.1 距离保护
所谓距离保护是指相同故障、接地故障时采取的保护措施。当故障发生后,如相同短路、单相接地、缺相运行筹故障,CPU首先会接到相应回路点发来的中断信号,然后根据其中所包含的故障信息作出相应的判断,并向执行部件发出动作指令。
1.2 零序保护逻辑
当系统出现某相接地发生零序保护元件发出开口三角电压UO,而软件可根据三相电压信号自产出U=Ua+Uh+Uc 若Ua+Uh+Uc=U不成立,而U≠0,则故障仍采用U:若UO=O则采用UO。
1.3 负荷控制通常
此逻辑中,根据各回路中的负荷情况,将数据进行汇总向上级电业部门进行报送,当出现电力负荷不均衡时,电力部门按照有关规定,根据负荷等级向用电部门发出指令进行统一调配,单片机在此进行数据汇总,并与上级电业管理部门进行通讯邮递联络。三相重合闸该逻辑用于同路中突发性短时故障时,故障发能在发生后自动消除情况下,若再次送电不会发生故障时能及时恢复电网供电,此类故障,如相间因细小的金属线等杂物短路,当金属线烧短后,再次送电并不影响系统正常运行。
2 继电器保护装置的功能
在供电系统中运行正常时,它应能完善地、安全地监视各种设备的运行状况,为值班人员提供可靠的运行依据;如供电系统中发生故障时,它应能自动地、迅速地、有选择性地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时地、准确地发出信号或警报,通知值班人员尽快做出处理;对继电保护装置的基本要求。对继电保护装置的基本要求主要有四点:即选择性、灵敏性、速动性和可靠性。
2.1 选择性
当供电系统中发生故障时,继电保护装置应能有选择性地将故障部分切除。也就是它应该首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。系统中的继电保护装置能满足上述要求的,就称为有选择性否则就称为没有选择性。
2.2 速动性
速动性是指保护装置应能尽快地切除短路故障缩短切除故障的时间,就可以减轻短电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。所谓故障的切除时间是指保护装置的动作时间与断路器的跳闸时间之和。由于断路器一经选定,其跳闸时间就已确定,目前我国生产的断路器跳闸时间均在O.02S以下。所以实现速动性的关键是选用保护装置应能快速动作。保护装置应能正确的动作,并随时处于准备状态。如不满足可靠性的要求,保护装置反而成为了扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,则要求保护装置的设计原理、整定计算、安装调试要正确无误;同时要求组成保护装置的各元件的质量要可靠、运行维护要得当、系统应尽可能的简化有效,以提高保护的可靠性。
3 继电器保护的应用分析
3.1 继电保护的网络自动化
随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量的故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据,信息和网络资源的能力,高级语言编程。计算机网络作为信息和数据通信工程已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了重大变化,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行隋况下还可完成测量、控制、数据通信功能亦即实现保护、控制、测量、数据通信一体化。
3.2 继电保护的智能化
近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域得到了广泛的应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。
4 如何提高继电保护技术
