高分子材料的改性范文
时间:2023-12-14 17:40:53
导语:如何才能写好一篇高分子材料的改性,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
一、生物质高分子材料PHA的概述
近年来,我国对生物可降解高分子材料进行了深入地研究和开发,尤其是聚羟基脂肪酸酯PHA颇受关注。聚羟基脂肪酸酯是细菌胞内合成的一种高分子化合物,在营养不平衡的环境下,细菌把多余的物质转换为探源和能源的储备物,同时将水溶性小分子转换为水不溶性的大分子PHA。PHA因具有某些合成塑料如聚丙烯、聚乙烯的物化特性,又具有独特的生物可降解行、光学活性、生物兼容性、气体相隔性以及压电性等被认为是可替代传统的由石油合成的、不可降解的塑料,PHA被称为新型的生物可降解塑料。
PHA结构多样,且因其自身结构变化拥有较多的新材料性能,所以应用前途比较广泛。在食品包装材料、卫生材料、纸涂层材料、光学材料、电子工程材料以及一些一次性用品,如高档包装材料、新型医学材料骨钉、骨板等方面广泛应用。
PHA由具有光学活性的R构型降级脂肪酸单体组成,是一种线性可降解聚酯,其单体组成对自身的物理性质起决定性作用,常见的PHA材料主要有以下几种:聚β-羟基丁酸酯(PHB)、聚-3-羟基丁酸-3-羟基戊酸之(PHBV)、聚-3-羟基丁酸-3-羟基己酸酯(PHBHHX)、聚-3-羟基丁酸-4-羟基丁酸酯(P3/4HB)等。
二、聚合物的加工改性
经过高分子材料科学成熟的发展,通过共混、共聚和表面改性等手段对高分子材料进行化学改性或物理改性以此达到提高聚合物某些性能引起了人们广泛的重视。将不同的聚合物混合,或者将种类相同但相对分子质量不同的聚合物进行混合,或者把聚合物和其他物料相互混合形成新的共混聚合物,通过以上的手段都可以实现聚合物的共混改性,聚合物共混改性后不单单是改变了聚合物的性能,更是开发了新型聚合物材料的崭新功能,因此,聚合物的共混改性已经发展为当今世界高分子材料工程科学中最为活跃的领域之一。PHB作为PHA中最具代表性的生物塑料,在生活的各个领域都有着广泛的应用前景,下面以PHB为例,探究一下生物质材料的加工改性。
三、PHB的加工改性研究
1.制备聚合物
1.1制备单端枪击聚羟基丁酸酯(PHB-OH)
用甲醇打断大的PHB分子链,对PHB片段封端,从而可以制的只有一端含羟基的PHB片段(PHB-OH)。制备方法如下:氯仿作为溶剂,硫酸作为催化剂,将15gPHB溶于150ml的氯仿中,75°C回流30min后,取2.5nl浓硫酸溶于50ml甲醇中,冰浴冷却之后逐滴地滴加到上述的回流流体中,根据自己需要可以控制回流时间,至设定时间后冷却至室温,然后大量蒸馏水洗涤、分液、静置分层后弃去水层,有机层洗涤两次后,用无水硫酸镁干燥过夜,过滤,滤液使用无水甲醇沉淀,减压过滤,将产物放在40°C的真空烘箱里面干燥48小时以上,即成。
1.2制备不饱和端基低聚物
取1.5g干燥的PHB-OH放在事先干燥好的四口瓶中,加入50ml除水的二氯甲烷和0.2ml的三乙胺,30°C油浴中磁子搅拌,完全溶解后,低价溶有0.3ml的丙烯酰氯的二氯甲烷30ml,继续反应3小时,过滤沉淀,滤液使用适量饱和的碳酸氢钠洗涤两次,使用蒸馏水洗涤三次,然后用无水硫酸镁干燥过夜,过滤之后的滤液使用甲醇沉淀,减压过滤,最后产物常温真空干燥,即成。
2.运用傅里叶变换红外光谱仪对聚合物材料进行定性表征
对于已经提纯过的待测样品,将其配置成10mg/ml的氯仿溶液,然后滴3滴在KBr镜片上面,在红外灯的照射下干燥形成薄膜。之后用Nicolet IR200幸好傅里叶变化红外光谱仪对其进行32次的扫描,(该仪器分辨力为1cm-1)。观察得到的红外图谱,可以确定待测物中的基因。
3.材料热学性能测试
聚合材料的热学性能测试,取少量样品,通过热失重分析仪或者示差扫描量热仪对样品温度曲线进行分析。
4.材料的力学性能测试
取少量待测样品,将其裁剪成哑铃型样条,使用CMT4000型号微机控制电子万能试验机,移动千分尺,岑亮样条的宽度、厚度、起始标距,待位移回零之后,在室温下仪5mm/min进行拉伸,用计算机记录材料的应力-应变曲线,通过实验,得到材料弹性模量、拉伸强度以及断裂伸长率等参数。
5. PHB物理改性研究
使用增塑剂DOS,形成PHB/DOS共混体系。经实验验证,共混体系随着增塑剂DOS的含量增加,材料的拉伸强度和杨氏模量降低,断裂的伸长率不明显,当共混体系中DOS含量达到35%时,共混体系的机械性最好,但对于共混体系来说,DOS的增塑效果并不明显,因此,DOS常作为辅助增塑剂。
使用乙酰柠檬酸三丁酯(ATBC)增塑PHB体系,和DOS对比,ATBC增塑效果较明显,因为ATBC自身的机型和分子量相对比较小,能很好的茶道PHB的链段之间,增加PHB链间的距离,减小高分子链间产生的相对滑移摩擦力,从而达到较好的增速效果。
四、结语
PHB作为生物质高分子材料PHA的一类,有其显著的缺点,PHB比较脆,但通过对PHB的加工改性,可以弥补其缺点,更好地发挥它的优势。本文通过制备共混材料、测试其热学性和力学性,选取增塑剂材料来改善PHB的热学性能,以及使用物理方法加工改性材料,上述一系列的加工改性方法表明了,我们可以通过物理的、化学的加工改性方法提高PHA类材料的综合性能,赋予PHA材料新的使用性能,使其拥有更美好的发展前景。
参考文献
篇2
【关键词】高分子材料;废旧塑料;建筑材料;回收应用
