生物质能的缺点范文
时间:2023-12-13 17:52:43
导语:如何才能写好一篇生物质能的缺点,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:生物质 生物质电厂 秸秆 收集
一、生物质能源概述
生物质能是动植物和微生物通过光合作用形成的。它归根结底还是太阳能的一种表现形式。因此从理论上讲这种能量和太阳能一样是取之不尽用之不竭的,并且可以再生。生物质能目前在国内外已经得到了广泛的利用,并且将逐步发展壮大下去。生物质是全球的第四大能源,前三个能源分别为炭、石油和天然气。而生物质能的燃料主要包括有小麦、玉米、棉花和高粱等农作物的秸秆,也有的用木材加工的废料。生物质是可再生能源,这种能源既环保又很清洁。虽然生物质在地球上的总量是很多的,分布也非常广泛,但得到利用的却很少很少,具有着非常大的潜力。
生物质能源中的碳和硫含量是很少的,因此燃烧产生的有害气体也是很少的,并且由于生物质在生长中也会吸收很多二氧化碳,因此不会影响温室效应的加剧。生物质能源的另一个重大好处便是方便运输和储存,由于一般的可再生能源例如风能和太阳能等都是不可运输不便存储的。生物质能中所占比例最大的要数农作物的秸秆了,我国农作物秸秆资源是非常丰富的。不过虽然丰富,但农作物秸秆却也有着储运不方便、资源分散、和能源密度低等缺点。由于这些缺点导致到目前为止利用率依旧不高。
二、目前国内外生物质电厂发展状况
目前世界上都在竭力将生物质能源运用到各个领域中,其中非常成功的领域要数生物质发电技术了,以高效直燃形式发电,以这种方式用于电厂的技术在国外已经非常成熟了。由丹麦率先提出了农林生物质进行高效直燃发电技术,并且提出后立刻被联合国列为了重点项目。虽然我国的生物质发电才起步不久,不过也已经有一些以生物质发电为主的电厂相继建成并且投入使用了。
1.国外生物质秸秆发电现状
发达国家一直竭力于开发可再生能源,其中丹麦国家的BWE公司率先研发了生物质发电技术,并且取得了非常大的成功..到目前为止,丹麦全国已经有将近140家的秸秆发电厂了。这种发电技术为丹麦国家带来了非常高的收益,也使得丹麦的石油年消费量下降了好多。随着丹麦国家的成功案例,使得接下来荷兰等欧洲国家相继开始投入到生物质发电研究中。
2.国内生物质秸秆发电现状
我国是农业发展大国,秸秆的资源可以说是非常丰富的,如果不能很好的利用的话就实在太可惜了。目前农民都把大部分的秸秆直接在田里燃烧掉,这样是非常浪费资源的,同时对于环境的污染也是不容忽视的。如果这些秸秆资源都能够投入使用的话,结果一定很不一样,农民既可以得到另一份的收入,也可以为生物质发电厂提供更多的能源,同时对于环境的保护也是有一定的影响的。
我国是从2003年开始有生物质发电厂项目的。截止到2007年底,一项不完全统计显示我国已经批准有87个生物质发电项目,总的装机容量也是达到了220万千瓦,示范项目地点总体分布于我国的北部,例如山东、黑龙江、辽宁、吉林、新疆等等。但我国的生物质秸秆发电却也存在着一些问题,这些问题导致我国的生物质发电技术难以以更快的速度发展壮大。首先是秸秆收购上存在着相应的困难。由于秸秆收集的劳动量是很大的,因此很多农民选择进城打工获取更高的收益,有的在厂地周边的人又本身生活很富裕,也不在乎收秸秆的一点收入。现如今农民选择的收割方式也是非常不利于秸秆收集的,农民基本上都是直接取走玉米,将秸秆留在原地。还有一个问题就是运输方面很困难,秸秆本身是很轻的,体积又非常大,因此非常不利于长距离的运输。同时生物质发电电厂的投资量都是非常大的,设备基本上都需要进口,基本上生物质发电厂都处于亏本状态。
我国发展生物质电厂是非常必要的,因为首先我国的生物质能源的资源是非常丰富的,我国的农作物秸秆大约有3亿顿可以作为燃料,加上其他生物质资源如林木废弃物等大约有6亿吨的生物质可以作为燃料使用,这个总量可以说是非常大的。发展生物质能同时也起到了保护环境的作用,我国由于燃烧秸秆等造成的环境污染还是非常严重的,将秸秆进行统一收集统一处理是一个非常好的环保手段。另一方面农民也可以因此而获得更高的收益。
三、生物质电厂燃料秸秆收集情况
由于燃料的难以供应,导致我国的很多生物质电厂都面临着亏损状态,甚至面临着破产的困境。生物质发电厂一直以来是那么的受众人恩宠,但现如今却全部亏损,最主要的原因就是秸秆的收集状况非常困难。
生物质电厂找不到秸秆资源的最主要的原因就是秸秆的收集非常难,很多发电厂都不得不使用树皮、木屑等作为替代原料。一家生物质发电厂的负责人指出,按原先的计划,他们需要用30多万吨的秸秆作为燃料用于发电,现如今却只有五分之一。他们只好通过其他燃料代替,例如一些树皮、稻壳等等,可谓是“生活非常艰难”。
据相关部门的了解,生物质发电厂的收购费用已经占据了生产成本的百分之八十左右,可谓基本上都放在了燃料的收集上。许多专家认为,政府应该考虑到秸秆的利用情况,使规划布局变得更加合理,并且提出相应方案对生物质发电厂给予相应的扶持和帮助。这样我们的生物质电厂才能发展的更加好。
总的来说,随着地球上能源的逐渐短缺,生物质能源这种可再生能源的利用是势在必行的,一个国家要想持续发展,一定到想办法利用起生物质能源来。生物质发电厂现如今处在了非常艰难的时刻,希望能够通过政府和社会解决秸秆收集难的问题,帮助生物质电厂不断发展壮大下去。
参考文献
[1]王志刚.基于12MW秸秆发电工程控制方案的研究[J].科技创新导报.2010年07期.
[2]张卫杰.关海滨.姜建国.李晓霞.闫桂焕.孙荣峰.许敏.孙立.我国秸秆发电技术的应用及前景[J];农机化研究;2009年05期
篇2
关键词:教学改革;新能源发电技术;创新人才培养
作者简介:韩杨(1982-),男,四川成都人,电子科技大学机电学院电力电子系,讲师。
基金项目:本文系电子科技大学中央高校基本科研业务费资助(项目编号:2672011ZYGX2011J093)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)14-0046-02
“新能源发电技术”是电子科技大学电气工程及自动化、机械设计制造及自动化、工业工程三个专业课程体系中的一门重要课程。该课程属于高年级本科生的专业选修课,共32课时、内容多、知识面广、综合性强。[1, 2]由于三个专业的学生知识体系存在一定差异,在教学理念、教学内容、教学方法等方面,需要做出系统的设计和创新。笔者在教学过程中,充分吸收国外高校模块化教学模式、凝练教学内容,充分利用交互式教学方法,采用课堂讲授、提问与解答、课程项目、研究报告等手段,把互动式教学方法成功应用到教学实践中。课程以电能变换与控制为主线,鼓励不同专业背景的学生组成研究小组对课程项目进行协作研究,提升了学生的学习兴趣,培养了学生的自主创新能力。[3, 4]
一、国外“新能源发电技术”教学内容与模式回顾
1.麻省理工学院(MIT)的模块化教学模式
课程简介:课程评估当前和未来潜在的能源系统,包括资源提取、转换和最终使用技术,重点区域和全球能源需求。研究各种可再生能源和传统能源的生产技术,能源最终用途和替代品,在不同国家的消费习惯。
第一部分:能源的背景。欠发达国家日益增长的能源需求、发达国家可持续的未来能源。能源概述、能源供给和需求的问题;能源转换和经济性分析,气候变化和应对措施。模块1:能量传递和转换方法。模块2:资源评估和消耗分析。模块3:能量转换、传输和存储。模块4:系统的分析方法。模块5:能源供应,需求和存储规划。模块6:电气系统动力学。模块7:热力学与效率的计算。
