高光谱遥感原理范文

时间:2023-12-07 18:02:06

导语:如何才能写好一篇高光谱遥感原理,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

高光谱遥感原理

篇1

遥感,即遥远的感知。因为每种物体都在吸收、反射和发射能量及信息,根据不同物体的电磁波性质是不一样的。高光谱遥感就是据此原理,不仅远离物体还能提取该物体的信息。

基于遥感图像因种种原因伴随诸多噪声,并且波段数目多、信息量大、同时波段间相关性大、光谱分辨率高、具有连续的波谱曲线,因而会出现数据存储、压缩、管理等等问题。

本文重点介绍江西德兴尾矿数据经过高通滤波、低通滤波降噪处理,从而消除或减弱低频噪声,起到锐化图像的作用,使图像数据更加光滑,增加目标地物与相邻背景间的灰度反差值。从而使得图像各像素间在结构、纹理、内容等方面的相关性会比降噪前小一些,更加方便分类、识别、解译等工作。

关键词:遥感 高通滤波 低通滤波

中图分类号:TP751 文献标识码:A 文章编号:1003-9082(2013)09-0002-02

一、研究数据介绍

“Remote Sensing”,遥感,即遥远的感知。人类一直憧憬着从天空中观测地球,古时既有“登东山而小鲁,登泰山而小天下”的认识。经过实践发现,每一种物理都在吸收、反射和发射能量和信息。有一种使我们熟知的电磁波。根据不同物体的电磁波性质是不一样的。高光谱遥感就是据此原理,不仅远离物体还能提取该物体的信息。

德兴铜矿地处江西省上饶德兴市境内,是亚洲最大的露天铜矿,德兴铜矿拥有丰富可靠的资源,铜金属储量占全国第一位,矿藏特点是储量大而集中,埋藏浅,剥采比小,矿石可选性好,综合利用元素多,其尾矿的价值不言而喻。

研究数据来自EO-1/Hyperion,它的波长范围是0.4-2.5微米,可见光波段和近红外波段都包含35个波段,短波红外区域172个波段,不包含中红外波段,空间分辨率30米,扫描宽度是7.5公里,波段数242,时间分辨率是200天。

二、高光谱发展以及数据特点

1957年世界上第一个人造地球卫星由苏联发射成功,从此人类迈入了太空时代。我国遥感事业起步晚些,事实证明高光谱遥感技术在识别矿物以及在蚀变带成图很有用处,给地质者提供指引。2011年,神州八号成功发射,同年与天宫一号对接,这标志着我国航天事业的发展也已比较成功。

高光谱遥感成像是相对于多光谱成像而说的,由于拥有成百甚至上千的波段数目,高光谱遥感所获得的图像信息要比多光谱成像信息超出很多,并且包含了更丰富更光滑的光谱曲线信息。

遥感图像的特点有:波段数目多、信息量大、同时波段间相关性大、光谱分辨率高、具有连续的波谱曲线,因而会出现数据存储、压缩、管理等等问题。

Hughes现象,G.F.Hughes等阐述分类精度与数据复杂度的关系,即如果样本数量一定,那么分类精度会随波段数目增多而先增后减,故降低维度是必然趋势。

高光谱遥感图像信息冗余,相关性很强。故提取可能少的波段又要包含着大量的光谱信息,降维降噪是必须的选择。同时高光谱分辨率高,波段数成百上千,原图像计算量巨大,存储困难且计算花费时间很长。计算量随波段数目的增加呈指数增加,故必须经过降维降噪处理。

高光谱遥感图像降噪概述:由于数据传输、传感仪器、受到大气等影响,图像含噪声,影响波谱曲线及反射率,使得精确度降低。

综上所述,降噪处理是高光谱遥感图像处理中必须一步。常用降噪的算法有高通滤波、低通滤波、带通滤波等。本文利用低通滤波、高通滤波算法对高光谱遥感数据进行降噪处理。

三、滤波介绍及其实现

高通滤波是高频通过,低频减弱,主要作用是消除或减弱低频噪声,起到锐化图像的作用。低通滤波是低频通过,高频减弱,用于增强图像的高频率特征,使图像数据更加光滑,增加目标地物与相邻背景间的灰度反差值。

对江西德兴尾矿高光谱遥感数据进行高通滤波后,低频的噪声得以消除,使得遥感图像中的图像高频的数据更加锐化并且不改变相位位置,如图所示,主要作用是消除或减弱低频噪声后,研究区域的图像更加锐化。

对研究区域的高光谱遥感图像进行低通滤波后图像如下:

对研究区域的数据实施低通滤波,即低频通过,高频减弱,最终增加了目标地物与相邻背景间的灰度反差值,强化了图像的高频率特征,令图像更加连续光滑。

综上所述,滤波后前4个波段能够反应图像的绝大多数信息,前3个波段的特征值贡献率超过了85%,完全可以代替原图像进行后续其他处理。观察图像可得,遥感图像噪声信息量会随着噪声信息随着波段数的增加而增加,同时通过降噪不同程度地还能降低波段间的相关性。

参考文献

[1]浦瑞良,宫鹏. 高光谱遥感及其应用[M]. 北京市:高等教育出版社, 2000: 254.

[2]童庆禧,张兵,郑兰芬. 高光谱遥感 原理、技术与应用[M]. 北京市: 高等教育出版社, 2006: 415.

[3]Daniel C.Heinz , Chein-I Chang ,Fully Constrained Least Squares Linear SpectralMixture Analysis Method for Quantification in Hyperspectral Imagery[J],IEEE,2001,529-545

[4]http:///s?wd=%B8%DF%B9%E2%C6%D7%BC%BC%CA%F5%D4%AD%C0%ED%BC%B0%D3%A6%D3%C3%28%D6%EC%C0%E8%C3%F7%29.ppt&opt-webpage=on&ie=gbk

[5]吴昊. 高光谱遥感图像数据分类技术研究[D]. 国防科学技术大学, 2004.

[6]武鹤.基于数学形态学的高光谱图像端元提取技术研究[D].成都理工大学,2011.

[7]邓书斌. ENVI遥感图像处理方法[M]. 北京市: 科学出版社, 2010: 452.

篇2

关键词:水工环地质;应用;遥感信息;调查

中图分类号: P283 文献标识码: A 文章编号:

概述

遥感技术首先应用在资源宏观普查、动态监测上,而后才扩展到生态环境调查、环境污染监测等方面。经过多年的试验、推广和应用,遥感已成为各种自然资源调查、环境动态监测与工程应用不可缺少的地理空间信息获取、更新和分析的手段和数据库。随着空间技术的进步,遥感技术已从过去单一的遥感技术发展到包括遥感、地理信息系统和全球定位技术在内的空间信息技术的应用,其领域已深入到了国民经济、社会发展、国际安全以及人民生活的各个方面,称为水工环地质调查与灾害监测评估的重要技术支撑。

二、水工环领域遥感应用技术的发展现状

经过近30年的应用研究,遥感技术依靠传感器技术、图像处理技术及计算机技术的提高,在水工环领域的应用取得了长足的发展。遥感水文地质开始逐步形成一门独立的学科。传统的遥感水文地质着重于水文地质测绘系统中定性特征的解释和特殊标志的识别,近期的研究则扩展到应用热红外和多光谱影像进行地下水流系统内的地下水分析和管理,目前研究的重点集中到了空间补给模式、污染评价中植被、区域测图单元参数的确定和空间地下水模型中地表水文地质特征的监测。纵观国内外遥感技术在水工环领域的一些应用成果,可把近年来遥感技术的应用发展现状概括为以下几个方面:

4.1从目视解译发展到计算机辅助解译

如线性影像计算机自动判释专家系统及土地利用(分类)计算机判读模型以及机助信息提取与制图系统等。由于影像的多解性及识别系统的不完善性,虽还需要投入一定的人力工作,但已大幅提高解译工作效率。

4.2从几何形态解译到充分利用光谱信息

过去的多光谱遥感数据波段划分过少,只有几个波段,使地面波谱测试数据与图像光谱数据难以精确比较。因此,图像解译工作很少考虑地物的波谱特征,主要根据影像的色彩、色调、纹理、阴影等所形成的几何形态特征。随着机载成像光谱仪(高光谱)技术的商业运作及2000年前后的高光谱成像卫星的发射,使得用光谱信息对地物的分析更精细、更准确。

4.3出现地面温度反演技术

地面温度反演是指从热红外图像数据的辐射亮度值获得地表温度信息。反演方法主要有地表温度多通道反演法和多角度数据进行组分温度反演法等。

4.4从定性分析评价到依靠计算机数字模型模拟的定量分析评价

如遥感技术在地下水流系统应用中,根据遥感数据建立的地形、流域面积、水系密度等数据集结合气象数据建立空间补给模型。数字模型成为遥感技术实现定量评价的重要途径,而DEM/DTM是涉及地形数据计算方面不可缺少的工具。

4.5使用单一遥感信息源到多元信息拟合

目前的遥感应用技术,已不再是单一使用各种遥感数据,而是根据需要结合利用了其他信息源,如地质、地形、水文、土壤、植被、气象、岩土物理力学特征及人类活动等资料。这样,图像数据的预处理尤其重要,如几何较正、多波段数字合成、镶嵌、数据变换等,而地理信息系统(GIS)在多元信息数据管理中起着重要作用。