以塑料、纤维、橡胶为主体的高分子材料在我们的生活当中随处可见,高分子材料与我们的生活息息相关,我们的生活与高分子联系也越来越紧密。随着社会和科学技术的飞速发展及人们消费习惯的改变,人们使用的高分子材料数量也迅速增加,由于通常高分子材料的使用寿命比较短,所以废旧高分子材料的数量也大量增加。由于大量的废旧高分子材料不能在大自然中自然降解,已经成为环境污染的一个重要来源。
日常生活中用量最大的热塑性高聚物聚乙烯(PE)、聚丙烯(PP),聚氯乙烯(PVC)、聚苯乙烯(PS)等树脂制品的消费量达1135万t/年。据调查,每年产生废弃物数量巨大,美国1800万t,日本488万t,西欧1140万t,我国也有90万t。
目前,废旧高分子材料的处理方式主要是焚烧、填埋以及回收再利用。回收循环利用高分子材料主要有两种,一是物理循环技术,物理回收循环利用技术主要是指简单再生利用和复合再生利用,回收废旧塑料制品经过分类、清洗、破碎、造粒进行成型加工。这类再生利用的工艺路线比较简单,生产量巨大,但再生制品的性能欠佳,一般制作档次较低的塑料制品。二是化学循环利用,通过对回收的高分子废旧材料的化学改性,生产达到同类或异类使用要求的产品。化学循环再生材料生产工艺复杂,投资高,产品改性彻底,但产量低,对回收高分子材料要求也高。
我国处理废弃的高分子材料的技术还是比较落后,大部分只是较简单地单纯再生及复合再生。大批量的废弃高分子材料都变成为垃圾,大量的废旧高分子材料已经严重影响了我们的日常生活如:分散在土壤中塑料地膜,易使土质板结,影响农作物对氧、空气、水分、光的吸收;地面上飞散的薄膜碎片易引起火灾、污染环境;部分废旧高分子材料在降解中释放对人体有害的气体及毒素。如何处理这些废旧的塑料、纤维、橡胶等已经成为一个日益迫切的环境和经济问题。
在我国,高分子材料使用量大,生产量也大,当然废旧高分子材料数量也巨大。建筑材料在我国的使用量巨大,如果这方面技术开发与应用得当,那么将是改善我国在高分子材料处理问题上的一条重要途径。
据统计,美国在20世纪末废旧塑料回收率达35%以上,废旧塑料品种的比例约为:包装制品占50%,建筑材料占18%,消费品占11%,汽车配件占5%,电子电气制品占3%。我国废旧塑料的回收率在20%左右,建筑材料占的比例更小。我国废旧塑料在建筑材料中的开发利用技术水平还比较低,还有广阔前景。
随着国家有关禁止使用粘土砖禁令的公布,开发使用新型墙体材料已经成为一种必然趋势,同时回收利用废旧高分子材料技术的发展,为废旧高分子材料复合成新型墙体材料提供了强有力的支持。目前已有许多这类技术发展相当成熟,并用于实际的生产当中。
英国威尔士Affresol公司开发出一种建造低碳住房(如下图)工艺,采用包装物废弃料和加工废料等再生废旧塑料及矿产品作为原材料,而且价格合理。每一座房屋约消耗18吨本应进行填埋的材料。
第一座这样的积木式房屋已被英国一家室内供暖和热水系统生产商伍斯特博世公司订购,房屋座落于英国伍斯特郡Warndon的工厂内。伍斯特博世公司向Affresol公司提供利用再生加热器回收的废旧塑料,将保证伍斯特博世公司实现零废料排放的计划。
(1)玻璃与塑料复合而成的样品砖
由塑料,玻璃复合而成的样品砖已经研制出来,在国外已经得到了较广泛的应用。其中塑料组分包括聚乙烯,聚丙烯,聚苯乙烯,聚氯乙烯以及ABS,相同的粒径形态,较窄的尺寸范围和尺寸分布与近似尺寸的棕色玻璃混合成玻璃塑料复合材料,其中玻璃的质量百分比根据不同的性能要求可为15%、,30%、45%。这种材料能在235℃模压成标准的粘土砖形状。当温度在20~50℃范围变化时,经过抗压实验,发现其断裂应力是普通粘土砖的两倍多。制备这种试样时所要求的塑料不需要区分热塑性和热固性,因此它的原料来源相当广泛。
(2)废旧塑料PVC做建筑线槽
在建筑施工中常使用玻璃条、有机玻璃条、橡胶、塑料条作为房屋施工用的分割线条和避水线条。这些材料的共同缺点是价格高,合肥华风改性塑料公司,使用塑料改性新配方,新技术开发出一系列用于建筑建材行业的改性废塑PVC线槽。不仅质量好,工人使用方便,产品有不同规格型号,更重要的是这种材料价格大幅度下降。
其工艺流程:
(3)利用废旧塑料和粉煤灰制建筑用瓦
哈尔滨工业大学的张志梅等研究了利用废旧塑料和粉煤灰制建筑用瓦的工艺方法和条件,用废旧塑料粉煤灰制成的建筑用瓦在性能上,完全可以满足普通建筑的要求。这种建筑用瓦的研制成功,不仅可以降低成本,还是消除“白色污染”的一种积极方法。
其工艺流程:
(4)利用废泡沫生产新型保温砖
青岛裕泰化工科技有限公司利用废泡沫具有优良的保温性能的特点,废物利用,再采用价格低来源广的化工原料,将废泡沫二次成形,研究成功了造价低廉、防火性好、保温性能优良的新型保温砖。
经测试,这种新型保温砖导热系数小于0.06W/m.K,优于0.09W/m.K的国家标准,含水率小于8%,密度小于225kg/m3,抗压强度大于0.21MPa,且耐候性强,适合国内不同气候的各地区使用,取代传统珍珠岩或煤渣等保温材料。
(5)废弃聚酯做改性水泥砂浆
聚合物改性水泥砂浆(以下简称PMC)在耐腐蚀性能、固化时间及某些力学性能方面大大优于传统硅酸盐水泥砂浆。在许多情况下,聚合物的独特性质使其在混凝土结构修补与保护中起到传统材料无法替代的作用,既可节省大量建筑物修补资金,又加快了施工速度。但是PMC的价格昂贵,尚未被广泛使用。
同济大学程为庄等用废弃的聚酯饮料瓶为原料,通过醇解、缩聚来获得再生型不饱和聚酯,继而开发出一种低成本、新型的“绿色”合物改性水泥砂浆,其价格适中,性能优良,既达到环境保护的目的,又可为扩大PMC的应用范围开辟新路。
