人工智能在智慧医疗的应用范文
时间:2023-12-07 18:03:51
导语:如何才能写好一篇人工智能在智慧医疗的应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
从人机对弈,到智能医疗,人工智能浪潮突起,有点像前几年的“互联网+”,大众的期望不断攀升,纷纷视之为绝对不能错过的战略机遇,而此次人工智能的发展浪潮主要是企业引领。
在国内,BAT不断将人工智能融入产品方案。淘宝的商品推荐越来越准确,百度的无人驾驶技术获得进展,这些都是依靠人工智能技术的应用。“拍立淘”可以使用照片来搜索商品,主要得益于图像识别技术的成熟。除此之外,科大讯飞、海康威视也分别在语音识别领域、安防领域建立起了竞争优势。人工智能的应用领域空前广泛,从物流管理到智慧交通,再到智慧医疗,开始改变不少传统行业的运行模式。
人工智能技术不断融入生活,从感知、预测、指导,到形成综合方案,价值创造的生态系统正在形成。在感知环节,科大讯飞的“超脑计划”正在支撑多个项目的商业化应用,如车载辅助系统、语音处理系统等。在预测环节,基于人工智能的天气预测,能够提升能源使用的效率。在辅助指导环节,智慧医疗已经开始帮助医生做出判断,基因组技术能够帮助人类克服癌症等病症。在综合方案环节,无人驾驶,乃至城市智慧交通的系统方案已经非常完善。据麦肯锡预测,到2025年,人工智能的市场规模将达到1 270亿美元。
从人工智能的商业化过程来看,基础支撑、关键技术、应用场景是非常关键的三要素。基础支撑环节包括传感设备、用户数据、云计算技术;关键技术则包括视觉处理、语音识别、深度学习等内容xxx;应用场景则有智能制造、金融、医疗、家居等。与大众强烈的乐观情绪形成鲜明对比的是,人工智能应用目前仍偏重B端业务,与传统业态的融合程度不高,提供的用户体验不够多。
首先,AI与信息物理系统结合有限。传统业态中能够利用人工智能进行改造的业务环节很多,但目前人工智能企业大都处于创业阶段,对传统产业的渗透不足。按照麦肯锡的预测,如果企业对人工智能持开放的态度,到2055年有50%的工作都可以实现自动化和数字化。利用“人工智能+”,随着市场容量的释放,将会产生更多的独角兽企业。
其次,基于AI的革命性产品不多:除了美图秀秀、科大讯飞,能让消费者想到的适用产品很少。其实,相对于德国,中国有最优秀的互联网企业;相对于美国,中国有规模庞大的制造业。中国的优势在于用户形成的庞大数据,如果创业企业能够利用开源的算法,把人工智能与用户数据结合起来,创业企业所创新的极致产品、体验服务将会越来越多。
数据基础、硬件能力、算法是人工智能的三大支撑,数据的井喷式成长,来源于中国庞大的用户市场。硬件能力正在被突破,比如我们已经有了“太湖之光”。算法是人工智能的短板,基于浅层次的识别和判断,人工智能目前只能替代那些重复性、简单性的劳动,而创造性、艺术性的工作则有赖于人类的感性和对美学的认知。
篇2
其一是信息不流通的问题,患者在不同的医院,需要那办理不同的就诊卡;任何一家医院的医生看不到患者多次就诊的完整临床诊疗过程,无法准确掌握患者完整诊疗过程和健康状况。腾讯先后通过微信公众号等产品,建立信息共享的医疗电子档案,以解决“信息孤岛”的问题。
其二是“看病难”的问题,名医的需求量很大,但是能诊断的病人有限。马化腾认为根源在于“医生怎么样才能够释放自己的能力”,希望通过信息化的手段,打造一个医疗团队,实行科学化的分层、分级,将一些简单的诊断交由助理、护士来处理,最后由名医诊断。这样可以成倍扩大医疗产能。
腾讯的“医疗能力超市”
这几年,在投资的同时,腾讯尝试做微信智慧医院、糖大夫、腾爱医生、觅影等,涉及了支付模式创新、慢病管理、人工智能等多个领域。
1. 智慧医院
早在2013、2014年,腾讯便提出微信智慧医院的概念,做的事情也很简单,依托于微信公众号的线上能力,帮助医院做挂号、信息流转等基础医疗服务;2015年——2016年,微信智慧医院的2.0版本提出以医院作为核心体系,挖掘医院流程里线上信息化、数字化以及互联网化能力;从2017年开始,以小程序、公众号作为整体服务入口,医保、商保、区块链技术、AI、人工智能在医院落地,这是智慧医院3.0版本。
2. 慢病管理
2015年,腾讯推出了一款检测血糖的智能硬件产品“糖大夫”,这算是腾讯第一次直接出手,那一年也是腾讯投资的高峰期。2016年3月25日,在“互联网+慢病管理”贵州模式会上,腾讯正式公布腾爱医疗战略布局,计划用智能终端、医生平台、“健康基金+医保”的互联网金融、大数据这“四驾马车”连接医疗。但钛媒体注意到,近两年腾爱医生的相关动态逐渐变少。
3. 人工智能
2017年8月,推出AI产品“觅影”,同年11月科技部公布了“首批国家人工智能开放创新平台名单”,在AI+医疗方向上,将依靠腾讯公司建设医疗影像国家新一代人工智能开放创新平台。
“我们没办法改变供需矛盾、没办理控制需求,我们只能用科技的手段,用互联网的能力来缓解供求之间的矛盾,提升医院的效率。怎样帮医院做到这样的事情?这一定是医院主导,腾讯助力。”腾讯副总裁陈广域坦言,腾讯不应该做的是包办、代办,“我们希望合作方把我们当做一个超市,可以选择需要的能力,我们不能强迫你们选择不喜欢的东西。”
目前,腾讯医疗布局分为投资和自建两种方式。在自建中,腾讯分为两个团队,一个是腾讯医疗团队,负责的业务包括糖大夫、腾爱医生、企鹅医典、医疗云等,主要聚焦于医疗业务本身。另一个团队是“互联网+医疗”业务,该业务又分为两大板块:一个是微信智慧医院,包括挂号、处方流转、医疗咨询,利用互联网工具提升医院、医生效率;另一个方向是腾讯觅影,包括AI医疗影像、AI辅助诊断,探索AI如何进入到医疗比较核心的领域。
AI医疗的决心——腾讯觅影
精英团队打造精品应用
目前,国内医疗AI创业公司也多以影像识别为主,据统计,AI医学影像的创业公司多达几十家,医学影像识别成为医疗AI领域里较为成熟的垂直细分领域。医学影像成为“一枝独秀”的原因在于,影像数据获取相对容易,三甲医院设备都是GPS设备、全球顶尖设备。原始数据是电子化的,对于初创公司来说,一个是图像的质量,一个是电子化获取程度,都相对容易。”
2017年8月,腾讯了AI医学影像产品“腾讯觅影”,利用人工智能医学影像技术辅助医生实现早期食管癌筛查,凭借“觅影”腾讯正式进军医疗人工智能,加上早前的“百度医疗大脑”、阿里“ET医疗大脑”,BAT已经全部入局医疗人工智能。
腾讯在医疗领域有三个方面的积累:用户服务、数据能力、资源整合。而医疗AI以及影像识别是在学术科研上的应用;此外,在用户服务上,腾讯也涉及了预约挂号、在线问诊等业务。
腾讯觅影整合了腾讯内部几个顶尖的AI的团队,包括我们的互联网+部门,包括腾讯的AILab、腾讯优图实验室和架构平台部,可以说是汇集了腾讯最精英的人工智能技术团队。
从觅影产品的后端来看,是有一个AI医学实验室,除了顶级的人工智能算法专家之外,医学实验室也聘请了全国顶级的一些医疗影像科的医生和很多的全科医生,同时也会跟很多的医疗机构和医学院校以及各个地方政府共同去合作。
产品技术的应用
当前,觅影可以去辅助于这几项癌症:食道癌、肺癌、宫颈癌、乳腺癌和糖尿病引起的视网膜病变。
腾讯觅影可以把医生或PET系统(正电子发射计算机断层显像技术)里面的影像传到腾讯搭建的系统当中,再利用人工智能技术和算法判断这个片子是不是高风险的早期病症,诊断准确率达到90%以上。
腾讯觅影是怎么做到呢?在训练数据的采集方面,腾讯团队集中采集了几十万张中国人的同一病症片子。虽然全球有很多公司在做AI医疗影像,甚至有一些片子可能都有一些开源的,从网上可以下载到,但很多片子都是外国病人的,外国的数据去训练中国人的模型,准确率还是比较低的。
因为每种病灶只有一小块,大多数的区域是一个正常的,腾讯团队会把这个医疗原始的图片切成很小很多小的块,分别去估计每一个小块患病的概率,最后得出一个诊断结论。
从觅影的实际应用场景来看,一方面,腾讯在与三甲医院合作,提高三甲医院医生看病的效果;另一方面,团队希望更多地与基层医院进行合作,提高基层医院整个的诊疗水平。同时,觅影产品也会跟腾讯基金会合作,通过一些公益基金的项目,利用技术给国家和人民造福。
腾讯智慧医院3.0的创新解决方案
微信智慧医院3.0亮点颇多:不仅实现了连接、支付、安全保障和生态合作的四大升级,同时还加入了AI、区块链等全新技术,全面开放腾讯核心能力。
1. 连接升级
通过整合人社、医院、药企、保险等资源共同联动,提供在线咨询、处方流转、商保直赔等服务。以处方流转为例,在药品零加成政策背景下,基于腾讯支付、AI人脸识别、区块链等核心技术能力,连接医院、流通药企及用户,实现电子处方安全流转、全流程可追溯,助力医药分离。用户可选择药店取药、药店配送到家等多种购药方式。
2. 支付升级
支付场景升级,包括医院、药店、社康、保险更多场景均支持微信支付。比如,在医院可以使用微信公众号实现在线支付、处方单扫码付、终端机快捷支付等;在保险场景,可在线使用社保个账购买健康保险;在药店、社康场景下,可实现在线刷码支付,免带卡便捷购药等。同时,支付方式将医保、商保、自费等全部纳入,让消费者实现无缝支付。
3. 安全升级
微信智慧医院3.0能够全面保障实名安全、支付安全、数据安全和风控安全。比如,一直以来,医疗数据安全和患者隐私保障是医疗行业的核心问题。而区块链所拥有的多方共识、不可篡改、多方存证、随时可查等优势,使其成为医疗数据保管的最佳方案。智慧医院3.0就将运用区块链技术,为监管方、医院、流通药企搭建了一条联盟链,保障数据、隐私安全的同时,实现链上数据防篡改。
4. 生态合作升级
除了在自身能力方面,微信智慧医院3.0更加注重整个生态的合作共赢。从资金、资源、技术、产品四大维度,与合作伙伴联手,实现合作升级,推动业务有效落地,合力打造互联网+智慧医院的建设。
尾声与展望
腾讯的高管们曾多次公开强调:“互联网+医疗”是为医者赋能,需要发挥“连接、信任、融合”三大核心要素的作用,提升医疗服务效率,建立“医患”信任感,真正解决医疗行业的“痛点”,共建融合的医疗生态体系。
篇3
了解,到2020年,我国的人工智能市场规模将接近百亿。而人工智能在医疗领域的应用关键体现在与医疗相结合的“算法+有效数据”,其中,有效健康数据是人工智能应用的基础。
一项调查表明,美国的医学影像数据年增长率为63%,放射科医生数量年增长率却仅为2%。同样的情况也发生在中国,面对中国庞大的人口基数,医生的数量将远远跟不上医学影像数据的增长,而人工智能的到来可以有效弥补缺口。
最近,创业邦(微信搜索关注:ichuangyebang)了解到一家创业公司――汇医慧影,这家公司在2015年创立,从医疗影像角度切入并结合了人工智能,选择用长链条的方式布局影像行业。
“我们希望通过新技术、新服务跟各个机构共同建造一个新的生态。”汇医慧影CEO柴象飞说道。
汇医慧影目前已获数千万元A轮融资,合作医院超过400家,已获得11个软件著作权,4个发明专利,今年已申请2个国家自然科学基金以及2个省级自然科学基金和2个科技部的重点专项。
云平台实现“三端互联”
汇医慧影利用人工智能打造智慧影像平台,用以提高医生诊疗效率与准确度,解决部分地区医患资源不匹配的问题。目前其产品已经覆盖影像云平台、放疗云平台、电子胶片、常规阅片外包服务、疑难大病专家会诊及医生集团等六大模块。其中,常规阅片外包服务可帮助影像中心实现影像线上诊断,从而实现分级诊疗。
从IT的云系统出发,平台已实现医生端、患者端、医疗机构端的“三端互联”。所有的功能都可在手机、电脑、平板电脑端实现。
医生端,平台会为其提供病例管理、医生在线讨论、专家学习等服务。柴象飞说,平台已经实现电子化胶片,可以直接把数字化的信息还原给患者。
患者端,可让患者向专家进行咨询并获得实时解答,平台还会为患者提供影像共享和健康管理服务。
医疗机构端,可以通过平台对接专家资源、存储并备份影像、跟踪用户并享受增值服务。
相比于影领、iDoctor、锐达影像等平台,汇医慧影的优势在于利用了分布式云平台。其利用压缩、TCP优化等技术,让平台的云技术实现了同传同看的效果。读写分离、分布式部署等实现了全国各地上传、阅片。
据柴象w介绍,平台对胸部X光片表现出的气胸、肺结核、肿块的自动诊断准确率已经达到95%,对脑核磁影像表现出的肿瘤的自动识别率超过85%,对胸部CT影像表现出的肺结节的识别率超过85%。
扩充数据维度,让AI在医学影像领域得到更好的应用
柴象飞曾在美国斯坦福大学癌症中心、荷兰癌症研究所和比利时鲁汶大学放射科三家世界顶尖的医学影像机构学习和就职,具有丰富的临床知识,掌握了医学影像的分割、存储、压缩和管理的核心技术。
他认为,医学影像是人工智能与医疗领域结合中最可行且是可能最先走出来的领域。