4.6从单一手段应用到多手段应用

近年来,遥感技术(RS)与地理信息系统(GIS)和全球定位系统(GPS)的综合应用,即“3S”技术,成为遥感技术应用的主流。GIS是数据库管理、数据图形处理、各主题图件叠加、制图的重要工具。GPS 卫星定位的基本原理是将无线电信号发射台从地面点搬到卫星上,组成一个卫星导航定位系统,应用无线电测距交会的原理,便可由 3 个以上地面已知点(控制站)交会出卫星的位置,反之利用 3 颗以上卫星的已知空间位置又可交会出地面未知点(用户接收机)的位置。用户使用 GPS 接收机在某一时刻同时接收3 颗以上的 GPS 卫星信号,测量出测站点(接收机天线中心)到 3颗以上 GPS 卫星的距离,并解算出该时刻GPS 卫星的窄间坐标,据此利用交会法解算出测站点的位置。实时动态测量的基本工作方法是,在基准站上安置l 台 GPS 接收机,对所有可见GPS 卫星进行连续的观测,并将其观测数据通过无线电传输设备实时地发送给用户观测站(流动站)。在流动站上,GPS 接收机在接收 GPS 卫星信号的同时,通过无线电接收设备,接收基准站传输的观测数据和转换参数,然后根据 GPS 相对定位的原理,即时解算出相埘基准站的基线向量,解算出基准站的 WGS-84 坐标;再通过预设的 WGS-84坐标系与地方坐标系的转换参数,实时地计算并显示出用户需要的三维坐标及精度;GPS可以对地面控制点精确定位,提高遥感数据空间精度。另外,在具体手段配合上,也出现了遥感技术与物探技术、钻探技术等相结合的新方法。

4.7数字摄影测量技术的发展

数字摄影技术的成熟,推进了制图工作的现代化,改善了基础图件的质量和成图效率,并影响着遥感技术的调查方法。该技术的产品可直接作为GIS的数据源,便于遥感与GIS一体化研究与开发。如我国自己开发的全数字摄影测量软件VIRTUOZO,具有数字化测图、自动生成DEM/DTM和等高线、生成正射影像等功能。

4.8遥感技术应用成果向着便于保存、复制、携带及传输方向发展

这意味着遥感技术应用成果的数字化。由于是数字成果,可载于多种介质上,如CD-ROM、磁带及计算机硬盘上,使携带处理更加方便。随着1998年“数字地球”计划的提出及我国国土资源部“数字国土”工程的实施,遥感应用成果数字化显得尤其必要。

三、主要遥感信息源及其发展

根据传感器类型不同,遥感图像可分为可见光摄影、红外摄影和扫描、多光谱扫描、微波雷达和成像光谱图像等。近10年来,传感器技术迅猛发展,主要表现在:①图像分辨率提高,卫星图像分辨率已达到米级。②具备立体观察功能。③应用波段数增加,机载高光谱成像仪已投入使用。如美国的AVIRIS(航空可见光/红外成像光谱仪),波谱范围0.4~2.5/l,波段数224个。CASI(袖珍航空光谱成像仪),波谱范围0.4~0.95/u,波段数72个。高光谱成像光谱仪简称成像光谱仪,也称超光谱成像仪,按其波段数目可分为高光谱成像光谱仪(波段数

四、结语

在水工环地质中对3S技术的采用,已经得到了很好验证,可以一步到位外业的测量,节省了很多不必要的中间环节,对外业工作量进行最大限度地减少,从而缩短整个测量工期,提高工作效率。同时,简化外业工序和迅速完成也可以使所有的后续专业工序更快的完成。

参考文献:

篇3

1.1直接应用——遥感蚀变信息的提取

岩浆热液或汽水热液使围岩的结构、构造和成分发生改变的地质作用称为围岩蚀变。围岩蚀变是成矿作用的产物,围岩蚀变的种类(组合)与围岩成分、矿床类型有一定的内在联系,围岩蚀变的范围往往大于矿化的范围,而且不同的蚀变类型与金属矿化在空间分布上常具规律可循,因此,围岩蚀变可作为有效的找矿标志。

1.1.1蚀变遥感异常找矿标志

围岩蚀变是热液与原岩相互作用的产物。常见的蚀变有硅化、绢云母化、绿泥石化、云英岩化、夕卡岩化等。

1.1.2信息提取的实现

与地物发生反射、透射等作用的电磁波是地物信息的载体,地物的光谱特性与其内在的物理化学特性紧密相关,物质成分和结构的差异造成物质内部对不同波长光子的选择性吸收和反射。具有稳定化学组分和物理结构的岩石矿物具有稳定的本征光谱吸收特征,光谱特征的产生主要是由组成物质的内部离子、基团的晶体场效应或基团的振动效果引起的。各种矿物都有自己独特的电磁辐射,利用波谱仪对野外采样进行光谱曲线测量,根据实测光谱与参考资料库中的参考光谱进行对比,可以确定出样品的吸收谷,识别出矿物组合。根据曲线的吸收特征,选择合适的图像波段进行信息提取。根据量子力学分子群理论,物质的光谱特征为各组成分子光谱特征的简单叠加。传感器在空中接收地表物质的光谱特性,根据量子力学分子群理论,物质的光谱特征为各组成分子光谱特征的简单叠加。传感器在空中接收地表物质的光谱特性,因为探测范围内有干扰介质存在(白云、大气、水体、阴影、植被、土壤等),因此,在进行蚀变矿物信息提取时,根据干扰物质的光谱曲线出发,进行预处理消除干扰。主要造岩矿物成分(0,si,A1,Mg)的振动基频在可见——近红外区不产生诊断性吸收谷的谱带。不同类型的矿物蚀变会引起Fe,Fe,OH一,中某一类的变化,Fe2+,Fe3+,OH一,CO:在可见一近红外区可产生岩石谱带中的不同吸收谷组合,例如,在0.4~1.3um范围内的光谱特性是因为矿物晶格结构中的Fe,cu等过渡性金属元素的电子跃迁引起的;1.3~2.5的光谱特性是由矿物组成中的CO:,OH口HO引起的。根据吸收谷所处的波长位置、深度、宽度、对称性等特征进行处理,提取相应的蚀变遥感异常(遥感异常)。现在应用的数据有多光谱TM,ETM+,ASTER数据以及少量的高光谱与微波遥感数据等。蚀变遥感信息在整景图像上信息占有份额低,但局部地区的信息并不微弱,因此即使是微弱的蚀变异常也可以被检测出,试验证明,遥感信息检测的蚀变检出下限优于1/20000。目前遥感找矿蚀变异常信息的提取有多种方法,例如波段比值法、主成分分析法、光谱角识别法和MPH技术(MaskPCAandHIS)、混合象元分解等。“ETM+图像数据的综合遥感找矿蚀变异常信息的提取”、“ETM+(TM)蚀变遥感异常提取方法技术”都取得了一定的成果。在蚀变遥感信息提取和应用研究中,形成了~套独特的技术,即“去干扰异常主分量门限化技术”,包括:①预处理:校正及去干扰,校正包括系统辐射校正、几何校正、大气粗略校正;干扰包括云、植被、阴影、水、雪等的去除。②信息提取:以整景的TM(ETM+)图像遥感异常信息的提取为主,其方法以PCA主分量分析为主,比值法为辅,同时用光谱角分析法对所获得的主分量异常进行筛选,然后进行门限化分级处理,以获得分级异常图。由于涉及到的矿床类型、规模、控矿要素、蚀变类型以及矿产勘查程度不同,仅靠单一的处理方法不利于异常信息的提取,因此需要多种方法的有效组合,一种方法为主其他方法为辅这些遥感信息提取技术在资源勘探过程中发挥了很大的作用,目前,利用围岩蚀变找矿已经取得了很好的效果。

1.2遥感技术间接找矿的应用

1.2.1地质构造信.息的提取

内生矿产在空间上常产于各类地质构造的边缘部位及变异部位,重要的矿产主要分布于扳块构造不同块体的结合部或者近边界地带,在时间上一般与地质构造事件相伴而生,矿床多成带分布,成矿带的规模和地质构造变异大致相同。遥感找矿的地质标志主要反映在空间信息上。从与区域成矿相关的线状影像中提取信息(主要包括断裂、芍理、推覆体等类型),从中酸性岩体、火山盆地、火山机构及深亨岩浆、热液活动相关的环状影像提取信息(包括与火山有关的盆地、构造),从矿源层、赋矿岩层相关的带状影像提取信启、(主要表现为岩层信息),从与控矿断裂交切形成的块状影像及与感矿有关的色异常中提取信息(如与蚀变、接触带有关的色环、色带、色块等)。当断裂是主要控矿构造时,对断裂构造遥感信息进行重点提取会取得一定的成效。遥感系统在成像过程中可能产生“模糊作用”,常使用户感兴趣的线性形迹、纹理等信息显示得不清晰、不易识别。人们通过目视解译和人机交互式方法,对遥感影像进行处理,如边缘增强、灰度拉伸、方向滤波、比值分析、卷积运算等,可以将这些构造信息明显地突现出来。除此之外,遥感还可通过地表岩性、构造、地貌、水系分布、植被分布等特征来提取隐伏的构造信息,如褶皱、断裂等。提取线性信息的主要技术是边缘增强。