【参考文献】
篇3
2、工程专业素有艺术和科学结合的专业,是永无止境的前沿文明专业,而现在中国已到了劳动密集发展的没落期了。所以现在政府正在提倡转型发展策略,而所谓的转型就是要从劳动力密集型转向科学技术密集型。
3、所以高分子材料和工程专业都是发展前景一片光明的学科。高分子材料与工程专业培养具备高分子材料与工程等方面的知识。
4、能在高分子材料的合成改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。
篇4
关键词:高分子材料;成型;技术
一、前言
高分子材料是指以高分子化合物为基体组分的材料。高分子材料按来源可分为天然高分子材料、合成高分子材料;按化学组成分类可分为有机高分子材料、无机高分子材料;按性能可分为通用高分子材料、新型高分子材料。高分子材料比传统材料发展迅速的主要原因是原料丰富、制造方便、加工容易、品种繁多、形态多样、性能优异以及在生产和应用领域中所需的投资低,经济效益比较显著。高分子反应加工分为反应挤出和反应注射成型两个部分,目前我国普遍采用的设备包括螺杆挤出机和螺杆注射机。现阶段,我国的高分子材料成型也取得了较好的成绩。
二、高分子材料成型的原理
高分子材料的合成和制备一般都是由几个化工单元操作组成的,高分子反应加工把多个单元操作熔为一体,有关能量的传递和平衡,物料的输运和平衡问题,与一般单个化工单元操作完全不同。传统聚合过程解决传热和传质问题主要是利用溶剂和缓慢反应来进行的,但是在聚合反应加工过程中,物料的温度在数分钟内就能达到400℃~800℃,此时对于反应过程中产生的热,如果不能进行脱除的话,那么降解和炭化将会发生在物料中。传统的加工过程是通过设备给聚合物加热,而需要快速将聚合生成的热量通过设备移去是聚合反应加工所进行的,由此可见,必须从化学和热物理两个方面开展相应的基础研究。
高分子材料的物理机械性能、热性能、加工性能等均取决于其化学结构、分子结构和凝聚态的形态结构,而加工工艺与高分子材料的形态结构关系是非常密切的。
流变学,指从应力、应变、温度和时间等方面来研究物质变形和(或)流动的物理力学。它是力学的一个新分支,它主要研究物理材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。高分子材料成型加工成制备的理论基础是高分子材料流变学。高分子材料的自身的规律和特点是伴随化学反应的高分子材料的流变性质而产生的。
三、高分子材料成型的加工技术
(一)聚合物动态反应加工技术及设备
目前国外已经研发出可以解决其他挤出机作为反应器所存在的问题,即连续反应和混炼的十螺杆挤出机。在我国高分子材料成型加工工业的发展中占有极其重要的地位,但是我国的高分子材料成型的加工技术的开发目前还处于初步阶段。缩聚反应器的反应挤出设备就是指交换法聚碳酸酯连续化生产和尼龙生产中的比较关键的技术,除此之外,我国每年还有数以千万吨的改性聚合物生产,反应挤出技术及设备也是其关键技术。
采用传统的加工设备存在一些问题,例如传热、化学反应过程难以控制等,另外投资费用大、噪音大等问题。无论是在反应加工原理还是设备的结构上,聚合物动态反应加工技术及设备与传统技术都完全不同,将聚合物反应挤出全过程引入到电磁场引起的机械振动场,从而达到控制化学反应过程、反应制品的物理化学性能以及反应生产物的凝聚态结构的目的,这就是聚合物动态反应加工技术及设备。高分子材料成型加工是高能耗过程作业,无论是挤出、注射还是中空吹塑成型塑料原理都必须经过熔融塑化及输送这一基本和共性的过程,目前普遍采用的设备包括螺杆挤出机和螺杆注射机等。该技术使得控制聚合物单体及停留时间分布不可控的问题得到了解决,而且也使得振动立场作用下聚合物反应加工过程中的质量、动量以及能量传递和平衡问题得到了解决,同时也使得设备结构集成化问题得到了解决。新设备的优点很多,例如:体积重量小、适应性好、噪音低、可靠性高等等,而这些技术是传统技术和设备是比不了的。
(二)以动态反应加工设备为基础的新材料制备新技术
此技术的研究实现,加强了我国在该领域内的发言权。以动态反应技术为基础方向,进行深入的研究,从而产生了新的材料制备技术。我们以存储光盘盘基为基础原型,以反应成型技术直接作用于其上。通过对这些技术的研究改进,改变了传统技术中多环节、消耗大、复杂度高、周期长、而且环境污染比较严重等诸多不利因素。通过学习研究,可以把制作光盘的PC树脂原料工业、中途存放、盘基成型工业串联于一体,提高了工业生产效率、减少了资源浪费、能够完全有效的进行控制,而且产品的质量有大幅度的提高。
聚合物/无机物复合材料物理场强化制备新技术。研究表明,对无粒子进行适当的处理,可以得到一些好的效果,比如说利用聚合物进行原位表面改性处理、原位包覆、强制分散等处理后,就可以使我们复合材料成型。
热塑性弹性体动态全硫化制备技术。此技术将混炼引入到振动力场挤出全过程,为实现混炼过程中橡胶相动态全硫化,对硫化反直进程进行控制,从而使得共混加工过程共混物相态反转问题得到了解决。实现自主知识产权的热塑性弹性体动态硫化技术与设备研制开发出来,促进我国TPV技术水平的提高。
四、结语
我国必须根据自身的实际情况来发展高分子材料成型加工技术及设备,把握技术前沿,不断地培育自主知识产权,从而使得我国高分子材料成型技术及其产业发展不断加快。
参考文献:
[1] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(下)[J]. 橡塑技术与装备, 2006, (06) :13-18