具体到实践中,医学影像基本需要做三件事:一是需要优化深度学习的方法,二是积累大量的优质数据,三是高性能的计算环境。“如果三者配齐,就会让训练模型达到一个相对自我学习和不断提高的状态。”柴象飞告诉创业邦(微信搜索:ichuangyebang)。
所以在技术层面上,汇医慧影将影像云、阅片服务以及智能诊断相结合,通过阅片获取结构化的数据,提供给深度学习引擎进行计算,并且将计算机学习后的结果使用在医生的阅片流程中。当计算机出现误判时,医生会纠正诊断结果并将结果反馈入系统,让系统进行二次学习。“通过这样一个在线学习的闭环,我们将持续更新有效数据,持续提高算法的精度。”柴象飞说。
除了数据量上的增加,数据维度的扩充也是汇医慧影正在做的事。
篇4
据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达31.7%。
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低,越来越多的创业公司加入人工智能的阵营。
2018年被称为人工智能爆发的元年,人工智能技术应用所催生的商业价值逐步凸显。人工智能逐步切入到社会生活的方方面面,带来生产效率及生活品质的大幅提升。智能红利时代开启!资本、巨头和创业公司纷纷涌入,将人工智能拉到了信息产业革命的风口。
如何把握产业动向,抓住风口机会?创业邦研究中心凭借在人工智能等前言科技领域持续研究、洞察的能力,在对国内人工智能创业公司进行系统调研的基础上,推出《2018中国人工智能白皮书》,对人工智能的核心技术、主要应用领域、巨头和创业公司的布局、未来发展态势和投资机会进行了深度解析。
第一部分人工智能行业发展概述
1.人工智能概念及发展
人工智能(Artificial Intelligence, AI)又称机器智能,是指由人制造出来的机器所表现出来的智能,即通过普通计算机程序的手段实现的类人智能技术。
自1956年达特茅斯会议提出“人工智能”的概念以来,“人工智能”经历了寒冬与交替的起起伏伏60多年的发展历程。2010年以后,深度学习的发展推动语音识别、图像识别和自然语言处理等技术取得了惊人突破,前所未有的人工智能商业化和全球化浪潮席卷而来。
人工智能发展历程
2.人工智能产业链图谱
人工智能产业链可以分为基础设施层、应用技术层和行业应用层。
A基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。
B技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。
C应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。
人工智能产业链
资料来源:创业邦研究中心
第二部分人工智能行业巨头布局
巨头积极寻找人工智能落地场景,B、C 端全面发力。
资料来源:券商报告、互联网公开信息,创业邦研究中心整理
第三部分机器视觉技术解读及行业分析
1.机器视觉技术概念
机器视觉是指通过用计算机或图像处理器及相关设备来模拟人类视觉,以让机器获得相关的视觉信息并加以理解,它是将图像转换成数字信号进行分析处理的技术。
机器视觉的两个组成部分
资料来源:互联网公开信息,创业邦研究中心整理
2.发展关键要素:数据、算力和算法
数据、算力和算法是影响机器视觉行业发展的三要素。 人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是通过不断学习来掌握本领,这主要依赖高效的模型算法进行大量数据训练,其背后需要具备高性能计算能力的软硬件作为支撑。
深度学习出现后,机器视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流,即机器从海量数据里自行归纳特征,然后按照该特征规律使图像识别的精准度也得到极大的提升,从70%+提升到95%。
3.商业模式分析
机器视觉包括软件平台开发和软硬件一体解决方案服务。整体用户更偏向于B端。软件服务提供商作为技术算法的驱动者,其商业模式应以“技术层+场景应用”作为突破口。软硬件一体化服务供应商作为生态构建者,适合以“全产业链生态+场景应用”作为突破口,加速商业化。
(1)软件服务:技术算法驱动者—“技术层+场景应用”作为突破口
这种商业模式主要是提供以工程师为主的企业级软件服务。有海量数据支撑,构建起功能和信息架构较为复杂的生态系统,推动最末端的消费者体验。
此类商业模式成功关键因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户软件。视觉软件服务按处理方式和存储位置的不同可分为在线API、离线SDK、私有云等。
国内外基础算法应用对比
资料来源:互联网公开信息,创业邦研究中心整理
(2)软硬件一体化:生态构建者—“全产业链生态+场景应用”作为突破口
软硬一体化的商业模式是一种“终端+软件+服务”全产业链体系。成功的因素是大量算力投入,海量优质数据积累,建立算法平台、通用技术平台和应用平台,以场景为入口,积累用户。亮点是打造终端、操作系统、应用和服务一体化的生态系统,各部分相辅相承,锐化企业竞争力,在产业链中拥有更多话语权。
4.投资方向
(1)前端智能化,低成本的视觉解决模块或设备
从需求层面讲,一些场景对实时响应是有很高要求的。提供某些前端就本身有一定计算能力的低成本的视觉模块和设备将有很大市场需求。前置计算让前端设备成为数据采集设备和数据处理单元的合体,一方面提升了处理速度,另一方面可以处理云端难以解决的问题。
机器视觉在消费领域落地的一个障碍是支持高性能运算的低功耗、低价位芯片选择太少。从低功耗、高运算能力的芯片出发,结合先进的算法开发模块和产品,这类企业将在机器视觉领域拥有核心竞争力。
(2)深度学习解决视觉算法场景的专用芯片
以AI芯片方式作为视觉处理芯片有相当大的市场空间。以手势识别为例,传统的识别方案大都基于颜色空间,如 RGB,HSV ,YCrBr,无法排除类肤色物体及黑色皮肤对识别精度的干扰。借助深度学习,如通过 R-CNN 训练大量标注后的手势图像数据,得到的模型在处理带有复杂背景及暗光环境下的手势识别问题时,比传统方案的效果好很多。
(3)新兴服务领域的特殊应用
前沿技术带来的新领域(如无人车、服务机器人、谷歌眼镜等),对机器视觉提出了新要求。机器视觉可以让机器人在多种场合实现应用。服务机器人与工业机器人最大的区别就是多维空间的应用。目前国内的机器视觉,涉及三维空间、多维空间,其技术基本上处在初始阶段,未来存在较大市场增长空间。
(4)数据是争夺要点,应用场景是着力关键
机器视觉的研究虽然始于学术界,但作为商业应用,能解决实际问题才是核心的竞争力。当一家公司先天能够获得大量连续不断的优质场景数据,又有挖掘该数据价值的先进技术时,商业模式和数据模式上就能形成协同效应。创业公司要么通过自有平台获取数据,要么选择与拥有数据源的公司进行合作,同时选择一个商业落地的方向,实现快速的数据循环。
第四部分智能语言技术解读及行业分析
1.语音识别技术
(1)语音识别技术已趋成熟,全球应用持续升温
语音识别技术已趋成熟,全球应用持续升温。语音识别技术经历了长达60年的发展,近年来机器学习和深度神经网络的引入,使得语音识别的准确率提升到足以在实际场景中应用。深度神经网络逐步找到模型结构和调参算法来替代或结合高斯混合算法和HMM算法,在识别率上取得突破。根据Google Trends统计,自2008年iPhone及谷歌语音搜索推出以来语音搜索增长超35倍。百度人工智能专家吴恩达预测,2020年语音及图像搜索占比有望达到50%。Echo热销超过400万,带动智能音箱热潮。
(2)语音识别进入巨头崛起时代,开放平台扩大生态圈成主流
语音识别即将进入大规模产业化时代。随着亚马逊Echo的大卖,语音交互技术催生的新商机,吸引大大小小的公司构建自己主导的语音生态产业链。各大公司纷纷开放各自的智能语音平台和语音能力,欲吸引更多玩家进入他们的生态系统。
(3)语音识别技术发展瓶颈与趋势
低噪声语料下的高识别率在现实环境使用中会明显下降到70-80%,远场识别、复杂噪声环境和特异性口音的识别是下一个阶段需要解决的问题。
麦克风阵列类前端技术不仅是通过降噪和声源定位带来识别率的提高,带环境音的语料的搜集、标注可用于模型的训练,有助于打造更新一代的语音识别引擎技术。语音巨头已经在布局。
在IOT包括车载领域,云端识别并非通行的最优方案,把识别引擎结合场景进行裁剪后往芯片端迁徙是工程化发展的方向。
2.自然语言处理(NLP)发展现状
(1)多技术融合应用促进NLP技术及应用的发展
深度学习、算力和大数据的爆发极大促进了自然语言处理技术的发展。深度学习在某些语言问题上正在取得很大的突破,比如翻译和写作。2014年开始LSTM、Word2Vec以及Attention Model等技术研究的进展,使DL有了路径在语义理解领域取得突破,并且已经有了明显的进展。对话、翻译、写作新技术成果里都开始逐渐混合入DL的框架。2014-2015年,硅谷在语义理解领域的投资热度剧增。
深度学习能最大程度发挥对大数据和算力资源的利用,语义理解的发展还需要深度学习、搜索算法、知识图谱、记忆网络等知识的协同应用,应用场景越明确(如客服/助理),逻辑推理要求越浅(如翻译),知识图谱领域越成熟(如数据饱和度和标准性较强的行业),技术上实现可能性相对较低。在各种技术融合应用发展的情况下,具备获取一定优质数据资源能力并可结合行业Domain knowledge构建出技术、产品、用户反馈闭环的企业会有更好的发展机会。
(2)NLP主要应用场景
问答系统。问答系统能用准确、简洁的自然语言回答用户用自然语言提出的问题。基本工作原理是在线做匹配和排序。比如 IBM 的 Watson,典型的办法是把问答用FAQ索引起来,与搜索引擎相似。对每一个新问题进行检索,再将回答按匹配度进行排序,把最有可能的答案排在前面,往往就取第一个作为答案返回给用户。
图像检索。同样也是基于深度学习技术,跨模态地把文本和图片联系起来。
机器翻译。机器翻译的历史被认为与自然语言处理的历史是一样的。最近,深度学习被成功地运用到机器翻译里,使得机器翻译的准确率大幅度提升。
对话系统。对话系统的回复是完全开放的,要求机器能准确地理解问题,并且基于自身的知识系统和对于对话目标的理解,去生成一个回复。
(3)创业公司的机遇
1)机器翻译方面:经过多年的探索,机器翻译的水平已经得到大幅度提升,在很多垂直领域已经能够在相当大程度上替代一部分人工,机器翻译技术的商业化应用已经开始进入大规模爆发的前夜。
2)应用于垂直领域的自然语言处理技术
避开巨头们对语音交互入口的竞争,以某一细分行业为切入点,深耕垂直领域,对创业公司也是一个不错的选择。
第五部分人工智能在金融行业的应用分析
人工智能产业链包含基础层、技术层、应用层三个层面。基础层的大数据、云计算等细分技术被应用到金融征信、保险、理财管理、支付等金融细分领域;技术层的机器学习、神经网络与知识图谱应用于金融领域的征信与反欺诈、智能投顾、智能量化交易,计算机视觉与生物识别应用于金融领域的身份识别,语音识别及自然语言处理应用于金融领域的智能客服、智能投研;应用层的认知智能应用于金融领域的智能风控。
人工智能在金融行业的典型应用情况
资料来源:创业邦研究中心
第六部分人工智能在医疗行业的应用分析
1.人工智能在医疗行业的应用图谱
人工智能在医疗行业的应用潜力巨大,目前在健康管理、辅助诊疗、虚拟助理、医学影像、智能化器械、药物挖掘和医院管理等领域均有企业在布局,其中医学影像、药物挖掘、健康管理,辅助诊疗、虚拟助理的应用发展速度较快。
图 人工智能在医疗行业的应用图谱
资料来源:创业邦研究中心
2.人工智能在医疗行业的具体应用场景
医学影像。人工智能应用于医学影像,通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助更快的获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。 人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注,三维重建,靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。目前较为火热的应用有肺部筛查、糖网筛查、肿瘤诊断和治疗等。