1.2.2植被波谱特征的找矿意义

在微生物以及地下水的参与下,矿区的某些金属元素或矿物引起上方地层的结构变化,进而使土壤层的成分产生变化,地表的植物对金属具有不同程度的吸收和聚集作用,影响植叶体内叶绿素、含水量等的变化,导致植被的反射光谱特征有不同程度的差异。矿区的生物地球化学特征为在植被地区的遥感找矿提供了可能,可以通过提取遥感资料中由生物地球化学效应引起的植被光谱异常信息来指导植被密集覆盖区的矿产勘查,较为成功的是某金矿的遥感找矿、东南地区金矿遥感信息提取。不同植被以及同种植被的不同器官问金属含量的变化很大,因此需要在已知矿区采集不同植被样品进行光谱特征测试,统计对金属最具吸收聚集作用的植被,把这种植被作为矿产勘探的特征植被,其他的植被作为辅助植被。遥感图像处理通常采用一些特殊的光谱特征增强处理技术,采用主成分分析、穗帽变换、监督分类(非监督分类)等方法。植被的反射光谱异常信息在遥感图像上呈现特殊的异常色调,通过图像处理,这些微弱的异常可以有效地被分离和提取出来,在遥感图像上可用直观的色调表现出来,以这种色调的异同为依据来推测未知的找矿靶区。植被内某种金属成分的含量微小,因此金属含量变化的检测受到谱测试技术灵敏度的限制,当金属含量变化微弱时,现有的技术条件难以检测出,检测下限的定量化还需进一步试验。理论上讲,高光谱提取植被波谱的性能要优于多光谱很多倍,例如对某一农业区进行管理,根据每一块地的波谱空间信息可以做出灌溉、施肥、喷洒农药等决策,当某农作物干枯时,多光谱只能知道农作物受到损害,而高光谱可以推断出造成损害的原因,是因为土地干旱还是遭受病虫害。因此利用高光谱数据更有希望提取出对找矿有指示意义的植被波谱特征。

1.2.3矿床改造信息标志

矿床形成以后,由于所在环境、空间位置的变化会引起矿床某些性状的改变。利用不同时相遥感图像的宏观对比,可以研究矿床的剥蚀改造作用;结合矿床成矿深度的研究,可以对类矿床的产出部位进行判断。通过研究区域夷平面与矿床位置的关系,可以找寻不同矿床在不同夷平面的产出关系及分布规律,建立夷平面的找矿标志。另外,遥感图像还可进行岩性类型的区分应用于地质填图,是区域地质填图的理想技术之一,有利于在区域范围内迅速圈定找矿靶区。

2遥感找矿的发展前景

2.1高光谱数据及微波遥感的应用

高光谱是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。它利用成像光谱仪以纳米级的光谱分辨率,成像的同时记录下成百条的光谱通道数据,从每个像元上均可以提取一条连续的光谱曲线,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而具有巨大的应用价值和广阔的发展前景。成像光谱仪获得的数据具有波段多,光谱分辨率高、波段相关性高、数据冗余大、空问分辨率高等特点。高光谱图像的光谱信息层次丰富,不同的波段具有不同的信息变化量,通过建立岩石光谱的信息模型,可反演某些指示矿物的丰度。充分利用高光谱的窄波段、高光谱分辨率的优势,结合遥感专题图件以及利用丰富的纹理信息,加强高光谱数据的处理应用能力。微波遥感的成像原理不同于光学遥感,是利用红外光束投射到物体表面,由天线接收端接收目标返回的微弱回波并产生可监测的电压信号,由此可以判定物体表面的物理结构等特征。微波遥感具有全天时、全天候、穿透性强、波段范围大等特点,因此对提取构造信息有一定的优越性,同时也可以区分物理结构不同的地表物体,因为穿透性强,对覆盖地区的信息提取也有效。微波遥感技术因其自身的特点而具有很大的应用潜力,但微波遥感在天线、极化方式、斑噪消除、几何校正及辐射校正等关键技术都有待于深入研究,否则势必影响微波遥感的发展。

2.2数据的融合

随着遥感技术的微波、多光谱、高光谱等大量功能各异的传感器不断问世,它们以不同的空间尺度、时间周期、光谱范围等多方面反映地物目标的各种特性,构成同一地区的多源数据,相对于单源数据而言,多源数据既存在互补性,又存在冗余性。任何单源信息只能反映地物目标的某一方面或几个方面的特征,为了更准确地识别目标,必须从多源数据中提取比单源数据更丰富、有用的信息。多源数据的综合分析、互相补充促使数据融合技术的不断发展。通过数据融合,一方面可以去除无用信息,减少数据处理量,另一方面将有用的信息集中起来,便于各种信息特征的优势互补。数据的融合包括遥感数据间的融合、遥感数捱与非遥感数据的融合。融合技术的实现方法有多种,简单易行的是对几何配准后的像元逐点进行四则运算或HIS变换,还有一些方法是对多源数据先进行预处理(特征提取、判别分析)后再进行信息融合,主要的方法有代数运算融合、小波变换融合等。蚀变矿物特征光谱曲线的吸收谷位于多光谱数据的波段位置,因此可以识别蚀变矿物,但是波段较宽,只对蚀变矿物的种属进行分类。与可见一红外波段的电磁波相比,雷达波对地面的某些物体具有强的穿透能力,能够很好地反映线性、环性沟造。雷达图像成像系统向多波段、多极化、多模式发展,获取地表信息的能力越来越强。总的来说,多光谱、高光谱数据的光谱由线特征具有区分识别岩石矿物的效果,所以对光学图像与雷达图像进行融合处理,既能提高图像的分辨率、增强纹理的识别能力,又能有效地识别矿物类型。尽管融合技术的研究取得了一些可喜的进展,但未形成成熟的理论、模型及算法,缺乏对融合结果的有效评价手段。在以后的研究中,应该深入分析各种图像的成像机理及数据间的相关性、互补性、冗余性等,解决多源数据的辐校正问题,发展空间配准技术。

2.33S的结合

3s是遥感(RS)、地理信息系统(GIS)及全球定位系统(GPS)的简称。利用GPS能迅速定位,确定点的位置坐标并科学地管理空间点坐标。海量的遥感数据需庞大的空间,因此要有强大的管理系统,随着当今人力资源价格的升高,在区域范围内找矿时,遥感表现出最小投入获得最大回报的优势,那么RS与GIS的结合也势在必行,因为GIS更有利于区域范围的影像管理及浏览。随着3S技术发展,遥感数据的可解译程度与解译速度得到进一步提高,目前,地质工作者尝试将3S与VS(可视化系统)、CS(卫星通讯系统)等技术综合应用,取得了较好的效果。

2.4图像接收、处理及信息提取技术的发展完善

由传感器接收的地物光谱信息传到地面接收站,在计算机操作平台上进行图像的处理以及遥感信息提取。随着传感器的发展、数据量的增大,从海量的遥感数据中提取有用的、相对微量的找矿信息不是一件容易的事,传感器的发展是信息提取的前提,图像处理技术的开发是信息提取的关键。为了提取更客观有效的找矿信息,需要进行以下几方面的工作:

(1)进一步发展高分辨率传感器,以便接收更微弱、细小的地质信息;

(2)加强信息提取方法的研究解决计算机处理的技术问题,例如补偿信号在传感器的误差、校正辐射、地形起伏等引起的图像失真等;

(3)在选择参与信息提取的波段时,深入波段选取依据的理论研究,例如进行岩石样品的光谱测试,矿物识别与分析是遥感地质信息提取的核心,所以需要确定不同类型的矿物在各波段的吸收性。同样在利用植物地化找矿时需配套精密的物质成分分析仪器及技术等;

(4)遥感图像处理海量数据,经处理后的一景图数据量很大,为保障数据处理速度,需要强大的计算机技术(硬件与软件)支撑,:图像处理中要将算法转化为计算机的可识别语句,需要计算机语言的发展。发展有利于提高遥感图像的信噪比、优化信息提叉的软件平台,实现不同格式图像问的兼容性。

篇4

1 全球定位系统全球定位系统(GPS,Global Positioning System)是由地球导航卫星、地面监控系统和用户GPS接收机等3个主要部分组成。现在最常用的是美国GPs系统,它包括在离地球约20 O00km高空近似圆形轨道上运行的24颗地球导航卫星,其轨道参数和时钟由设于世界各大洲的5个地面监测站与设于其本土的一个地面控制站进行监测和控制,使得在近地旷野的GPS接收机在昼夜任何时间、任何气象条件下最少能接受到4颗以上卫星的信号。通过测量每一卫星发出的信号到达接收机的传输时间,即可计算出接收机所在的地理空间位置。

农田养分信息具有显着的空间属性,其空间变异性很大。在数据采集过程中,其位置的识别是与数据监测密不可分的,因此需要对信息进行准确的定位。

全球定位系统(GPS)提供了全天候、实时精确定位的测量手段。数字农业中,GPS主要是用来确定在田间的位置,结合其土壤的含水量、氮、磷、钾、有机质和病虫害等不同信息的分布情况,辅助农业生产中的灌溉、施肥、喷药等田间操作,其作用从本质来说是提供三维位置和时间。GPS主要应用于以下3个方面:一是智能化农业机械的动态定位(即根据管理信息系统发出的指令,实施田间的精准定位);二是农业信息采集样点定位(即在农田设置的数据采集点、自动或人工数据采集点和环境监测点均需GPS定位数据);三是遥感信息GPS定位(即对遥感信息中的特征点用GPS采集定位数据,以便于GIS配套应用)。由于GPS存在较大的误差,所以差分GPS(即DGPS)越来越受到人们的重视。DGPS可以消除卫星钟差、星历误差、电离层和对流层延迟误差等,从而使定位精度大幅度提高。