第二部分:具体的能源技术。模块1:核能的基础和现状;核废料处理;扩建民用核能和核扩散。模块2:化石能源的燃料转换,电源循环,联合循环。模块3:地热能源的类型;技术、环境、社会和经济问题。模块4:生物质能资源和用途,资源的类型和要求。
第三部分:能源最终用途,方案评估和权衡分析。模块1:汽车技术和燃料经济政策。模块2:生物质转化的生命周期分析;土地使用问题、净能量平衡和能量整合。模块3:电化学方法电能储存、能量转换,燃料电池。模块4:可持续能源,非洲撒哈拉以南地区的电力系统的挑战和选择。
2.瑞典皇家理工学院(KTH)课程内容与要求
课程内容:替代能源和可再生能源的全方位的介绍和分析,包括整合这些解决方案以满足能源服务的要求。包括现有和未来的替代能源,如水能、风能、太阳能、光伏、光热,燃料处理;可再生能源系统面临的挑战;动态整合各种可再生能源。在整个教学过程中,学生的读、写和研讨主题是“先进的可再生能源系统技术”,特别是通过项目工作和多个为期半天的研讨会对相关专题进行研讨,每个人都参与演讲和讨论,并邀请有行业工程背景的专家和政策制定者来课堂参与探讨,丰富课堂内容、提升教学质量。
课程要求:在课程结束时,学生应能够分析和设计能源系统,利用风能、生物能源、太阳能产生电力或用于加热与冷却。完成课程后,学生能详细说明风能、生物能、太阳能基本原理和主要特点,以及它们之间的区别。能掌握这3种可再生能源系统的主要组件,了解基于化石燃料的能源系统对环境和社会的影响。
3.威斯康星大学(UWM)课程内容与要求
课程内容:学习有关国家最先进的可再生能源系统,包括生物质、电力和液体燃料,以及风力、太阳能、水电。学生们将对可再生能源电力和能源供应做工程计算,并要了解可再生能源的生产、分配和最终使用系统。能源存储、可再生能源政策;经济分析,购买和销售能源;风能理论与实践;太阳能可用性,光热和光伏发电系统;水电;地热,潮汐能和波浪发电;生物能源、生物质燃烧热力和电力;生物质气化,生物油热解;生物燃料的生命周期评估。
课程要求:掌握基本的可再生能源系统的工程计算,了解可再生资源评估和能源基础设施一体化。确定可再生能源系统的环境影响。设计和评估可再生能源系统的技术和经济上的可行性。了解能源在社会中的关键作用。了解可再生能源发展的公共政策、市场结构。卓越学生的学习成果:能够运用数学、科学和工程原则进行实验设计,并能分析和解释实验现象。有能力设计一个系统、部件或过程,以满足预期要求,具备解决工程问题和有效沟通的能力。
二、创新人才培养模式下“新能源发电技术”教学设计
通过对该课程的学习,使学生了解中国的能源现状,掌握电源变换与控制技术的基本原理,掌握光伏发电和风力发电的基本原理及系统的构成,加深对中国风力资源和风力发电基本原理的认识,理解生物质资源的利用现状、转换与控制技术的基本原理,了解天然气、燃气发电与控制技术的基本原理和应用情况。吸收国外经验,设计教学模块。
1.电源变换和控制技术
内容要点:电力电子器件的概念、特征和分类,不可控器件——电力二极管,半控型器件——晶闸管,电力场效应晶体管——电力MOSFET,绝缘栅双极型晶体管——IGBT;AC—DC变换电路:二极管整流器——不控整流,晶闸管整流器——相控整流,PWM整流器——斩波整流;DC—DC变换电路:单管不隔离式DC—DC变换器,隔离式DC—DC变换器;DC—AC变换电路原理、分类、参数计算;AC—AC变换电路。
课堂提问:晶闸管的导通和关断条件是什么?相控整流与PWM整流电路区别是什么?交流调压电路的基本原理是什么?什么是逆变?如何防止逆变失败?
课程项目1:让学生设计一个50kW的相控整流和PWM整流电路,进行MATLAB仿真分析,比较两种整流电路的区别,要求分组讨论、制作PPT演讲,撰写研究报告。
2.风能、风力发电与控制技术
内容要点:风的产生、特性与应用;风力发电机组的结构、分类与工作原理;风力发电的特点、控制要求和功率调节控制;风力发电机组的并网运行和功率补偿:同步发电机组、异步发电机组和双馈异步发电机组的并网运行和功率补偿。
课堂提问:简述风能转换的基本原理。风力机的空气动力学参数有哪些?具体怎么求解?风力机有哪几种分类方法?
课程项目2:让学生设计基于全功率变换器的风力发电系统,在课程项目1的PWM整流电路的基础上,设计整流和逆变电路及其控制算法,进行MATLAB仿真,验证工作原理,要求分组讨论、制作PPT演讲、撰写研究报告。
3.太阳能、光伏发电与控制技术
内容要点:太阳能利用方式、分类及原理,中国光伏发电的历史和研究现状;太阳能电池的工作原理,太阳能电池材料的光学性质、等效电路、输出功率和填充因数,太阳能电池的效率、影响效率的因素及提高的途径;太阳能电池制造工艺,多、单晶硅制造技术;太阳能光伏发电系统设备构成,正弦波PWM技术,逆变器基本特性及评价;独立光伏发电系统的结构及工作原理、系统构成;并网光伏发电系统的分类、特点、结构、供电形式和设备构成。
课堂提问:多晶硅和单晶硅的制造工艺有什么不同?根据制作工艺的不同它们各有什么特点?什么是正弦波PWM逆变技术?并网光伏发电系统由哪几部分构成?
课程项目3:让学生设计小功率并网光伏发电系统,在课程项目2逆变电路的基础上,设计单相及三相逆变电路及其控制算法,进行MATLAB仿真,验证工作原理,要求分组讨论、制作PPT演讲、撰写研究报告。
4.生物质能的转换与控制技术
内容要点:生物质能的定义、生物质资源特点及类别;生物质能转换和发电技术、生物质能转换的能源模形式,城市垃圾、生物质燃气发电技术;生物质热裂解发电技术的分类、生物质热裂解机理,生物质热裂解技术及装置简介;我国生物质能的利用现状及开发生物质能的必要性,生物质能发电前景。
课堂提问:生物质能的优缺点是什么?根据其优缺点如何扬长避短充分利用生物质资源?生物质热裂解的机理是什么?请详细分析说明。影响生物质热裂解的因素有哪些?具体是如何影响的?
5.天然气、燃气发电与控制技术
内容要点:天然气水合物的概念,形成机理及化学性质;天然气的综合利用、环境价值与发展前景;小型燃气轮机发电机组的原理及用途、主要形式及应用前景;燃气轮机组的电能变换与控制系统、电网供电及控制;燃气发电机组的并网运行与控制策略,DC-AC低频并网逆变技术,DC-AC/ AC-DC-AC三级变换高频环节并网逆变技术;燃气发电机组高频并网逆变的控制策略。
课堂提问:小型燃气轮机组并网发电的原理是什么?简述燃气轮机组电能变换系统的结构和工作原理。燃气发电机组高频并网逆变是如何实现的?
三、结束语
在充分吸收国外高校“新能源发电技术”模块化教学模式的基础上,以人才培养为中心,凝练教学内容、改革教学方法,提高了学生对该课程的学习兴趣,课堂互动得到明显改善,不同专业背景的学生能够对课程项目进行协作研究,发挥各自的特长收集和吸收国外前沿技术,在PPT演讲、研究报告撰写方面锻炼了学生的综合能力,取得了良好的教学效果。
参考文献:
[1]何瑞文,谢云,陈璟华.电气工程及其自动化专业建设与实践模式探讨[J].中国电力教育,2012,(3):72-73.
[2]王三义.浅谈新能源发电技术[J].中国电力教育,2011,(15):92-93.