[2] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(上)[J]. 橡塑技术与装备, 2006, (05) :17-27
篇5
关键词:高分子材料;降解;老化;进展
高分子材料在加工、贮存和使用过程中,由于内外因素的综合影响,逐步发生物理化学性质变化,物理机械性能变坏,以致最后丧失使用价值,这一过程称为“老化”。老化现象有如下几种:外观变化,材料发粘、变硬、变形、变色等;物理性质变化,溶解、溶胀和流变性能改变;机械性能变化和电性能变化等。引起高分子材料老化的内在因素有:材料本身化学结构、聚集态结构及配方条件等;外在因素有:物理因素,包括热、光、高能辐射和机械应力等;化学因素,包括氧、臭氧、水、酸、碱等的作用;生物因素,如微生物、昆虫的作用。老化往往是内外因素综合作用的极为复杂的过程。高分子材料的老化缩短了制品的使用寿命,并影响制品使用的经济性和环保性,限制了制品的应用范围。因此,研究引发高分子材料老化的原因及其微观机理具有非常重要的意义。近年来,高分子老化研究主要集中在探讨高分子材料老化的规律、机理,以及环境因素对材料老化的影响等方面,这些工作对于发展新的实验技术和测试方法,改善材料的生产技术、研制特种材料、逐步达到按指定性能设计新材料等具有重大的指导作用。
1 户外因素对高分子材料老化行为的影响为的影响
高分子材料在户外曝露于太阳光和含氧大气中,分子链发生种种物理和化学变化,导致链断裂或交联,且伴随着生成含氧基团如酮、羧酸、过氧化物和醇,导致材料韧性和强度急剧下降。关于光氧化降解过程和防止这种降解过程的发生,已有很多研究报导,这些研究工作的基础是光化学效应,即物质在吸收光后所发生的反应。紫外波长300n m~400nm,能被含有羰基及双键的聚合物吸收,而使大分子链断裂,化学结构改变,导致材料性能劣化,因此历来是研究热点。Ibnelwaleed A.等通过自然环境曝露和人工加速试验,研究了不同支链形式LLDPE、HDPE的耐紫外光老化性能。Ibnelwaleed A.等从流变学角度分析了PE紫外光老化历程,发现LLDPE在紫外光老化过程中同时发生交联和断链,短支链含量高低和老化时间长短直接影响材料性能。另外,(Z-N)催化合成的LLDPE和茂金属催化合成的LLDPE降解机理相似,但是,对于相同重均分子量和支化度的PE,茂金属催化合成的LLDPE比齐格勒-纳塔催化合成的LLDPE耐降解,而且发现单体的类型对紫外光老化降解影响不大。在80℃和300W紫外光辐照条件下对有机硅和聚氨酯两种建筑密封胶进行5000小时人工加速老化试验。发现密封胶老化机理是由于辐照产生的热作用引起的,在老化开始阶段,热作用使密封胶交联;而在老化后阶段,主要发生分子量下降;紫外线辐射往往破坏侧链基团。
2高分子材料的老化性能
表征技术及应用在高分子材料老化研究中,性能表征方法对正确反映老化现象、认识并探索老化机理、进而采取合理措施改性,有着非常重要的作用。目前,在高分子材料老化研究中多种表征手段联用,对高分子材料性能进行多角度考察,深入了解高分子材料老化机理。LEi Song利用TEM、FTIR、X射线光电子能谱、燃烧量热法等方法考察了PC/TPOSS 的混合物结构和热降解行为,发现TPOSS显著影响PC的热降解过程,因为添加TPOSS明显降低混合物的热峰值,并且当TPOSS的添加量在2%时达到最低值。 利用热重分析、红外光谱分析、热解-气相色谱-质谱联用技术,考察了聚碳酸酯与聚硅氧烷的共混材料在氮保护条件下的热降解行为。研究发现,共混物主要的分解温度在430~550℃左右。添加聚硅氧烷可以降低聚碳酸酯在主要降解段的质量下降速率,在800℃时,添加聚硅氧烷的共混物的残渣比纯净的聚碳酸酯高,随着添加量的增加,残渣从最初的21%增加到45%,研究还发现,聚硅氧烷能促进交联反应和炭化。随着老化程度提高,弹性模量增加,应力和伸长率下降;老化较少的样品显示韧性,老化时间长久的样品显示更多的脆性;另外,老化材料的断裂,是由于结晶导致的应力开裂。S.Etienne利用低频拉曼散射(LFRS)、小角X射线散射(SAXS)和DSC,对PMMA、PS、PC、PEN物理老化过程的次级松弛,β松弛及相关α松弛过程进行了研究。利用直接插入探针质谱裂解研究了PC/PMMA共混物的热氧老化行为。还利用热刺激去极化电流法(TSDC)、动态介电谱(DDS)联用方法,研究了聚碳酸酯在玻璃化转变温度前后松弛时间的变化,得到PC样品的τ(Tg)为110s,通过τ(T)和τ(Tg)可以确定玻璃态-熔融态脆化指数m。
篇6
关键词:合成类高分子材料 生物可降解 药物载体 生物医学
Doi:10.3969/j.issn.1671-8801.2013.08.066
【中图分类号】R-0 【文献标识码】B 【文章编号】1671-8801(2013)08-0070-02
生物可降解高分子材料在主链上一般含有可以水解的基团,如酯、酸酐、碳酸酐、酰胺或氨酯键等,在活体环境中,这些基团可以通过简单的化学反应或者酶催化作用而降解[1],降解产物为水、二氧化碳等小分子,从而能够被生物体代谢、吸收或排除,对人体无毒无害,而且这类材料具有良好的生物相容性和亲和性,物理化学性质可调节等优点,可用于受损生物体组织和器官的修复、重建以及药物载体材料。
1 生物可降解高分子材料的分类
