有机高分子材料特点范文
时间:2023-12-14 17:38:43
导语:如何才能写好一篇有机高分子材料特点,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。
二、高分子材料的结构特征
高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。
三、高分子材料按来源分类
高分子材料按来源分,可分为天然高分子材料、半合成高分子材料(改性天然高分子材料)和合成高分子材料。
天然高分子材料包括纤维素、蛋白质、蚕丝、橡胶、淀粉等。合成高分子材料以及以高聚物为基础的,如各种塑料,合成橡胶,合成纤维、涂料与粘接剂等。
四、生活中的高分子材料
生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。下面就以塑料和纤维素举例说明。
(一)、塑料
塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、剂、色料等添加剂组成的,它的主要成分是合成树脂。
塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。2、塑料制造成本低。3、耐用、防水、质轻。4、容易被塑制成不同形状。5、是良好的绝缘体。6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。2、塑料容易燃烧,燃烧时产生有毒气体。3、塑料是由石油炼制的产品制成的,石油资源是有限的。
塑料的结构基本有两种类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物;第二种是体型结构,具有这种结构的高分子化合称为体型高分子化合物。线型结构(包括支链结构)高聚物由于有独立的分子存在,故有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。体型结构高聚物由于没有独立的大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。塑料则两种结构的高分子都有,由线型高分子制成的是热塑性塑料,由体型高分子制成的是热固性塑料。转
塑料的应用:透明塑料制成整体薄板车顶。薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗”,每扇窗都可单独打开和关闭。导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调节折叠薄板。这样可以形成三维立体结构,组件比平坦的薄板更加牢固。同时也大大降低了单个组件的数量。
(二)、纤维素
纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。纤维素是自然界中存在量最大的一类有机化合物。它是植物骨架和细胞的主要成分。在棉花、亚麻和一般的木材中,含量都很高。
纤维素的结构:纤维素是一种复杂的多糖,分子中含有约几千个单糖单元,即几千个(C6H10O5);相对分子质量从几十万至百万;属于天然有机高分子化合物;纤维素结构与淀粉不同,故性质有差异。
篇2
[关键词]高分子材料 可降解 生物
我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在 自然 界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3 种方式: 生物的细胞增长使物质发生机械性破坏; 微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。
1、生物可降解高分子材料概念及降解机理
生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。
生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。
因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、ph值、微生物等外部环境有关。
2、生物可降解高分子材料的类型
按来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。
2.1微生物生产型
通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ici 公司生产的“biopol”产品。
2.2合成高分子型
脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(pet) 和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺) 制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。
2.3天然高分子型
自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。
2.4掺合型
在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。
3、生物可降解高分子材料的开发
3.1生物可降解高分子材料开发的传统方法
传统开发生物可降解高分子材料的方法包括天然高分子的改造法、化学合成法和微生物发酵法等。
3.1.1天然高分子的改造法
通过化学修饰和共混等方法,对 自然 界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。
3.1.2化学合成法
模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。
3.1.3微生物发酵法
许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。
3.2生物可降解高分子材料开发的新方法——酶促合成
用酶促法合成生物可降解高分子材料,得益于非水酶学的 发展 ,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。
3.3酶促合成法与化学合成法结合使用
酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料
4、生物可降解高分子材料的应用
目前生物可降解高分子材料主要有两方面的用途:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。通常,对高聚物材料的处理主要有填埋、焚烧和再回收利用等3种方法,但这几种方法都有其弊端。(2)利用其可降解性,用作生物医用材料。目前,我国一年约生产3000 多亿片片剂与控释胶囊剂,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是传统的糖衣片,而国际上发达国家80%以上使用水溶性高分子材料作薄膜衣片,因此,我国的片剂制造水平与国际先进水平有很大的差距。国外片剂和薄膜衣片多采用羟丙基甲纤维素,羟丙纤维素、丙烯酸树脂、聚乙烯吡咯烷酮、醋酸纤维素、邻苯二甲酸醋酸纤维素、羟甲基纤维素钠、微晶纤维素、羟甲基淀粉钠等。
参考 文献 :
篇3
关键词:高分子材料;化工材料;发展现状
我国自上世纪80年代以来,开始致力于高分子化工材料的研发,并且将高分子化工材料用于多种领域,满足了节能减排、高性能高科技等现代社会发展的要求。除了本文主要介绍三种材料以外,我国在烯类单体聚合、a―烯烃的聚合、乙烯基单体的光聚合与光刻胶等方面也取得很大的研究成果,随着现代科技的发展以及社会发展的进一步需求,高分子化工材料将得到进一步的开发研究,并广泛的应用于农业、工业、医学、生物、能源等领域。高分子智能材料已经成为材料科学发展的一个重要研究领域,全世界各个国家科学家都在为此作不懈的努力。从人类历史发展来看,任何一种重要材料的发明和利用,都能够把人类改造自然,创造社会的能力提高到一个新的高度,并给社会生产力和人类生产生活带来巨大的影响,使人类的物质文明建设和精神文明建设共同向前推进一大步。所以可以肯定的说,未来将会有更多更好更实用的智能材料出现在我们的面前。
一、高分子材料概念描述
所谓高分子材料是指由许多重复单元共价连接而成的,分子量很大的一类分子所组成的相关聚合物,并且具有粘弹性。高分子材料正在向以下几方面发展:高功能化,高性能化,复合化,精细化和智能化。鉴于此,我国的高分子材料在进一步开发通用的基础上,应该重点发展高分子材料品种、提高技术水平、扩大生产以进一步满足市场需要。天然高分子是存在于动物、植物及生物体内的高分子物质,可分为天然纤维、天然树脂、天然橡胶、动物胶等。合成高分子材料主要是指塑料、合成橡胶和合成纤维三大合成材料,此外还包括胶黏剂、涂料以及各种功能性高分子材料。合成高分子材料具有天然高分子材料所没有的或较为优越的性能,较小的密度、较高的力学、耐磨性、耐腐蚀性、电绝缘性等。