药物挖掘。人工智能在药物研发上的应用可总结为临床前和临床后两个阶段。临床前阶段:将深度学习技术应用于药物临床前研究,在计算机上模拟药物筛选的过程,包括靶点选择、药效和晶型分析等,预测化合物的活性、稳定性和副作用,快速 、准确地挖掘和筛选合适的化合物或生物,提高筛选效率,优化构效关系。临床后阶段:针对临床试验的不同阶段,利用人工智能技术对患者病历进行分析,迅速筛选符合条件的被试者,监测管理临床试验过程中的患者服药依从性和数据收集过程,提高临床试验的准确性。
虚拟助理。医疗虚拟助理是基于医疗领域的知识系统,通过人工智能技术实现人机交互,从而在就医过程中,承担诊前问询、诊中记录等工作,成为医务人员的合作伙伴,使医生有更多时间可以与患者互动。医疗虚拟助理根据参与就医过程的功能不同,主要有智能导诊分诊,智能问诊,用药咨询和语音电子病历等方向。
第七部分智能驾驶行业分析
1.智能驾驶行业产业链
智能驾驶行业的中心业务是以Google、百度为代表的智能驾驶操纵解决方案提供商和以特斯拉、蔚来为代表的成车厂商。该类厂商,上接上游软硬件提供商,下接公司和消费者,在整个业务链中扮演至关重要的一环。
产业链上游厂商多为细分技术提供商,如深度学习、人机交互、图像识别和新材料、新制造新能源等。
智能驾驶产业链图谱
资料来源:创业邦研究中心
2.智能驾驶市场分析
伴随着 ADAS 技术的不断更新,推断全球 L1-L5 智能驾驶市场的渗透率会在接下来 5年内处于高速渗透期,然 后伴随半无人驾驶的普及进入稳速增长期。在未来的 2025 年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球 L4/5 级别的自动驾驶车辆渗透率将达到 15%,单车应用成本的显着提升之 外,从 L1-L4 级别的智能驾驶功能全面渗透为汽车产业带来全面的市场机会。
按照 IHS Automotive 保守估计,全球 L4/L5 自动驾驶汽车产量在 2025 年将接近 60 万辆,并在 2025- 2035 年间获得高速发展,年复合增长率将达到43%,并在2035年达到2100万辆。另有接近 7600 万辆的汽车具备部分自动驾驶功能,同时会带动产业链衍生市场的大规模催化扩张。
根据独立市场调研机构 Strategy Engineers 的预测,L4 高度自动驾驶等级下,自动驾驶零部件成本约在 3100 美元/车,其中硬件占比 45%,软件占比 30%,系统整合占比 14%,车联网部分占比 11%。按照全球 1 亿辆量 产规模计算,理想假设所有车辆全部达到 L4 高度自动驾驶水平,那么全球自动驾驶零部件市场规模在 2020 年 将达到 3100 亿美元。
第八部分中国人工智能企业画像分析
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低。创新的大门吸引众多创业企业进入。为了观察行业风向,助力创新企业发展,创业邦研究中心对国内200多家人工智能创业公司进行了系统调研,从发展能力、创新能力、融资能力等多维度指标,评选出“2018中国人工智能创新成长企业50强”。
地域分布
全国88%的人工智能企业聚集在北京、上海、广东和江苏。其中,北京人工智能企业最多,占比高达39.66%;其次是上海,人工智能企业占比达21.55%;位列第三的是广东,人工智能企业占达15.52%。北京以领先全国其他地区的政策环境、人才储备、产业基础、资本支持等,成为人工智能创业首要阵地;华东地区的上海、江苏、浙江均有良好的经济基础和科技实力,人工智能应用实力雄厚,也聚集了一批人工智能垂直产业园;广东互联网产业发达,企业对数据需求强烈,依靠大数据产业链推动人工智能产业发展。
行业分布
从行业大类分布来看,行业应用层的企业占比最大,为56.03%;其次是应用技术层的企业,占比达31.04%;基础技术层的企业占比最小,仅为12.93%。随着人工智能技术的发展,人工智能与场景深度融合,应用领域不断扩展,行业应用公司比重不断提升。在基础层技术方面,国际IT巨头占据行业领先地位, 国内与国际差距明显,中小初创企业很难进入。
从行业应用来看,智能金融企业占比最大,为16.92%;其次是机器人企业,占比达15.38%;位列第三的是智能驾驶和智能教育,占比均为12.31%。金融行业的强数据导向为人工智能的落地提供了产业基础,智慧金融被列入国家发展规划中,庞大的金融市场为人工智能落地带来了发展前景。机器人作为人工智能产业落地输出, 目前市场需求较大,商业机器人占据较大份额。中国智能驾驶市场在资本推动下进入者较多,企业积极推动应用落地,百度、北汽等大型企业尝试商业化落地智能驾驶汽车。人工智能推动教育个性化落地,相关初创企业涉入教育蓝海,推动智慧教育的发展。
收入情况
收入分布在500-10000万之间的企业最多,占比达49.14%;500万以下的企业位居其次,占比达 26.72%;位列第三的是10000-100000万之间的企业,占比为17.24%。
最新估值
企业最新估值均在亿元级别,且分布较为均衡。三成企业估值超过15亿元,还有企业估值达到百亿级别,如优必
选科技、达闼科技和商汤科技等,将来或将跻身人工智能独角兽企业。(备注:分析样本量剔除一半未披露企业)
第九部分典型企业案例分析
1.Atman
企业概述
Atman由来自微软的人工智能科学家和产业经验丰富的产品团队创办,提供专业领域机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品,致力于成为医学、新闻、法律等专业领域语言智能专家,为专业领域用户赋能,推动专业领域用户进入人工智能时代,助力专业领域文字智能水平实现跨越式提升。Atman已为强生、新华社参考消息、北大法宝、君合律师事务所等世界领先药企、新闻媒体、法律服务机构开发机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品。
目前Atman在北京和苏州两地运营,能快速响应全国各地客户需求。
企业团队
创始人&CEO:马磊
清华大学计算机系毕业,曾先后在微软研究院和工程院担任研究员和架构师,机器学习专家、多次创业者、曾主导多项人工智能重大项目,和申请国际专利共计15+项。
Atman公司核心团队由来自微软、百度、法电等领域高端人才和资深技术人才组成,公司员工40人,其中硕士以上学历占比60%,技术开发人员占比70%,一半以上来自微软亚洲研究院和工程院。
核心技术与产品
技术方面,擅长机器学习(深度学习、强化学习、群体智能)在复杂问题的应用,和国际专利15项,Atman神经网络机器翻译系统于2016年9月首秀,早于谷歌的GNMT,专业领域翻译效果在公测标准和行业客户测试中均持续领先。核心产品为垂直领域机器翻译、机器写作、知识图谱抽取构建、大数据智能挖掘等语言智能产品。
Atman的机器翻译产品可自动翻译编辑专业文献、报告、音视频和网页,支持私有部署和云端混合部署,提供包括数据隐私安全以及自学习的端到端解决方案。
机器写作可对海量数据进行快速搜索、过滤、聚类,根据行业需求自动生成专业文档,适用于所有专业写作场景,可大幅减少专业报告写作过程中的繁复工作,大幅提升专业领域写作效率。
知识图谱可实现海量数据的语义检索、长链推理、意图识别、因果分析,形成一个全局知识库。大数据智能采集挖掘系统为专业领域用户提供智能数据源管理、海量专业数据获取和非结构化数据自动解析并结合知识图谱提供auto-screening、知识重构、专业决策辅助,帮助用户建立强大的以专业大数据为基础的业务辅助能力。
2.黑芝麻
企业概述
黑芝麻智能科技有限公司是一家视觉感知核心技术与应用软件开发企业,2016年分别在美国硅谷和上海成立研发中心,主攻领域为嵌入式图像、计算机视觉,公司核心业务是提供基于图像处理、计算图像以及人工智能的嵌入式视觉感知平台,为ADAS及自动驾驶提供完整的视觉感知方案。
目前公司和博世、滴滴、蔚来、上汽、上汽大通、EVCARD、中科创达、车联天下和云乐新能源等展开深入合作,提供基于视觉的感知方案;除此之外,公司还在消费电子、智能家居等领域布局为智能终端提供视觉解决方案。目前公司已经完成A+轮融资。
企业团队
团队核心成员来自于OmniVision、博世、安霸、英伟达和高通等知名企业,平均拥有超过15年以上的产业经验,毕业于清华、交大、中科大和浙大等知名高校。
创始人&CEO:单记章此前在硅谷一家全球顶尖的图像传感器公司工作近20年,离职前担任该公司的技术副总裁一职,工作内容覆盖了图像传感器研发和设计、图像处理算法研发和图像处理芯片设计。
核心技术和产品
在汽车领域,黑芝麻可提供车内监控方案(DMS),自动泊车方案(AVP),ADAS/自动驾驶感知平台方案。黑芝麻智能科技提供的解决方案包括算法和芯片两个核心部分:黑芝麻感知算法从基础的控光技术,到面向AI的图像处理技术出发来提高成像质量,以及应用深度神经网络训练,结合视频处理和压缩技术,形成从传感器端到应用端的处理过程;黑芝麻芯片平台采用独有的神经网络架构,包括独有的图像处理,视频压缩和计算机视觉模块,与黑芝麻视觉算法结合,采用16nm制程,设计功耗2.5w,每秒浮点计算达20T。
3.乂学教育
企业概述
乂学教育,成立于2014年,是一家网络教育培训机构,采用人工智能和大数据技术,为学生提供量身定制学习解决方案和个性化学习内容。核心团队来自美国Knewton、Realizeit、ALEKS等人工智能教育公司,销售团队有全国40亿toC销售额的经验。
企业自主研发了针对中国K12领域的学生智适应学习产品,其核心部分是以高级算法为核心的智适应学习引擎“松鼠AI”,该产品拥有完整自主知识产权,能够模拟真实特级教师教学。企业发表的学术论文得到了全球国际学术会议AIED、CSEDU、UMAP认可,并在纽约设计了人工智能教育实验室,与斯坦福国际研究院(SRI)在硅谷成立了人工智能联合实验室。
主要产品
学生智适应学习是以学生为中心的智能化、个性化教育,在教、学、评、测、练等教学过程中应用人工智能技术,在模拟优秀教师的基础之上,达到超越真人教学的目的。该产品性价比高,以人工智能+真人教师的模式,做到因材施教,有效解决传统教育课时费用高,名师资源少,学习效率低等问题。
智适应学习人工智能系统
智适应学习人工智能系统模拟特级教师,采用图论、概率图模型,机器学习完成知识点拆分和个人学习画像,采用神经网络、逻辑斯蒂回归和遗传算法为学生实时动态推荐最佳学习路径,实现个性化教育。
业务模式
线上与线下,2B和2C相结合。以松鼠AI智适应系统教学为主,真人教师辅助,学生通过互联网在线上学习课程。开创教育新零售模式,授权线下合作学校,已在全国100多个城市开设500多家学校。
4.云从科技
企业概述
云从科技成立于2015年4月,是一家孵化于中国科学院重庆研究院的高科技企业,专注于计算机视觉与人工智 能。云从科技是人工智能行业国家队,是中科院战略先导项目人脸识别团队唯一代表,唯一一家同时受邀制定人 脸识别国家标准、行业标准的企业。2018年,云从科技成为祖国“一带一路”战略实行路上的人工智能先锋,与 非洲南部第二大经济体津巴布韦政府完成签约。
云从科技奠定了行业领导地位: 国家肯定,国家发改委2017、2018年人工智能重大工程承建单位;顶层设计,唯一同时制定国标、部标和行标的人工智能企业;模式创新,三大平台解决方案,科学家平台、核心技术平台和行业应用平台。
企业核心团队
创始人
周曦博士,师从四院院士、计算机视觉之父—ThomasS.Huan黄煦涛教授,专注于人工智能识别领域的计算机视觉 研究。入选中科院“百人计划”,曾任中国科学院重庆研究院信息所副所长、智能多媒体技术研究中心主任。
周曦博士带领团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠;在国际顶级会议、杂志 上发表60余篇文章,被引用上千次。
核心技术团队
云从科技依托美国UIUC和硅谷两个前沿实验室,中科院、上海交大两个联合实验室上海、广州、重庆、成都四 个研发中心组成的三级研发架构。目前研发团队已经超过300人,80%以上拥有硕士学历。
技术优势
全方位多维智能学习模块适应不同场景要求;模块化设计为在工业视觉、医学影像、自动驾驶AR等领域扩展打下良好基础。
云从科技具有高技术壁垒:世界智能识别挑战赛成绩斐然,在CLEAR、 ASTAR、 PASCAL VOC、 IMAGENET、FERA以及微软全球图像识别挑战赛上共计夺得7次世界冠军;在银行、公安等行业智能识别技术 PK实战中,85次获得第一;2018年,云从科技入选MIT全球十大突破性技术代表企业。
在跨镜追踪(ReID)技术上取得重大突破。Market-1501,DukeMTMC-reID,CUHK03三个数据同时集体刷 新世界记录, Market-1501上的首位命中率达到96.6%,首次达到商用水平。