篇3
2009年3月底,发改委宣布将汽、柴油价格每吨分别提高290元和180元。这是自今年1月15日成品油定价机制改革以来,根据“原油成本定价法”实施的首次油价调整。对此,国家发改委给出的解释是:油价调整鉴于近期国际油价持续上涨。
尽管金融危机爆发以后,全球原油价格不断下跌,但是石化能源消耗的不可持续性是不可能改变的,人们早就把眼光投向了生物质能源领域。生物质能源是地球上最普遍的一种可再生能源,它是通过植物光合作用,将太阳能以化学能的形式贮存在生物体内的一种能量形式,被称为绿色能源。但是如果用玉米、高粱等粮食来制作乙醇等生物质能源,将威胁全球的粮食安全。因此,对于生物质能源的原料,人们的目光一直集中在传统的陈化粮、木质素、动物油脂等领域,然而对于生物质能源的重要来源、开发前景同样广阔、属水生植物的藻类却认识不足。
作为一种重要的可再生资源,藻类具有分布广泛、生物量大、光合作用效率高、环境适应能力强、生长周期短、产量高等突出特点。而藻类中的微藻,更是遍布全球的浮游植物,它在海洋、淡水湖泊等水域或是潮湿的土壤、树干处,在任何有光照且潮湿的地方都能生存。而每年由微藻光合作用固定的二氧化碳,竟达全球二氧化碳固定量的40%以上。微型藻生物技术的开发,将为我国提供新的能源途径。
阳光和水的结晶
微藻,其细胞中含有独特的初级或次级代谢产物,化学成分复杂,太阳能转化效率可达到3.5%,因而作为能源原料的潜力十分巨大。从微藻中得到的脂肪酸可转化成脂肪酸甲酯,即生物柴油。与柴油相比,生物柴油除了具有较好的燃料性能、性能和安全性能以外,还具有有害气体排放低的环保特性。在沸石催化剂的作用下,微藻通过热化学转化可以生产出汽油型燃料;生长在海水中的绿藻,能积累大量游离的甘油以平衡环境中的盐浓度,其甘油的含量可占自身干重的85%。
山东省科技厅副厅长、青岛国家海洋科学中心主任李乃胜说,通过微型藻类生产能源有很多优势一一微藻几乎能适应各种生长环境,不管是海水、淡水、室内、室外,还是一些荒芜的滩涂盐碱地、废弃的沼泽、鱼塘、盐池等都可以实现种植;微藻产量非常高,一般陆地能源植物一年只能收获一到两季,而微藻几天就可收获一代,而且不因收获而破坏生态系统,就单位面积产量来说比玉米高几十倍;不占用可耕地,藻类可以种植在海洋或露天的池塘,因而可利用不同类型的水土资源,具有不与传统农业争地的优势;产油率极高,微藻含有很高的脂类(20%~70%)、可溶性多糖等,1公顷土地的年油脂产量是油菜籽的80倍;微藻加工工艺相对简单,微藻没有叶、茎、根,不产生无用生物量,易于被粉碎和干燥,预处理成本比较低微;微藻热解所得生物质燃油热值高,平均高达33MJ/kg(兆焦尔/千克),是木材或农作物秸秆的1.6倍,最后,有利于环境保护,藻类植物能捕获空气中的二氧化碳,有助于控制温室气体排放。
微藻种植可与二氧化碳这样的温室气体地处理和减排相结合,据统计,占地1平方公里的养藻场可年处理5万吨二氧化碳,而且微藻不含硫,燃烧时不排放有毒有害气体,整个产油过程非常清洁。
据估算,我国盐碱地面积达1.5亿亩,假如用14%的盐碱地培养种植微藻,在技术成熟的条件下,生产的柴油量可满足全国50%的用油需求。
此外,太湖区域蓝藻的大面积爆发,也使科研人员开始思考蓝藻的治理和利用问题,而将藻类转化成燃料油或许是太湖蓝藻变害为宝的良方。但要使这种“变化”成为经济可行的能源生产方式,还有很多问题要解决。譬如,藻细胞的收获、藻细胞中水分的脱除、灰分的降低等。
高成本的门槛
我国的内海域按自然疆界可达473万平方公里,向外海延伸至国际公共海域,面积更为广大。可以说,以微藻生产生物质能源,蕴含着海量的潜能。既然如此,为什么目前科研人员没有大规模地用藻类来生产生物质能源呢?
中国科学院水生生物所徐旭东研究员认为,高成本是目前的主要障碍。因为利用高等植物和微藻生产生物质能源,其能量都来自于太阳光。地球上单位面积、单位时间内接受到的太阳光能是在限定范围内的,要生产大量的生物燃料,必须依赖于大规模的植物或微藻生产面积。此外还要把这些微藻从广大面积上收集起来,再进行工业加工。因此,生产、收集和运输所耗费的能量与其可产出的能量之间的比例,是决定生物能源产业发展的关键。也就是说,微藻只有在单位面积上高密度产出,才是相对于其他高等植物产油的优势关键所在。
但以目前的技术水平,微藻培养也存在单位面积生产能耗大、投入成本高的问题,因此,要使微藻生物柴油成为真正的替代能源,降低微藻的生产能耗和成本至关重要。
徐旭东说,微藻的大规模培养主要有开放池和密闭反应器两类方式。开放池培养成本相对较低,但是藻类生长所达到的细胞密度较低,某些情况下容易被当地其他微藻侵染,水蒸发量大;密闭培养可达到较高的藻细胞密度,不易被杂藻侵染,水蒸发量小,但反应器造价和运转成本较高。因此,前途是需要发展出集二者优点,而回避各自缺点的新型培养方式。此外,微藻培养液中细胞只占很小一部分,绝大部分是水,还需要发展出低能耗的收集细胞,并循环使用培养液的技术。
尽管利用微藻生产生物质能源困难重重,但是我国科学家在此研究领域还是取得了重大突破。新奥集团副总裁、首席科学家甘中学说,新奥集团的微藻生物能源技术完全模拟生态环境运作――利用微藻的光合作用,让微藻在生长中吸收煤化工生产中排放的工业废气,再从培育出的微藻中提炼生物柴油以及其他高附加值产品。
微藻是一种单细胞高生长率的生物,每4小时可繁殖一代。甘中学说,“我们不但结合了微藻转基因工程改造、高通量筛选等技术,获取生长速度快、油脂含量高、适合工业生产的优良藻种;而且采用高密度立体养殖技术和高效低成本光生物反应器技术,提高光利用效率及二氧化碳吸收效率;还运用含氮、磷较高的工业废水回收技术和工业废热利用技术,提高养殖效率,降低养殖成本,实现微藻生物能源的产业化。”此外,微藻生物能源技术还将结合非燃烧催化气化技术、地下气化采煤技术、低成本制氢技术、甲烷化和发电技术等,实现煤基能源生产的“零”排放和“系统能效”最大化。
据悉,新奥集团目前已经完成实验室和中试规模的工艺技术路线,完成了研发中心试验平台建设与中试示范化工程。在此基础之上,新奥集团将于2012至2013年实现微藻生物能源的产业化和盈利,形成可复制的产业化单元技术,实现生物能源产品和高附加值产品的生产。
据统计,我国有大量低品位褐煤不易开采和利用。同时,传统煤矿的开采率只有40%至50%,以至于全国大约有370亿吨废弃煤。“这项技术可以对褐煤及废弃煤进行气化开采,利用率可达73%左右”,甘中学说。新奥集团在内蒙古乌兰察布建立了试验区,已经成功运行了9个月,目前是我国唯一掌握该技术的单位。
全球热潮
目前,微藻生物质能源已经在世界各国掀起了一股研究和开发热潮,很多发达国家在微藻生物质能源项目上投入了大量资金,这些资金不仅来自政府投入,还有相当大一部分来自实力雄厚的企业。
世界上以发展生物质能源产业为目的,并进行较大规模的微藻产油研究始于20世纪70年代末。1978年,美国能源部启动了一项利用微藻生产生物柴油的水生生物种计划,研究人员经过10多年的努力,从美国西部、西北、西南部和夏威夷采集并分离到了3000株微藻,筛选出其中300余株具备潜力的产油藻种。该研究计划还对其中生长速度快、油含量高的微藻采用开放池系统进行室外培养试验。
从1990年到2000年,日本国际贸易和工业部曾资助了一项名为“地球研究更新技术计划”的项目。该项目利用微藻来固定二氧化碳,再从这些微藻中提炼出生物质能源。该项计划共有大约20多家私人公司和政府的研究机构参与,10年间共投资约25亿美元,筛选出多株高品质藻种,建立起了光生物反应器的技术平台,以及微藻生物质能源开发的技术方案。
2006~2008年,石油价格一度大幅上扬,大大刺激了微藻生物质能源产业化技术的开发,美国等发达国家的政府和企业在该领域纷纷投入巨资,在国际上掀起了一股势不可挡的热潮。
2006年11月30日,美国两家公司在亚利桑那州建立了可与1040兆瓦电厂烟道气相联接的商业化系统,成功地利用烟道气的二氧化碳,大规模“光自养”培养微藻,并将微藻转化为生物燃料。同时由美国著名实验室和科学家组成的国家联盟,宣布了由国家能源局支持的“微型曼哈顿计划”,计划在2010年实现微藻制备生物柴油的工业化。
新西兰某生物经济公司针对微藻生产的生物柴油,进行了世界首次概念验证。2006年12月,新西兰能源部长以生物柴油作为动力,驾驶一部未经改装的标准豪华休旅车,沿着威灵顿高速公路奔驰,这是生物柴油的光荣之路。
2007年末,国际能源公司宣布开发以微藻为原料生产可再生柴油和喷气燃料,稍后,美国公司投资70亿美元开展微藻生物柴油技术的研究,并在夏威夷建立了一个试验工厂通过利用海洋藻类的植物油生产生物柴油。接着,美国第二大石油公司宣布与美国能源部可再生能源实验室(NREL)协作开发微藻生物柴油技术,用作喷气式发动机等交通工具的燃油。
2008年3月10日,PetroSun公司宣布其位于美国得克萨斯州的微藻养殖场于2008年4月1日投入商业化运作,这是该公司初期的商业化微藻制生物燃料装置投产。现有的微藻养殖场的海水槽占地1100英亩,共包含94个5英亩和63个10英亩的海水池塘。