二、高分子材料的应用分析
(一)聚烯烃材料
聚烯烃是高分子化工材料中用量最大的,也是应用范围最广的一种,主要在汽车、建筑、家电等领域得到广泛的应用。聚烯烃是烯烃的聚合物,是由乙烯、丙烯1-丁烯、1-戊烯、1-己烯、1-辛烯、4-甲基-1-戊烯等α-烯烃以及某些环烯烃单独聚合或共聚合而得到的一类热塑性树脂的总称,主要通过高压聚合或者低压聚合如溶液法、浆液法等方法生产合成,主要品种有聚乙烯以及以乙烯为基础的一些共聚物、聚丙烯以及以聚丙烯为基础的丙烯共聚物。具有容易加工、综合性能良好、原料丰富,价格低廉等优点。目前,各研究机构正在研究使用过渡金属做催化剂,进行各类烯烃的聚合。近年来,随着节能减排、低碳经济以及可持续发展思想的深入,聚烯烃的合金化、高性能化和多样化成为研究的方向和重点。
(二)高分子智能材料
高分子智能材料是通过有机和合成的方法,使无生命的有机材料变得具有生物功能的一种材料。其功能可随外界条件的变化而有意识地调节、修饰和修复。形状记忆高分子材料是指在一定条件下赋予高分子材料的起始装态,当外部条件发生改变时,它可以改变成相应地形状,并能固定其形态。当外部条件再次发生改变时,智能高分子材料以特定的规律和方式再一次发生变化并恢复至起始态。从而完成从起始记忆态到固定变形态再到恢复起始态的循环过程。自行调温调光的新型建筑材料,成分是由水和聚合物构成的。在低温时聚合物是成串排列的,为透明状,能够透过90%的光线。加热时,这种聚合物就以纤维的形式聚合在一起,成乳白色,能够阻挡90%的光线。并且这种可逆过程是在两三度温差范围内完成的。具有传感功能的高分子材料,这种与传感器结合起来的高分子材料,已成为智能材料的一个新特点。例如,装有压电陶瓷传感器的机器人,可以灵敏地感觉到轴承脱离时摩擦力突然变化的情况,并迅速作出握紧反应。
(三)稀土催化材料
稀土元素具有独特的化学性能和物理组成,以稀土元素为基础的稀土功能材料在信息、生物、新技术、新能源以及环境保护等现代科学技术和现代工业发展中起着十分重要的作用,稀土催化材料比传统的贵金属催化材料相比,具有资源丰度高、成本低、生产工艺水平高以及性能优越等方面的优势。稀土催化材料不仅能够提高生产效率,最重要的是能够节约资源和能源,进而减少环境污染。上世纪60年代,中科院长春应用化学研究所运用稀土化合物组成新型催化剂用于二烯烃的聚合以及橡胶的制备,打破了传统的Z-N催化剂,取得重大研究进展。目前稀土催化材料大量运用在能源环境领域中,如汽车尾气净化、工业废气以及人居环境净化等方面。
(四)生物医用材料
生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。高分子合成的生物医用材料通过分子设计和聚合,能够获得具有良好物理性能和生物相容性的生物材料,其中高分子软材料常用做为人体软组织如血管、食道和指关节等的替代品。合成的高分子硬材料可以用作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用作注入式组织修补材料。
三、结束语
新型高分子材料对人们的日常生活和工作产生越来越大的影响,本文从几个方面介绍新型智能高分子材料。主要包括高分子材料的含义,发展现状和高分子材料的应用等几方面内容。作为一种与国民经济、高科技技术和现代化生活密切相关重要的材料已经在各个领域中发挥了巨大的作用,人类已经进入了高分子时代。
参考文献:
篇4
关键词:高分子材料;成型;控制
0 前言
作为一种实际应用效果良好的材料,高分子材料在近期得到了广泛的应用。研究高分子材料成型及控制,能够更好地提升其实践水平,从而有效保证高分子材料的整体效果。本文从概述高分子材料的相关内容着手本课题的研究。
1 概述
现阶段我国在高分子合成材料方面取得了很大的进步,相关行业的生产活动也在不断发展壮大,高分子材料成型加工技术被运用与汽车等工业生产活动之中。高分子合成材料行业已经发展成为我国的重要经济类产业,是国民经济的重要组成部分。由于高分子材料的特性,必须加强对高分子材料的系统性研究,了解高分子材料的成型过程以及控制对策,为高分子材料工业的发展提供依据,是我国科研工作的重要任务。高分子材料成型加工技术属于一门重要的科学,国内外著名的专家学者都对其予以高度关注,将与化学、物理等方面的专业内容融入到高分子材料成型加工技术中,为研究工作的开展提供科学依据。
2 高分子材料的基本成型方法
2.1 挤出成型
高分子材料的基础成型是通过螺杆旋转加压的方式,不间断的将已经成型的材料由有机筒挤出来,挤入到机头中去,熔融物料通过机头口模成型为与口模形状相仿的型坯,然后借助相应的牵引工具把成型的材料不断的在模具中提取出来,并对其进行冷却处理,进而得到相应的形状。挤出成型是一项系统性的工程,由入料、塑化、成型以及定性等过程,每个环节都对高分子材料的成型起到关键性的作用。
2.2 吹塑成型
吹塑就是通过中空吹塑的方式来实现的,主要是依靠气体的压力,来促使处于闭合状态的热熔型胚发生鼓胀,进而形成中空制品的技术过程。吹塑成型是高分子材料成型的另一种主要方式,具有发展快、效率高的特点。吹塑成型的主要加工模式是挤出、注塑和拉伸,是目前常用的三种吹塑方法。
2.3 注塑成型
一般情况下,我国高分子材料加工行业普遍采用的成型方法是注塑成型,其面对的生产对象大都是空间感强、立体式的材料形状,在塑料生产方面具有诸多的优势,受到了企业的广泛关注和应用。注塑成型方式应用的范围相对较广,成型操作所需时间短、多样的花色、生产效率高等等优点,是高分子材料成型最具实用性的方法。
3 现阶段高分子材料成型技术的优化与创新分析
3.1 聚合物动态反应加工技术及设备
现阶段,通过对国内外高分子材料成型技术的研究,大都采用反应加工设备来开展工作,但是,该反应加工设备的原理是在原有的混合、混炼设备上进行完善与优化所生产的产品,其还存在多方面的问题,处于不成熟阶段,传热、混炼过程等都是其中的典型问题。另一方面,设备引进和使用投资大、能耗高,噪音污染严重、密封困难。
利用聚合物动态反应加工技术及设备来创新与优化高分子材料成型加工工作,相较于传统的技术有了很大的进步,加工原理以及设备的组成都有所不同。此种技术的应用,其核心内容是将电磁场条件下的机械振动厂投入到高分子材料的机头挤出操作中,能够实现对化学反应、生成物的聚合结构、制品的各项变化等的控制,起到了良好的应用效果。
3.2 新材料制备新技术
信息与科学技术的不断发展,在各个领域都得到了广泛的应用,为了优化和升级高分子材料成型加工技术,可将信息存储光盘应用到加工技术中,利用盘基来直接实现反应成型技术的构建,整个成型技术形成动态式、链条式的操作流程,树脂的生产与加工、储备与运送,再到盘基的成型,探索出酯交换的链条式生产与加工技术,能有效控制能源的使用率、提高成品的质量。
新材料制备新技术的出现,为高分子材料加工行业的发展提供了发展契机,动态全硫化制备技术也是其中的代表,是我国科学技术不断发展的重要体现,新技术的应用与振动力场具有密切的联系,可以更为直观有效的控制硫化的整个过程,能很好的应对硫化过程中所遇到与相态有关的反转类问题。针对此项技术,科学家应致力于研究与技术相匹配的更具全面化的设备,为我国高分子材料加工水平提供技术支撑。
4 高分子材料在成型过程中的控制
近年来,我国由于综合国力的提升,在科学领域取得了一项又一项瞩目的成绩,其中高分子材料在成型过程中的控制是研究的主要课题之一。高分子材料在一定条件下极易发生结构上变化,温度、外力等都是影响高分子材料所形成的聚合物的结构与形态,同时在外部条件的影响下,高分子材料还会发生聚集形态上的变化,一系列的问题都是现阶段科学家研究的主要问题。通过不断的研究,科学家得出了一系列的成果,实现对新型高分子材料的开发,形成了多元化的高分子材料群体,并投入实际的应用之中,促进了高分子材料工业的发展。通过研究,科学家发现,大部分聚合物多相体系存在不相溶的现象,制约着成型过程中的控制工作,为了改善此类情况,可以适当的融入第三组分。在聚合物生产与加工的过程中,所研制出的产品会处于温度不稳定的环境中,由于制品极易受到温度的影响而发生形态和结构上的变化,进而影响其性能,应加强对制品温度的控制。由于制品的温度会随着时间推移为发生动态上的变化,可见,了解在非等温场条件下,聚合物、共混物制品温度与时间的变化关系是非常关键的,并对变化的规律进行总结,可为成型过程中的形态结构控制提供依据。
5 结语
本文以高分子材料成型方法和控制进行了具体性的分析,我们可以发现,高分子材料的多项优势决定了其在实践中的应用地位,有关人员应该从其客观实际需求出发,充分利用自身有利条件,研究制定最为符合实际的成型及控制实施方案。
参考文献:
[1]杨帆.浅析高分子材料成型加工技术[J].应用科学,2011(08):66-68.