正式在国内“3D结构光人脸识别技术”,可全面应用于手机、电脑、机具、设备、家电。相较以往的2D人 脸识别及以红外活体检测技术,3D结构光人脸识别技术拥有不需要用户进行任何动作配合完成活体验证的功能, 分析时间压缩到了毫秒级以及不受环境光线强弱的影响等诸多优点,受到国际巨头公司的关注。
行业应用
目前国内有能力自建系统的银行约为148家。截止2018年3月15日,已经完成招标的银行约为121家,其中云从科 技中标了88家总行平台,市场占有率约为72.7%;在安防领域推动中科院与公安部全面合作,通过公安部重大课题研发火眼人脸大数据平台等智能化系统,在民航领域,已经与中科院重庆院合作覆盖80%的枢纽机场。
5.Yi+
企业概述
北京陌上花科技是领先的计算机视觉引擎服务商,为企业提供视觉内容智能化和商业化解决方案。致力于“发现视觉信息的价值”。
旗下品牌Yi+是世界一流的人工智能计算机视觉引擎,衣+是时尚商品搜索引擎。公司在图像视频中对场景、通用物体、商品、人脸的检测、识别、搜索及推荐均达到领先水平。
目前公司和阿里巴巴、爱奇艺、优酷土豆、中国有线、CIBN、中信国安、海信、华为、360等数十家顶级机构/产品深度合作,通过提供边看边买引擎、图像视频内容分析引擎、人脸识别引擎等基于视觉识别技术的数据结构化产品服务于海量用户,同时帮助政府机构、广电系统、内容媒体、零售商、电商、视听设备等行业实现智能分析、智能互动与场景营销。目前公司已经获得B轮融资。
企业团队
团队成员来自于斯坦福、耶鲁、帝国理工、新加坡国大、南洋理工、清华、北大、中科院等名校及谷歌、微软、IBM、英特尔、阿里巴巴、腾讯、百度、华为等名企。
创始人&CEO:张默
北京大学软件工程硕士, 南洋理工大学创业创新硕士。连续创业者, 曾任华为算法工程师、微软WindowsMobile工程师、 IBM SmarterCity 架构师,北方区合作伙伴经理,主机Linux中国区负责人,中国区开源联盟负责人,年销售额数亿。 2013年创业于美国硅谷和新加坡,2014年6月在中国设立北京陌上花科技有限公司。
核心技术与产品
技术方面,在国际顶级计算机视觉竞赛ImageNet中,成绩曾超过谷歌、斯坦福等,2015-2016年2年获得十项世界第一。2018年3月,人脸识别准确率位列LFW榜首。Yi+通过遵循无限制,标记的外部数据协议。 Yi+的系统由人脸检测,人脸对齐和人脸描述符提取组成。使用多重损失和训练数据集训练CNN模型,其中包含来自多个来源的约10M个图像,其中包含150,000个人(训练数据集与LFW没有交集)。在测试时, Yi+使用原始的LFW图像并应用简单的L2norm。图像对之间的相似性用欧氏距离来测量,最终取得优异成绩。
公司的核心产品主要包括视觉搜索引擎,图像视频分析引擎以及人脸识别和分析引擎:
行业解决方案
针对营销、安防、相机和电视的不同特点,推出相应解决方案。
营销+AI。场景化广告方案中,大屏AI助理信息流推荐、神字幕、物体/人脸AR动态贴图、video-out、场景化角标与广告滤镜等形式的广告内容推荐,适用于快消、汽车、电商、IT、金融、旅游服务等多个行业。
智慧城市+AI。使用计算及视觉助力智慧城市,在智慧安防、智慧交通、智慧园区等方面提供解决方案。在智慧安防实时识别上,实时处理直播摄像头信息,算法反应敏捷,相应迅速。建立智慧园区方案模型,考虑扩展性&灵活性、数据管理、松散耦合性、安全性、实时整合性以及功能性和非功能性需求等技术方案要素,从业务和技术两方面整合解决方案实现步骤。
电视+AI。电视+AI的解决方案赋予智能电视多样播放能力和营销能力。
相机+AI。相机更具交互能力。用户通过搜索关键字标签同步展示图片,打通相册和购物一站式体验。准确识别人物属性特征,动态适应表情变化,可以在视频以及图像中对人脸实时检测,基于深度学习技术,进行人脸相似度检测,实现面部关键点定位、妆容图像渲染,试用与粉底、唇彩以及眼影等多种虚拟试装方式。实时检测摄像头中出现的物品、场景和人脸等,添加AR效果,SDK支持本地检测、识别、追踪,平均检测帧率可达到25fps。
新零售+AI。Yi+新零售解决方案是基于公司自主研发的人脸识别、商品识别和其他图像识别算法技术为核心,建立一整套基于人脸、商品的智能零售门店管理方案。Yi+新零售解决方案主要包含数据采集、算法模型说明和部署方案三部分,其中数据采集包括人脸数据采集、商品数据采集;算法模型说明包括识别算法训练、商品识别、识别输出;部署方案包括本地部署、云端部署、本地部署与云端部署结合。
6.擎创科技
企业简介
擎创科技成立于2016年,专注于将人工智能和机器学习赋予传统IT运维/企业运营管理,为企业客户提供智能运维大数据分析解决方案,从而取代和改善对高技能运维人员严重依赖的现状。2017年,擎创科技已实现全年2000万营收,迅速成为国内AIOps领域的领跑者和中流砥柱。2018年初,擎创科技完成了数千万人民币的A轮融资,由火山石投资领投,晨晖创投、元璟资本及新加坡STTelemedia跟投。
核心团队
擎创团队的核心成员主要由BMC、微软等美国企业服务上市公司的运维老兵,与新浪、饿了么等知名互联网公司的大数据、算法专家组成,核心团队成员至少拥有10年以上的行业经验。其中CEO杨辰是国内最顶级的B端销售,曾带领团队获得10倍的业绩增长;CTO葛晓波拥有长达15年的企业级软件开发和运维经验;而产品总监屈中泠则来自甲方,创业前为浦发硅谷银行企业架构师,深知甲方对企业运维产品的需求。这个曾经深耕于运维企业服务市场的团队,如今在智能运维企业服务赛道继续领跑,让擎创科技成为最懂企业的客户,最值得企业客户信赖的软件厂商。
主要产品
“夏洛克AIOps” 作为擎创自主研发的大数据智能运维主打产品,自2016年上线以来,已从1.0版本升级至1.9版本,可应用在金融、大型制造业、铁路民航、能源电力等涉及国家发展和民生问题的多种行业。在2017全球运维大会上,夏洛克AIOps获得由中国信息通信研究院与高效运维社区联合颁发的“年度最具影响力AIOps产品”奖。
“夏洛克AIOps”充分利用自研算法辅助客户实现IT运维价值,结合客户的现有情况,规划从传统ITOM至AIOps智能运维的一站式路径,助其运营落地,由此打破数据孤岛,建立统一的大数据智能分析平台,实现以人工智能为核心,驱动传统IT运维监、管、控三个层面,并将相关运维数据及业务数据实时展现。
“夏洛克AIOps”拥有多项自研算法,犹如运维界的福尔摩斯,能迅速发现并定位运维问题的根因,实现秒级排障,最大程度避免企业产生重大损失。更有价值的是,“夏洛克AIOps”还能通过长期的数据积累和机器学习,运用新型深度神经网络算法对企业的业务数据进行预测,帮助企业提前规划IT资源,高效预防各类黑天鹅事件的发生。
商业模式
目前,擎创科技已与多家金融和制造行业标杆客户形成稳定的合作关系,包括浦发银行、浦发硅谷银行、国家开发银行、上海铁路局、银联、海尔、浙江能源等。针对不同客户,采用个性化的商业模式进行服务,目前主要有私有模式和SaaS模式两种,都具有较强的可复制性。
核心优势
篇5
全球关注的人机世纪之战
人们总是对未知领域充满了好奇与敬畏,从计算机诞生之日起,各种有关人工智能的猜想便从终止过。人们一方面希望人工智能能够超越人类智慧,一方面又害怕被科技超越,矛盾的心态下,每一次以智慧为焦点的人机对战都会成为市场关注的焦点。
2016年3月9日至15日,被称为“世纪人机大战”的韩国棋手李世石VS谷歌围棋机器人AlphaGo的比赛最终以AlphaGo赢得四局落下帷幕,虽然本身关注和懂得围棋的人并不多,但这场人机世纪大战却通过各种渠道让全球亿万计的人们知道了―人类智慧被人工智能打败了!回顾以往的人机大战,人类并非永恒的胜者,美国IBM公司的“深蓝”超级计算机以2胜1负3平战胜了当时世界排名第一的国际象棋大师卡斯帕罗夫,但绝大多数人却不以为意,除十分接近的胜败结果外,深蓝主要是依靠运算能力穷举所有路数来选择最佳策略,它当时可以实现每秒两亿步的运算。很多人觉得卡斯帕罗夫的落败与体力有关,深蓝的策略多少有些“无赖”。
但AlphaGo却在“深蓝”获胜十九年后的今天,拥有自主深度学习进化的AlphaGo以难以让人争议的过程和结果,在围棋这一人类智慧竞技的高地上战胜了韩国棋手李世石。
能够深层学习的AlphaGo
“深蓝”之所以能够有超人的绝佳表现,几乎纯粹是靠运算能力。依靠存储的数百万个国际象棋案例,能在众多可能性中进行筛选,从而确定下一步棋的最佳位置。这给人感觉在用体力玩智慧游戏了,但AlphaGo却给人们展示了一个几乎完全靠自学,并通过观察成功与失败案例来掌握得胜技巧的系统。谷歌利用大数据与深度学习的技术优势为AlphaGo构建了一套策略网络,机器通过深度学习能力,模拟人脑的机制来学习、判断、决策。即AlphaGo可以从大量的棋谱和对局中学习策略,形成一套落子决策判断与数据解读的能力体系,让其在冲杀状态下懂得一套试探与引导的能力,最终成功击败人类棋手李世石。
人类是惟一能够将直觉(隐式的)和符号(显式的)知识结合起来的物种,人类具有这样的双重能力,将前者转换成后者,然后通过后者的反馈反过来改善前者,这在以往是人类拥有的特殊性和唯一性。但今天,AlphaGo无缝使用了分层的网络(即深度卷积神经网络)进行直觉学习,强化,评估和策略,配以强悍的计算能力,它完全不需要解决任何语义复杂性并且可从容地从现实考虑中分离,人的思维模式加上科技的理性结合,这让AlphaGo能够在对局结束前30分钟就向Google技术分析团队报告自己确信必胜。
下一步是理解
没有人性弱点的AlphaGo让我们看到了人工智能神经网络的前景在于它在不断缩小机器和人类之间的差距,而且随着技术开发者的跟进,人工智能将会对理解人类语言,揣摩人类情感。
理解人类,这对于巨头们的想象空间在于,基于用户需求的商业决策会因此更加精准。人机对战让我们看到,推理、判断、分析问题等功能处理之外,识别人的情感与情绪与对人的语言理解力将是未来发展的高地。
围棋大战,只能体现出,在封闭规则的计算领域,机器比人类聪明得多,因为我们的心算能力本身与计算器相差甚远;但是思维、对话、情感等都是不确定的。而前面说到,机器没有情绪,只有它懂得了人类的语言,逐渐了解人类表达的意思甚至是情绪,才意味着人工智能达到了更高的领地。AlphaGo及其背后的AI领域真的能实现,而这一切都是建立在搜索的原理与算法的未来改进上。
小知识:它不是一条狗
阿尔法围棋(AlphaGo)是一款围棋人工智能程序,由位于英国伦敦的谷歌(Google)旗下DeepMind公司的戴维 西尔弗、艾佳 黄和戴密斯 哈萨比斯与他们的团队开发,这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。2015年10月阿尔法围棋以5:0完胜欧洲围棋冠军、职业二段选手樊麾;2016年3月对战世界围棋冠军、职业九段选手李世石,并以4:1的总比分获胜。
四位一体的AlphaGo系统
归根到底,AlphaGo系统目前还是一件科技产物,其本身由走棋网络、快速走子、估值网络和蒙特卡罗树搜索四个部分组成,正是这四个部分的协同与融合,让AlphaGo拥有能够学习的智慧,最终战胜李世石。走棋网络(Policy Network),给定当前局面,预测/采样下一步的走棋。快速走子(Fast rollout),目标和1一样,但在适当牺牲走棋质量的条件下,速度要比1快1000倍。 估值网络(Value Network),给定当前局面,估计是白胜还是黑胜。蒙特卡罗树搜索(Monte Carlo Tree Search,MCTS),把以上这三个部分连起来,形成一个完整的系统。
让电脑拥有棋感的走棋网络
走棋网络把当前局面作为输入,预测/采样下一步的走棋。它的预测不只给出最强的一手,而是对棋盘上所有可能的下一着给一个分数。棋盘上有361个点,它就给出361个数,好招的分数比坏招要高。以往的科技只是单纯基于规则或者基于局部形状,利用简单的线性分类器训练完成走子,整个过程是不可能形成类似人类围棋选手的棋感。
AlphaGo去利用更高效的、宽度为192的网络(正常棋盘上有361个点,电脑给出361个数,好招的分数比坏招要高。),下出有最高置信度的落子。这样的做法一点也没有做搜索,但是大局观非常强,不会陷入局部战斗中,说它建模了“棋感”一点也没有错。但是走棋网络会不顾大小无谓争劫,会无谓脱先,不顾局部死活,对杀出错等等,更多像是高手凭借“自觉”在下棋,因而需要加入搜索功能,让电脑做出有价值的判断。
追求效率的快速走子
作为人类智慧竞技的高地,围棋用用天文数字般的局面数,走棋网络能让AlphaGo达到3毫秒的下子速度,但想要进一步提高AlphaGo的“反应”及“思考”能力,就需要快速走子系统的帮助了。