位于美国加州的Live Fuels公司正在资助一个由国家实验室(美国能源部的一个研究部门)领导的科学团队,从事一系列研究利用边际土地,在淡水或咸水环境中培养微藻,并且利用微藻生产油脂。该公司乐观地估计,2000~4000万英亩的边际土地生产出来的微藻油可以替代整个美国每年进口的石油,并且可以保留下整个美国4.5亿英亩的肥沃土地来种植粮食作物。
美国国防部于2008年底宣布投入2000万美元基金进行微藻生物柴油研究工作,主要目的在于在2010年前证实并使基于海藻的生物质燃料能够实现商业化并成为JP-8喷气燃料的替代品,该项目由遍布美国的各个机构共同实施,包括美国加州理工大学圣地亚哥分校的Scripps海洋研究所、夏威夷生物能源研究所(Hawaii Bio Energy in Honolulu)以及北达科他大学能源环境研究中心(University of North Dakotds Energy and Environmental research center)等。华盛顿州立大学的陈树林教授与波音公司合作,研究利用微藻开发战斗机用油。
除美国、日本、新西兰、荷兰等国以外,英国也不甘落后。据英国《卫报》消息,英国日前启动一项藻类生物燃料公共资助项目,计划将耗资2600万英镑,于2020年前实现利用藻类生产运输燃料以代替传统的化石燃料。
中国微藻能源的开发
在国际大环境之下,中国对微藻生物质能源的研究也处于领先水平。
2003年初,中国工程科学院组织各领域专家在北京召开了“生物柴油植物原料发展研讨会”。会上专家认为,藻类的生物量巨大,一旦高产油藻开发成功并实现产业化,我国生物柴油产业规模将达到数千万吨。
2006年底,在中国工程院主办的“2006中国生物质能源发展战略论坛”上,我国确定了自己的生物能源发展方针――“中国生物能源将以非粮作物为主,国家将采取各种优惠的财税政策,推进中国生物质能源的快速发展。”
2008年5月,中科院高技术研究与发展局、中国科学院生命科学与生物技术局与中石化石油化工科学研究院联合组织召开了“微藻生物柴油技术研讨会”。目前,浙江省也在积极筹划立项支持微藻生物柴油技术开发工作,拟建立微藻生物能源研究基地,利用其沿海优势开展海洋微藻生物能源方面的研究工作。
2009年3底,国家科技基础性工作专项重点项目“非粮柴油能源植物与相关微生物资源的调查、收集与保存”项目在广州启动实施。该项目拟在全国范围内开展非粮柴油能源植物和相关微生物资源的全面的科学考察、野外实地调查、相关数据资料的采集,摸清我国非粮柴油能源植物和相关微生物资源的家底,掌握能源植物和相关微生物资料的种类、分布、贮藏量、化学成分等科学资料和相关信息,提出重点开发的种类,为能源植物与微生物的研究和生物柴油产业的可持续发展提供支撑。
由于目前世界上绝大多数国家在微藻生物能源的研究开发上时间并不长,大部分的工作都是在最近几年刚刚开始。因而,“在微藻生物柴油开发方面,我国与发达国家相比差距并不明显,甚至处于领先地位。如何抓住当前的有利时机,整合优势资源,开发我国自己的微藻生物柴油技术,从而使我国在世界可再生能源研究领域占有一席之地,是我国政府、科研工作者和企业亟待思考和解决的问题,”甘中学这样说。
篇4
【关键词】糠醛;生产技术;升级发展
糠醛又称呋喃甲醛,透明无色带苦杏仁气味之油状液体,是我国的传统出口化工产品之一,由于以糠醛为原料直接或间接衍生出的化工产品达1600多种,主要用于生产糠醛树脂、呋喃树脂、糠醛-尿醛树脂、酚醛树脂等。也用于制备果酸、增塑剂、溶剂和火箭燃料等。糠醛的生产以富含多缩戊糖的干蔗渣、玉米芯、稻壳等可再生的农林作物为原料,具有可再生的特点,所以,在石油、煤、天然气等能源日益紧张的今天,大力发展糠醛产业,努力开发其下游产品,拓宽其应用领域具有重大意义。
1.糠醛生产工艺简介
1.1工艺原理
糠醛的基本生产原理是:富含多聚戊糖的玉米芯,在酸性催化剂的作用下,经升温加压进行水解、生成木糖,木糖脱水生成糠醛。其反应式如下:
H+ -3H2O
(C5H8O4)n+nH2O——n(C5H10O5)——nC5H4O2
生产工艺流程大体分为五个工段:原料粉碎、拌酸、水解、蒸馏、精馏。
1.2国内外工艺技术概况
目前,国内外糠醛生产工艺种类较多,就水解和精馏而言大体可分为两大类,一类为固定床水解、间歇精馏或连续精馏;另一类则是旋转床水解、间歇精馏或连续精馏。水解催化方式分为有酸水解与无酸水解,我国的糠醛生产全部使用有酸水解;无酸水解工艺目前尚不成熟,主要是采用玉米芯在中压(大于1.6MPa)水解釜中产生醋酸而进行自水解,缺点是成品收率相对较低。
1.3工艺流程描述
原料粉碎拌酸水解冷凝蒸馏冷凝毛醛中和精馏冷凝成品。
2.目前行业存在的问题
(1)生产规模:单体生产能力小、产能不集中。目前,国内的糠醛厂大多为年产3000t产能,近两年有新建年产5000t的生产系统,但还是延续传统的工艺,未能充分体现出规模效应,单位产品摊销费用相对较高,规模弱势凸显,市场竞争力相对较弱。
(2)人力成本:一套年产3000t/a系统生产定员为50人,随着人力资源成本的不断上升,工人工资费用由5年前的250元/t醛升高至目前的520元/t醛。
(3)安全环保问题:排渣、运渣、硫酸输送等工段均为人工操作,自动化程度较低,生产过程中存在一定的安全隐患;锅炉均为手动上渣锅炉,密封性能差、效率低,污染物排放不稳定;释放气体未有合理的回收装置,刺激性气体大部分释放至大气中。
(4)水解锅体积小,操作自动化程度低,造成蒸气能耗相对较高,目前行业大多使用12-15m3水解锅,吨醛蒸气消耗达21t-23t,整体设备利用率较低。
3.行业改造升级思路
根据原料收购半径,规划产能合并至10000t/年产,公司年消耗玉米芯原材料10.5万吨,每年产生的废糠醛渣约为14.85万吨,为了充分利用糠醛渣生物质能,实现资源综合利用,发展低碳经济,淘汰现有的落后工艺,筹建生物质能发电项目,并将糠醛生产系统进行优化:
(1)将手动燃渣锅炉升级整合为两台具有国内先进技术水平的35t/h循环流化床燃渣热电锅炉,平均效率较现有锅炉提高40%。
(2)建设2×3.3MW生物质能发电项目,年均发电量为4752万kwh,折合节约标准煤5万吨,可以减少二氧化碳排放量约15万吨。
(3)锅炉环保设施系统综合治理,各项污染物指标达到国家相关标准要求。烟气采用静电+高效布袋除尘(装置处理,钠钙双碱法(湿法)脱硫处理后经60m烟囱排放。
(4)采用水解排渣系统全密封装置,将释放出的无组织气体设计专用回收装置收集、蒸发冷凝器冷却成液体后进系统回用,彻底解决无组织气体的气味污染。
(5)采用无碱中和与轻组分(甲醇、丙酮)回收的连续精馏装置系统。
(6)所有环保设施及各岗位进行DCS系统自动化控制,采用分级分层体系结构,由工作站和通信网络两大部分组成,将各个工作站连接起来,实现集中监视、操作、信息管理和分散控制。
篇5
据统计,世界3/4以上的人口生活在生态消耗速度超过环境更新速度的国家,按人均计算,消耗能源前5位的国家分别为美国、澳大利亚、阿拉伯联合酋长国、科威特和丹麦。若按照人们对资源和环境的需求,到本世纪30年代,人们将需要两个地球才能维持现在的生存水平。因此,能源与环境是影响人类生存质量的重要挑战,需要有相当担当的国家、地区、社团、机构、学校、企业和个人共同来承担起这份艰巨而光荣的社会责任。
在不可再生能源(化石能源、煤炭)等一系列能源日渐枯竭的同时,太阳能、水能、风能、生物质能等的研究利用已方兴未艾。太阳能热水器、太阳能发电、风电厂、大坝,水力发电等都在不断的研究中。
以风能为例,风能是由太阳辐射热引起的一种自然现象,风能储备量是地球上可利用开发水能的10倍,是每年可燃烧煤炭的3倍。全部可用的风能理论上来说有30多亿千瓦时,而中国目前可开发利用的风能只有2.5亿千瓦时,还有巨大的发展潜力。由于风能的储量巨大,分布广泛、且没有污染(每10兆瓦风电可以减少9.35吨二氧化碳、0.49吨粉尘,节约3.73吨煤)而成为新能源产业中最收关注的能源之一。
目前,丹麦、西班牙、美国、印度等国都已站在风能利用的前沿。根据国家的中长期发展规划要求,到2020年,太阳能、风能、生物质能的发电量要增长10倍。国内风电的研究已经取得了一系列进展。在众多的风能利用方式中,磁悬浮的风电技术已经成为具有较为完善体系的先进技术。深圳顺禧机电技术开发有限公司(以下简称顺禧机电)研制的三利牌磁悬浮风力发电机系列产品经过8年多的实验开始进行小批量生产。顺禧机电研制的磁悬浮风力发电机系列产品的风力利用率高,并在充分开发了水平轴的同时,开始进行垂直轴的利用。
在风力发电机中,水平轴普遍被各国优先选用,特别是大型的风电机,但是它的缺点也很明显,即对启动的风速要求较高,必须以电力启动。以日本NHK公司的风电机组为例,它的风速达到4米时,风能开始启动:当风速超过10米时,就要开始反向送电,并需要减速,否则就会吹断风叶。在风速过低和风速过高的情况下,它都没有发电。也就是说,当它在4米的时候开始启动,在5米的时候开始充电,一年只有1/3的时间有这样高的风速,那么一年就会有2/3的时间是不能运作的,大量的风能就无法被利用。因此未来的研究重点就是如何延长发电的时间,在风速较高和风速较低的情况下都可以发电。