篇5
材料学专业毕业生的就业面比较广,主要就业方向包括计算机、金融、教育和科技咨询等领域。材料专业的毕业生可以从事高分子材料加工、高分子材料合成、信息材料、医用材料、新型建筑材料、电子电器、汽车、航空航天、贸易等工作,还可以进入研究院所、高等院校和海关、商检等部门工作。
材料学专业的分类
通常来讲,材料分为高分子、无机非金属、金属三大种类。从学科的角度来讲,不同的学校所开设的材料学专业也不相同。除了传统意义上的材料科学专业、有机高分子材料专业、无机非金属材料专业、金属材料专业之外,一些学校还增设了高分子复合材料专业、机械材料专业等。以北京航空航天大学的材料科学与工程学院为例,材料科学与工程学科为国家一级重点学科,下设材料科学系、材料物理与化学系、材料加工工程与自动化系、高分子及复合材料系等。
材料学专业就业知多少
从就业角度来讲,金属材料专业作为一门基础学科,应用面广,就业面也相对较广。复合材料因为博采众长,在性能上结合了各种材料的优势,作为一种新型材料广泛应用于生物、航天领域,就业前景也很好。
总体就业前景分析
其一,材料学专业性强,受国家重视,高技术人才供不应求。现代材料学科更注重研究各类材料及它们之间相互渗透的交叉性和综合性特点。经历近半个世纪对材料微观结构和宏观性质相关机制的探索和认识,材料学研究的范围得到巨大拓展,一些具有特殊功能的材料日益受到重视并快速发展,也为材料学的发展提供了前所未有的机遇和空间。这就需要有一定专业知识的人才投入到科研工作中,攀登材料科学的高峰。
其二,随着时代的进步,新型材料运用更加广泛,现代技术的发展也需要很多新型材料的支持。根据我国当前及未来发展的实际情况,材料学专业人才在各个行业需求量的增加为此专业的学生提供了很好的就业机会。
研究生阶段课题方向的选择很重要
据中国科学院学高分子材料专业研究生的王芬(化名)同学介绍,全班40个人,男多女少。虽然传统意义上是要去中石油、中海油等对口单位,但目前她投简历的对象主要是民营企业,这些企业对研究方向没有特别硬性的规定。
找工作的这段时间以来,王芬觉得材料学所有的专业中,金属材料学专业的就业面还比较宽。找工作时,用人单位会看重求职者的教育背景、研究方向以及课题方向,尤其当面试岗位是专职科研人员时,单位对专业方面的考量会针对毕业设计提出,因此研究生阶段的课题选择非常重要。她建议大家认真对待毕业设计。
脚踏实地的研究精神不可少
航天某院工作人员高女士建议,在学校期间,材料学专业的学生应该扎实学好专业基础知识。她认为专业理论基础扎实与否,一方面决定了就业面的宽窄,更重要的是决定了未来工作发展潜力大小。因为大家毕业后的工作与生活是比较忙碌的,很少再有机会系统学习。
以高女士的就业经历为例,她认为就业前应该事先做好以下准备:充分利用师兄师姐的经验、经历了解可能的工作方向,了解具体工作单位及岗位情况;面试前一定先尽可能了解面试的单位及岗位需求,做到有的放矢。
据哈尔滨玻璃钢研究院人事部一名负责人介绍,材料学专业的学生,要具备适应艰苦的工作条件的素质,因为做复合材料研究工作要经常去实验室,更重要的是搞科研一定要坐得下来,能够经得起反复失败和挫折的考验。
此外,在面试中,还应该积极锻炼个人表达能力,为自己增光。
走进材料学专业
高分子材料——性能优异,不可替代
高分子材料独特的结构和易改性、易加工特点,使其具有不可取代的优异性能,广泛用于科学技术、国防建设和国民经济各个领域。很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人工合成的化学纤维、塑料和橡胶等也是如此。然而,一些高分子材料会含有毒性,使用、实验时要注意。
中科院高分子材料学研究方向的研究生王芬(化名)说:“我在本科时读的是无机非金属材料学,在研究生时根据导师的研究方向,选择了高分子材料学,即有机无机复合材料学,重点研究塑料、橡胶等,应用到现实生活中,为钻井平台进行驱油。平日里我们大部分时间在实验室度过,研究对象为甲醛、乙醇、乙烷等化学物质,一些化学物质如甲醛会有毒性,因此要做好防毒设施。”
无机非金属材料——基础学科,必不可少
无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一,主要研究建筑、水泥、陶瓷、玻璃等材料。目前比较受到关注的纳米材料也属于无机非金属行列。
无机非金属材料品种和名目极其繁多,用途各异,通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。常见的无机非金属材料有水泥、 玻璃、 陶瓷等。
篇6
(一)知识脉络
本节教材在学生学习了淀粉、纤维素、蛋白质等天然有机高分子化合物之后,很自然地过渡到学习合成有机高分子化合物,首先介绍有机高分子化合物的相对分子质量,然后初浅地以聚乙烯、聚氯乙烯为例介绍有机高分子化合物的结构与基本性质,合成高分子化合物在溶剂中的溶解和在不同温度时的性能变化等性质是与合成高分子化合物的科学研究及生产加工密切相关的;最后简单介绍了常见高分子塑料、橡胶、纤维中某些有代表性的品种。
(二)知识框架
(三)新教材的主要特点:
新教材依然保持紧密联系实际和新的化学知识从生活和生产实际切入的风格,也注意了紧密联系学生已学过的知识如烯烃的加成反应、羧酸的酯化反应等,以帮助他们理解高分子化合物的性质、正确书写重要高聚物加聚反应的化学方程式,复习巩固已学的有机化学知识,也为他们选择后续的选修模块“有机化学基础”奠定必要基础。
二.教学目标
(一)知识与技能目标
1.引导学生初步认识有机高分子化合物的结构、性质及其应用,学会书写重要加聚反应的化学方程式,了解合成高分子化合物的主要类别及其在生产、生活、现代科技发展中的广泛应用。