2 遥感技术遥感技术(RS,Remote Sensing)的基本原理是利用物体的电磁波特性,通过观测物体的电磁波,从而识别物体及其存在的环境条件。遥感技术系统由传感器、遥感平台及遥感信息的接受和处理系统组成。

其中,接受从目标反射或辐射的装置叫做遥感器(如扫描仪、雷达、摄影机、摄像机和辐射计等),装载遥感器的平台称遥感平台(如飞机和人造卫星等)。经过遥感器得到的数据在使用前应根据用途需要做相应的纠正、增强、变换、滤波和分类等处理。

遥感(RS)技术是未来数字农业技术体系中获得田间数据的重要来源,它可以提供大量的田间时空变化信息。遥感技术在精准农业中的应用主要以下3个方面:一是作物长势及其背景的监测,运用高分辨率(米级分辨率)传感器,在不同的作物生长期实施全面监测,并根据光谱信息进行空间定性和定位分析,为定位处方农作提供依据;二是作物冠层多光谱监测,利用地物光谱仪和多光谱相机获取的信息,监测叶绿素密度的变化,并分析其变化与养分的关系;三是运用多光谱遥感信息(红外波段),在有作物条件下监测土壤水分。

3 田间信息获取技术的现状和发展趋势3.1 土壤水分和养分信息获取技术国内外已开始研究采用各种不同的手段来获取土壤水分和养分信息。目前,除了一些传统的常规测量方法外,已尝试采用的较新的技术,包括遥感、计算机及网络和地面传感技术等。其中,实践较多的是以电子技术为支撑的地面信息传感技术和以空间技术为支撑的遥感信息采集技术。

土壤水分信息的获取相对于其他土壤养分更易掌握,因此对土壤水分测量方法的研究已经取得了显着成果。各种在线式的测量方法相继产生,如电阻法、时域反射法(TDR法)、频域反射法(FDR法)、中子散射法和近红外光谱法等。这些方法均有一定的局限性:一是电阻法的测量精度受土壤含水率的影响很大;二是时域反射法在低频(≤20MHz)工作时较易受到土壤盐度、粘粒和容重的影响,而且价格比较高;三是频域反射法的读数强烈地受到电极附近土体孔隙和水分的影响,特别是对于使用套管的FDR测量;四是中子散射法虽然测量方法简单,但仪器设备昂贵,并且存在潜在的辐射危害。对于土壤养分信息(土壤中的N,P,K,pH值、有机质、含盐量和电导率)的获取技术,常规化学试验测量方法仍是现在土壤养分信息获取的主要手段。该方法具有破坏性和不及时性等缺陷,因此随着近红外光谱技术的不断完善和应用的广泛性,用近红外光谱技术来检测土壤养分已经成为国内外学者研究的重点。

近红外光谱法是根据水的红外吸收光谱来进行测量的,在红外区内,水的吸收波长为1 200,l 450,1 940和2 950nm,测量方式有反射式、透射式和反射透射复合式等几种。红外光谱水分仪具有无接触、快速、连续测量、测量范围大、准确度高和稳定性好等优点,适用于在线水分监测,但在测量自然物体时因表面不规则使得反射率不稳定,影响测量精度,需对样本做简单处理。

土壤其他养分信息的研究主要包括土壤中N,P,K,pH值、有机质、含盐量和电导率等信息的采集。现在,除了常规化学试验测量方法外,用近红外反射光谱法来测量土壤养分已成为国内外诸多学者研究的重点。Shibusawa等指出,用400~1 900nm波段来预测土壤湿度、pH值、土壤电导率和土壤有机质等,其相关系数从0.19变化到0.87 ;李民赞研究了基于可见光光谱分析的土壤参数分析,在1 1O0, 1 350,1 398,2 210nm处建立了多元线性回归模型,相关系数为0.934 ;健等用近红外光谱法分析了土壤中的有机质和氮素 ;He等对土壤电导率和常量元素的测量 ;鲍一丹等应用光谱技术研究了土壤粒度和含水量对预测土壤氮含量的影响 。

3.2 作物长势的监测技术对农作物长势的动态监测可以及时了解农作物的生长状况、土壤墒情、肥力及植物营养状况,以便及时采取各种管理措施,保证农作物的正常生长。同时,可以及时掌握大风或降水等天气现象对农作物生长的影响,监测自然灾害或病虫害对作物产量造成的损失等,为农业政策的制订和粮食贸易提供决策依据。

应用遥感技术可对大面积农作物的长势进行监测,其基本方法是利用覆盖周期短而面积大的NOAA卫星资料,对地面植被吸收的光谱信息和地面实际情况进行分析,并结合常规的方法和资料,建立作物监测模式,用以监测作物长势,苗情监测通报,指导农业生产¨ 。国际上,关于农作物生长状况遥感监测与估产有3个标志性的实验计划,即美国的LACIE计划、A—GRISTARS计划和欧盟的MARS计划。1974—1977年,美国农业部(USDA)、国家海洋大气管理局(NOAA)、美国宇航局(NASA)和商业部合作主持了“大面积农作物估产实验”,主要品种是小麦,地区范围是美国、加拿大和前苏联。1980—1986年,执行LACIE计划的几个部门又合作开展了“农业和资源的空间遥感调查计划”,其中包括世界多种农作物长势评估和产量预报。欧盟所属的联合研究中心遥感

应用研究所通过实施“遥感农业监测”项目,即MARS计划,也成功地建成了欧盟区的农作物估产系统,并将结果应用于诸如农业补贴与农民申报核查等欧盟的共同农业政策。在农作物长势监测的方法上,国外科学家主要围绕适合大面积监测的NOAA—AVHRR的应用进行了多方面的探索,取得了许多突破进展¨卜”J。我国利用气象卫星监测作物生长状况的研究始于20世纪80年代中期,并应用气象卫星对农作物长势进行宏观监测的理论和方法进行了研究 。

3.2.1 作物根系信息监测技术作物根系信息基本上是通过图像识别的方法来得到的。例如加拿大产的ET一100根系生态监测系统,运用透明管材埋设在需要研究的根系周围,使用特殊图像捕捉系统对根系照相,然后借助专业根系分析系统对混合图像进行分析,从而跟踪了解其生长过程。

这种方法可以非破坏性地动态追踪分析根系形态因子,根系相关数据能够定量化,还可以根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化。该方法已广泛应用于园艺植物培养和作物生长模型研究等领域。

3.2.2 光合作用测定技术光合作用测定的一个例子是用叶室内装备最新的小型红外气体分析传感器(IRGA),测量温度和光合有效辐射(PAR)的传感器接收信号,再用便携式微处理器控制叶室内的二氧化碳和水蒸汽浓度,并测量二氧化碳和水蒸汽交换。CIRAS一1植物光合测定仪根据精密测量叶片表面CO 浓度及水分的变化情况,来考察叶片与植物光合作用相关的参数,用以测量植物叶片的光合速率、蒸腾速率和气孑L导度等与植物光合作用相关的参数。

3.3 作物营养监测技术叶绿素是吸收光能的物质,对作物的光能利用有直接影响。叶绿素含量和作物的光合能力、发育阶段以及氮素状况有较好的相关性。由于叶绿素之间的含氮量和叶变化趋势相似,通常认为可以通过测定叶绿素来监测植株氮素营养。

叶绿素的常规测定使用分光光度计法,因为这种方法要进行组织提取和分光光度计的测定,所以既耗时间又对植被造成损伤。另外,从大田到实验室的运输和样本制备过程中很可能损失叶绿素,进而导致叶绿素含量发生变化 。

目前,应用较多的是一种日本生产的SPAD一502叶绿素仪。这种叶绿素仪的工作原理是采用两个不同波长的光源分别照射植物叶片表面,通过比较穿过叶片的透射光光密度差异而得出SPAD值。因此,SPAD值是一个无量纲的比值,与叶片中的叶绿素含量成正相关。在叶绿素仪应用的研究中,各研究者所采用的测定部位都大体相同,即作物生长前期取新展开的第一片完全展开叶作为测定部位,生长后期则取功能叶(小麦取旗叶和玉米取穗位叶)作为测定部位。

叶绿素仪在玉米株与株之间的测定值可能会相差15% ,在同一片叶上不同位置的测定值也不同。一般认为,距离叶基部55% 处的SPAD测定值较大,且偏差较小,是合适的测试位点。

便携式高光谱仪是一种非损伤性测定叶绿素的方法,它通过测定绿色植物叶片的反射率、透射率和吸收率来测定叶绿素含量,这决定了高光谱技术在植被叶绿素含量评价研究中具有不可替代的作用。国内外很多学者已经对作物氮元素的高光谱及光谱测量进行了研究,并且各种反射率比值及植被指数用于监测植物的氮素亏缺 1卜 。王人潮等利用叶绿素计和高光谱快速测定了大麦的营养状况,结果表明,可以通过光谱法来测定大麦的氮素水平¨ ;IJi等应用反射光谱检测了茶叶的叶绿素含量 ;方慧等应用光谱技术检测了油菜叶片中叶绿素含量¨ 。光谱监测提供了一种自动、快速和非损伤性的植物营养状态监测方法,并且田问不同处理之间的冠层光谱差异为高光谱和多光谱遥感大面积监测氮素营养提供了可行性。