篇6
我国目前生物质气化应用最广泛的领域是集中供气以及中小型气化发电,少量用于工业锅炉供热。农村集中供气工程解决了农作物秸秆的焚烧和炊事用能问题,而生物质气化发电主要针对具有大量生物质废弃物的木材加工厂、碾米厂等工业企业。我国的秸秆气化主要用于供热、供气、发电及化学品合成。
(1)秸秆气化供热。秸秆气化供热是指秸秆经过气化炉气化后,生成的燃气送人下一级燃烧器中燃烧,为终端用户提供热能。秸秆气化供热技术广泛应用于区域供热和木材、谷物等农副产品的烘干等,与常规木材烘干技术相比具有升温快、火力强、干燥质量好的优点,并能缩短烘干周期,降低成本。
(2)秸秆气化供气。秸秆气化供气是指气化炉产生的生物质燃气通过相应的配套设备为居民提供炊事用气。秸秆气化供气又分为集中供气和单独供气两种类型。
①秸秆气化集中供气。生物质气化集中供气系统是20世纪90年代以来在我国发展起来的一项新的生物质能源利用技术。它是在农村的一个村或组,建立一个生物质气化站,将生物质经气化炉气化后转变成燃气,通过输气管网输送、分配到用户,系统规模一般为数十户至数百户供气。目前,我国已广泛推广利用生物质气化技术建设集中供气系统,以供农村居民炊事和采暖用气。
在秸秆气化集中供气系统中,气化炉的选用是根据不同的用气规模来确定的,如果供气户数较少,选用固定床气化炉;如果供气户数多(一般多于1000户),则使用流化床气化炉更好。秸秆燃气的炉具与普通的城市煤气炉具有所区别,国内此类炉具的生产厂家也较多,效果较好,可以满足用户要求。
②户用秸秆气化供气。该种方式为一家一户的农村居民使用,户用小型秸秆气化炉,产生的燃气直接接人炉灶使用,系统具有体积小、投资少的优点。但也有明显的缺点:由于气化炉与灶直接相连,生物质燃气未得到任何净化处理,因而灶具上连接管及气化炉都有焦油渗出,卫生很差,且易堵塞连接管及灶具;因气化炉较小,气化条件不易控制,产出气体中可燃气成分质量不稳,并且不连续,影响燃用,甚至有安全问题;从点火至产气需要有一定的启动时间,增加了劳动时间,而且该段时间内烟气排放也是个问题。
③秸秆气化发电。我国在生物质气化方面有一定的基础。早在20世纪60年代初就开展了这方面的研究工作,近20年来加快了生物质气化发电技术的进一步研究。开发的中小规模气化发电系统具有投资少、原料适应性和规模灵活性好等特点,已研制成功的中小型生物质气化发电设备功率从几千瓦到5000千瓦。
气化炉的结构有层式下吸式、开心式、下吸式和常压循环流化床气化炉等,采用单燃料气体内燃机和双燃料内燃机,单机最大功率已达500千瓦。
农业废弃物气化发电技术经过近年来的研究、探索,分别解决了流化床气化、焦油裂解、低热值燃气机组改造、焦油污水处理和系统控制及优化等各种核心技术,在技术的产品化和标准化研究、提高农业废弃物气化发电站的成套性和实用性方面取得较大进展,形成了具有我国特色的农业废弃物能源利用方式。我国的生物质气化发电正在向产业规模化方向发展,在国内推广很快,而且设备还出口到泰国、缅甸、老挝等东南亚国家和地区。目前已签订的中小型农业废弃物气化发电项目总装机容量40兆瓦以上,成为国际上应用最多的中小型生物质气化发电系统。
篇7
我国能源环境与世界能源问题相比更为严峻,一方面我国人均能源可采储量远远低于世界平均水平,而且能源消耗巨大。以建筑能耗为例,建筑能耗大体占到全国总能耗的30%—40%,是发达国家的2—3倍以上。我国人均耕地只占世界的1/3,而实心粘土砖每年毁田达12万亩;我国水资源仅为世界人均占有量的1/4,而卫生洁具耗水量高出发达国家30%以上,污水回水率仅为发达国家的25%;钢材、水泥等物耗水平也要比发达国家高出10%—30%。
国务院发展研究中心所作的一份研究报告认为,现阶段随着国民经济的持续发展和城乡建设的加快,我国住宅建设日益扩大。据推测,到2015年,城镇50%以上的建筑将是21世纪内建造的。因此,有效的降低建筑业的能源资源消耗,减少建筑行业造成的环境污染,将对整个社会可持续发展起着至关重要的作用。
2环境污染状况
2.1温室效应
目前已发现有30多种气体能够引起温室效应,其中较为主要的有CO2,CH4,O3,CO,N2O、水蒸气、二氯乙烷、四氯化碳及氟氯烷等。温室效应引发全球变暖所带来的影响和危害主要有几个方面:海平面上升;全球降雨不均衡,有的地区发生洪涝、有些地区发生干旱;影响大气环流,出现异常天气情况,造成农作物歉收;快速的气候变化造成大量物种的灭绝,对生物产生多样化影响;全球变暖造成生态系统和环境的变化,引起传染病的流行,危害人类健康。
2.2臭氧层破环
臭氧层能有效地阻止大部分有害紫外光通过,而让可见光通过并达到地球表面,为各种生物的生存提供必要的太阳能。而当前人类的活动正在使臭氧层遭到几乎毁灭性的破坏,人工合成的含有氯、氟的一些物质,尤其以氟利昂和哈龙,对臭氧层的破坏最大。臭氧层遭到破坏会带来严重的后果,主要在以下几个方面:使人体免疫机能下降,增加患皮肤癌、白内障的概率;过量的阳光造成农作物减产,森林的退化;海洋生态系统遭到破环;加剧温室效应和全球变暖。
2.3酸雨
酸雨是指pH<5.6的降水,是大气环境质量综合因素的客观反映。对酸雨形成起主要作用的Sox和Nox均来自于天然源和人工源,尤其以煤炭和石油燃烧过程中释放的二氧化碳,矿物燃料中含氮物质燃烧时产生氮氧化物,以及汽车、飞机的尾气,都产生Nox。
酸雨对农业的影响主要造成土壤酸化,肥力降低;酸雨会造成水体酸化,破坏水生生态系统;酸雨还会造成植物黄叶并脱落,森林成片衰亡;同时,酸雨会危害人体健康,诱发癌症、老年痴呆等疾病,使人患动脉硬化、心梗、肺水肿的概率大大提高。
3建筑产业对环境的影响和破坏
建筑环境是人类活动对资源影响的一个非常明显的例子。世界1/6净水供应给建筑,建筑消耗掉1/4的木材,消耗掉2/5的材料与能量。全球的建筑相关产业消耗了地球能源的50%,水资源的50%,原材料的40%,同时产生了42%的温室气体,50%的水污染,48%固体废弃物,50%的氟氯化合物,同时建筑结构也影响水域、空气质量以及社会群体的结构等较大的范围。
4建筑维护结构的节能
4.1墙体的设计
外墙传热在建筑物总体传热中所占的比例最大,当前我国大多采用保温节能墙体,分为三类:外墙外保温、外墙内保温、中空加芯复合墙体。
其中外保温具有适用范围广、保护主体结构延长建筑寿命、减少热桥、扩大使用面积等特点,外保温技术的运用推广得到了很大发展,较为成熟的外保温技术有:EPS薄抹灰外墙外保温系统、胶粉EPS颗粒保温浆料外墙外保温系统、EPS板现浇混凝土外墙外保温系统、EPS钢丝网架板现浇混凝土外墙外保温系统、机械固定EPS钢丝网架板外墙外保温系统。
4.2门窗的设计
节能门窗要有良好的隔热保温性能,夏季能阻止热量进入室内,冬季能阻断室内热量传出室外。目前具有较好效果的节能门窗主要有:塑料门窗、铝木复合门窗、玻璃钢门窗,以及采用发展注胶段热冷桥技术。
5建筑供热系统的节能(以居住建筑为例)
建筑节能包括了两个系统工程,即建筑本身工程节能,和建筑供能系统的节能。而现在许多的“节能建筑”只是围护结构热工性能满足规范节能设计要求,而并不能称其为节能建筑。
建筑不仅应具有良好的围护结构热工性能,还要有优化的供能系统,两者结合组成一个有机系统工程,这个系统能有效运行的关键在于供能可调性。例如在集中供热住宅中,实行供热热量计量,用户根据自己需要调控室温;在有,可在建筑中设置太阳能利用装置,冬季当室内太阳得热能补充室温时,室内可调供热系统就能减少对常规热源的使用。
6能源的综合利用和新能源的开发
6.1太阳能的利用
太阳能作为一种可持续利用的清洁能源,被认为是21世纪以后人类可期待的、最有希望的能源,并得到了国际社会的普遍重视。太阳能热利用的两个主要方面在于太阳能热水器与太阳能建筑。
6.2地热的综合利用
(1)空气源热泵是在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。空气源热泵系统简单,初投资较低。空气源热泵的主要缺点是在夏季高温和冬季寒冷天气时热泵的效率大大降低,其不适用于寒冷地区,在冬季气候较温和的地区,已得到相当广泛的应用。
(2)地源热泵系统是利用较深地层中未受干扰常年保持的恒温,其远高于冬季的室外温度,又低于夏季的室外温度,可以克服空气源热泵的技术障碍,且效率大大提高。在地源热泵系统中,冬季通过热泵把大地中的热量升高温度后对建筑供热,同时使大地中的温度降低,储存了冷量,可供夏季使用;夏季通过热泵把建筑中的热量传输给大地,对建筑物降温,同时在大地中蓄存热量以供冬季使用。
(3)地表水热泵系统是在靠近江河湖海等大量自然水体的地方,利用这些自然水体作为热泵的低温热源而设计的一种空调热泵的形型式。但是,这种地表水热泵系统也受到自然条件的限制,同时这种热泵的换热对水体中生态环境也会造成一定程度的影响。