2.引导学生学习和认识由塑料废弃物所造成的白色污染和防治、消除白色污染的途径和方法,培养他们的绿色化学思想和环境意识,提高他们的科学素养。
3.通过多样化的学习活动(自主检索、收集、分类比较、展示等)使学生了解塑料、合成橡胶、合成纤维的主要品种以及它们的原料来源与石油化工、煤化工的密切联系,同时提高他们的学习能力,丰富他们的学习方式。
(二)过程与方法目标
1.让学生通过网络、书籍等途径收集各种各样的材料及图片、实物,课堂上采用互动式教学,激发学生探究有机合成材料的组成、性能的兴趣。。
2、通过“迁移•应用”、“交流•研讨”、“活动•探究”等活动,提高学生分析、联想、类比、迁移以及概括的能力。
(四)情感态度与价值观目的
1、通过“迁移•应用”、“交流•研讨”、“活动•探究”活动,激发学生探索未知知识的兴趣,让他们享受到探究未知世界的乐趣。
2.引导学生学习和认识由塑料废弃物所造成的白色污染和防治、消除白色污染的途径和方法,培养他们的绿色化学思想和环境意识,提高他们的科学素养。
三、教学重点、难点
(一)知识上重点、难点
重要高聚物的加聚反应及其化学方程式
(三)方法上重点、难点
有机高分子化合物的结构与性质的关系的理解
四、教学准备
(十二)学生准备
1.课前让学生通过网络、书籍等途径收集各种各样的材料及图片、实物。
2.收集有关废弃塑料造成的白色污染、危害及其防治方法的资料。
(十三)教师准备
教学媒体、课件;准备“活动•探究”实验用品。
五、教学方法
问题激疑、实验探究、交流讨论、
六、课时安排
3课时
七、教学过程
第一课时
【引入】人类的生产和生活离不开各种各样的材料,请同学们根据自己收集的资料结合已有的知识对材料进行分类。
【点评】课前让学生通过网络、书籍等途径收集各种各样的材料及图片、实物,课堂上采用互动式教学。
【交流、投影】
无机非金属材料(如:晶体硅、硅酸盐材料等)
无机材料
无机金属材料(包括金属和合金)
材料天然有机高分子材料(如:棉花、羊毛、蚕丝、天然橡胶等)
有机材料合成有机高分子材料(如:塑料、涂料、合成纤维、合成橡胶等)
新型有机高分子材料(如:高分子分离膜等)
【联想、质疑】在日常生活中,你一定接触过许多塑料、合成橡胶、合成纤维制品。你能举例说明吗?它们是什么原料制造的?它们具有哪些优于天然材料的性能?
【点评】通过回忆生活中的常识激发学生探究有机合成材料的组成、性能的兴趣。
【练习】计算葡萄糖和硬脂酸甘油酯的相对分子质量。
【质疑】经计算,它们的相对分子质量分别为180和890。数值已经不小,但是,我们仍称它们为低分子化合物,简称小分子;那么,什么是高分子化合物或高分子呢?
【讲述】如果有机化合物的相对分子质量达到几万到几百万,我们就称它们为有机高分子化合物,简称高分子或聚合物。像以前所学过的淀粉、纤维素、蛋白质等物质都属于有机高分子化合物。有机高分子化合物的结构有哪些特点呢?
【引题、板书】一、有机高分子化合物
1.有机高分子化合物的结构特点
【讲述】有机高分子化合物虽然相对分子质量很大,但是它们的结构并不复杂,通常是由简单的结构单元连接而成的,例如,聚乙烯是由结构单元重复连接而成的,聚氯乙烯是由结构单元重复连接
而成的,其中的n表示结构单元重复的次数。
【投影讲述】高分子中的结构单元连接成长链,这就是通常所说的高分子的线型结构。具有线型结构的高分子,可以不带支链,也可以带支链。高分子链上如果有能起反应的原子或原子团,当这些原子或原子团发生反应时,高分子链之间将形成化学键,产生一定的交联形成网状结构,这就是高分子的体型结构。
【过渡】由于有机高分子化合物的相对分子质量大及其结构的特点,因而使它们具有与小分子不同的一些性质。
【活动、探究】将教材的“观察•思考”涉及的实验改成学生分组实验(2~4人一组)。
1.从废旧轮胎上刮下的一些橡胶粉末约0.5g放入试管中,加入5mL汽油,观察粉末能否溶解。
2.取内径比实验室用导气胶管外径稍大的试管,胶管与试管等长。向试管中加入少量汽油后,将胶管插入试管,再用滴管向胶管内孔中滴满汽油,稍侯,可见胶管伸长。
3.取一小块聚乙烯塑料碎片,用酒精灯加热直至熔化时停止加热,等冷却后再加热,反复几次后点燃,观察变化的全过程。
【交流、讨论、板书】2.有机高分子化合物的主要性质
⑴溶解性:难溶于水,在有机溶剂中也只能溶胀并极缓慢。
⑵热塑性和热固性
⑶电绝缘性
⑷不耐高温易燃烧
【讲述】聚乙烯塑料受热到一定温度范围时,开始变软,直到熔化成流动的液体。冷却后又变为固体。加热后又熔化,这种现象就是线型高分子的热塑性。有些体型高分子一经加工成型就不会受热熔化,因而具有热固性,如酚醛树脂。高分子化合物中的原子是以共价键结合的,因此它们一般不导电。
【小结】结构决定性质,性质决定用途,正因为有机高分子化合物有以上的主要性质,决定了高分子材料在国民经济发展和现代科学技术中的重要作用。
作业:探究活动:学生分为若干小组通过去图书馆、上网查阅资料探究以下问题:
1.我们身边有哪些高分子化合物;
2.高分子化合物对工农业生产和生活有哪些重要作用;
3.了解高分子化合物的新发展,例如可导电的高分子材料、可降解塑料等。
并动员学生运用所学知识回答下列问题:
1.为什么聚乙烯塑料凉鞋破裂可以热补,而电木插座不能热修补。
2.装苯的试剂瓶不能用普通的胶塞的原因。
3.家贸市场上出售的香油的胶塞为什么要用玻璃纸包起来,如果不包起来会出现什么后果。
第二课时
【联想、质疑】现在,人们在日常生活中经常与塑料打交道,工农业生产和国防建设也大量使用塑料。那么,究竟什么是塑料?它们是怎样制成的?