生物可降解高分子材料按其来源可以分为天然的和合成的两大类。天然的可降解高分子如壳聚糖、明胶、纤维素、淀粉等,因具有良好的生物相容性和可降解特性而被广泛用作药物载体材料[2]。Hejazi等[3]用化学交联的方法制备的四环素-壳聚糖微球,研究发现,通过调节PH改变微球中谷氨酰胺带电性质,可实现药物的靶向释放。淀粉微球在鼻癌治疗中的应用也越来越引起关注[4]。明胶是动脉栓塞疗法治疗肿瘤的常用天然基质材料。近年来研制的抗肿瘤明胶微球如甲氨蝶呤明胶微球、羟基喜树碱明胶微球等,研究证明其治疗效果明显优于传统给药方法,且理化性质稳定。然而,天然高分子大多具有热塑性差、成型加工困难、耐水性差,单独使用时性能差等缺点,应用中受到很多限制。
2 合成类高分子材料的分类
2.1 生物合成类高分子材料。合成类高分子材料可分为生物合成和化学合成降解高分子。生物合成可降解高分子主要是由微生物或酶合成,如聚羟基烷酸酯(PHAs),其具有良好的生物相容性,已被应用于药物载体、手术缝合线、植入材料、骨夹等生物医学装置。但是PHAs力学强度差、降解过慢,适合长期植入材料,为了满足实际要求,往往将不同种类的PHAs按一定比例共混,调节材料的强度和降解速度。Hu等[5]制备了PHAs类聚酯的三元共聚物,研究发现其具有较粗糙的表面,亲水性优于PLA等,材料表面的骨髓基质细胞生长量和成骨性都优于其它PHAs类聚酯。然而这种材料价格较为昂贵,限制了它的临床推广。
2.2 化学合成类高分子材料。
2.2.1 脂肪族聚酯类。化学合成的可降解高分子材料主要有聚酯类、聚碳酸酯、聚氨酯类和聚酸酐类等。脂肪族聚酯类是目前研究最多、应用最广的生物可降解合成高分子,常见的有聚乙交酯(PGA)、聚丙交酯(PLA)、聚己内酯(PCL)及其共聚物,它们具有良好的生物相容性、成膜性好、化学稳定性高、降解产物无毒无害、降解速度和物理化学性能可以通过调节聚合物组分、组成比例和分子量来实现,其单体大部分来源于植物、石油、天然气等再生资源,因此成为目前应用最广泛的合成类生物降解高分子材料[6]。聚乳酸(PLA)材料韧性差且降解慢,而PGA力学强度大,加工成型难度大,降解速度快,所以两者共聚可以取长补短,通过调节两组分比例和分子量改变共聚物的特性来满足实际应用要求。有时也会加入其它的聚合物来改善共聚物的性能,如把亲水性的聚乙二醇(PEG)(B段)插入到PLGA、PCL、LA或GA(A段)的链段中,形成温度敏感型嵌段共聚物ABA或BAB类型,用于调节共聚物的亲水性和降解速度。Ruan等[7]合成了PLA-PEG-PLA嵌段共聚物,并作为水溶性抗癌药物紫杉醇的药物载体,研究表明PEG的加入提高了聚合物的亲水性和释药速率。
2.2.2 聚磷酸酯类。聚磷酸酯类最近几年报道较多,在生物医学、塑料工业、饲料行业等都有应用,但在药物控释领域研究尤为突出。主要原因有三[8],其一,聚磷酸酯中的五价磷原子结构使其更容易被修饰和功能化,可直接接枝药物分子或活性分子;其二,磷酸酯类大量存在于人体内,而且是细胞膜的主要组成之一,因此聚磷酸酯类在生物体内具有很好的细胞亲和性和细胞膜通透能力,而且易被水解和被酶分解;其三,肿瘤细胞内磷酸酯酶和磷酰胺酶等的含量和活性都高于正常细胞,聚磷酸酯载药微粒易被分解而释放药物,达到靶向释放的目的。因此,聚磷酸酯作为抗肿瘤药物的载体越来越受到重视。具有提高人体白细胞作用的茜草双酯和磷酰二氯缩聚反应合成的聚磷酸酯,可以作为抗肿瘤药物5-Fu的载体,降解释放的茜草双酯和5-Fu可达到治疗癌症放化疗引起的白细胞减少症和抗癌的双重功效[9]。Wang等人[10]用含阳离子的聚磷酸酯与其他聚合物合成三嵌段共聚物纳米胶束,作为带负电的小干扰RNA的基因载体,可较好的沉默细胞异性蛋白的表达。聚磷酸酯在组织工程领域也引起越来越多的关注。聚磷酸酯与对苯二甲酸乙酯的共聚物,可作为神经导管材料,生物相容性好,有利于神经再生长[11]。
2.2.3 聚氨基酸类。聚氨基酸具有很好的生物相容性和可降解特性,无毒无害,已广泛应用于药物载体、组织工程材料等生物医学领域。但因其降解性能难控,实际应用中常通过与其他化合物共聚,改变各组分比例、分子量等手段得到具有新特征的材料,如聚赖氨酸-聚乙二醇共聚物、聚天冬氨酸-聚乙烯醇共聚物、聚谷氨酸-氧化硅接枝共聚物、聚氨基酸-聚乳酸共聚物等。目前,研究最热的是聚氨基酸-聚乳酸共聚物。聚乳酸具有亲水性差、细胞亲和性不理想、结晶度高、降解慢的缺点,对聚乳酸的改性成为研究的重点。聚氨基酸含有羟基、氨基、羧基等多个活性官能团,可以固定蛋白质、多肽等生物活性因子,将聚氨基酸与聚乳酸共聚,不仅可以改善聚乳酸的亲水性、细胞亲和性和降解速度,还可以引入活性基团。叶瑞荣[12]等人用直接熔融法合成聚(乳酸-甘氨酸)和聚(乳酸-天冬氨酸),研究发现,改性后的聚乳酸为无定型态,结晶度降低,亲水性和降解速度均提高,可作为药物缓释材料。严琼姣等人[13]用3S-[4-(苄氧羰基氨基)丁基]-吗啉-2,5-二酮和丙交酯共聚,制备了RGD多肽接枝聚(乳酸-羟基乙酸-L-赖氨酸)共聚物,RGD修饰后的共聚物具有很好的神经细胞亲和性和亲水性,可作为神经修复支架材料。