(4)地下耦合热泵系统是利用地下岩土中热量的闭路循环的地源热泵系统。它通过循环液(水或以水为主要成分的防冻液)在封闭的地下埋管中的流动,实现系统与大地之间的传热。在冬季供热过程中,流体从地下收集热量,再通过系统把热量带到室内;夏季制冷时逆向运行,即从室内带走热量,再通过系统将热量送到地下岩土中。地下耦合热泵系统保持了地下水热泵利用大地作为冷热源的优点,同时又不需要抽取地下水作为传热的介质,是一种可持续发展的建筑节能新技术。
篇8
【关键词】能源动力;人才培养;改革
能源是国民经济的命脉,是国家可持续发展的重要物质基础和根本保证。能源与动力工程类专业正是致力于培养能从事能源开发与利用的技术与管理人才。目前,全国有200余所高校开设了能动相关本科专业,其中大部分已经建设较为成熟,部分985和211高校的能动专业在国内已具备一定的影响力且具备鲜明特色[1]。而三峡大学的能动专业于2011年才开始立项建设,并同年开始招生。作为地方高校新开设的能动专业,在人才培养方面必须适应社会和行业需求,符合我校 “高素质、强能力、应用型”的人才培养的目标,因而,在专业建设伊始,就不能完全照搬其他高校能动专业人才培养模式,需要结合实际情况,大胆改革和创新,才能在国内同类专业中快速占领一席之地,并以高起点快速稳健发展。
1 国内外研究现状
欧洲和美国的大学将能动类专业设置在机械工程系中,且不以专业来单列,而只是机械类的一个方向,称为热流科学(Thermal and Fluid Science)或能量系统(Energy system),而核工程与核技术则一般单独设立,或者设在化工系中,例如美国麻省理工学院、佛罗里达大学等,机械工程的教学与研究范围覆盖了目前国内本科生专业目录中的机械类、能源动力类的范围,这样就大大扩展了能动专业的学科基础和专业领域,以此来适应“应用型”人才培养的需求,使学生获得坚实的专业理论和宽广的专业知识。
我国能源动力类专业形成于20世纪50年代[2],当时在苏联教育体制的影响下的分为10个三级专业,经1993、1998、2012年三次修订最终合并为1个专业:能源与动力工程,使得专业覆盖面被大幅度拓展,要求本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。要实现以上人才培养目标,关键在于如何紧跟行业需求并结合高校自身情况,制定科学的人才培养方案并认真执行。然而,经前期大量调研结果表明,目前国内高校尤其是地方院校在能动专业人才培养上存在以下特点或不足:
(1)专业划分过细,口径太窄。大部分高校在能动专业中设置了多个专业方向,如水力发电、火力发电、清洁燃烧、供暖、制冷等,并将专业课分方向模块进行教学,这极大地限制了学生的选择空间,不利于学生专业知识拓展,使学生在择业时被固定在某个方向上,缺乏竞争力。
(2)人才定位不尽合理。经前期广泛调研发现,随着我国现阶段加快能源建设的力度,国内目前需要更多的是能源动力行业运行、维护与管理方面的技术人才[3],对于高端人才如设计研究类人才虽然稀缺,但由于能动专业实践性强的特性,一般难以由高校直接培养此类人才,即高端技术人才亦需要从工程实践中磨砺而出。所以作为地方院校,尤其新开设能动专业的地方高校,不能一味照搬985、211高校以及部分经过几十年专业建设已经具备自己鲜明特色和专业实力的高校的人才培养模式,必须紧跟行业需求,以培养应用型人才为主线,并充分利用和发挥高校自身的特色和优势。
2 三峡大学能动专业人才培养模式改革
三峡大学的能动专业于2010年底才开始立项建设,并于当年从我校2010级机械设计制造及其自动化专业中分流出53位学生按照能源与动力专业人才进行培养,2011年开始以能源与动力工程专业独立招生,故截至目前实际上已有一届学生毕业(2010级),且2015年度即将毕业的学生目前绝大部分已经签订了就业协议。近五年来,学校在专业本专业建设过程中积极探索,对兄弟高校及能动相关的企事业单位进行了广泛调研,并紧密结合我校能动专业“新开设、新起点”的现实情况,培养和提炼自己的专业特色,并对本专业的人才定位和培养进行了以下改革:
(1)在人才培养与定位方面,以培养“高素质、强能力、应用型”人才为指导,制定了专业人才培养方案,着重提炼专业所覆盖知识体系的共性,拓宽专业口径、增厚专业基础、突出方向共性、弱化专业方向、提升就业能力,扩大就业口径。具体为:1)以流体机械动力学为基础,设置适用于水力发电、热力发电、风力发电中能量转换动力装备的动力学相关系列必修基础课程,突出水力发电专业课,并辅以风力发电等专业课程;2)以热-力转换原理为基础,设置适用于火力发电、生物质能发电、核电等热动力学、热交换、热传输相关的系列必修基础课程,专业课设置方面突出火电、核电,辅以生物质能相关课程。即将动力工程专业分为流体机械和热力机械两个方向,但在培养过程中,大大拓宽了专业基础必修课的范围,增加学生后续就业时行业选择的范围。
(2)在实验/时间教学方面,以厚基础、宽口径、应用型人才培养为指导,建设和整合实验、实践教学条件。取消零散的课程实验/实践,开设系列综合实验/实践课程,使实验/实践教学具有层次性、连贯性、交叉性、系统性和良好的可操作性。避免以课程为单位开设实验时的连续性差、重复度高、综合性不强、效果差的缺点,同时在一定程度上降低建设成本。此外,学校还积极开发校外实践基地,挖掘学校所在地区及周边区域广泛的能源动力行业/企业资源,作为本专业有效的实践基地。
(3)以校外实践基地建设为抓手,开发专业初期就业资源。任何一个高校新专业就业时其情况都或多或少存在不确定性,其原因主要在于社会和行业对于特定高校新专业的认识度不高。因而打开就业工作局面难度大,故无论从短期还是长远来看,都需要充分利用所建立的校外实践基地作为就业渠道,使基地发挥更大作用,这需要在基地建设过程中同时做好基地管理制度建设,以协议的形式为本新专业向基地输送人才提供保证。
3 改革效果
近五年来,学校在建设能动专业过程中不断探索,最终形成以上建设意见和改革措施,并取得了显著成效:
(1)制定了科学合理的能动专业人才培养方案,确定以掌握能源转换装备运行及转换机理为基础,在传统的专业基础课程中,将《流体机械原理》、《水轮机及调节器》、《汽轮机》等增设为专业公共基础课,在专业拓展模块课程中按水电、热电、流体机械、新能源发电等设置小学分模块供学生选修,但不限制选择模块数量。目前学生就业反馈情况表明,在弱化专业方向、增厚专业基础课程后,学生在择业过程中即使不在个人专业方向上就业,只要未跨出能动行业,就能很快适应新领域的工作。
(2)整合实验/实践教学计划和条件。如将以往随理论课程开设的《流体机械原理》、《流体力学》、《液压传动与控制》、《泵站工程》、《水轮机及调节器》等的课程实验进行专门设计,整合成32学时的《流体综合实验》课程;将《热力学》、《传热学》、《汽轮机》、《热电厂动力工程》、《锅炉原理》等课程的实验内容整合成32学时的《热工综合实验》;将《测试技术》、《控制工程》、《电厂自动化》等课程实验整合成16学时的《测控综合实验》等,并根据相关理论课开设时间将综合实验课内容分为两个学期开设。这样学生能够得到更为系统的、连贯的实践训练,相比随理论课程开设的零散实验,综合实验教学效果更好随
(3)目前已在学校所在地区及周边能动企业建立本专业的实践/实习基地,且已经有效运行,如安能(宜昌)热电(生物质能发电)、长江电力(葛洲坝)、安能(襄阳)火电、三峡电厂、清江的隔河岩电站、高坝洲电站、向家坝电站、黄龙滩(十堰)电站、湖北宜化集团、宜昌安琪酵母、黑旋风工程机械等20多家能源企业和流体机械设计制造企业,可完全满足学生毕业实习、生产实习及其他培训的接待需求,极大地缓解了专业实践条件建设需要大投入的困难。
(4)专业就业情况良好,第一届毕业生(2010级,共53人)就业率达100%,其中除4人继续攻读硕士研究生外,15人进入水力发电厂,17人进入火电、生物质能电厂,6人进入电力部门事业单位,11人进入与流体机械及能源装备设计、制造相关企业。其中17人(32.1%)在本专业校外实践基地相关企业就职。截止2015年3月中旬,第二届毕业生(2011级,共81人)已签就业协议的达72人,已确定攻读硕士研究生5人。学校以专业调研、毕业生就业企业回访等多种形式,进一步拓宽和加深了与行业内相关企事业单位的联系,并就用人单位对我校毕业生在生产实践过程中的综合素质和表现进行跟踪回访,结果表明学生的综合能力水平总体较高。
4 结语
能源动力类专业是实践性、技术性很强的专业,且专业覆盖的技术领域非常广泛,针对具体的应用领域其技术专业性又较强,而高校在该专业人才培养的过程中一方面不可能面面俱到,设置过多的专业方向,另一方面又不能过于集中,而使得学生的专业知识领域过窄,导致就业方向没有选择余地。因而,在人才培养过程中要更多地考虑专业领域的共性,增厚专业基础,拓宽专业口径,使学生获得尽量宽广的专业综合知识,才能具备一定的竞争力,以适应现代能源动力领域对专业人才的需求。
【参考文献】
[1]徐翔,余万,陈从平,方子帆,李响,赵美云.三峡大学“能源与动力工程”专业培养方案的制订与完善[J].科教文汇:上旬刊,2014(6):60-61.