3.4 作物冠层多光谱监测技术植物冠层光谱特性是植物光谱特性与背景土壤光谱特性的综合。随着植物冠层的发育,土壤光谱特性的作用逐渐下降;在植物衰老时,土壤背景的作用又逐渐增大。一般叶面积指数(LAI)达到3左右时,冠层在可见光和中红外波段的光谱反射率基本稳定;而在近红外波段,LAI达到5~6时,光谱反射率才能饱和。冠层光谱反射率还受太阳光入射角、双向反射、气溶胶和风速等诸多外部因素的影响。由于植物营养状况能影响叶面积、冠层形态和内在生理特征,而且不同营养元素的影响程度也不同,因此利用冠层光谱分析可以诊断植物营养状况。现代”精细农业”的一个非常重要的技术手段,就是利用遥感技术监测作物的营养状况与长势。与叶片光谱特性一样,氮素营养对冠层光谱特性影响的研究最为系统和深入。

随着氮素营养水平的提高,光谱反射率在可见光和中红外波段降低,而在近红外波段却增加。诊断水稻冠层氮素营养水平的敏感波段为760~900 nm,630~ 690 nm和520~550 nm。不同氮素营养水平下的冠层光谱反射率存在着明显差异,经植被指数转换后差异更为显着与稳定。因此,利用冠层光谱测试可以区分作物的氮素营养水平。

植物中磷钾营养水平与冠层光谱特性的关系研究较少见。总的来说,磷钾对光谱特性的影响不如氮明显。在水培和砂培条件下,不同磷钾水平的植物冠层光谱反射率存在显着差异,磷钾营养对冠层光谱特性的影响与氮的影响相似。随着磷钾营养水平的提高,可见光波段的光谱反射率下降,而在近红外波段却有明显增加。利用光谱分析,可区分3~5级的磷钾营养水平。在田间条件下,由于磷钾的缺乏不严重,有时结果不太一致。

还未见报导。由于它们对叶面积、生物量以及叶片叶绿素等生理生化性质的影响与大量元素具有相似性,预计中量及微量元素对冠层光谱特征的影响也具有相似性,但影响程度将会差异较大。

目前,在国外应用的一种田间便携式分光仪可以方便地检测作物的冠层反射系数。用数学方法将几个波长下得到的反射系数进行合并就可以得到作物的“光谱系数”,或称之为探测值。经过优化的光谱系数在作物的拔节期和抽穗期与作物的供氮状况密切相关。利用这种分光仪探测原理,并加以改进而研制的拖拉机机载探测施肥系统已经很成熟。它通过探测系统将作物冠层信息输入计算机,经处理得出作物的需肥情况,计算机通过协调拖拉机步进速度和DGPS(差分GPS)数据,在考虑探测器间距离和施肥区范围基础上控制施肥操作。

作物冠层反射和土壤背景辐射在红外胶片上为不同的辐射显影。照片经计算机处理后,每个像素的色度变化都可以表示出作物反射光线的情况,而作物反射光线特性的变化正是作物营养变化,特别是氮营养状况发生变化的结果。这样分析作物冠层照片就可以准确地分析作物的氮营养状况。Hansen等用高光谱反射分别对小麦的冠层生物量和氮含量进行了研究 ;Daughtry等通过叶片和冠层反射率来预测玉米叶片的叶绿素含量 ;冯雷等应用多光谱技术检测了油菜叶片中叶绿素含量 J。

3.5 作物病虫害诊断及杂草识别技术病虫害是影响农作物产量和品质提高的重要因子,及时、准确与有效地检测病虫害的发生时间和发生程度是采取治理措施的基础。

目前,用雷达监测飞性昆虫、孢子捕捉器监测一些作物病原菌、性信息素诱芯或诱饵监测田间鳞翅目害虫以及灯光诱集飞行趋光性昆虫等,都是利用有害生物的习性开发出的相对省工和省时的监测手段。

随着遥感和高光谱技术的广泛应用,用光谱和遥感技术来监测作物病虫害的研究也取得了一定的进展。

北京农业信息技术研究中心采用高光谱遥感监测小麦条锈病、白粉病和蚜虫,以达到大面积、快速、无破坏的病虫害监测和预测预报的目的。美国利用卫星遥感图片分析监测森林舞毒蛾扩散及危害程度,监测草地蝗虫危害等。中国科学院利用综合航空多光谱数字相机成像系统,监测蝗虫及主要棉花害虫。中科院还利用TM图像遥感监测东亚飞蝗的栖息地芦苇的植被指数和监测蝗灾的动态变化。北京农林科学院利用TM卫星图片监测麦蚜对冬小麦的危害。吴迪等应用光谱和多光谱技术对茄子和番茄的灰霉病进行了早期诊断识别 -27]。

随着人们 环境保护意识的提高和对农药残留物的重视,对田间杂草清除的研究也逐渐受到许多学者的重视。杂草一作物区分的研究可分为3种:一是人工区分;二是航空遥感技术;三是光学传感器。人工区分目前是区分作物和土壤背景的最佳方法,但既费时又费力;航空图片虽然可以在短时间内获得作物大范围的图像,但是研究表明杂草密度对图像的可视性有严重的影响 ;基于地面多光谱传感器的研究使得对单种作物一杂草的研究有了进一步的进展 。。。

篇5

1多源遥感数据源

随着遥感技术的发展,越来越多的不同类型的遥感传感器数据被用于对水域的观测。不同类型的遥感数据在水产养殖信息提取中具有各自的优势和特性,因而也对应有不同的应用领域和信息提取精度。一般来说,多光谱遥感记录了地物的反射、辐射波谱特征,拥有丰富的地物空间分布及光谱信息,有助于识别水产养殖区域,是目前水产养殖区信息提取的主要信息源。但大多数多光谱遥感图像数据空间分辨率相对较低,即空间的细节表现能力比较差,将多光谱图像和全色图像融合,可有效提高图像解译能力。目前常用的识别水产养殖区的卫星遥感数据主要有全色图像、多光谱图像和微波雷达图像等,具体参数如表1所示。SAR具有全天时、全天候、多波段、多极化工作方式、可变侧视角、穿透能力强等特点,SAR图像中则含有丰富的地表纹理结构信息。在沿海水域,由于海水对微波雷达的回波能量较弱,而养殖用的基座、围栏和网箱等回波能量较强,色调比周围的海水更亮,二者对比度较大,因而可从SAR图像中提取养殖区域的相关信息。此外,在进行精度验证时,还可利用GoogleEarth平台提供的在线照片,这为实地调查验证提供了便利。

2水产养殖区域的识别方法

由于受研究时间、研究区域和数据源等客观因素的限制,还没有一种方法是最普遍和最佳的水产养殖区的识别方法。目前常用的水产养殖区识别方法主要有目视解译、基于比值指数分析的信息提取、基于对应分析的信息提取、基于空间结构分析的信息提取以及基于面向对象的信息提取等。

2.1目视解译目视解译是遥感应用最常用、最基本的方法之一。它根据遥感图像目视解译标志(位置、形状、大小、色调、阴影、纹理、图形及相关布局等)和解译经验,与多种非遥感信息资料相结合,运用相关知识,采用对照分析的方法,进行由此及彼、由表及里、去伪存真、循序渐进的综合分析和逻辑推理,从遥感图像中获取需要的专题信息。目前,目视解译一般都采用人机交互方式。在解译前先通过遥感图像处理软件对图像进行必要的预处理,包括图像增强、图像融合等,有效地改善图像的可识别能力,突出主要信息,提高判读的精度。杨英宝等依据6景TM图像和3期高精度航片,利用人机交互式解译方法分析了东太湖20世纪80年代以来网围养殖的时空变化情况[6];李新国等采用3景航空图像对东太湖的网围养殖面积动态变化进行人机交互目视解译[7];樊建勇等在经过增强处理后的SAR图像上,对胶州湾海域养殖区进行了交互跟踪矢量化[8];褚忠信等利用不同时期的TM图像,对黄河三角洲平原水库与水产养殖场面积进行了人机交互解译[9];吴岩峻等用4景ETM+图像,经过多次外业调查,建立解译标志,采用人机交互方法,对海南省海水和岛上水产养殖区进行了勾画[10];宫鹏等借助1987—1992年和1999—2002年的TM/ETM+图像及GoogleEarth平台提供的高分辨率图像和部分在线照片,对包括海水养殖场在内的全国湿地分布进行了目视解译,并绘制了专题图[11]。目视解译简单易行,而且具有较高的信息提取精度,适用于绝大多数养殖区域的识别,但是也存在一定的缺点。当解译人员的专业知识背景、解译经验不同时,可能得到不同的结果,其结果往往带有解译者的主观随意性。当养殖区域水体同非养殖区域水体的光谱特征或空间结构特征等相似时,解译人员就很难根据标志将其区分开来,使精度受到影响;而且目视解译工作量大、费工费时,难以实现对海量空间信息的定量化分析和保证信息的时效性,因此研究遥感信息的自动提取方法已成必然。

2.2基于比值指数分析的信息提取比值型指数[12]创建的基本原理就是在同一图像的多光谱波段内,求得每个像元在不同波段的亮度值之比,构成新的图像,以压制某些造成光照差异的因子或背景的影响,增强地物光谱特征的微小差别,突出目标地物的辐射特征。比值型指数通常又会作归一化处理,使其数值范围统一到-1~1之间。马艳娟等利用ASTER数据,分析养殖水体与非养殖水体在图像各波段上的特征差异,构建用于提取图像中水产养殖区域的指数(normalizeddifferenceaquacultureindex,NDAI);并分析用NDAI提取得到的结果中错分的受大气、传感器影响的水体与自然水体的各波段灰度值的分布,构建了用来进一步提取深海区域的指数(marineextractionindex,MEI),将近海水产养殖区的养殖水体与其他水体区分开[13],取得了较高的精度。由于比值指数分析的信息提取方法只考虑各波段上的灰度信息,当部分养殖区在光谱上与深海水域接近或是当深海水域光谱并非均一时,会导致错分。该方法适用于养殖区与背景环境光谱差异大的地区,否则将无法克服传统遥感分类方法所普遍存在的“椒盐”噪声,从而影响信息提取的精度。