利用传统的局部特征匹配(local pattern matching)加线性回归(logisticregression)的方法,AlphaGo在吸纳了众多高手对局之后就具备了用梯度下降法自动调参的能力,从而实现了2微秒的走子速度和24.2%的走子准确率。24.2%的意思是说它的最好预测和围棋高手的下子有0.242的概率是重合的,相比之下,走棋网络在GPU上用2毫秒能达到57%的准确率。在AlphaGo有了快速走子之后,不需要走棋网络和估值网络,不借助任何深度学习和GPU的帮助,不使用增强学习,在单机上就已经达到非常高的水平了。
锦上添花的估值网络
估值网络对盘面的评估应用上同快速走子有些重叠,都是通过模拟落子得分评估当前及后面布局的优劣,但通过估值网络和快速走子的互补,在复杂的死活或对杀时,也就是进行到中盘阶段的时候,估值网络的重要性就会得到提升。前面提到AlphaGo能够提前30分钟知道自己必胜,估值网络就起到了很大的作用。
尽量选择更好的蒙特卡罗树搜索
“蒙特卡洛树搜索”是一种启发式的搜索策略,能够基于对搜索空间的随机抽样来扩大搜索树,从而分析围棋这类游戏中每一步棋应该怎么走才能够创造最好机会。
一位名叫苏椰的知乎用户举了这样一个例子,以通俗的语言进行了解释:假如筐里有100个苹果,让我每次闭眼拿1个,挑出最大的。于是我随机拿1个,再随机拿1个跟它比,留下大的,再随机拿1个……我每拿一次,留下的苹果都至少不比上次的小。拿的次数越多,挑出的苹果就越大,但我除非拿100次,否则无法肯定挑出了最大的。这个挑苹果的算法,就属于蒙特卡罗算法:尽量找好的,但不保证是最好的。
拥有两个大脑的AlphaGo
AlphaGo是通过两个不同神经网络“大脑”合作来改进下棋。这些大脑是多层神经网络跟那些Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器网络处理图片一样。经过过滤,13个完全连接的神经网络层产生对它们看到的局面判断。这些层能够做分类和逻辑推理。
AlphaGo的第一个神经网络大脑科学全称应该是“监督学习的策略网络(Policy Network)”,观察棋盘布局企图找到最佳的下一步。团队通过在KGS(网络围棋对战平台)上最强人类对手,百万级的对弈落子去训练大脑。这就是AlphaGo最像人的地方,目标是去学习那些顶尖高手的妙手。这个不是为了去下赢,而是去找一个跟人类高手同样的下一步落子。AlphaGo这个大脑的出色之处在于不单要模仿学习,更要追求速度,不断模拟计算围棋局面变化,最终选择正确率最高的落子。
价值评估则可看做AlphaGo的第二个大脑,通过整体局面判断来辅助落子选择器。AlphaGo能够决定是否通过特殊变种去深入阅局面和落子,如果局面评估器说这个特殊变种不行,那么AI就跳过阅读在这一条线上的任何更多落子。
深度神经网络的运用
人类在下围棋时,通常会经历常识-棋感-计算-判断四个过程,AlphaGo的常识源于其“监督学习的策略网络(Policy Network)”带来的深层学习能力,而棋感和计算则需要深度神经网络同蒙特卡洛算法的融合,两者的融合让AlphaGo整个运作方式更接近人类。通过对比使用蛮力计算的“深蓝”眼中的国际象棋落子思路和AlphaGo眼中的围棋落子思路会发现,围棋的复杂度需要更“聪明”的AI才能完成了。
两个大脑加上深度神经网络,AlphaGo以Value networks来评估大量的选点,而以Policy networks来选择落子,并且开发了一种新式算法来结合蒙特卡洛算法和以上两个神经网络。在这种结合下,研究者们结合参考人类职业对局的监督式学习,和AI大量积累自对弈实现的深度学习,来训练和提高AI的围棋实力。
AI的进步与期望
围棋代表了很多人工智能所面临的困难:具有挑战性的决策制定任务、难以破解的查找空间问题和优化解决方案如此复杂以至于用一个策略或价值函数几乎无法直接得出。通过将策略和价值网络与树搜索结合起来,AlphaGo终于达到了专业围棋水准,让我们看到了希望:在其他看起来无法完成的领域中,AI也可以达到人类级别的表现。
当然,这一切都是建立在人类千年来在围棋领域积累上的,没有积累就不会围棋AI的今天。AlphaGo让世人看到了AI领域的巨大进步,但想要真正理解人类和语言,其还有一段很长的路要走。相比围棋,人类在生活上的行为习惯,需要AlphaGo们拥有更出色的学习能力以及判断能力,无论是存储容量还是搜索算法,都需要几何倍数的递增,从这个角度看,现在担心AlphaGo们拥有自己的意识或情感,都太早了一些。
渗透进入人们生后的AI
AlphaGo不是DeepMind惟一项目,也不是最大的项目。DeepMind的最终目标是智能助手、医疗和机器人。另外,尽管AlphaGo只是针对围棋开发的系统,但其原理可以被应用到现实问题中。以医疗为例,IBM已经依靠认知学习平台“Watson”进入了医疗领域,Watson在泰国和印度的两家医院协助医生诊断乳腺癌、肺癌和结肠直肠癌。尽管Watson自身不会诊断疾病,但它能够找到医生应该进一步认真检查的地方,并提出治疗方案。
而无人驾驶汽车其实也可以看做具备了身躯的AI,家喻户晓的特斯拉汽车便使用了基于深度学习的现有计算机视觉技术。当然,工业或者服务用机器人都是AI渗透进入人们生活的表现。AI公司们正在努力晚上其产品,争取能够无缝进入人们生活的各个领域,当AI设备在可靠性、适应性和灵活性等方面都有长足进步时,人们未来的生活也将变得更美好。
谷歌改变人类的野心
AlphaGo很强大很厉害,但对于近年来谷歌的谋划而言,AlphaGo无非是其在人工智能领域的小玩具而已。改组Alphabet的谷歌,疯狂地在全球收购各个尖端前沿领域的顶尖公司,把触角伸到了生命科学、人工智能、无人驾驶、虚拟现实等等许多的领域。AlphaGo背后的英国Deepmind公司,只是他们收购的许许多多家公司中的一个而已。
除了传统Youtube、Gmail和地图等等互联网业务,生命科学、人工智能、无人驾驶、虚拟现实等新领域其实谷歌并没有赚到什么钱,更多是对未来的投资和布局,但今天,AlphaGo的表现已经让我们看到了谷歌的投入回报,再加上众多具有颠覆性或者划时代意义的谷歌黑科技,让我们清楚看到了谷歌改变人类未来的野心。相比之下,国内BAT三大巨头在技术积淀和领域格局方面,就显得有些小气了。
人工智能的竞赛
在2010年到2015年期间,企业对人工智能创业公司的投资增长了15倍。BBC预测,人工智能市场将继续保持高速增长,2020年全球市场规模将达到183亿美元,约合人民币1190亿元。庞大的数据和潜力,足以让企业们疯狂。
在硅谷,截至2015年初就有超过1700家创业公司加入人工智能浪潮―这一数字过去1年还在不断增加之中。谷歌、Facebook、亚马逊等科技巨头们的巨大投入都推动AI整个领域取得巨大进步。图像识别、语音识别已经成为苹果、微软、Google、IBM等科技大公司激烈竞争的焦点,而在医疗识别、模拟大脑图像等细分领域中,也涌现出不少初创的科技企业。可以说,一场席卷全球的AI竞赛正在展开,谁能让科技变得更聪明,谁就有望在未来的竞争中占据有利位置。
篇6
近年来人工智能高速发展,计算机视觉、自然语言处理、机器人技术、语音识别等人工智能技术逐渐走入我们的视野,这些技术在改变人类生活方式的同时也极大的影响了当前的金融行业,本文将简要介绍人工智能技术,并分析和探讨人工智能技术在金融行业的一些应用状况。
【关键词】人工智能 金融
人工智能作为计算机科学的一个重要分支,近年来得到了广泛的社会关注。计算机视觉、自然语言处理、机器人、语音识别等人工智能技术为逐渐走入我们的视野,例如前不久Alphago与李世石的人机大战,此外还有近年来兴起的智能聊天机器人(如微软小冰、Siri等)、无人驾驶技术等,这些技术在一定程度上提高了人们生活的便捷度,为人们略显单调的生活增添了乐趣,同时也给各个行业带来巨大的变革。在这个过程中,作为与人们生活息息相关的金融行业也开始步入了智能时代,随着互联网金融平台和金融科技公司的兴起,人工智能技术被广泛应用在银行、保险、投资理财等金融行业中,如智能投资顾问、股票交易预测、金融支付验证、投资理财推荐、贷款审批等等。
1 人工智能技术概述
1.1 什么是人工智能
人工智能是指使计算机拥有人类智能系统,令其具备一定的自主计算、思考、学习能力,从而高效地完成一些复杂的任务。由于人工智能是基于计算机系统运作,与人相比其受环境的影响也大大降低。同时人工智能技术使得计算机拥有人类难以企及的大数据分析功能,其处理海量、非结构化数据以及推断和演绎问题的能力,使人工智能被广泛启用在图像、视频、语音、文本等数据处理中。
1.2 人工智能主要研究领域介绍
1.2.1 机器视觉
机器视觉是指利用成像系统代替人类的视觉器官,通过计算机程序对各类图像进行分析、处理和解释。借助设定的算法,计算机能够对图像中所蕴含的视觉信息,如物体的形状、位置、姿态、运动数据进行快速地分析评估,例如拍照相机中的人脸检测、自然场景图像中的文字定位和识别等。近年来机器视觉已经在公共安全监控、金融支付验证以及医疗图像诊断等领域有着重要的应用。
1.2.2 自然语言处理
自然语言处理是研究在人与人交际中以及在人与计算机交际中的语言问题的一门学科,它通过算法或规则对庞多复杂的语言、文字信息来进行各类分析、处理或理解。该领域研究的问题主要有机器翻译、信息检索、自动文摘、文档分类、问答系统等,如通过机器翻译实现从一种语言到另一种语言的自动翻译;通过文档分类实现垃圾邮件的自动过滤,此外,百度、谷歌等搜索引擎通过信息检索技术使得知识通过问答的方式得到普及。
1.2.3 语音识别技术
语音处理是指运用特定程序使得机器具备识别人的语音的功能,从而完成人类所的各项任务。这三个研究领域作为人工智能最主要的分支,近年来吸引了许多的学者来进行研究,并且各大互联网公司也基于这些领域做出了很多应用产品。除此之外,人工智能还有专家系统、神经网络等重要的研究领域。
2 人工智能在金融业的一些应用
2.1 金融支付验证
首先是金融支付方面,相比于比较常见的密码输入验证的方法,生物特征识别技术可以使得密码验证的安全性大大提高。目前基于生物特征验证的金融支付方式主要有三类:指纹验证、人脸验证和虹膜验证。
第一类是指纹验证,它是通过将采集的指纹图像与备份指纹图像来进行对比验证,近年来许多智能手机开始支持指纹验证支付,该验证方式相比于传统的密码支付更为安全快捷;第二类是人脸验证,其通过提取人脸图像的特征,形成一个描述该面像的特征向量,将之与原先采集的人脸属性进行比对验证,在今年的CeBIT上马云演示了蚂蚁金服的人脸验证支付功能。第三类便是虹膜验证,也称视网膜图像验证,一个虹膜图像中约有266个单位的读取点,其复杂程度远远超过了其他生物特征,是目前公认的安全性和保险性最高的身份验证方法,目前一些发达国家已开始把这种身份验证技术用于银行提款机。
2.2 智能客服
在银行服务方面,可以通过语音识别技术、自动问答技术来构建金融领域专用的自动问答机器人来实现远程客户服务、业务咨询和业务办理等,这样不仅可以使得用户能够及时得到满意的答复,提升用户的满意度,而且可以减轻人工服务的压力,降低企业的运营成本。在2015年双十一期间,蚂蚁金服95%客户服务已经由智能问答机器人完成,并且实现了自动语音识别。
此外,在银行网点安放可交互型的机器人来替代大堂经理,对客户进行语音交流、业务咨询和办理等,这样在一定程度上可以增强银行服务的科技感、提升客户体验,并且减轻工作人员压力。例如交通银行推出的机器人“娇娇”、民生银行退出的机器人“ONE”、农业银行推出的机器人“智慧小达人”等。
2.3 智能投资顾问
智能投资顾问是指根据理财客户的一些指标如年龄、经济实力、消费行为、理财需求、风险偏好等,通过机器学习算法以及现代资产组合优化理论来构建标准化的数据模型,并利用网络平台和人工智能技术对客户提供个性化的理财顾问服务。这种智能推荐服务类似于目前电商网站的个性化产品推荐服务,相比于传统的个人投资顾问,智能投Y顾问更加的可信、客观和可靠。近年来,国内外从事智能投顾的企业也越来越多,如:德意志银行推出的机器人投顾“Anlage Finder”、京东金融推出的智投、小金所的机器人投资顾问等。随着这些历史数据的不断增大以及算法模型的不断完善,智能投顾将会个性化和智能化。
3 结论
随着互联网金融平台和金融科技公司的兴起,现如今的金融行业已经广泛的与人工智能技术相结合,除了上述介绍的三种应用外,人工智能技术还可以用于算法交易、银行贷款风险分析、客户分析和聚类、行业景气程度分析等等。我们有理由相信随着人工智能技术的不断提高,必定会给金融行业带来广泛而深刻的变革。
参考文献
[1]杨皓东,江凌,李国俊.国内自然语言处理研究热点分析―基于共词分析[J].图书情报工作,2011,55(10):112-117.