掌握相关技术知识,电子技术知识,由于电网中微机保护的使用越来越多,作为一名继电保护工作者,学好电子技术及微机保护知识是当务之急。微机保护的原理和组成,为了根据保护及自动装置产生的现象分析故障或事故发生的原因,迅速确定故障部位,工作人员必须具备微机保护的基本知识,必须全面掌握和了解保护的基本原理和性能,熟记微机保护的逻辑框图,熟悉电路原理和元件功能。具备相关技术资料,要顺利进行继电保护事故处理,离不开诸如检修规程、装置使用与技术说明书、调试大纲和调试记录、定值通知单、整组调试记录,二次回路接线图等资料。运用正确的检查方法。一般继电保护事故往往经过简单的检查就能够被查出,如果绎过一些常规的检查仍未发现故障元件,说明该故障较为隐蔽,应当引起充分重视,对此可采用逐级逆向检查法,即从故障现象的暴露点入手去分析原因,由故障原因判断故障范围。如果仍不能确定故障原因,就采用顺序检查法,对装置进行全面检查。掌握微机保护事故处理技巧,在微机保护的事故处理中,以往的经验是非常宝贵的,它能帮助工作人员快速消除重复发生的故障,但技能更为重要。
5 结束语
这里从微机保护自身特点和现场实际经验出发,结合长期处理继电保护事故的故障的经验和方法,对微机保护发生事故或故障的共性原因进行了一般性分类,并在一定范围内总结了处理事故的思路及方法,介绍了提高处理事故和故障能力的基本途径。
参考文献:
篇9
【关键词】10KV供电系统; 继电保护; 原理特性;
在我国过去这几年10 kV配电系统的使用过程中,经统计发现,其技术故障多为谐波、短路。配电系统一旦发生故障,很有可能会造成电力设备及电气线路的严重损坏,进而严重影响电力系统的正常运行和使用。国内的10 kV配电系统通常都安装有继电保护装置,但因受到管理模式、运行规范及有关技术等多方面因素的制约,其保护作用往往不能得到充分发挥。因此,在10 kV配电系统的建设和管理过程中,相关技术人员及管理部门要注重继电保护技术的应用和研发,全面提高配电系统的可控性,进而提高系统的安全性及稳定性。
1、概述
整个电力系统的组成环节分别为发电、变电、高压输电、配电及用电。电力元件包括发电机、变压器、输电线路、母线、电动机等。在整个系统中,各种类型电气设备由电气线路相互联结组成一个庞大的网络,具有覆盖地域广阔、构成庞大、运行环境复杂等特点,在各种人力因素及自然因素的影响下,如:各种自然天气、设备绝缘老化、鸟兽危害、设计安装失误、检修质量、误操作等,常会不可避免的发生各种不可预计的电气故障。再加上整个系统的相互统一性,当任何一处发生电力事故时,将有可能影响整个电力系统的正常运行,甚至对系统的安全性能构成威胁。短路是电力系统中最危险也最为常见的故障,包括相与地及相与相之间的短接。10KV供电系统是整个供电系统的重要组成部分,其运行的可靠性、安全性及稳定性不仅会直接影响企业的正常用电,而且关系到整个电力系统的运行稳定性。10KV供电系统又分为一次系统、二次系统,其中,一次系统的构成相对比较直观、也较简单,在继电保护装置的设计及设置上也比较容易,方便在日后对系统的保护和控制;二次系统的构成比较复杂,包含了大量的二次回路、自动装置和继电保护装置。因此,在供电系统中的继电保护装置主要对一次系统起着测量、监视、保护和控制作用。
2、基本原理
当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。
继电保护装置通常是利用系统中的电力元件发生异常情况或短路时所产生的电压、电流、频率、功率等电气量的变化成构成了继电保护装置的保护动作原理;另外也有利用其它物理量的继电保护装置,如变压器油箱发生故障时,可通过利用产生的油流速度变化、油压变化或瓦斯浓度的变化来构成继电保护装置瓦斯保护的动作原理。通常情况下,无论对哪种物理量进行监测,继电保护装置的构成部分都包括监测、定值调整、逻辑运行及动作执行。
当电力系统中的某一装有继电保护装置的元件产生故障时,该继电保护装置应在第一时间向元件与系统之间的且与元件线路距离较近的断路器产生跳闸指令,及时的使故障元件与电力系统相脱离,从而最大程度上降低故障元件本身及电力系统的损坏,避免对整个电力系统的安全、稳定供电产生影响,同时满足系统指定的特殊要求。