2.3基于对应分析的信息提取对应分析是在因子分析的基础上发展起来的分析方法,又称“R-Q型因子分析”[14]。该方法已在生物和统计领域得到广泛的认同和应用,但在遥感领域的应用相对较少。在遥感应用中对应分析方法既研究图像波段特征属性及其相互关系,也研究像元特征之间的关系,有利于提高信息提取的精度。王静等应用该方法快速有效地进行了滆湖围网养殖区湖泊围网分布信息的提取[15]。该方法对遥感图像的质量要求较高,并在分析前要进行严格有效的图像预处理。此外,该方法并无法有效地解决“异物同谱”和“异物同纹理”的分类问题。

2.4基于空间结构分析的信息提取空间结构分析的处理方法有邻域分析、纹理分析、线性特征提取等。其中,邻域分析是对波段每一个像元依据四周邻近的像元对其进行空间分析的方法[16],分析和运算的像元数目和位置由扫描窗口确定;纹理表现是指图像灰度在空间上有序重复出现的特征,反映了一个区域中某个像元灰度级的空间分布规律,其基本分析方法有3类:统计分析方法、结构分析方法和频谱分析方法。周小成等采用ASTER遥感图像,以九龙江河口地区为研究示范区,利用卷积算子,采用邻域分析法来增强水产养殖地的空间纹理信息[17];李俊杰等利用纹理统计分析方法中的灰度共生矩阵(graylevelco-occurrencematrices,GLCM),选用中巴资源卫星02星多光谱数据,以白马湖为试验区,提取湖泊围网养殖区,实验表明纹理量化的均值指标能够较好地反映自然水体、围网养殖区和其他地物内部结构的异质性,取得了较理想的效果[18];林桂兰等利用方差算法对厦门海湾海上的吊养和网箱养殖进行纹理分析,得到养殖专题图[19];初佳兰等选用长海县广鹿岛海区的SAR图像,统计有效视数(ef-fectivenumberoflooks),并对图像进行多种方法滤波分析,提取了浮筏养殖信息[20]。基于空间结构分析的养殖区识别方法,适用于近海水产养殖地的自动提取,而不适用于内陆水产养殖地,因为后者在空间上的分布孤立,斑块小,与其他农用坑塘水体的空间特征类似,但仍可以作为一种遥感图像识别的辅助方法。#p#分页标题#e#

2.5基于面向对象的信息提取面向对象的图像分析主要思想是:首先将图像分割成具有一定意义的图像对象,然后综合运用地物的光谱特征、纹理、形状、邻近关系等相关信息,在最邻近法和模糊分类思想的指导下,确定分割对象所属类别,得到精度比较高的遥感图像分类结果[21]。对于养殖区分布的提取,面向对象的图像分析方法基本步骤包括多精度图像分割、面向对象的水陆划分和非养殖水域剔除。首先,使用多精度图像分割对原始图像进行分割以获得分割图斑,并计算各个图斑的特征,为后继分析服务;然后,根据遥感图像中水域的辐射特性进行水陆分割;接着根据图斑的光谱、形状及空间特征提取出面状、线状非养殖水域部分;最后,在水陆划分得到的水域全图的基础上剔除以上提取的面状水系和线状水系,得到养殖水域提取结果[22]。谢玉林等利用该方法,对珠江口养殖区域进行了提取,验证该方法在水产养殖区提取上的可行性[22];关学彬等采用该方法对海南省文昌地区的水产养殖区进行监测,取得了理想效果[23];孙晓宇等采用该方法,利用多时相遥感数据对珠江口海岸带地区水产养殖场的变化进行了提取[24]。面向对象的图像分析将处理的对象从像元过渡到了图斑的对象层次,更接近人们观测数据的思维逻辑,更利于知识与规则的融合。在很多情况下,面向对象的遥感图像分析方法会比基于像元的分析方法取得更好的效果。采用面向对象技术,在解决常规图像分类时的椒盐噪声效应、结果的可解释性上有很大优势,因此在高分辨率图像信息提取中能够发挥更大的作用。但是当特征及隶属度函数选取不当时,会出现较严重的误分现象,此时要结合目视解译方法,判别分类结果的合理性,优化隶属度函数,重新进行分类。

篇6

【关键词】高分辨率;遥感地质;找矿方法

中图分类号:F406文献标识码: A 文章编号:

一、前言

在我国,自90年代以来,遥感技术在地质调查中已得到了广泛的应用。但随着国家经济快速的发展,使得其对石油、煤、多金属等自然资源需求量不断增大,对地质调查的深度和区域要求更高,因此利用传统的影像数据和地质调查调查方法已不能满足当前地质勘查的需求。[2-3]随着高分辨率传感器技术的日益成熟,高分辨率影像数据已广泛应用于生产生活的各个方面。如何将高分辨率影像数据应用于地质调查领域并充分发挥其优势已成为一个值得探索的课题。

二、传统影像数据特点及地质调查中的应用

1、传统影像数据特点及地质调查中的应用困境

遥感技术拥有影像覆盖面积大、信息量大、获取信息快等诸多特点,从而使其在地质调查中得到广泛的应用。至20世纪80年代以来,在我国地质调查中引入了遥感技术,从此传统的地质调查跟上了信息化步伐,这大大提高了地质调查的效率,减少了人力财力的耗费,加快了我国数字地质信息库的建设步伐。但由于国家地质勘查工作的进一步深入和国家经济建设对矿产资源的需求,使得采用传统的低空间分辨率、低光谱分辨率较低影像数据进行地质调查过程中遇到了新的难题。

2、传统技术的应用

目前,地质调查中所使用的影像数据多为TM、ETM、SPOT等中低分辨率数据,其数据特点及在地质调查中的作用较为广泛,以ETM数据为例。ETM+传感器是搭载在LANDSAT 7卫星上的,它被动接受地表反射的太阳辐射和自身发射的热辐射,共有8个波段,覆盖了从红外到可见光的不同波长范围。波段1-5和7为可见光。[4]近红外以及短波红外波段,空间分辨率为30米,其中第5和7波段为短波红外波段;第6波段为热红外波段,空间分辨率为60米。其在地质调查中的主要应用为:

(一)构造解译

在实际地质调查中,环形、线型等构造对地质体构造框架起着至关重要的作用,对地质单元之间的接触关系、矿产资源的分布等都有很大的关系,因此构造现象在地质调查过程中尤为重要。根据ETM数据的分辨率和传感器光谱范围,利用ETM影像数据进行遥感地质构造解译能在小比例尺下完成地质体基本构造解译。对区域性大断裂、大断裂、岩体等均有较好的表象。

(二)岩性解译

根据遥感成像原理,不同岩石对太阳光的光谱吸收范围和反射范围不同,从而使得传感器上接收岩石反射的能量不同。ETM数据波普范围为0.45~2.35μm,其中第7波段范围为2.08~2.35μm,理论上影像对大类岩石具有一定的识别能力。

(三)地质灾害解译

地质灾害主要表现为滑坡、崩塌、泥石流等。对于较大规模的地质灾害,可以通过ETM、SPOT等中低分辨率影像进行解译。

3、传统影像在地质调查中的不足

(一)低光谱分辨率,难以满足岩性解译需求传统影像的光谱分辨率较低,其对岩性的鉴别能力有限。在地质找矿过程中,除特殊情况外,很难普遍用于直接找矿,尤其是在植被覆盖区或者是第四系大范围覆盖区很难直接进行应用。

(二)低空间分辨率,难以满足大比例尺地质调查需求在传统的地质调查过程中,一般很难直接利用中低分辨率影像进行直接地质勘查工作,而是需要根据该地区地质演化过程和地质构造环境进行合理布线完成地质调查工作。随着地质调查工作的深入,小比例尺阶段的区调工作基本结束,取之而来的是大比例尺和较大比例尺阶段的区调工作。从而传统影像难以满足地质单元细化、地质构造解体的需求。

(三)低时间分辨率,难以满足数字地质信息化需求

进入21世纪以来,各领域争先加快数字化建设。数字地质信息化也成为主要的信息化建设的一部分。传统影像的周期较长,分辨率较低,难以和现行的地质调查程度对接,从而阻碍了数字地质信息化建设的步伐。

三、高分辨率影像数据在遥感地质调查中的应用

1、高分辨率影像地质调查优势

遥感技术进入21世纪有了突飞猛进的发展而遥感技术本身的发展也是遥感地质调查深化的关键。新型遥感探测技术,特别是高光谱遥感技术比起目前常用的多光谱遥感技术具有更多的波段数(数十或数百个波段,多光谱几个或十余个),更高的光谱分辨率(带宽几至几十纳米;多光谱带宽则为百至数百纳米),图谱合一,解像能力到分子级,为遥感直接找矿(主要通过地球化学矿物组成信息提取)带来了新的希望,而雷达遥感等新型探测技术又为这一希望注入了活力。但目前由于难以获得高空间分辨率的高光谱卫星遥感数据,所以其在地质调查中难以普及应用。根据其空间分辨率和光谱分辨率特点,其在地质调查中广泛应用