[2]姚华.支付宝如何利用大数据分析进行交易风险管控[J]. 计算机与网络,2015,41(19):49-49.
[3]樊GG,曲双石.金融产业升级: 从互联网到人工智能[J].当代金融家,2016(06):46-48.
[4]张雪飞,李洁清.浅谈我国商业银行的个人理财业务[J].活力,2009(04):44-44.
篇7
1.1从“人工智能”到人机系统
Wiener的“控制论”和钱学森的“工程控制论”是人们研制较为简单的系统,且系统运行的环境也不复杂情况下的一面旗帜。
1956年,在美国Dartmouth举行的一个信息科学大会上,J.McCarthy和H.Simon倡议开展人类思维活动规律的研究,并给予其“人工智能”(ArtificialIntelligence)的命名。人工智能主要研究用人工的方法和技术来模仿、延伸及扩展人的智能,从而实现机器智能。迄今为止,这一方向虽然已取得了不少成就,如博弈、自动定理证明、模式识别、自然语言理解、自动编程和专家系统等,但是,传统的人工智能在方法论上以符号推理为中心,企图用机器来实现人类的思维活动。所以,许多年来的研究虽然取得了一些成就,但距离人工智能提出的目标还有很大距离。
近三十年来,人工智能进展缓慢。1979年,H.L.Dreyfus《计算机不能做什么?》一书的副标题就是“人工智能的极限”提出了人工智能存在不可逾越的障碍。紧接着,以人工神经网络为代表的“计算智能”和Brooks的反应式结构(“没有表示”、“没有推理”的系统)给传统的符号智能带来了巨大冲击。特别是日本提出的“第五代计算机”并没有达到预期的目标,仅以实现一个“人机对弈”而告终,这些事实都促使人们对“智能”(或“人工智能”)要有一个重新的认识。对人工智能四十年的研究进行反思,使人们从科学概念上明白了以往不自觉地企图用机器解决一切问题的局限性,并试图从科学观念、研究目标和方法论上打开思路,以重新认识,寻求新的途径。
另一方面,四十年来,特别是从最近二十多年科学技术的发展来看,在当前的信息社会中,信息技术是立国之本,信息化的进一步发展必然走向“智能化”因此,以“智能”为核心的技术是至关重要的。从两次海湾战争以及其他局部战争,我们可以十分清楚地看出,今后的战争是人——机结合的智能系统之间的对抗,而智能技术将会覆盖几乎所有的工程技术领域。
既然完全基于机器的符号推理(也包括其他的智能方法)不能达到实现人的思维的目的,那么有没有其他道路可循?这是人们都很关心的问题。解决这个问题要从两方面着手。一方面,需要脑科学、认知科学等一些研究人的智慧的基础学科继续研究人的思维规律一一这也是人类永远的追求。虽然目前还不能做到这一点,但人们总是在不遗余力、一步一步地向着这一目标前进。当然,这也是人类社会发展赋予智能学科的一个任务,这就是智能科学的目标。另一方面,社会生产、生活、科技、军事各个方面又提出了层出不穷的需求,迫切要求设备、系统、工程要“智能化”而现在尚没有真正能模拟人的智慧的计算机,因此计算机还不能代替人。解决这个问题只有从两方面入手,一方面实事求是,尽量开拓、发展当前的计算机科学技术,使计算机尽可能多地帮助人做工作;另一方面,尽可能把人的智慧包含到系统中去,人要起主导作用,但要充分发挥计算机科学与技术的优势,创造出最有“智能”的人机结合系统。
具体来说,人机结合的系统就是将人作为一个组成部分包括到系统之中,并能清楚地区分出哪些工作应该由人完成,哪些工作应该由机器完成。在运行过程中,当进行到需要人完成的工作时,系统就将工作交给人;而当需要机器完成时,就将任务转交给机器,最终构成一套和谐的、协调的、高效的运行机制,以保证系统目标的实现。
1.2“智能”学科的三个层次
根据研究任务的不同,智能科学技术的学科内容可以划分为智能科学、智能技术、智能工程三个层次。
(1)智能科学(IntelligenceScience)
这是基础研究的层次,它的主要任务是研究人的智慧,建立人机结合系统的理论,并用其模拟人的智慧。智能科学主要包括脑科学、思维科学、认知科学等在内的基础学科。
思维科学着重研究人的思维规律,也就是研究人是如何思维的,这种研究的目的是为了给人工智能提供基础,也就是告诉计算机要模拟什么。而认知科学则是研究人的认识,也就是人是如何认识事物的,并将其扩展去研究动物的智能。
智能科学的成果将是整个智能科技发展的基础和先导。
(2)智能技术(IntelligenceTechnology)
在智能科学的框架内创建人机结合的智能系统,需要有合适的方法、工具和技术,这就是智能技术。
信息的本质是知识,而知识是构成智能的基础。因此,信息化发展必然走向智能化。
(3)智能工程(IntelligenceEngineering)
用智能科学的理念和思想,充分运用智能技术工具去创建各种应用系统,这就是智能工程。“智能化”实质上就是智能工程实现的过程和归宿。智能工程是当前科学技术和社会发展的前沿阵地,特别是高技术发展的核心动力之一。同时,它也是当前新技术、新产品、新产业的重要发展方向、开发策略和显著标志。
2无处不在的智能科技
2.1前沿高技术是智能科学技术发展的动力和源泉
智能科学技术是一个融合计算机、人工智能、模式识别等研究领域的交叉性学科,这些前沿高技术也是当前智能科学发展的动力和源泉。
在所有系统中,体现智能行为的工具和载体就是计算机。所以,计算机科学很自然地成为智能科学发展最重要的支撑点和原动力之一。
以符号推理为基础的人工智能方法和以人工神经元网络为代表的计算智能方法仍然是当前智能技术的重要组成部分。它们从不同的途径和方法进行问题求解,在搜索、规划、学习等各类问题中取得了相当有价值的成果。
模式识别是人类智能的一种体现。“模式”是一个极为广泛的概念,如图像、图形、文字、语言都是一种“模式”。按Zadeh的定义,“模式识别”是一种从“模式”出发的一种非线性映射,它是一种技术,可以用来实现人类智慧的一部分功能,如文字识别(认字)、语言的说与听等。模式识别的目的是将对象进行分类,可以是图像、信号波形式或者任何可测量且需要分类的对象。模式识别在工业自动化以及信息处理和检索中变得日益重要,这种趋势把模式识别推向工程应用研究的高级阶段。在大多数机器智能系统中,模式识别是用于决策的主要部分。
模式识别技术在各种工程实际系统中大量存在。机器视觉的主要技术基础就是模式识别;OCR(光学字符识别)是模式识别的另一个重要应用,它是识别文字字符信息的很主要的手段;计算机辅助诊断也是另一个重要的应用,多种医学图像处理已成为当前信息产业的一个热点;语言识别当然是模式识别另一个研究和应用的热点。其他如指纹识别,以及其他生物器官的识别、签名认证、文本检索、表情和手势识别,都是很有趣的研究领域,也是用来开发人机结合智能系统的很有价值的技术。
当前,对复杂智能系统进行研究的核心是解决人与机器的结合问题,也就是人作为系统的一个组成部分参与到系统的运行中,系统功能中也应体现出人的一部分作用。人与机器的结合有两个层次,一是人作为一个成员,综合到系统的体系结构中;一是人和机器的结合通过某个“人机界面”来实现。当然,这种界面不仅仅是目前计算机普通采用的图标界面,而是包含了模式识别这类涉及感知方面问题的广义的人机界面。这是当前十分活跃的一个研究领域,最有代表性的包括多媒体技术和虚拟现实(VirtualReality)技术。
2.2现代工业生产和复杂工程急需智能科学技术
随着社会的发展,人类在生产、生活等各个方面也不断提出新的需求,因此现代工业生产不断壮大,并日趋复杂。现在,现代工业生产和复杂工程急需智能科学技术,一批已经在发挥重要作用的技术如下:
*智能自动化和控制技术生产过程监控、产品自动检测和质量控制、工艺参数的优化和自动设定、故障自动诊断的报警等;
*智能CAD复杂工程的优化设计智能仪表对工艺参数的自动分析、监测、报警和调整;
智能交通红绿灯管理、基于GPS与电子地图的定位与导航、安全监控、车流自动疏导等;
*智能仿真技术,这是大型复杂工程设计不可缺少的手段。
2.3智能科技是现代军事科技(包括航天领域)最重要的关键技术之一
智能科技是现代军事科技最重要的关键技术之一。近代科技发展的历史表明,军事的需求总是科技创新的最大动力之一,“以军带民”是一般规律。军用技术辐射和带动国民经济是一条促进社会经济发展十分有效的途径。因此,军事科技(包括航天领域)也是应用智能技术最多的领域之一。
未来战争的重要武器——无人作战平台(无人机、无人战车、自主水下机器人、机器人士兵等)的自动导航、路径规划、自动避障、目标识别、自动驾驶和其他自主控制技术等都是智能技术的典型应用。以无人机为例,它是现代战争中掌握制空权的重要手段,在近年来的几次局部战争中都发挥了很大作用,例如它可以进行侦察,发现目标后引导有人飞机实行攻击,并对攻击效果进行评估。
在地面军用机器人中,智能技术也发挥着重要作用。
地面军用机器人不仅可以在平时帮助人类排除炸弹,完成要地保安任务,还可以在战时代替士兵执行扫雷、侦察和攻击等各种任务。例如,美国的ALV是一种高水平的陆地自主军用机器人,它采用各种智能技术来实现自主操作。ALV装有高级彩色摄像机(视觉),用以识别道路,同时还配备有阵列激光测距仪,用以识别障碍;它可以根据道路场景规划行车路径,避免碰撞,躲避障碍,实现公路上的自动驾驶,行车速度可达60千米/小时。除此之外,车上还可装载各种仪器,以完成不同的侦察任务。
防爆(暴)机器人是机器人发挥威力的另一重要领域。暴徒、爆炸、火灾以及其他灾害都是非常危险的环境,因此用机器人去处理是减少危险、提高成功率的有效途径。在反恐斗争中,有针对性地研制这类机器人,是当前迫切需要解决的问题。
航天领域综合展现了最高水平的智能科技,人造卫星、航天器和各种太空探测器是当代高水平智能技术的综合体现。在2004年初,在火星成功着陆的火星探测机器人是最有说服力的例子之一。
2.4为人类生活服务是智能科技发展的广阔天地
为人类生活服务是科技的重要方向。随着人类生活水平的不断提高,生活质量也需要不断改善,服务要求更周到,做到方便、舒适、节约、安全,更具人性化。这种需要也为智能科技的发展增添了新的活力。
具有一定智能的机器人代替人做服务工作是一种发展趋势,这也是智能技术为人类服务最有代表性的事件之一。
这类机器人的典型例子有:可以自动完成清扫任务和自动充电的清扫机器人;能辅助医生进行外科手术的医疗机器人;能为病人服务的机器人护士;可在家中进行巡视、监测潜在危险情况并适时报警的家庭保安机器人;用于照顾老、病、残的服务机器人等。
总而言之,只要有需要的地方,就有可能是机器人可以服务的地方。
3对"智能科学与技术〃专业架构的思考
从上面列举的很少一部分实例,我们已经可以看出当前智能科技的发展状况。它无处不在、发展迅猛、功效卓著,已经成为当前科技发展不可缺少的部分。它是许多重大工程的支撑,引领许多传统领域向现代化方向发展,是当代前沿高技术发展的重要方向。
另一方面,计算机科学、信息科学、控制科学等学科的进步,也极大地促进了智能科技的快速发展,智能化科技已经展现出一幕幕诱人的场景。科技发展的根本是人才,“智能科学与技术”大学本科专业已经成功设立,迈出了培养高层次人才的关键一步,这必将推动我国的智能科技更快地向前发展。