2.2.4 聚碳酸酯。聚碳酸酯是一类环境友好型和生物相容性较好的高分子材料,因主链和侧基的不同而种类繁多,可通过引入功能化侧基(如羧基、羟基、氨基、双键等)和化学设计分子主链等方式,改变其亲水性、降解速度和热力学性能,同时还可以接入多肽、抗体等活性基团。近年来在药物控释系统、手术缝合线、骨固定材料等领域应用越来越广泛。聚碳酸酯根据主链结构的不同,可分为脂肪族聚碳酸酯和含芳香族主链的聚碳酸酯。聚碳酸三亚甲基酯(PTMC)是最常见、研究最多的线型脂肪族聚碳酸酯,在体内生物酶的作用下可加速其降解[14]。聚碳酸酯可通过引入功能化侧基、物理共混和化学共聚的方法进行改性。Zhuo等[15]以甘油为起始原料合成了主链含有羟基的聚碳酸酯,研究证明该聚合物具有较好的生物相容性,羟基的引入改善了聚合物的亲水性和降解特性。Albert-stson等[16]制备了以PTMC为载体的阿米替林释药模,但是药物释放速度很慢,通过PTMC与一定量的聚酸酐共混,可明显提高阿米替林的释放速度。商品名为Maxon的生物可吸收手术缝合线就是由32.5%(摩尔比)的TMC与GA共聚得到的Poly(GA-co-TMC),该聚合物具有很好的弹性,弥补了PTMC降解速度慢的缺点[17]。
2.2.5 聚酸酐类。聚酸酐类最早由Bucher和Slade在1909年合成。直到八十年代,人们发现它的易水解特性才将其应用到药物缓释体系中。聚酸酐具有以下特点:①表面溶蚀的降解特性。其在人体内的药物释放接近零级释放,且无药物暴释现象。②降解速度可调节。可以通过调节共聚物的组成、组分比例和分子量等调节降解速度和药物释放速度。③具有良好的生物相容性,对人体无毒害作用。④在药物释放领域具有良好的药物稳定作用。目前,用聚酸酐局部控制给药体系治疗实体瘤癌症已引起高度重视,成为研究的热点。美国FDA已批准其用于复发恶性脑瘤的辅助化疗。
3 应用和发展趋势
目前,合成类生物可降解高分子材料在药物控释体系、组织工程、手术缝合线、超声造影等领域已经得到广泛的关注和应用。在药物控释领域,根据作用部位不同,可加工成微球、纤维、片剂、膜、棒、纳米乳和亚纳米乳等。为了提高药物的靶向性,纳米颗粒和磁性纳米颗粒成为研究的热点。单个的聚合物材料因自身缺点往往不能满足生物医学的要求,常与其他高分子共聚、共混或引入活性官能团,通过改变各组分配比、分子量、制备方法和条件等因素,或对侧基进行功能化修饰,制备出符合现实要求的、兼顾各自优点的新型高分子材料。当然,新型材料制备的经济成本和工艺实现工业化等问题也应引起重视。未来,合成类生物可降解高分子材料在生物医学领域的应用会越来越广阔。
参考文献
[1] Vert M, Li S,Garreau H. More about the degradation of LA/GA derived matrices in aqueous media. J Controlled Release,1991,16:15-26
[2] Anal A K,Stevens W F,Remunan-Lopez C. Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int . J. Pharm,2006, 312(1-2):166-173
[3] Hejazi R,Amiji M. Int. J. Pharm,2004,272:99-108
[4] Morath L P. Adv Drug Deliv Rev,1998,29:185-194
[5] Hu Y J,Wei X,Zhao W,et al. Acta Biomater,2009,5:1115-1125
[6] Kobayashi S,Uyama H. Biomacromolecules and Bio-Related Macromolecules. Macromol. Chem. Phys,2003;204(2):235-256
[7] Ruan G,Feng S S. Biomaterials,2003,24:5037-5044
[8] 张世平.新型脂肪族酯和磷酸酯共聚物的合成、表征及其生物相容性研究.[D].西安.西北大学,2009
[9] 汪朝阳,赵耀明.高分子通报,2003,(6):19-27
[10] Sun T M,Du Z,Yan L F,Mao H Q,Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials,2008,29:4348-4355
[11] Wang S,Wan A C A,Xu X Y,Gao S J,Mao H Q,Leong K W,Yu H. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials,2001, 22:1157-1169
[12] 叶瑞荣,王群芳,汪朝阳等.不同氨基酸直接改性聚乳酸的性能研究[J].化学研究与应用,2010,22(9):1126-1131
[13] 严琼姣,李世普,殷义霞等.RGD多肽接枝聚(乳酸-羟基乙酸-L-赖氨酸)的制备与表征[J].中南大学学报,2008,39(6):1190-1195
[14] 周瑜,刘芝兰,陈红祥.脂肪族聚碳酸酯及其在医学中的应用.化学通报,2011,74:1112-1113
[15] Wang X L , Zhuo R X, Liu L J , et al. J. Polym. Sci,Polym. Chem. 2002, 40: 70-75
篇7
关键词:新型 高分子材料
1、新型高分子材料的分类
1.1高分子分离膜
高分子分离膜是用高分子材料制成的具有选择透过的半透性薄膜。与以温度梯度、压力差、电位差或浓度梯度为动力,使液体混合物、气体混合物或有机物、无机物的溶液等分离技术相比,具有高效、省能和洁净的特点,因而被认为是支撑新技术革命的重大技术。膜的形式有多种,一般用的是空中纤维和平膜。应用高分子分离膜的推广可以获得巨大的经济效益和社会效益。
1.2高分子磁性材料