于岩性-构造填图、遥感找矿等方面。主要优势表现为:

(一)高分辨率,追踪地层界线

Worldview-2影像数据具有0.5m分辨率,利用其高空间分辨率特点可以更加清楚的跟踪地层界线,从而大视野、广角度的圈定地质单元界线,使传统地质调查更加直观、更加精确。[5]同时对于高山、雪域、海洋等无人区或者工作条件困难的区域,高分辨率数据更是填补了区域大比例尺地质调查空白,节省了人力物力的同时完善了区域地质调查系统。

(二)地物识别,圈定岩性界线

地质调查的一个重要任务就是确定调查区岩性组成、区域构造演化。高分辨率数据可以利用其高光谱分辨率特点,对调查区内大类岩石进行鉴别,从而结合该地区实地勘探路线,明确调查区古地质环境,建立构造演化模式,完善调查区地质体系。

(三)结合地质环境和成矿规律,精确圈定成矿靶区

利用高分辨率数据完成调查区岩性-构造解译后,结合区域成矿规律及调查区古地质环境建立调查区成矿模型,并精确圈定成矿靶区。

2、探索高分辨率数据地质调查新方法

(一)高中低分辨率数据协作机制

中低分辨率数据在地质调查中能更加有效的体现地质体宏观岩性、构造特征,建立调查区内地质体宏观架构。高分辨率数据,能有效的展示地质体之间精确界线及地质体内部各岩性单元的接触关系。因此,在实际地质调查过程中,建立高中低分辨率数据协作机制,将宏观构造,细微结构有机相结合能更加有效的利用各种分辨率数据优势,深化地质调查程度

(二)信息技术应用

针对矿产资源勘查,后遥感应用的技术构成是在信息源上集遥感信息、地质信息、地球物理信息、地球化学信息等多源地学信息为一体,在方法技术上集图像处理技术、GIS技术、GPS技术、三维可视化技术、多媒体技术、仿真模拟技术、虚拟现实技及传统地学方法为一体的信息综合、方法集成、表达多维的应用技术。

(三)遥感找矿模式建立和预测

利用高分辨率影像数据圈定岩性-构造界线,构建遥感找矿影像模式。从找矿的角度说,它表现为一个遥感解译信息的集成和工作的流程,从影像角度说,它又包括了模式的遥感影像结构。正确而合理的遥感找矿影像模式的建立以典型矿床地质研究为前提,确定成矿、控矿的主要因素,以此作为遥感信息获取的依据和出发点,开展进一步的遥感系列专题图像处理和研究工作,将这些要素从相关的遥感图像上解译和提取出来。并通过成矿特征到遥感特征的关联,使之形成有机的匹配和组合。综合区域成矿特征、成矿规律及控矿条件,建立遥感找矿模型从而进行有效的成矿预测。

四、结束语

目前,遥感地质调查在地质调查领域扮演者越来越重要的角色,因此合理科学的利用高分辨率遥感技术的特长,充分结合多学科优势,开展地质调查将是未来遥感地质调查的方向。充分借助信息技术多角度多元化,构建遥感找矿模型,将是未来地质找矿新的风向标。

参考文献:

[1] 张磊; 包平.高分辨率影像数据在遥感地质调查中的应用[J]科技视界2012-10-15

篇7

关键词:遥感技术;地质勘查找矿;应用

中图分类号: C35 文献标识码: A

引言

矿场资源是众多自然资源的一种,是人类来意生存的重要的物质资源。由于我国人口基数较大,对矿产资源的使用量需求较高,所以,如何有效开发利用、合理使用、以及后备资源的补充等方面的研究逐渐成为我国研究的重点。经济的发展提高了矿产资源的需求量,同时推动了找矿工作的发展。在地质找矿中运用遥感技术,主要是通过获取遥感信息,提取岩石中的矿物信息,并进行成矿分析,减轻了地质找矿工作的难度,有利于提高地质找矿工作的效率和质量。

一、遥感技术在地质找矿中的运用

1、遥感识别岩石矿物

成矿的赋存条件和物质基础是岩石组合和类型,岩石在成矿过程中具有十分重要的作用,遥感技术能够提前岩石矿物信息,研究矿物的光谱特征,遥感技术中的数据提取技术能够提取岩性信息。对图像进行增强、变换和分析,能够使图像颜色增强,色调、纹理差异明显,从而区分出不同类型的岩石及其岩性组合。同时,遥感技术的矿物识别功能在地质填图中也发挥了重要作用。通常,适合对矿物的光谱特征进行研究的大气窗口有两种:0.4-2.5μm,反映了岩石的反射光谱特征;8-14μm,反映岩石的发射光谱特征。遥感技术识别地物依靠其空间特征和地物光谱的差异,高光谱遥感技术的分辨率很高、波段巨多、数据量大,其窄波段能够对不同岩石的吸收特征进行区分,并提取、量化、重建岩石的光谱特征,识别混合象元的模型并进行分解分析,区分出岩石矿物的不同。如今,我国将遥感技术的岩性识别功能多应用在岩石率高、植被稀少的地区,在植被覆盖较多的区域运用较少,对遥感识别岩性技术的研究重点是高光谱和多光谱提取岩性信息。

2、提取矿化蚀变信息

遥感技术在地质找矿中的应用主要是提取地质信息,而岩石的蚀变信息是其中的重要内容。围岩蚀变是围岩和含矿热液相互作用产生的,围岩相应的矿床类型、化学成分与蚀变类型密切相关。通常,围岩蚀变范围超出矿化范围,因此围岩蚀变是找矿的有效标志。围岩蚀变的常见类型包括绢云母化、硅化、褐铁矿化、云英岩化、矽卡岩化和青磐岩化等。岩石矿化蚀变后会与正常岩石在颜色、结构和种类方面形成差异,导致岩石反射光谱差异,蚀变岩石的光谱波形出现异常,为遥感技术提取图像信息提供了科学依据。所以利用遥感技术能够识别图像异常,找出准确的围岩矿化蚀变区域和开采位置。现阶段,我国大多使用ASTER、ETM+数据和遥感微波数据等作为数据源,其中ETM+数据源应用最多,将该数据作为信息来源,通过彩色图像合成法对单波段的图像进行分类,并提取区域生金矿的蚀变信息,从而有效圈定异常矿化蚀变信息,结合野外验证工作,能够发现矿化蚀变带;此外,利用ETM+数据,对图像实施大气校正、几何校正等预先处理,并通过掩膜方法提取了矿化蚀变信息,从而发现了多个金、铜矿点。

3、提取地质构造信息

地质构造信息也是地质信息的重要组成部分。通过户外地质观察发现,矿化蚀变区域是沿着地质构造分布。成矿的主要条件即地质构造,对内生矿床作用显著。提取的主要地质构造信息是环形影像和线性影像。构造环境不同导致提取出的成矿信息不尽相同。例如,不同区域的破碎断裂带、节理带的线状信息、火山盆地、热液活动、深成岩浆等环状信息、赋矿岩层、矿源层等带状信息、蚀变、矿化等色块、色带、色环异常信息。通过多波段数据,能够综合解译矿区构造信息,从而确定矿区的成矿构造和成矿环境;结合几何学方法,定量分析矿区线性构造,能够确定成矿远景区。遥感技术具有成像模糊功能,能够使研究区域的线性纹理和形迹逐渐清晰,拉伸遥感影像的灰度、增强图像边缘、进行比值分析、方向滤波、卷积运算后,突显出了构造信息。同时,通过分辨率较高的卫星数据,能够使构造信息更加清晰。统计分析解译的环形或线性影像,并结合物探、化探等相关资料,能够明确成矿构造的特征及其分布;通过数学统计方法,能够分形解译出遥感图像的线性构造,验证内生金属矿与线性构造之间的分布规律,从而明确找矿靶区;利用地质构造、水系特征、地表岩性、植被分布、山谷地貌等信息,能够提取出地质构造隐伏信息。

4、利用植被波谱特征确定找矿位置

地下水和微生物能够引发地表矿化岩石结构和成分的变化,从而改变岩石上覆盖的土壤成分。遥感技术的利用生物化学方法确定找矿位置的原理是:植物生长会吸收岩石和土壤中蕴含的矿物元素,矿物元素与植物生物循环共同作用,形成植物组织,对植物酶的活性具有直接影响。当植物体内重金属积累超过阈值后,便会出现毒化作用,对植物生存必要的生命元素的吸收产生抑制作用,使植物在生态和生理方面出现变异。这些变异使植物的光谱反射率以及光谱波形变化异常,反映在在遥感图像上,则呈现出色彩、色度和灰度的变化,而遥感技术则能够提取或探测出这些特征。

5、提取多光谱遥感蚀变信息

多光谱遥感技术具有多光谱摄影和系统扫描的功能,对不同普段的电磁波谱进行摄影遥感,从而获取植被和其他地物的影像。多光谱遥感能够影像的结构和形态差异或光谱特征对不同地物进行判别,增加了遥感信息量。多光谱遥感由于空间分辨率和波谱分辨率的影像,其数据源在地质找矿运用中受到一定限制,但是新的数据源出现为地质找矿提供了更加有效的信息。其中,ASTER遥感数据具有较多波段、更高的空间分辨率和更窄的光谱范围,在提取矿化信息时具有显著优势。需要重视的是,单一数据源只能够反映出目标地物的单一特征,在判别地物时并不准确,集中多源数据,能够汇总有效信息,剔除无效信息。数据源集中包括遥感数据之间和遥感与非遥感数据融合。目前,遥感找矿中应用最为广泛的是物探、化探和多光谱的融合。