目前,追溯各个设立“智能科学与技术”专业学校的本源,可以发现各校之间差别甚大。有的学校的“人工智能”专业从计算机科学延伸而来,有的则来自控制科学和控制工程,还有的由信息科学的其他分支演变而来。在归属方面,有的学校将其归于理科,而有的学校则将其纳入工程学科。此外,设置该专业的行政学院亦有所区别,不同学校的智能学科分别隶属于各类学院。这种现象正好说明“智能科学与技术”这一学科发展的多源性,学科发展的空间大,应用需求面广。
另一方面,面对这样一个蓬勃发展、涉及面极广的新兴学科,如果培养各层次的人才,高校教育应该有一个怎样的架构,已经成为一个不可回避的问题摆在我们面前。解决好这个问题,就可能推动学科和人才培养顺利发展。从学科发展的多源性和应用面的广谱性来看,智能学科不可能作为另一个学科的二级学科来发展。从学科的性质来说,“智能科学与技术”应该建立一级学科的架构。根据我国教育体制的结构以及多层次人才培养的需求,可以设想如下架构。
“智能科学与技术”作为一级学科,设一级学科博士点,根据各个学校的不同情况,将其分别归属为理学或工学。对于不同的归属,该专业在培养目标和培养方式上应有所区别,理学应偏重基础研究,而工学则应注重技术和工程。一级学科下设若干个二级学科,二级学科设硕士点和博士点。二级学科的设置需要更进一步考虑学科发展的多源性以及延拓应用的专业性,梳理分类,并结合现实的需要与可能,经过充分的讨论后来决定,这是多层次架构中最复杂的环节。
以上架构属于人才培养架构的高层次,即研究生培养阶段。目前,更有现实意义的是解决本科阶段培养中的问题。现在,多所高校招收了“智能科学与技术”专业的本科学生,并开始有毕业生走向社会,因此正是总结经验,走向新的发展阶段的时机。本科教育是学科发展的根本,有了本科基础,各层次人才培养就有了基础,高层次创新人才培养就有了希望。由于“人工智能”学科的多源性,各个学校的培养方案有不少差别,有的按理学,有的按工学。按照国家的教育体制和社会需求,按理学或工学适当规范本科教学方案,对当前推进“智能科学与技术”专业的健康发展是非常重要的。
篇8
近日,英特尔公司联合经济学人智库(EIU)针对中国350家公司进行了一项调查,并了名为《弥合新技术范式的差距》的调查报告。这份主要针对金融、零售和医疗等行业客户的调查报告试图揭示中国企业在业务的创新和发展中如何看待和利用新技术。在技术创新、数据融合驱动企业业务发展的今天,这一调查结果具有非常重要的现实意义。
调查显示:超过三分之二的企业对于在产品和服务中使用新技术有着清晰的愿景和战略。对于新技术的吸收,很多企业是通过与技术公司的合作来推动的。“越来越多的企业将云计算、大数据和远程连接等技术直接融入企业现有的产品和服务中。这有利于企业快速进入新市场,为企业采用新的商业模式奠定基础。”经济学人智库分析师表示。
投资新技术的最佳时期
这次调查主要面向的是一些中型和小型的企业客户。虽然大多数的受访企业对于技术创新倾注了极大热情,但是调查显示,对于新技术的投资热情并不都来自企业的内部需求,很多是迫于外部大环境的压力,以及效仿竞争对手的做法。“调查显示,77%的企业认为,在未来3年内,新技术将在其产品和服务中发挥巨大作用。而不行动的企业将面临生存危机。”表示。
调查报告中重点介绍了机器人、5G互联网、云计算和大数据、人工智能和机器学习,以及VR/AR等五大技术在企业中的使用情况。其中,75%的受访企业表示,已经使用了云计算和大数据技术。金融、汽车制造等行业在采用新技术方面走到了前面,机器人在制造和物流业应用较多,VR/AR技术在建筑行业应用广泛,而且处于世界领先水平。
传统行业正在受到越来越多的挑战,比如传统金融行业受到了金融科技(Fintech)的刺激,许多新开户都是通过在线平台或手机完成的。另外在医疗行业,医疗机构希望采用新的技术持续改善就医体验。接受调查的85%的企业认为,如果不投资新技术,未来企业的发展将落后。
在采用新技术的过程中,企业要注意三方面的问题――规避风险、合规性、政府监管。企业当前重点关注的是开拓新的业务模式和新市场,所以迫切需要将新技术整合到现有的产品和服务中。“传统企业客户应该开发更多的内部平台,同时要了解政策环境,并与技术公司建立深层次的合作关系,这样才能在企业未来的发展中占得先机。”表示,“未来10年都是在中国投资新技术的最佳时期。”
“数据驱动创新增长。”英特尔行业解决方案集团中国区总经理梁雅莉表示,“未来10年,企业要关注的是数据的采集、传输、处理和分析,从数据中挖掘出更大的商业价值,这样才能实现业务的创新,让企业立于不败之地。”
今天,数据的融合发展正在重构行业。不知你是否注意到这一现象,过去一年中,中国的方便面市场出现萎缩,造成此结果的一个重要原因是外卖行业的兴起。另 一个例子,现在大部分的医疗数据,包括临床数据和计费数据都存在医院之内。随着人们对健康数据的关注,未来医疗数据可能会向医院之外延伸,并与基因数据、社交数据等融合。新零售的兴起也是由数据驱动的。在2000年之前,零售业的数据主要来自POS机。2000年之后到现在,零售行业进入大数据2.0时代,人们可以在某些领域进行大数据分析、客户画像等。从现在开始,我们步入了零售行I大数据3.0时代,可以对所有数据进行分析,洞察零售行业的每个环节和流程,实现精准营销。
为了帮助企业更好地迎接数据融合带来的挑战,英特尔提出要不断完善各层面的技术,从云计算、人工智能和网络到存储、5G、FPGA,再到产生海量数据的设备,充分释放数据价值,充当企业业务转型的基石。
梁雅莉特别谈到了英特尔在人工智能领域的布局。从去年开始,英特尔进行了一系列战略收购,在底层基础架构层面、工具层和应用层都有涉猎,目的就是构建完善的技术体系,为客户的应用提供全面支撑。
“数据驱动”永远在路上
1995年,人类历时13年、耗资30亿美元终于完成了全球首个DNA基因测序。随着技术的发展和数据的加速融合,英特尔希望到2020年,人们只要花费24小时、1000美元就能完成基因数据的收集、分析和解读。
IT将颠覆医疗行业?美国心脏病学家、基因组学家埃里克・托普所著的《颠覆医疗》被很多研究IT和行业应用相结合的人视为“圣经”。《颠覆医疗》的一个核心观点是,云计算、无线传感器、超级计算机、基因测序等新技术不仅将改变人们的生活,而且对于医疗行业的发展来说是一次创造性的破坏,将颠覆医疗行业。
对于“颠覆”二字,不同的人有不同的理解。国家卫生计生委统计信息中心原副主任王才有认为,所谓颠覆医疗,其实是医疗智慧化的过程,是IT与医疗行业应用深入结合的过程,对医疗行业的发展将起到不断优化和改进的作用。在医疗领域,一切都在向智慧化演进,比如精准医学、医药研究、医疗物联网、医疗机器人、智能物件等。
“可穿戴式设备、VR/AR等新技术确实在医疗行业有着广阔的应用前景。”王才有表示,“不过计算机并不是要颠覆医疗,而是起到重要的辅助作用。计算机与医疗行业的专业人员将共同为患者提供服务。得益于IT的发展,自然语言处理、临床决策支持、知识服务、机器识别等的应用将进一步改善患者的医疗体验。”人类与机器是合作伙伴关系,在技术的辅助下,虚拟就诊、家庭看护、医疗协同等让医疗变得更加简单。
以前,在医疗行业中,专业的医护人员、专业的医疗设备等才是必备的资源,现在还要加上一条,数据也是医疗行业重要的资源。数据的融合和分析将有力地促进医疗健康事业的发展,实现精准医疗,提升诊断的成功率,降低医疗的成本等。在医疗行业,技术创新的同时也要考虑到生态模式的创新,另外还要加强标准的制定、政策的研究,以及应用咨询(解决个性化应用问题)。只有充分调动政府和市场的资源,协调发展,才能实现合作共赢。
作为跨国企业,英特尔长期在医疗行业进行投入,不断把国外先进的技术和理念引入中国市场。英特尔将在战略发展方向、技术框架的设计等方面与中国医疗行业的合作伙伴、客户展开更深入的合作。
医疗行业的数据驱动与技术创新永远在路上,是一个持续发展的过程。
数据驱动商业变革
在很多人的印象中,万达集团就是一个地产界的“大鳄”。其实,成立于1988年的万达集团现在已是旗下拥有商业地产、文化集团、网络科技集团、金融集团四大产业集团的庞大的商业帝国。其中,网络科技集团致力于打造独特的“实体+互联网”的新模式,为客户提供包括实体场景数字化、供应链服务、互联网金融服务、全渠道征信服务、云计算服务等在内的多种多样的服务。
人们常说,船大难掉头。而万达集团这个庞然大物在数字化的过程中表现出的灵活性、探索精神和创造力确实值得同行借鉴。万达集团希望通过创新的商业模式和先进的技术能力,打造世界级的商业企业。如今,万达集团在成都拥有按业界最高标准T4标准建设的数据中心。2017年3月还与IBM达成战略合作,基于IBM最新一代的云计算技术,将在中国推出全栈式的云服务。另外,万达集团还以万达广场为节点,计划打造覆盖全国的光纤网络,并广泛应用区块链技术。利用创新技术为自身业务服务的同时,万达集团还将知识产权输出给合作伙伴、其他商业中心,目的是为客户提供更好的消费体验。
万达网络科技集团总裁助理兼大稻葜行淖芫理、首席架构师蔡栋表示,万达集团正借助人工智能、区块链、云计算等技术,打造数字化实体商业共享平台。这一商业共享平台是万达集团在数据驱动业务发展方面的创新之举,它将大数据与区块链有机融合,可以提供大数据预测、征信、网络金融、智能合约、数字化零售等诸多功能和服务。基于这一平台,万达集团和一些商业伙伴陆续在上海、西安、柳州等地开设了数字化实体店,未来还要发展到数百家。采用商业共享平台的这些实体店,在POS机中应用了区块链技术,摄像头采用深度学习技术,同时运用云计算和大数据技术实现了爆款产品的预测、精准推荐、物流优化、竞拍等。
篇9
那么,思维又何以能离开人脑呢?原来,随着当代科学技术的发展,一种新颖的思维形式—人工智能,方兴未艾,迅速发展。
爱因斯坦的复活
爱因斯坦逝世时,有人曾引用歌德的诗赞誉他—“他象行将陨灭的慧星,光芒四射,把无限的光芒同他的光芒相连结”。确实,爱因斯坦—这颗科学巨星的光芒始终照耀着二十世纪物理学的发展。因此,探索爱因斯坦的思维方式,一直吸引着人们的兴趣。甚至有人设想,能否模拟爱因斯坦的思维规律,让没有爱因斯坦的爱因斯坦型大脑,继续思考着最新的物理学问题。
什么是爱因斯坦的思维方式呢?爱因斯坦常常独自默思,连续几个小时沉浸在自己的思索之中;有时,他又会在划船、散步之际,突然掏出本子,迅速地计算什么,然后露出了轻松的笑容,魔术般地对复杂问题给予简单的解释。正如他的助手霍夫曼所说:“这种魔术是用我们无法猜度的方式在爱因斯坦的脑海深处不露形迹地演出的。”然而,这并不等于说爱因斯坦的思维不可捉摸。实际上,不仅通过他的许多论文、著作,可以分析、追索出他的思维规律,而且在许多著作中,他也坦率地披露过自己的思维特点。例如,他追求简单性,力求用“最少的假说容纳最多的实验事实”;他常常通过想象来思考,善于“思想实验”;他推崇美学的方法,认为审美观念是导致科学发展的重要因素之一;等等。如果把爱因斯坦的思维方法加以程序化,不就能模拟爱因斯坦的思维了吗?