继电保护装置还可对电气设备的异常工作情况作出反映,并根据不同的电气设备的运行维护条件及异常工作状态发出信号,由保护装置自动进行调整或通知技术工作人员进行操作处理,必要时可将那些继续工作可能引发事故的故障设备切除。反应异常工作状态的继电保护装置可以设置合理的动作延时。
3、10 kV 配电系统继电保护的改进措施
近些年,随着我国国民经济的快速发展,国内城乡电网配变线路电压的配制等级主要为10kV,但在实际配电系统的使用过程中,10kV配变线路普遍存在一定的弊端,主要为其结构设置的一致性效差。目前,10 kV配电系统采用的继电保护装置的构成部分主要为三相一次重合闸、过流、电流速断等,通常系统在使用过程中出现一般故障时,继电保护能够快速做出反应,然而系统在突发事件的应对方面的稳定性与灵敏度较其它发达国家还有很大差距,因此,为提高我国电力系统的安全性及稳定性,这一技术问题必须首先得到及时解决。
3.1提高电流速断保护装置的技术水平。当前,我国10kV配电系统所采用的继电保护装置短路故障的脱离时间通常为5~10s,实际因保护装置有较短的动作延时,因此短路故障的脱离时间通常会有3~5s的延迟,而仅仅这几秒钟将很大程度上增加故障持续时间,从而使事故影响范围扩大,系统的安全性能大大降低。所以,在今后研发、设计10kV配电系统的继电保护装置时,应提高电流速断保护装置的技术水平,可以略带时限及瞬时的电流速断保护技术为基础进行开发,在,从而开发出一种新型的技术上实现上述两种保护装置互补的继电保护装置,并实现保护范围广、动作电流值大等技术特点。
3.2加强继电保护的网络化和智能化建设。在今后的10kV配电系统的运行过程中,继电保护技术必将越来越趋向于网络化和智能化。智能化的继电保护系统一方面可有效减少配电系统管理上的人力及物力资源浪费,另一方面也为配电系统应用其他各项技术提供了广阔的技术平台。近些年,随着计算机技术如模糊逻辑、进化规划、遗传算法、神经网络等在各个领域的大力推广与应用,也逐渐开始渗透到电力系统继电保护领域。
4、结语
10kV配电系统作为电力系统的重要组成部分之一,其安全性、稳定性及可靠性不仅直接关系到各个用电企业的顺利运作,并且还会影响整个电力系统的安全性和稳定性。当电力系统中的某一装有继电保护装置的元件产生故障时,继电保护装置可及时的使故障元件与电力系统相脱离,从而最大程度上降低故障元件本身及电力系统的损坏。然而系统在突发事件的应对方面的稳定性与灵敏度较其它发达国家还有很大差距,因此,应提高我国电流速断保护装置的技术水平,加快继电保护的网络化和智能化建设,以确保我国10kV供电系统的稳定、安全运行。
参考文献:
[1]李秀红. 10KV供电系统的继电保护[J]. 内蒙古煤炭经济. 2011(01)
[2]苑世光. 浅谈10KV供电系统的定时限过电流保护[J]. 黑龙江科技信息. 2008(21)
篇10
关键词:电流互感器;继电保护;电流;影响;措施
中图分类号:TM451 文献标识码:A 文章编号:1674-7712 (2013) 24-0000-01
一、前言
在电力系统中,电流互感器的饱和与否对继电保护装置的影响非常大,会直接影响到继电保护装置的安全稳定运行,随着社会工业的不断发展,电力系统的供电容量也不断地增大,但是系统短路电流也在急剧增加,电力系统中的电流互感器饱和问题也日益突出,对继电保护产生重要影响,本文对其进行了简单的论述,并提出了一些具体的解决措施,希望对电力系统的安全、稳定运行提供一定的帮助。
二、电流互感器原理
电流互感器简称CT,其原理是依据电磁感应原理,将一次回路中的大电流变化成二次回路中的小电流,然后供给测量仪器继电保护装置或者其他的类似装置,电流互感器的主要用途是对被测电流进行变换,其优点就是比普通的变压器输出的容量小,按照其性能和用途可以分为两大类,一类是用来测量用电流互感器,另一类是用来保护用电互感器。
三、电流互感器饱和对继电保护影响的基本原理