【讲述】塑料的主要成分是被称为合成树脂的有机高分子化合物。例如,聚乙烯就是生产聚乙烯塑料的合成树脂。聚乙烯是以石油化工产品乙烯为原料,在适宜的温度、压强和引发剂存在的条件下发生反应而制得的。反应时,乙烯分子中碳碳双键中的一个键断裂,然后相互两两加成而聚成含n个结构单元的相对分子质量达几万以上的聚乙烯树脂。
【板书】二、塑料
【讲述】讲述聚合反应和加聚反应的概念。
【讲述、投影】塑料与合成树脂
⑴塑料是由合成树脂及填料、增塑剂、稳定剂、色料、防老剂等添加剂组成的。
⑵树脂是指还没有跟各种添加剂混合的高聚物。
⑶有些塑料基本上是由合成树脂所组成的,不含或少含其它添加剂,如有机玻璃等。
【迁移、应用】氯乙烯、苯乙烯、四氟乙烯在引发剂作用下经过聚合反应所得聚合物都是重要的合成树脂。⑴它们为什么和乙烯一样,也能发生加聚反应?⑵写出化学反应式。
【交流、讨论】组织学生交流讨论聚合反应的书写技巧,尤其苯乙烯的聚合反应,可以适当点拨:将苯基(—C6H5)当作支链,使双键碳原子作为端点碳原子,以便于两两加成聚合。
【阅读】塑料王与工程塑料ABS的用途。
【过渡】聚乙烯是当今世界上产量最大的塑料产品,它有着广泛的应用。
【阅读、讨论】聚乙烯的性质和用途。
【讲述】塑料工业的发展,极大地提高了人们的生活质量,但是这些结构稳定、难以分解的塑料废弃物的急剧增加也带来了严重的环境问题。全世界每年产生数千万吨的废旧塑料,比如聚乙烯、聚苯乙烯等它们聚集在海洋里、地面上、土壤中,造成白色污染。白色污染已成为困扰人类社会的一大公害。减少与消除白色污染既要全社会共同努力,从我做起,少用并及时回收、再生,也要依靠科技,生产可降解的塑料。
【指导阅读】塑料的回收利用与可降解塑料。
作业:探究活动:
1.收集有关废弃塑料造成的白色污染、危害及其防治方法,在各社区进行宣传或提出倡议。
2.课外实验,参照教材第97页动手实践的方法进行废旧塑料裂解得燃气与燃油的实验。
3.收集橡胶制品的图片
第三课时
【引题】今天我们讨论第二大合成材料合成橡胶。
三、合成橡胶
【展示】展示课前同学们收集的橡胶制品的图片。
【交流、研讨】结合你已有的知识和生活常识思考:
1.橡胶的特性是什么?由此决定着它有哪些用途?
2.根据来源和组成不同,常用的橡胶有哪几种?
【讲述】构成橡胶的高分子链在无外力作用时呈卷曲状,而且有柔性,受外力时可伸直,但取消外力后又可恢复原状,因此橡胶是具有高弹性的高分子化合物。根据来源和组成不同,橡胶可分为天然橡胶和合成橡胶。合成橡胶往往具有高弹性、绝缘性以及耐油、耐酸碱、耐高温或低温等特性,因此具有广泛的应用。
【讲述】顺丁橡胶是化学家们最早模拟天然橡胶制得的合成橡胶,它具有较高的耐磨性,广泛用于制造轮胎、耐寒制品及胶鞋、胶布、海绵胶等。利用工具栏讲解顺丁橡胶的合成,并以顺丁橡胶的高分子链的卷曲认识橡胶的高弹性。
【质疑】为什么实验室的橡胶管在空气中易老化?为什么盛酸的试剂瓶要用玻璃塞?
【过渡】常用的橡胶除天然橡胶、顺丁橡胶外还有其它的通用橡胶。
【阅读、讲述】阅读表3-4-1几种常用橡胶的性能和用途,以说明当今合成橡胶的广泛应用,以及“挑战者”航天飞机失事的悲惨事件就是由于橡胶密封圈失灵造成的。
【过渡】接下来讨论第三大合成材料合成纤维。
【交流、研讨】生活中你们知道哪些是纤维制品呢?棉花、羊毛、蚕丝与锦纶、涤纶有何区别?纤维素是如何分类的?
【投影、讲述】1.纤维素分类
纤维素:棉、麻
天然纤维蛋白质:丝、毛
纤维人造纤维:人造棉、人造丝
化学纤维合成纤维:锦纶、腈纶
篇7
一、新材料
材料是社会进步的物质基础和先导,对国民经济和国防建设起着关键的支撑作用。新材料是高技术领域的重要组成部分,与信息、生命、能源并称为现代文明和社会发展的四大支柱。加强新材料的开发,对推动高新技术产业发展、促进传统产业升级换代和增强综合国力,具有重要的意义。本年度重点支持新材料领域中下列五个方面的技术和产品:1.金属材料;2.无机非金属材料;3.高分子材料;4.生物医用材料;5.精细化学品。本刊重点介绍后三种技术和产品。
高分子材料
高分子材料是新材料领域的重要组成部分,由于其具有优良的物理、化学性能和优异的加工特性,被广泛应用于信息产业、航空航天、生物医药、交通运输、机械仪表、建筑和能源等国民经济重要领域。随着新型高分子合成、改性与加工等高技术的发展,高性能高分子材料迅速崛起,新产品、新技术不断涌现。新型高分子材料的开发和广泛应用,对于推动传统产业的升级换代、新兴产业的发展壮大会起到积极的作用,必将对推动我国国民经济的发展发挥重要的作用。
本年度重点支持的方向如下。
高性能高分子结构材料
高性能高分子结构材料具有机械性能好、比强度高、耐热性好、耐腐蚀、耐磨损和易加工等特点,在各行业应用广泛,对国民经济的发展和国家安全具有重要意义。本年度重点支持:具有高强、耐高温、耐磨、高韧的高分子结构材料和复合材料;低成本化的特种工程塑料;具有特殊功能、特殊用途的高附加值热塑性树脂。
新型高分子功能材料
高分子功能材料由于其特有的功能性和专用性,在生态环境保护、信息功能化、生物医用器材、物质分离膜、能量转换和储能技术等工业领域有着极为广泛的应用。本年度重点支持:先进功能膜材料及支撑材料;光电信息高分子材料;液晶高分子材料;形状记忆高分子材料;高分子相变材料;具有特殊功能性、高附加值的高分子材料。
高分子材料的低成本化和高性能化
通用塑料的高性能化和工程塑料的低成本化,仍然是当前高分子材料领域研究、开发的重点之一,同时也是扩大通用塑料和工程塑料应用范围的一个重要措施。鼓励开发产业化制备技术和工业化应用技术。本年度重点支持:通过化学改性和/或物理改性(含纳米技术改性),性能显著提高或获得特殊性能的高分子及其复合材料;高刚性、高韧性、高电性能、高耐热或导热性聚合物合金与改性材料;新型高性能热塑性弹性体;具有特殊用途、高附加值的新型改性高分子材料。
本年度不支持:普通塑料的一般改性专用料;普通电线、电缆专用料;流延、吹塑、拉伸法生产的通用薄膜;普通管材、管件及异型材(如普通塑钢窗);以聚乙烯、聚丙烯为基材的部分降解材料;普通的PS和PU泡沫塑料等。
新型橡胶材料
新型橡胶作为三大合成材料之一,在国防工业、航空航天和交通运输等方面具有广泛的应用。为满足现代汽车工业高速、耐热、减震、密封、耐老化、耐介质、耐脉冲性的要求,优化橡胶工业产品结构,采用高性能材料,可以有效缓解资源不足和环境污染的压力。本年度重点支持:特种合成橡胶;新型橡胶功能材料及产品;为高速安全交通配套的橡胶轮胎和制品。