高分磁性材料是人类在开拓磁与高分子聚合物新应用领域的同时,赋予磁与高分子传统应用以新的涵义和内容的材料之一。早期的磁性材料源于天然磁石,后来才利用磁铁矿烧结或铸造成为磁性体。现在工业常用的磁性材料有稀土类磁铁、铁氧体磁铁和铝镍钻合金磁铁等三种。它们的缺点是硬且脆加工性 差。为了克服这些缺陷,将磁粉混炼于橡胶或塑料中制成的高分子磁性材料。这样制成的复合型高分子磁性材料,不仅比重轻,容易加工成复杂形状、尺寸精度高的制品,还能与其它的元件一体成型。因而这样的材料越来越受到人们的关注。高分子磁性材料主要可分为结构型和复合型两大类。目前具有实用价值的主要是复合型。
1.3光功能高分子材料
所谓光功能高分子材料指的是能够对光进行吸收、透射、转换、储存的一类高分子材料。这类材料主要包括光记录材料、光导材料、光加工材料、光转换系统材料、光学用塑料、光导电用材料、光合作用材料、光显示用材料等。光功能高分子材料可以制成品种繁多的线性光学材料,像普通的安全玻璃、各种棱镜、透镜等。利用高分子材料曲线传播的特性,又以开发出非线性的光学元件,如塑料光导纤维等。先进的信息储存元件光盘的基本材料就是高性能的聚碳酸脂和有机玻璃。
2、开发新型高分子材料的重要意义
从高分子材料的出现到现代,世界工业科学不再只是对基础高分子材料的开发研究。从90代开始,科学家们就将注意力转到了高智能的高分子材料的开发上。现代工业对于新型高分子材料的需求日益增加。新型高分子材料的开发主要集中在制造工艺的改进上,以提高产品的性能,节约资源,减少环境的污染。就目前而言,以茂金属催化剂为代表的新一代聚烯烃催化剂的开发仍是高分子材料技术开发的热点之一。 开发应用领域在不断扩大。 在开发新聚合方法方面, 着重于基团转移聚合、阴离子活性聚合和微乳液聚合的工业化。与此同时,我们要重视在降低和防止高分子材料在生产和使用过程中造成的环境污染。我们应该大力进行有利于保护环境的可降解高分子材料的研究开发。新型高分子材料的开发, 不但能够满足现代工业发展对于材料工业的高要求,更重要的是能够促进能源与资源的节约,减少环境的污染,提高生产的能力,体现现代科技的高速发展。
篇8
关键词:高分子材料 可降解 生物
我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3 种方式: 生物的细胞增长使物质发生机械性破坏; 微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。
1、生物可降解高分子材料概念及降解机理
生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。
生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。
因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、ph值、微生物等外部环境有关。
2、生物可降解高分子材料的类型
按来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。
2.1微生物生产型
通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ici 公司生产的“biopol”产品。
2.2合成高分子型
脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(pet) 和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺) 制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。
2.3天然高分子型
自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。
2.4掺合型
在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。
3、生物可降解高分子材料的开发
3.1生物可降解高分子材料开发的传统方法
传统开发生物可降解高分子材料的方法包括天然高分子的改造法、化学合成法和微生物发酵法等。
3.1.1天然高分子的改造法
通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。
3.1.2化学合成法
模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。
3.1.3微生物发酵法
许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。
 
; 3.2生物可降解高分子材料开发的新方法——酶促合成
用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。
3.3酶促合成法与化学合成法结合使用
酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料
4、生物可降解高分子材料的应用
目前生物可降解高分子材料主要有两方面的用途:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。通常,对高聚物材料的处理主要有填埋、焚烧和再回收利用等3种方法,但这几种方法都有其弊端。(2)利用其可降解性,用作生物医用材料。目前,我国一年约生产3000 多亿片片剂与控释胶囊剂,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是传统的糖衣片,而国际上发达国家80%以上使用水溶性高分子材料作薄膜衣片,因此,我国的片剂制造水平与国际先进水平有很大的差距。国外片剂和薄膜衣片多采用羟丙基甲纤维素,羟丙纤维素、丙烯酸树脂、聚乙烯吡咯烷酮、醋酸纤维素、邻苯二甲酸醋酸纤维素、羟甲基纤维素钠、微晶纤维素、羟甲基淀粉钠等。