电流互感器的饱和对继电保护装置影响非常大,想要继电保护装置能够安全稳定运行,电流互感器就必须要真实的反应一次电流的波形,尤其是当出现故障的时候,电流互感器不仅要反映出故障电流的大小,还要反映出电流的波形和相位,以及电流的变化率。电流互感器的饱和分两种,一种是稳态饱和,另一种是暂态饱和,而使电流互感器饱和的原因有很多,如电流非周期分量的大小、二次侧负荷大小及铁芯剩磁、一次系统的时间常数的大小等。
(1)稳态饱和主要是由于一次电流的值过大,致使二次电流不能正确传变一次电流。
(2)暂态饱和主要是由于大量的非周期分量进入电流互感器饱和区造成的。
电流互感器的饱和,严重影响了继电保护装置的稳定运行,使其不能安全、快速的进行工作,使其保护拒动、延迟动作等,极大的降低了继电保护装置的测量故障的准确性。
四、电流互感器对继电保护装置的影响
(一)电流互感器对电流保护的影响
等效动作判断依据为:I J>I p;
I J:是继电器短路的电流二次值;
I p:是电流继电器的定值;
根据以上式子可知,当电流互感器处于饱和状态时,二次侧的等效动作变小,使得保护产生拒动。
(二)电流互感器饱和对速断保护的影响
电流速断保护是指当电流增大时的瞬时保护动作,当被继电保护的区域出现短路时,短路电流中的非周期分量变大,电流互感器处于饱和状态,使得继电保护装置的电流小于实际电流,达不到速断保护的动作值,这样就极大的影响到了速断保护的工作,只有当电流互感器恢复正常时速断保护才能正常工作。
(三)电流互感器饱和对母线的影响
电流互感器的饱和使得母线保护在设计和整定时面临许多困难,电流互感器的母线多数都采用电流差动式保护,利用对CT二次测电流瞬时值差动的原理,可以实现对母线的快速保护,当电流互感器出现饱和状态时,使得二次测电流差动原理遭到破坏,导致保护误动作,由此可见,电流互感器的饱和对母线的影响非常严重,我们必须认真研究保护闭锁和开放时刻,尽量避开CT饱和对保护的不良影响。
(四)电流互感器对方向纵联保护的影响
当电流互感器处于饱和状态时,只要电流方向不发生故障,方向纵联保护一般不会出现故障,除非出现区外故障,此刻的测保护检测到的故障电流超过了方向纵联保护启动电流,而线路负荷端的保护却因为电流互感器处于饱和状态而未持续发出区外故障闭锁信号,使得方向纵联保护出现误动。
五、防治电流互感器饱和对策
电流互感器对继电保护装置影响非常大,继电保护装置能否正常、安全工作取决于电流互感器的饱和与否,避免电流互感器的饱和,具体措施如下:
(1)避免CT饱和:CT饱和也受电流互感器二次负载阻抗的大小影响,所以,要选用额定阻抗和额定容量较大的电流互感器,减少电流互感器的二次阻抗,因为电流互感器的额定二次电流是5A和1A,相同容量下的二次电流5A要比1A的允许二次阻抗差25倍,所以要尽量提高CT的允许二次阻抗值。
(2)采用TP类电流互感器:这类的电流互感器适用于短路电流中非周期分量暂态影响的情况,TP类电流互感器一般在最严重的暂态条件下不饱和,二次电流的误差在规定范围内。
(3)采用抗饱和的继电保护装置:应该采用对电流饱和不敏感的保护原理和对电流互感器饱和不敏感的数字保护装置。
(4)尽量将继电保护装置就地安装:继电保护装置就地安装可以缩短二次电缆的长度,减少互感器负担,避免饱和。
此外,目前国内外的主要抗饱和方法有很多,比如:波形判据法、局部测算法、使用饱和发生器、增大保护级CT变比、限制短路电流、减少CT的二次额定电流等等。
六、结束语
综上所述,电流互感器的选择与配置不当,会直接引起继电保护装置的不正确动作,造成电力故障,在继电保护装置中,电流互感器对继电保护的正确、快速动作起着决定性作用,所以,电流互感器的饱和也直接影响着继电装置的可靠运行,本文对电流互感器的原理进行介绍,分析了电流互感器对继电保护装置的影响,也提出了一些解决措施,希望对电力系统的安全稳定运行提供借鉴。
参考文献:
[1]李升健,黄灿英,谌争鸣.保护用电流互感器的性能验算方法及实例分析[J].电工技术,2013(10):59-60.