本年度不支持普通橡胶制品项目。
新型纤维材料
纤维是高分子材料的重要组成部分,广泛应用于纺织、信息、航空、汽车、环保、卫生、建筑等领域。我国纤维、纺织品及服装的产量均居世界第一,但产品性能档次低、附加值低,常规产品产能过剩,高档产品需进口,技术进步和产品创新仍以跟踪国外为主。新型纤维品种及其成纤高分子新品种的开发及产业化是纺织新产品创新的源头,因此必须加大技术含量高、市场前景好的新技术和新品种开发力度,加快产业化进程,推进全行业产品的升级换代,重视环境友好和清洁生产,重点支持我国自主知识产权的技术,同时支持有较高技术含量的集成创新。本年度重点支持:新型成纤聚合物开发,及应用新型成纤聚合物制备的具有特殊性能或功能的纤维;高性能纤维及其原料、半成品;环境友好及可生物降解型纤维;在确保环境保护的前提下,申报差别化纤维开发及应用项目(仅限于西部欠发达地区申报)。
本年度不支持服装面料、衬布、纱线、常规或性能仅略有改善的纤维(如:有色、异形、细旦、功能粉体添加、简单的化学改性、常规的共混等)及服装项目;不支持常规的非织造布、涂层布或层压纺织品、一般功能性纤维材料产品项目。
生态和环境友好高分子材料
随着高分子材料的迅速发展,传统高分子材料在使用过程及废弃后对环境的危害逐渐显现,白色污染已经引起了社会的关注。发展生态和环境友好高分子材料是高分子材料新的方向之一。本年度重点支持:以生物质来源的高分子材料及制品;全生物降解塑料及其制品。
本年度不支持:淀粉填充的不完全降解塑料及其制品、单纯填充的材料、废旧高分子直接回用、单纯降解塑料制品常规制备项目。
高分子材料的加工应用技术
现代科技进步迫切需要成型加工具有优异性能和特定形态的高分子材料及制品,成型加工工艺及设备也正在向高效、节能、省料、优质方向发展。通过某些物理化学和机械手段将各种形态的聚合物成型为不同用途的制品;通过对高分子材料制品表面进行改性,可制备出具有导电、磁性、压电、屏蔽、耐蚀、耐磨等单功能或多功能应用产品。本年度重点支持:具有微孔结构的复合注射成型;高比强度、大型复杂热塑性制品成型;模内优质修饰注塑成形;先进的高分子材料制品的表面改性与应用;CAD及气辅CAE辅助等高分子加工新工艺;具有显著节能减排效果的新工艺技术。
篇8
关键词: 塑料 成型 教学体会 教学方法
塑料材料科学是当今世界带头学科之一,而高分子材料是材料领域的新秀,目前高分子材料在尖端科技、国防建设和国民经济各领域都得到了广泛的应用,已成为现代生活中衣、食、住、行、用各个方面所不可缺少的材料。近年来,随着高分子材料应用领域的发展,单一的材料已不能满足许多性能要求。塑料成型设备已成为科研、技术开发和实际生产中各个环节必不可少的技术手段[1][2][3]。
《塑料成型设备》课程是我校高分子材料加工专业最重要的核心课程之一,该课程的教学目的是希望学生通过学习掌握聚合物的化学改性、聚合物的填充改性、纤维增强改性聚合物复合材料、聚合物的共混改性及聚合物/无机纳米复合材料这几个方面的改性技术,为以后走上工作岗位,适应社会人才需求打下良好的基础。因此,本课程在材料学科中有着十分重要的地位。在本文中,我们首先介绍该课程的教学特点,并结合近几年塑料成型设备技术发展的新情况和我们在该课程中的教学经验,谈一谈该课程的教学体会和教学方法。
1.该课程的主要特点
《塑料成型设备》课程实际上是一门综合了高分子物理、高分子化学、高分子成型加工[4][5][6]等基础知识的实践运用课程。它不仅讲述了各种改性方法的基本原理,更重要的是传授了如何运用这些技术手段对已有高分子材料进行改性;可直接指导以后的生产和科研工作,促进高分子材料科学与技术的发展。因此,这是一门要求综合运用高分子材料学科的各种知识,并要求进行实际操作的具有较强理论联系实践的课程,具有综合性和实践性较强及知识前沿性的特点。
2.该课程的教学体会和教学方法
2.1教学内容有所侧重。
在授课过程中,教师并非要将内容全部灌输给学生,而是重点突出和注重课程衔接。教学内容要符合实际生产应用及科研的需要,并结合最新改性技术在本专业的主要应用情况及前沿发展动向。因此,目前本课程教学主要立足于聚合物的化学改性、聚合物的填充改性、纤维增强改性聚合物复合材料、聚合物的共混改性及聚合物/无机纳米复合材料这几个方面,同时,研究各种改性技术的基本原理及实际应用要求,选用有代表性的示例,更好地向学生传授,以培养他们对实际生产和科研工作中存在问题的分析和处理能力。
2.2理论联系实际,增加实践性教学环节。
为了调动学生的学习主动性,培养高素质的创新型人才,在教学方法上采用理论联系实际和讲授与讨论相结合的方式。《塑料成型设备》是一门实用性较强的课程,要求结合实际问题来分析和理解理论知识,死记硬背和生搬硬套,都不利于学生对知识的理解和接受。因此,适当增设一些实践操作课,开展实践性教学也是教学中必要的部分。在教学实践上,让学生参与样品的制备及仪器的实际操作,并结合课程内容来独立分析和解决问题,是实践性教学的目的所在。在老师的指导下,让学生学会亲自操作一些仪器,并对得到的图谱进行解析,使学生的科研能力得到初步培养和锻炼,也培养他们分析问题和解决问题的能力。
此外,还可以开设小型科研活动,结合实际问题,通过一两个系列实验,激发学生发散思维。如提出请同学们“研究PE材料表面热氧老化的机理”,这样教学形式由过去单一的验证转变为学生自主资料查阅、交流、思考、设计实验、制备样品,并对材料进行综合性能评价及结构分析,包括利用热分析、全反射红外光谱技术、差谱技术及表面能谱技术等,分析在不同温度、不同时间及有氧和无氧条件下,PE材料表面老化前后的结构变化,从而推断其热氧老化的机理。学生通过一系列学习和实践,不仅掌握了高分子材料的制备研究的基本原理和方法,更重要的是培养了他们自觉学习、独立思考及独立科研的能力。
2.3灵活运用多媒体教学手段。