篇9
关键词:木质纤维素水解液;抑制物;酿酒酵母
引言
我国每年产生数量庞大的固体废弃物,焚烧已成为最常见的固废处置方式,该方式不仅浪费资源,还严重影响空气质量。报道显示微生物可将生物质转化为液态、气态的燃料,具有能耗低、转化效率高和不产生二次污染等优点,因此,以生物质材料作为原材料开发新能源已受到世界范围的关注[1]。
农作物秸秆和木材废弃物在固体废弃物中占重要地位,其主要成分是木质纤维素。木质纤维素是一种典型的生物质,利用微生物代谢木质纤维素产生清洁能源已成为研究热点之一。目前,酿酒酵母产乙醇被广泛应用于木质纤维素的资源化处理工艺,其具有成本低、原料丰富等优点。在酿酒酵母利用木质纤维素发酵之前,需对木质纤维素进行预处理和糖化,此时木质纤维素中的纤维素与半纤维素等转化为可发酵糖,在纤维素与半纤维素等大分子物质的分解过程中,引入了一些小分子化合物,这些物质对发酵有抑制作用,统称为抑制物。
1 抑制物的种类及抑制作用
木质纤维素水解液中的抑制物大致分为三类:弱酸类、呋喃类和酚类化合物。弱酸类主要包括甲酸、乙酸和乙酰丙酸,弱酸会破坏细胞内外的渗透压平衡,并进入细胞内部,这部分弱酸在细胞内部进一步解离,使得细胞内环境酸化,影响细胞内部的酶促反应,最终抑制细胞的生长[2]。呋喃类抑制物主要是糠醛和HMF,这类物质对微生物中的乙醇脱氢酶、丙酮酸脱氢酶和醛脱氢酶产生抑制,减缓酿酒酵母的生长;醛类抑制物会产生细胞内活性氧,导致DNA分解,进而阻碍RNA和蛋白质的合成[3、4]。相对于其他类型抑制物,酚类抑制物的毒性更强,低浓度的酚类就可以抑制酿酒酵母的生长,研究表明,低分子量的酚类化合物对酿酒酵母生长具有更高的抑制作用[5]。
2 降低抑制物对酿酒酵母抑制作用的措施
2.1 木质纤维素水解液脱毒
发酵前对木质纤维素水解液进行脱毒是降低抑制物抑制作用的有效途径。脱毒方法主要分为物理法、化学法和生物法,物理方法包括真空干燥浓缩、蒸煮、活性炭吸附、离子交换吸附和溶剂萃取等,这些方法可将水解液中的有毒物质在不改变分子结构的前提下去除,不同处理方法的去除效率具有差异[6]。化学方法是利用各种碱性物质(如NH4OH、NaOH、Ca(OH)2等)及过量石灰法对水解液进行处理,通过化学反应改变水解液中的成分以降低抑制物毒性[7]。生物方法是利用特定酶或微生物脱毒,其中,漆酶是一种常用的脱毒酶,通过氧化聚合反应将毒性较高的小分子量酚类化合物转化为毒性较低的大分子量酚类化合物[8]。
2.2 提高酿酒酵母对抑制物的耐受性
除了减少木质纤维素水解液中的有毒物质,还可提高酿酒酵母对抑制物的耐受性,目前比较常用的方法是基因工程方法、诱变方法和驯化育种方法。基因工程方法是通过添加、敲除或高表达某一种或几种与抑制物代谢相关的基因以提高酿酒酵母对抑制物的耐受性的方法。改造基因可以直接、快速地使酿酒酵母表现出我们所期望的特性,但木质纤维素水解液中的抑制物种类繁多,基因工程方法难以使得酿酒酵母同时具有多种抑制物耐受性,且酿酒酵母的新陈代谢途径复杂,改造基因可能使得酿酒酵母失去原本的优良特性[9]。诱变方法以自然突变为依据,利用诱变剂加快酿酒酵母细胞基因突变的速度,在短时间内产生大量突型酿酒酵母,经过进一步的筛选,可获得具有抑制物耐受性的酿酒酵母,而诱变方法具有不确定性和诱变范围广等缺陷,因此需大量的诱变型细胞增加获得目标菌株的几率,且诱变剂可能损坏出发菌株原始基因,丢失优良特性。驯化育种是一种模拟自然选择的过程,根据生物和环境共同进化的规律,对微生物施与一定的选择压力,使得微生物在自然突变的基础上定向进化。驯化方法中存在的环境压力使得微生物突变具有明确方向,可在短时间内富集突变子,在长期的驯化过程中,菌株的优良性质可以在代际之间传递,增加了优良性质的稳定性[10];驯化育种的不足之处在于菌株的突变机理尚未明确,难以通过其他手段获得该菌株。
3 结束语
木质纤维素水解液中的抑制物会影响酿酒酵母的发酵效率,降低代谢产物乙醇的浓度,因此需采取措施降低抑制物对酿酒酵母的抑制作用。将水解液脱毒与酿酒酵母改进进行对比,水解液的脱毒成本较高,不利于木质纤维素资源化利用的工业化发展,因此有必要提高酿酒酵母对抑制物的耐受性。木质纤维素水解液中抑制物的组分与原材料种类和预处理方式密切相关,不同改良酿酒酵母的方法各有其优缺点,在实际应用中可将多种方式有效结合,有利于获得具有较高耐受性的酿酒酵母。
参考文献
[1]钱伯章.生物质能技术与应用[M].北京:科学出版社,2010.
[2]Palmqvist,E.,Hahn-H gerdal,B.Fermentation of lignocellulosic hydrolysates.II:Inhibitors and mechanisms of inhibition. Bioresour[J].Technol,2000(74):25-33.
[3]Almeida J R M,Modig T,Petersson A, et al.Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J].Journal of chemical technology and biotechnology,2007,82(4):340-349.
[4]Ma M,Liu Z parative transcriptome profiling analyses during the lag phase uncover YAP1,PDR1,PDR3,RPN4,and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae [J].BMC genomics,2010,11(1):660.
[5]Palmqvist E,Hahn-H gerdal B.Fermentation of lignocellulosic hydrolysates.II:inhibitors and mechanisms of inhibition[J].Bioresour Technol,2000,74(1):25-33.
[6]Almeida JRM,Bertilsson M,Gorwa-Grauslund MF,et al. Metabolic effects of furaldehydes and impacts on biotechnological processes[J].Appl Microbiol Biotechnol,2009,82(4):625-638.
[7]Palmqvist E,Hahn-Hagerdal B.Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification[J].Bioresour Technol,2000,74(1):17-24.
[8]Larsson S,Cassland P,Jonsson LJ.Development of a Saccharomycescerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase[J].Appl Environ Microbiol,2001,67(3):1163-1170.