参考文献:
篇9
高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。
二、高分子材料的结构特征
高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。
三、高分子材料按来源分类
高分子材料按来源分,可分为天然高分子材料、半合成高分子材料(改性天然高分子材料)和合成高分子材料。
天然高分子材料包括纤维素、蛋白质、蚕丝、橡胶、淀粉等。合成高分子材料以及以高聚物为基础的,如各种塑料,合成橡胶,合成纤维、涂料与粘接剂等。
四、生活中的高分子材料
生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。下面就以塑料和纤维素举例说明。
(一)、塑料
塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、剂、色料等添加剂组成的,它的主要成分是合成树脂。
塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。2、塑料制造成本低。3、耐用、防水、质轻。4、容易被塑制成不同形状。5、是良好的绝缘体。6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。2、塑料容易燃烧,燃烧时产生有毒气体。3、塑料是由石油炼制的产品制成的,石油资源是有限的。
塑料的结构基本有两种类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物;第二种是体型结构,具有这种结构的高分子化合称为体型高分子化合物。线型结构(包括支链结构)高聚物由于有独立的分子存在,故有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。体型结构高聚物由于没有独立的大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。塑料则两种结构的高分子都有,由线型高分子制成的是热塑性塑料,由体型高分子制成的是热固性塑料。转
塑料的应用:透明塑料制成整体薄板车顶。薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗”,每扇窗都可单独打开和关闭。导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调节折叠薄板。这样可以形成三维立体结构,组件比平坦的薄板更加牢固。同时也大大降低了单个组件的数量。
(二)、纤维素
纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。纤维素是自然界中存在量最大的一类有机化合物。它是植物骨架和细胞的主要成分。在棉花、亚麻和一般的木材中,含量都很高。
纤维素的结构:纤维素是一种复杂的多糖,分子中含有约几千个单糖单元,即几千个(C6H10O5);相对分子质量从几十万至百万;属于天然有机高分子化合物;纤维素结构与淀粉不同,故性质有差异。
篇10
[关键词]高分子材料 成型加工 技术
近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。
一、高分子材料成型加工技术发展概况
近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。
据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。
二、现今高分子材料成型加工技术的创新研究
(一)聚合物动态反应加工技术及设备
聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。
目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 转贴于
(二)以动态反应加工设备为基础的新材料制备新技术
1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。
2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。
3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。
三、高分子材料成型加工技术的发展趋势
近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。
综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。
参考文献:
[1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999.
[2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435.
- 上一篇:文艺作品的功能
- 下一篇:窑洞的文化内涵艺术价值