多媒体教学是将文字、图像、声音等集合在一起通过课堂教学实施的一种手段[7]。目前,用来制作课件的工具有PowerPoint、Author Ware,以及Flash,不仅使课件图文并茂,而且可以产生动画效果,将枯燥乏味的理论知识直观化和形象化[8]。这样,一方面可以充分调动学生在整节课堂上的学习积极性和兴趣。另一方面使学生更加容易地理解所讲授的内容,虽然多媒体课件能够起到很好的教学效果,但是并不能完全替代板书。对于需要重点强调的内容及一些重要反应式和理论公式的推导,我们必须在课堂上进行板书,以加深学生的印象。因为虽然塑料成型设备更偏重于应用,但是其应用是建立在理论学习基础之上的,只有奠定了坚实的理论基础,才能够更好地开发和应用已有的改性技术。因此,我们在课堂上进行多媒体教学的同时,绝不可忽视板书所起的作用。
2.4注重教学效果反馈,提高教学质量。
建立健全配套的教学管理制度是课程建设的重要内容,它应与学校整体管理制度结合起来,在管理内容方面涉及教学质量的评估、教学质量的监控、学分制管理、考试考核及教师的聘用、考评、奖惩等[9]。我们在讲授塑料成型设备试课程时,是把教学效果和教学过程的管理有机结合起来的,在严格教学管理的同时,充分调动教与学的积极性。目前,我们采用的方法主要是通过定期问卷调查的形式跟踪教学质量。有两种问卷,一种是不记名的问卷,一般有2个问题:(1)你对该课程的学习兴趣如何?提供5个答案供选择,分别为:很“感兴趣”、“比较感兴趣”、“一般感兴趣”、“不感兴趣”和“很不感兴趣”;(2)对课程讲授的合理化建议。另一种是记名的问卷,有3~4个问题,内容与当节课堂讲授的知识相关,并且至少有2个问题是延伸性的。通过这两种问卷的调查,可以较好地认识教学环节中存在的不足之处,了解学生课堂学习的状况,进一步改进教学方法,强化教学效果。在以后的教学过程中,我们还计划采取另外一种方法,即首先在课程讲授前期提供一些塑料成型设备相关的题目,然后将学生分为不同的小组,让其选择感兴趣的题目并利用空余时间制作PPT,在课程后期派出各个小组的代表上讲台演讲,每人讲3~5分钟,讲完后大家提问题,然后由教师进行点评,总的时间限定在2个学时。这样做的目的是充分调动学生的学习积极性,进一步加深他们对高分子改性技术的认识和理解。
3.结语
塑料成型设备课程是一门应用性较强的综合性课程,随着我国材料应用领域的发展而快速发展,在高职高专院校高分子材料加工专业开设该课程及提高其教学质量的要求愈加迫切。因此,我们需要积极地采取各种措施去适应这种新的要求,改进教学方法,提高教学质量,为高分子材料加工行业培养出优秀的专业技术人才,以推动其更加健康有序地发展。
参考文献:
[1]董建华.国家自然科学基金高分子科学学科近况介绍[J].高分子通报,2008.7:38-41.
[2]李晓,钱一钧,张卫英.高分子化工方向专业课程体系设计[J].化工高等教育,2001.5:50-52.
[3]朱高峰.论高等工程教育发展的方向[J].高等工程教育研究,2003(3):1-4.
[4]雷彩红.高分子材料研究方法“课程教改初探”[J].广东工业大学学报社会科学版,2008(5):127-128.
[5]夏峰,林少琨,王晓,等.发挥现代分析仪器作用培养高素质科技人才[J].实验室研究与探索,2000(5):18-21.
[6]陈立贵,袁新强,李雷权,等.高分子材料与工程专业综合实验教学的改革与实践[J].科技创新导报,2008;(9):234-234.
[7]张发爱.高分子材料专业涂料课程教学初探[J].高分子通报,2006(4):93-95.
篇9
【关键词】食品包装;高分子材料;成分;快速鉴别
在食品包装及接触材料中,高分子类材质占比非常多。在日常实际检验监管中,不同高分子材料对应不同的理化检测安全限量指标,在抽样和监督检查工作中,核实并快速鉴别材料类别,对于做到精准检测、做好执法把关工作意义重大。高分子材料种类繁多,从常用的通用塑料到工程塑料、橡胶、纤维树脂等,每种材料都有各自独特的化学构成、微观结构,也具有不同的理化性能。本部分围绕部分特定的几类常见高分子材料,重点研究并总结其快速鉴别方法。
1.红外光谱技术在快速鉴别中的应用研究
本部分采用傅立叶红外光谱法对相关的食品包装材料进行快速鉴别。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。
按量子力学的观点,当分子吸收红外光谱发生跃迁时,要满足一定的要求,即振动能级是量子化的,可能存在的能级满足下式:
E 振 =(V+1/2)hn
n :化学键的 振动频率; V :振动量子数。
任意两个相邻的能级间的能量差为:(用波数表示)
其中:K为化学键的力常数,与键能和键长有关;m为双原子的折合质量。
发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,即取决于分子的结构特征。红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法,红外光谱具有高度特征性。
1.1 试验处理及准备
实验仪器:傅立叶红外光谱仪Varain 670IR
对食品包装材料表面进行溶胀处理,其目的是尽可能地去除食品包装材料里的添加的其它的成分,其方法是选择合适的有机溶剂对样品进行浸泡或回流处理,使样品溶胀。将样品表面溶胀的部分刮下,去除溶剂,粉碎后,按红外测定的溴化钾压片法制样,上机分析,适当扣背景,并与标准红外谱进行比对分析。
1.2 聚丙烯材料红外光谱检测
从红外谱图1分析可以看出:2900-2850cm-1是甲基和亚甲基伸缩振动的吸收峰;1702cm-1是测试方法引入的C=O的伸缩振动的吸收峰;1469cm-1-1431cm-1是CH2、CH3面内弯曲和面内弯曲反对称的吸收峰;1378cm-1是CH3面内弯曲对称振动吸收峰;经比对表谱,和聚丙烯的相似度较高。产品的主成分聚丙烯树脂。
1.3 聚苯乙烯样品材料的红外光谱
从红外谱图2分析可以看出:3081cm-1、3060cm-1、3025cm-1是芳环骨架振动的吸收峰;2923-2850cm-1是甲基和亚甲基伸缩振动的吸收峰;1943、1871、1799cm-1是芳环骨架泛频的吸收峰;1703cm-1是测试方法引入的C=O的伸缩振动的吸收峰;1658cm-1、1544cm-1、1451cm-1是芳环骨架振动的吸收峰;1373cm-1是芳环的面外弯曲振动吸收峰,722cm-1芳环-CH-面外弯曲振动吸收峰。经比对表谱,和聚苯乙烯树脂的相似度较高。产品的主成分聚苯乙烯材质。
由于食品包装材料的多样性及构成食品包装材料的材料复杂,使得采用傅立叶红外光谱法对相关的食品包装材料进行快速鉴别时,进行前处理时时间较长。但是当选择合适的试剂后,试验证明,分析结果比较理想,快速鉴别应用技术科学可靠。