篇10
关键词:生物能源,生物酒精,生物质,纤维素,生产过程
0 引言
由于温室气温排放导致全球气温变暖,自然石化资源短缺。生物能源成为世界上研究热点。中国是世界上消耗石油第二的国家,大约占全世界总量的6%。国际能源中心(IEA)估计中国到2030年每天消耗1.4×107桶汽油;随着汽车工业的发展和普及,2020年,汽车的使用量从2004年大约2.4×107台增加到90-140×107台,运输所需的能源从现在比例约33%发展到57%左右,每天的所需量从目前的1.6×107桶到5.0×107桶。因此,到2030年,温室排放气体将增长至7.14Gt/年。对石油的需求导致中国更加依赖进口石油,2030年,75%的石油将依靠进口。因此,中国面临能源需求、国家能源安全和环境污染的挑战。中国作为发展中发展最快,世界上人口最多的国家,在经济快速发展和国际地位大幅提升的基础,应该发挥其主导作用,制定研究政策和目标,开发利用可持续“中性碳”能源,其中包括生物酒精的生产和使用。
纤维素生物质转化成生物酒精是世界上生物能源发展的热点研究之一。纤维素生物质主要包括农业残渣(水稻、玉米等秸秆)、森林残渣(树枝、锯末)、废弃物(废纸)、草本植物(芦竹)和木质植物(麻疯树、杨树),资源非常丰富,中国仅秸秆一年约有8.4亿吨,林木废弃物约2亿吨;到2030年,每年农作物残渣量达5.53EJ;森林残渣达0.9EJ(3/4来自木材加工,1/4来自森林残枝残叶);加上生物质能源种植(每公顷平均产量15吨干,10%的土地可以作为种植面积),统计计算,每年可以提供约23EJ的能源,相当于6000亿升的石油。而根据IEA的预测,2030年中国需要12.4EJ的交通运输液体能源。如果能够充分利用木质纤维素生物质,提高转化技术,生成酒精,中国可以足够满足运输能源的需求。通过转化生成生物酒精使用是中性碳排放过程,减少温室气体排放,有利于环境和资源的平衡利用。
世界上纤维素生物质转化生物酒精的技术基本上处于研究阶段。我国在纤维素生物质转化生物酒精的技术方面起步较晚,还是处于初步研究阶段。本文主要对纤维素生物质生物酒精生产过程中关键技术进行简要分析,指出存在的难点和可能性的解决方法以便进一步深入研究。
1 纤维素生物酒精生产
1.1 纤维素生物质作为生物酒精原料的特征
糖类和淀粉转化酒精的工程通过发酵,在世界上已经实用化;草本纤维素和木材纤维素转化酒精正处于实用化过程研究阶段。从生物质转化为生物酒精的容易程度来比较可以得出:糖类>淀粉>草本纤维素>木材纤维素。
淀粉和纤维素都是由葡萄糖组成的多分子高聚体。但是淀粉和纤维素的葡萄糖分子的结构不相同,如图1所示。淀粉容易生物化学分解,但是纤维素大分子是由葡萄糖脱水,通过B-1,4葡萄糖苷键连接而成的直链结晶性聚合体。在常温下不发生水解,高温下水解也很缓慢。另外,纤维素生物质中半纤维素由不同类型的单糖构成的异质多聚体,包括木糖、阿伯糖、甘露糖和半乳糖等。半纤维素木聚糖在木质组织中约占总量的20%~40%,它结合在纤维素微纤维的表面,并且相互连接(如图2)。其三,草本和木质纤维素表面因为酚类聚合物木质素的存在,更加难以分解。因此从纤维素生物质转化为酒精,由于半纤维素和木质素的存在,普通的发酵法不能够顺利完成生物酒精的生成。
1.2 纤维素生物酒精生产过程及有待解决的问题
从纤维素生物质转化为生物酒精的整个加工过程,如图3所示,大致可以分为六个过程。
首先是生物质的收集、水分调节和粉碎;然后是生物酒精生成过程,包括前处理、糖化、发酵和脱水;比如采用进行水热处理、碱化或微生物处理等的前处理措施来使纤维素易于糖化分解;其次,纤维素和半纤维素的糖化处理;接着采用酵母等微生物作用,产生酒精的过程,即发酵过程;然后,进行酒精和水分离,蒸馏脱水过程,完成生物酒精的生成;最后,废水和废弃物处理。
12.1 生物质利用
世界上对生物质的种类开发和数量估算等研究比较多,但关于生物质利用收集运输等相关研究不是太多。很多研究者提出了生物质收集的问题,但没有进行较深入的研究。主要存在以下问题:1)季节性和地域性强;2)能量密度低;3)输送成本高。
1.2.2 前处理、糖化技术开发
现在研究集中在生物酒精的转化过程中前处理分离木质素、纤维素糖化技术的开发和提高发酵效率。按前处理技术分类,可以分为:1)物理方法(粉碎、爆碎和水热处理等);2)化学方法(酸处理、碱化处理);3)微生物方法(酵素、微生物菌类利用)。同样按糖化技术可以分为三类:1)物理方法(水热处理等);2)化学方法(酸处理);3)微生物方法(酵素、微生物菌类利用)。
按照前处理和糖化综合技术可分成6大类,对比结果如表1。其中前5种方法,基本完成实验研究,处于应用初试阶段,但可以看出各种方法各有优点和缺点,在现有的工艺条件下,还没有最佳的生产工艺;微生物菌处理+微粉碎+酵素法是虽然处理速度慢,但能量效益和转化效果有望比较理想,环境负荷特低,所以前景最好,但各阶段都处于开发中。总体上,尚未有最佳的纤维素生物酒精的加工工艺。
1.2.3 发酵过程
如图4所示,三种转化过程。
1)传统方法:即纤维素酶法水解与乙醇发酵分步进行,水解和发酵都在最合适的温度下进行,但在酶解过程中分解糖没有利用反而反馈抑制酶的活性。
2)同时糖化和发酵:同时糖化和发酵即纤维素酶解与葡萄糖的乙醇发酵在同一个反应器中进行,酶解过程中产生的葡萄糖被微生物所迅速利用,解除了葡萄糖对纤维素酶的反馈抑制作用,提高了酶解效率。要求纤维素酶生产成本和周期的降低,能同时发酵五碳糖和六碳糖的转基因酵母,优化的预处理手段以及连续工艺的开发和使用:但存在水解和发酵所需的最佳温度不能匹配。
3)基因转化微生物直接生成:通过某些微生物的直接发酵可以转换为酒精。要求微生物既能产生纤维素酶系水解纤维素又能发酵糖产生乙醇。此方法不需添加 额外的酶,但后者需要酶基因的转入,是一种有前景的方法。
1.2.4 蒸馏、脱水
在这个环节主要要提取高度酒精,去水化;在此过程中主要要注意减少能源消耗。
1.2.5 废水、废物处理
减少环境污染,提高废弃物利用,开发肥料、饲料和燃料利用,并力求低能源消耗和低成本。
2 关键技术讨论
2.1 生物质收集区域规划和机械化开发
要使生物酒精工业工厂化生产,首先保证充足的生物质原料;将分散性、季节性和区域性强的生物质进行收集,各个地区的生物质种类及数量、质量都是不相同的,因此进行区域规划,来有效实现区域作业。如美国NREL研究得出50Km范围内所消耗的能量和成本是比较合适的。
其次是大力开发生物质收集机械自动化,可以提高生产率,减少成本和解决季节性强等要求。如图5,稻杆作业机械。
2.2 酒精转化新研究技术分析
综合前处理糖化和发酵三种转化过程,酸化转化过程比较简单,但生成后的废物、废水处理造成的环境负担并不符合未来的发展方向;如图6所示理想的纤维素生产生物酒精的过程。
在此过程中,主要是前处理加热或酸化处理中,容易产生芳香族化合物等抑制物质;纤维素酶的利用率低等主要问题,主要解决办法包括:
1)试图从其他物种中寻找更符合工业应用以及更具有应用前景的纤维素酶,提高酶的适应性,加快水解效率和增强耐热性能。
2)应用微生物酶工程技术,通过分子演化和设计来提高酶的功能性;通过强化的低成本发酵来生产酶制剂;通过基因工程途径构建生产纤维素酶提高酶活性。主要包含三个研究方向:(a)根据对纤维素结构和催化机理的研究,合理地设计每一种纤维素酶;(b)对纤维素酶的定向进化,根据随机突变或分子重组的方法筛选改造后的纤维素酶;(c)重组纤维素酶体系,提高纤维素对不溶性纤维素的水解速率或程度。
3)通过智能控制技术对酶解/发酵过程进行智能化在线监控,可以实时精确地优化动态反应条件,提高酶解/发酵效率。
4)研究开发适合该体系的高效生物反应器和建立描述反应动力学的数学模型对提高效率、掌握过程的机理及指导过程放大都将有重要的意义。
5)开发节能浓缩、脱水装置,开发膜分离精馏技术。
2.3 废水、废物处理
完成酒精转化后,废水、废物处理是容易忽视的研究内容;为了不增加二次环境污染,这个环节必须而且要对纤维素生物酒精的生命周期评价起较重要的作用,因此,必须考虑作为燃料能源利用,肥料开发和排水处理。
- 上一篇:小学语文教育的现状
- 下一篇:高压电工个人工作总结