用计算机模拟优秀科学家的思维方法,已成为目前世界上许多人工智能实验室的研究课题,并取得了可喜的进展。最近几年,美国卡内基—梅农大学的兰利等人,提出了一种培根程序,能使计算机学会运用培根的归纳法,对大量的实验数据进行归纳推理,从而重新发现了十七、十八世纪一些著名科学家发现的重要定律,如开普勒第三定律、欧姆定律、波义耳气体定律等许多物理学、化学上的定律。或许,等不了多久,人类化了几个世纪所获得的科学成果,计算机都能很快地重现出来。前几年,计算机独立证明了著名的四色定理;1980年,我国数学家吴文俊用一台微型计算机证明了西姆逊定理。
这种模拟智能系统,还可以超越思维的个体局限,把许多科学家的智慧集中在一起,形成集思广益、博采众长的“专家咨询系统”。机器“智囊团”,是人工智能研究中最引人注目的成果,可以运用到军事决策、经济规划、科学研究、企业管理、医疗诊断、交通指挥、法院审判等许多方面。据说尼克松政府在越南战争中陷于困境时,曾求助于设在五角大楼的机器“智囊团”,经过机器“高参”的一番运算筹划,提出了“地毯式轰炸”、“布雷封锁港口”等方案,为美国政府在巴黎和谈中争得了一些筹码。上海计算技术研究所李太航设计的“中医智能计算机应用系统”,集中了许多老中医的经验,并能在诊断中自我学习,自我完善,具备了初步的智能水平。
寻找智慧的“灵魂”
有人问:这种智能系统,究竟能否完全代替人脑?应该说,到目前为止,它们虽然在运算速度、记忆容量方面大大占了优势,但缺少灵活性、创造性,而这正是人脑的“灵魂”所在,因此,它们仍无法同人脑媲美。不过人工智能的研究,也就是要在这方面取得进步。首先,人们试图用仿生学的方法,制成一种“类大脑”的智能机器,叫“智力机”或“控制论机器”。由于人脑是我们已知结构中最复杂的结构,仅仅大脑皮层就有140亿个神经元,每个神经元又通过几万个突触与其它神经元相联系,组成错综复杂的神经网络,因此从模拟具体构造的途径来模拟大脑,简直就象“老虎吃天”,但科学家已迈出了第一步。早在1943年,美国数理逻辑学家麦克卡洛和神经生理学家匹茨,就从神经元开始对人脑进行模拟,现在已经有一百多个神经元模型。可是,对于单个神经元模拟得再逼真,也不能代替一个大脑,脑的任何一种功能都是由成千上万个神经元按一定的方式组织起来的整体特性。于是,科学家们又在研究脑神经结构的基础上,对脑的功能方面进行模拟,1958年做出能分类图形的“感知机”。1969年日本的中野提出模拟人的联想功能的“联想机”。1975年科学家又根据神经元突触机构新原理,提出一种反馈型认识机的神经网络模型。但由于人脑的神经网络系统无比复杂,要真正搞清它的构造、机理,进行数学描述和电子模拟,其困难不亚于建造一座庞大的奥妙神秘的“宇宙城”,所以尚需要长期的、艰难的探索。
舍此之外,是否另有道路呢?一些科学家试图绕过大脑结构这座巨峰,运用计算机科学和心理学方法,进行脑的宏观功能的模拟。这种方法是把人在解决各种问题时所用的步骤、策略、窍门等心理活动总结成规律,编进程序,然后设法用计算机来模拟。例如,人的下棋、解题、作诗,之所以不必象计算机那样将各种可能的解都思考一遍,是因为人可以根据经验先提出假设,以供推敲斟酌,明显地缩小了选择范围。模拟人的这个思维特点,出现了一种“启发式程序设计”。这种计算机解题,不再是根据事先编好的刻板的算法程序,而是先做出某种假设,再用实际的论据来衡量这种假设,根据结果再提出新的假设,这样循环下去,直至最后得出较为满意的解。有人用这种方法设计了一种下棋机,在有了十至二十个小时的下棋“经验”以后,这位“棋手”就能令人信服地战胜自己的程序设计者了。
以脑为原型的结构模拟和通过计算机软件实现功能模拟,是目前人工智能研究的两个方法。随着超大规模集成电路的出现,当每个神经元有可能用一部做在硅片上的超微型计算机来模拟时,这两个研究方法就有可能融为一体,从而产生真正的“电脑”。
告别“恐龙时代”
篇10
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)26-0214-02
一、医学信息技术的发展
自从计算机发明的第一天,人类就尝试着将计算机技术应用于医学的信息管理和临床诊疗过程当中。上世纪60年代,国外医院管理信息系统开始用于住院病人的管理。70年代,其应用范围扩展到病案、卫生统计、门诊、护理、药品等部门。80年代,医疗信息系统开始取代医院管理信息系统,用以提高医生的诊疗水平和医院的服务水平[1]。进入90年代,随着现代医学和信息技术的发展,医疗信息系统逐渐在中国各级医院普及,尤其是三甲医院,每天产生了大量的临床数据。而近些年来随着医疗大数据的发展,医疗领域的知识和数据也呈爆炸式增长,数据的种类逐渐增多(图像、文本、波形、组学数据和电子病历中的结构化数据),系统的复杂度逐渐加大(系统标准繁多、接口类型不一致),无论是信息管理还是应用开发,难度都日渐加深。因此,医学信息领域的蓬勃发展对于医学信息人才的需求也日益迫切。
二、医学信息工程专业定位及发展
为适应国家和社会发展需要,教育部于2003年设立了医学信息工程专业。医学信息工程是一门以信息科学和医学为主的多学科交叉与融合的新兴综合性学科。本专业培养具有现代管理学基础理论、医药学基础知识和计算机科学技术知识,掌握当今医学信息中数据的收集、整理、存储、分析与传输等技术的基本知识、基本理论和基本实践技能,有较强的医学应用软件使用、维护、设计、开发的能力,能够将信息技术与医疗管理、医疗服务有机结合的高级医学信息技术人才。医学信息工程专业的学生一般学制4年,授予工学学士学位。
目前,据统计全国已有24所本科院校开设医学信息工程专业,中医药院校所占有相当大的比例(10所)。但是不同高校对于医学信息工程专业覆盖的范围理解不同,学校间开设的课程也不尽相同。一般来说,学校根据自身的学科发展情况,有的院校开设电子信息技术等硬件类课程多一些,有些学校开设计算机技术等软件类课程多一些,有的院校开设医学信息学等信息学类课程多一些,这就导致了医学信息工程专业人才培养目标和结果的不一致。笔者调研了国内目前开设医学信息工程学校的培养方案和专业课设置,对目前国内院校医学信息工程专业的课程设置进行了总结。
三、国内目前开设医学信息工程院校的专业设置
本文调研了国内目前开设医学信息工程专业学校的专业设置情况,并分类加以讨论,以期望理清国内医学信息工程专业的发展现状。
1.课程设置以硬件类课程为主。此类学校开设的硬件类课程较多,着重培养学生生物医学、电子技术、信息科学的基础理论,接受电工、电子技术、医学信息检测与处理技术在医学中应用的良好训练,具备医学信息工程领域中的研究和开发的基本能力,能够完成医学仪器系统方面的设计、开发与应用的人才。此类学校以四川大学为代表。作为我国第一个开设医学信息工程专业的高等院校[2],四川大学的课程设置有标杆意义。目前该校开设的主干课程有:数字信号处理,数字图像处理,医学传感检测技术,医学图像处理,医学电子学,现代医学仪器,医学信号处理。可以看出,课程设置以电子类、仪器类课程为主。类似的大学还有杭州电子科技大学,湖北科技学院等。除了上述课程外,部分学校还设了单片机技术与应用、医学影像仪器、医用测量与监护仪器等。当然,这类学校只是以硬件课程为主,并不是完全不设置软件类课程。
2.课程设置以软件类课程为主。此类学校以合肥工业大学为代表,主要培养的是进行医学信息系统设计、开发与应用类人才。开设的主干课程有:计算机网络、数据结构、程序设计、软件工程、医学信息系统、数据库系统、微机原理等。此类学校以计算机和软件类课程为主,既有传统PC端的医疗信息系统等软件类课程开发课程,也有web系统与技术等网络类课程,部分学校甚至开设了物联网技术课程。而随着移动医疗的发展,部分院校还开设了基于安卓和IOS系统的开发课程,如河北北方学院的智能终端设计与开发。类似的大学还包括:湖北中医药大学、湖南中医药大学、成都中医药大学、甘肃中医药大学、广州中医药大学、黑龙江中医药大学、济宁医学院、重庆医科大学和遵义医学院等。同样,这类学校也只是以软件课程为主,并不是完全不设置硬件类课程。
3.课程设置兼顾软硬件类课程。国内这一类的大学也比较多,通过专业设置的课程来看,既培养学生的硬件设计能力,也同时培养学生的软件开发能力,软硬件类的课程比接近1:1。这类学校有:浙江中医药大学、中南民族大学、泰山医学院、安徽中医药大学等。但这类学校的专业课程设置很容易与生物医学工程专业的课程设置相类似。
4.课程设置兼顾医学信息类和软件类课程。在所有开设医学信息工程专业的高等院校中,中医药大学占有相当大的比例,有10所之多。这部分学校在主干课程中还会增设一些与医学信息学相关的医学类和医学信息类的课程,如中医基础理论、现代基础医学概论、医学信息学,医院管理学,卫生统计学,病案管理与统计等。这类学校有:辽宁中医药大学、徐州医科大学等。其目标是培养能够系统掌握信息管理、信息系统分析与设计方法及信息分析与利用等方面的知识与能力,能在国家各级医药卫生管理部门及其相关领域的企事业单位从事信息管理、信息系统分析与设计、实施管理和评价及医学信息学研究等方面工作的应用型专门人才。
5.我校医学信息工程专业人才培养思路设置。当前信息技术是工学领域发展较快的技术,信息技术中的大数据、云计算、物联网、人工智能等先进技术和方法无时无刻不在向医疗领域渗透,使得医学信息技术蓬勃发展。所以我们认为医学信息工程专业的人才培养应紧跟国际国内的发展形势,越来越注重学生信息技术的培养,不仅包括传统的医用软件的开发技术,而且包括信息处理技术,尤其是大数据环境下的信息采集、传输、存储和利用技术[3]。
上海理工大学医学信息工程专业成立于2012年,2013年开始招生,隶属于医疗器械与食品学院。本专业着重培养具备医疗信息系统、医学应用软件、健康物联网相关的专业知识和工程能力,能在医学信息工程领域从事设计、开发、应用、管理和服务的理工医结合的复合型高级工程应用型人才。上海理工大学在课程设置中不仅注重学生信息采集、传输能力的培养,更注重学生信息处理能力的培养,开设了Python程序设计、医用软件技术,医学信息集成技术,云计算与数据挖掘、临床决策支持技术、医学人工智能等课程。不仅注重学生的理论学习,更注重学生实际动手能力的培养,每门课都开设配套的实验课程供学生学习巩固理论课所学知识。本专业还与多家医院的信息科和科技公司开展合作,为毕业生提供多种类型的实习基地,为其毕业找工作打下坚实的基础。