2.基于理化性能差异的快速验证鉴别方法
2.1 观察法
各种聚合物都具有各自的外观性状特征,可以依据这些特征对聚合物进行初步的鉴别。塑料薄膜主要有PE、PP、PVC和PET(聚酯),粘胶纤维和醋酸纤维膜等六种。它们各自的特点如下:PET薄膜:其特点是较硬,拿在手中快速晃动能发出哗哗的响声,受力折叠以后易留下折叠痕迹。PVC薄膜:按照食品安全法规定:普通悬浮聚合聚氯乙烯由于单体残留较高而不允许作为食品包装。不过允许单体含量较低的本体聚合聚氯乙烯用物食品包装。仔细比较可以发现:聚氯乙烯薄膜比聚乙烯薄膜稍硬,但是最准确的鉴别还是燃烧法。PP和PE薄膜:目前主要是以高压聚乙烯(即低密度聚乙烯)制作的食品包装膜。聚丙烯薄膜由于其结晶度较高而表现明显的各向异性。粘胶纤维膜和醋酸纤维膜(俗称玻璃纸):前者是天然纤维素经碱化以后再与二硫化碳反应生成水溶性的纤维素黄原酸盐,最后在硫酸浴中通过狭缝成膜;后者是纤维素经乙酰化以后采用溶液法成膜。粘胶纤维膜是一类最传统、最安全的糖果包装透明薄膜。它的特点是没有PE膜那么柔软,与聚酯薄膜相比较粘胶纤维薄膜在不怎么受力的情况下也很容易起皱纹,整理过程中同样能发出声音。燃烧试验能够闻到与燃烧棉纤维类似的气味。
2.2 燃烧试验法
不同种类聚合物具有不同的燃烧特征和气味,依据此特征可以有效鉴别聚合物,下面列表予以比较。
2.3 溶解试验法
各种聚合物的溶剂和溶解特性各不相同,可根据它们在常见溶剂中的溶解表现作出初步鉴别,现列表比较。
篇10
现在用于文物保护的材料主要包括人工合成高分子材料以及天然高分子材料两种,其中对于人工合成高分子材料的使用更加普遍。在保护彩绘类文物通常所使用的材料为PrimalAC33、B72、有机硅等,它们具有颜色变化小、粘结性好、耐老化等特点。但是PrimalAC33的Tg仅为14℃,所以在常温下此材料会因为太软而容易吸灰;同时B72在老化后其可逆性会变差,并且会变得脆、黄。由于上述材料的种种不足,在当今文物保护中对于新材料的研发变得十分重要。而使用物理或化学的方法在高分子材料中混合纳米材料,使其既有纳米材料又具有高分子材料的性能,则现今的文物保护中具有重要作用。将纳米材料的量子尺寸效应用于文物保护中具有很大的优势,相比较宏观大块的材料而言它具有独特的光、热、电、力、光以及化学特征,主要表现如下:
一、同步增强增韧效应
纳米材料的比表面积很大、粒径很小,因此与其它材料具有很强的结合力,在制作复合材料时不仅能提高材料的强度还能够增强材料的韧性。对分散有纳米TiO2的PMMA进行拉伸实验,可知若加入的TiO2为5%,则拉伸强度会增加60%;若加入的TiO2为15%,则拉升强度增加90%。通过实验可知,使用纳米材料能够提高有机质文物的强度,例如年代久远的纺织品、骨角象牙、纸张等,有助于对其进行长期保存。
二、透明及防遮盖特性
纳米材料的粒径都小于100nm,而可见光的波长则为400nm至750nm,因此根据Mie理论可知纳米级材料TiO2相对于可见光而言是透明的特性。所以用纳米材料TiO2所制成的符合材料涂抹是无色、透明的,将其涂在文物的表面可以不改变文物原来的性状。但如果在制备复合材料时纳米材料发生的团聚,那么就可能是材料的实际粒径大于纳米级,降低符合材料的透明性。因此在制备复合材料时必须要保证纳米材料均匀的分散在基体材料之中。
三、抗紫外线和耐老化特性
紫外线对文物具有很大的危害作用,紫外线的照射能够使彩绘文物褪色、变色以及表面的彩绘脱落,能够使的银器变黑,同时使纤维类文物产生光解。而因为一些纳米材料具有抗紫外线的特征,在保护文物免受紫外线损害方面起到了非常重要的作用。例如ZnO、TiO2等纳米材料,它们本身具有半导体的特性,可以通过吸收或者散射紫外线来减小紫外线的通过率。同时,纳米颗粒的量子尺寸效应使其在吸光时产生“宽化”和“蓝移”现象进而增强了对紫外线的吸收作用。
四、疏水疏油性
纳米材料的表面具有很高的化学活性,非常容易与周围的气体小分子结合,从而形成一层非常薄的气体膜,这层薄膜阻止了水分子与油分子吸附在材料的表面,因此使得材料呈现出疏水疏油的特性。纳米材料的这种应用在古代的“黑漆古”铜镜就有所应用,研究发现在“黑漆古”铜镜的表面有一层大约10um的表层,该表层含有纳米SnO2微粒,有效的阻止了外部的空气和水分对文物表面的腐蚀。运用纳米材料的双疏性可以对防止酸雨等对室外文物破坏。
五、抗菌防霉性
根据纳米材料的有效成分可以将其分为光催化型、金属离子型、稀土激活光催化复合型等3类,它们都具有抗菌防霉的作用。其中,都属于光催化纳米材料,它们在文物保护中使用的更为频繁,这类材料的作用机制是利用了纳米粒子的光催化作用。纳米半导体通过以下两种方式进行杀菌:一是光生空穴与光生电子直接与细菌的细胞壁、细胞膜以及细胞内的相关成分产生反应;另一种方式则是和自由基(等)与脂类、酶类、蛋白类、核酸等生物大分子反应,直接作用于生物的细胞结构,或者经过一系列的氧化链式反应后对生物的细胞结构进行破坏。纳米材料的这种性能有利于处于潮湿环境中的丝织物、纸质物等有机物进行保护,极大的保护文物免受防霉杀菌剂以及空气净化剂带来的损坏。
六、呼吸性
材料的呼吸性是指,保护材料在不仅能够阻止外界的液态水进入文物,同时也可以文物让内部的水分通过气体的形式从内部散发,使得文物内外的湿度达到一个相对平衡的状态。对于石质的文物来说,其自身的毛细孔就可以保证文物与外界进行水分交换。一旦使用了高分子保护材料,由于材料具有防水性,会使得文物内部与外界不能很好的进行水分交换,进而在文物的内部会产生了一个很明显的湿度梯度。如果外界的温度发生了变化,那么在不同的湿度交界处就会存在显著的收缩膨胀应力,如果文物长期受到外界温度的变化,这种应力差将对文物产生一个非常大的破坏。
如果将纳米颗粒加入到高分子材料中,使得文物内部产生了很多的微小空隙,进而增加了文物透水透气的性能;并且使用纳米材料也不会影响文物本身的毛细空气,可以保证文物能够顺利的与外界进行水分交换。经实验证明,加入了纳米材料的高分子材料其不仅具有良好的透气性,其本身的憎水水也没有受到影响,所加入的纳米粒子越多材料的通透性就越好。纳米材料的这种性能对于一些石质类、陶瓷类文物的保护作用非常明显,可以增加文物的透气性,防止其内的盐分在温湿度环境下溶解结晶,进而产生往复作用力作用在文物的孔壁,使得文物表面剥落。
七、总结