二、遥感技术在找矿工作中的利用

1、线性构造与成矿之间的关系

通过对线性结构进行分析,需找成矿的可能性地质地貌所形成的线性构造,会对成矿有一定的影响。通常情况下,在地质地貌发生变化比较大的地区会出现矿产,比如巨型断裂带。但是,很多具有工业远景的矿床主要分布在平行的次级断裂以及节理带之中。通过感知地形结构,对矿区的特点进行分析在利用遥感图像中,可以得知,岩浆区中的矿床一般会存在与剪切应力场的拉张区域,在利用遥感技术进行技术处理,可以使人们的目光锁定在该区域之内,对拐点的附近进行勘察,从而减少时间与精力。

2、环形构造影像与成矿之间的关系

影像环形构造是由航天遥感图像发现的,并且与矿产有着相应的联系。在与矿产形成密切关系的影响环形构造中,很多原因是与岩浆有着密切关系的,因此导致找矿的意义有所不同。除此之外,岩浆侵入中造成环形体的重要因素为金属矿产,由于岩浆在侵入的时候会引起围浆的变化,往往会导致边界变得模糊。影像线性体与环形体之间相互依存的关系为找矿工作提供了理论基础,具有复合的关系。

结束语

总之,一个地区地质条件造就了矿产资源的不同,在勘察矿产资源的过程中,不仅要结合以往的经验,并且还要根据实际情况进行研究,从基础出发,在理论上阐述矿床的基本成因&遥感技术,在总结分析的过程中,建立相应的遥感资料,积极寻找勘察矿石的有效方案。

参考文献

[1]钱建平,伍贵华,陈宏毅.现代遥感技术在地质找矿中的应用[J].地质找矿论丛.2012(03).

篇8

论文摘要 在遥感技术中,为了更精确地判读多光谱图像,掌握地面上各种地物的光谱辐射特性是十分重要的。介绍FieldSpec?誖 HandHeld 手持便携式光谱分析仪的测量原理方法、工作规范及注意事项,概要地说明了影响光谱测量的因素。

在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。对野外地物光谱进行测量,我们使用的是美国ASD公司FieldSpec?誖HandHeld 手持便携式光谱分析仪。其主要技术指标为:波长范围为300~1 100nm,光谱采样间隔为1.6nm,灵敏度线性:±1%。FieldSpec?誖HandHeld手持便携式光谱分析仪可用于户外目标可见—近红外波段的光谱辐射测量。该光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度;利用漫反射参考板对比测量,可获得目标的反射率光谱信息;通过对经过标定的漫反射参考板的测量,可获得地面的总照度以及直射、漫射照度光谱信息;利用特定的辅助测量机械装置,可获得地面目标的BRDF(方向反射因子)光谱信息参数。

为了使地物光谱数据可靠和高的质量,使数据便于对比和应用,有必要提出地物光谱测试规范和测量要求。

1仪器的标准和标定

1.1光谱分辨率

实用分辨宽度对0.04~1.10μm小于5nm,1.1~2.5μm小于15nm。对于FieldSpec?誖HandHeld 手持便携式光谱分析仪,起始波长为325nm,终止波长为1 075nm,波长步长为1nm,则光谱分辨率取3nm。

1.2线性标定

线性动态范围有3个量级,最大信号对应为0.8~1.0,太阳常数照明的白板(<90%)峰值响应输出。线性误差小于3%(回归误差)。

1.3光谱响应度的标定

反射率小于、等于15%(大于1%)的目标,信噪比应大于10。反射率大于15%的目标,信噪比应大于20。

2野外测定方法与工作规范

2.1目标选取

选取测量目标要具有代表性,应能真实反映被测目标的平均自然性。对于植被冠层及用物的测量应考虑目标和背景的综合效应。

2.2能见度的要求

对一般无严重大气污染地区,测量时的水平能见度要求不小10km。

2.3云量限定

太阳周围90°立体角,淡积云量,无卷云、浓积云等,光照稳定。

2.4风力要求

测量时间内风力小于5级,对植物,测量时风力小于3级。

2.5测量方法

在11时30分至14时30分进行测量,每种地物光谱测量前,对准标准参考板进行定标校准,得到接近100%的基线,然后对着目标地物测量;为使所测数据能与卫星传感器所获得的数据进行比较,测量仪器均垂直向下进行测量。

3野外光谱测量注意事项

野外光谱测试的基本要求是在晴天中午前后进行,风力不超过5级,如果测试土壤光谱,必须在雨过3d以后进行。为了使数据具有代表性,要仔细比较选择被测地物,对同一种地物测量多次,保证测试结果准确可比。

3.1仪器的位置

仪器向下正对着被测物体,至少保持与水平面的法线夹角在±10°之内,保持一定的距离,探头距离地面高度通常在1.3m,以便获取平均光谱。视域范围可以根据相对高度和视场角计算。如果有多个探头可选,则在野外尽量选择宽视域探头。测量植物冠层光谱时,注意测量最具代表性的物种。

3.2传感器探头的选择

当野外地物范围比较大,物种纯度比较高、观测距离比较近时,选用较大视场角的探头;当地物分布面积较小时,或者物种在近距离内比较混杂,或需要测量远处地物时,则选用小视场角的探头。

3.3避免阴影

探头定位时必须避免阴影,人应该面向阳光,这样可以得到一致的测量结果。野外大范围测试光谱数据时,需要沿着阴影的反方向布置测点。

3.4白板反射校正

天气较好时每隔几分钟就要用白板校正1次,防止传感器响应系统的漂移和太阳入射角的变化影响,如果天气较差,校正应更频繁。校正时白板应放置水平。

3.5防止光污染

不要穿带浅色、特色衣帽,如果穿戴白色、亮红色、黄色、绿色、蓝色的衣帽,就会改变反射物体的反射光谱特征。

要注意避免自身阴影落在目标物上。当使用翻斗卡车或其他平台从高处测量地物目标时,要注意避免金属反光,如果有,则需要用黑布包住反光部位。

3.6观测时间和频度

光谱测试应在10~14时之间完成,并在无云晴朗的天空下进行,尽量避免过早或过晚。在时间许可时,尽量多测一些光谱。每个测点测试5个数据,以求平均值,降低噪声和随机性。

3.7采集辅助数据

在所有的测试地点必须采集GPS数据,详细记录测点的位置、植被覆盖度、类型以及异常条件、探头的高度,配以野外照相记录,便于后续的解译分析。

野外地物光谱测量是一个需要综合考虑各种光谱影响因素的复杂过程,我们所获取的光谱数据是太阳高度角、太阳方位角、云、风、相对湿度、入射角、探测角、仪器扫描速度、仪器视场角、仪器的采样间隔、光谱分辨率、坡向、坡度及目标本身光谱特性等各种因素共同作用的结果。光谱测定前要根据测定的目标与任务制定相对应的试验方案,排除各种干扰因素对所测结果的影响,使所得的光谱数据尽量反映目标本身的光谱特性,并在观测时详细记录环境参数、仪器参数以及观测目标(如土壤、植被、人工目标)的辅助信息。只有这样,所测结果才是可靠的并具有可比性,为以后的图像解译和光谱重建提供依据。

参考文献

[1] 中国农业工程学会,中国农业工程研究设计院.国外农业工程第(9辑)[M].上海:上海科学技术文献出版社,1983.

[2] 万余庆,谭克龙,周日平.高光谱遥感应用研究[M].北京:科学出版社,2006.

篇9

关键词:遥感;土地利用;变更调查

中图分类号:TP79文献标识码:A

Application of remote sensing to land use change survey

Abstract:The paper puts forward the selection of technique flow, according to the characteristics and requirements of land use change survey.at the research findings on dynamic monitoring of land-use by remote sensing at home and abroad. The experimental results showed it is a feasible method for land use change survey based on remote sensing.

Key words: Remote sensing;Land use;Change survey

土地利用变更调查,就是利用已有的详查形成的基础图件,根据野外实地调查,对变化的地类图斑逐一转绘,量算面积,以更新土地利用现状的基础图件和数据,保持土地利用资料的现势性。

目前采用的方法主要有两种:一是利用已有的土地利用现状图,外业进行实地对照,利用皮尺、全站仪等测量设备获取相关的位置数据,在土地利用现状图上绘制变更图斑;此种方法速度慢、精度低,当变化范围较大、变化内容较多时,丈量难度大;费用高、周期长。这种传统的更新方法自动化程度低,成图周期长,很难做到更新的全面性和实时性。土地利用基础图件在更新上往往落后于土地利用状况变化,造成了土地利用变更状况得不到及时反映,不能适应当前经济、社会迅速发展的需要,直接影响着耕地保护、土地利用规划和土地利用政策的制定和执行,影响了整个土地管理工作。二是利用遥感影像解译,经外业调绘获取已变更图斑资料,内业绘制与处理。此方法更新较快,能够实现土地利用现状变更的动态监测。本文结合实际工作,探讨利用遥感技术进行土地利用变更调查的方法。

一、土地利用变更调查对遥感资料的要求

衡量卫星遥感资料在土地利用变更调查中应用效果的主要标志是识别地类的能力和地类图斑面积量测的精度。地类判读精度和面积量测精度主要取决遥感影像的分辨率。同时与判读地物的光谱特征有关。根据现有实践推论:更新1:1万比例尺图件,图像实际分辨率在2~3 m,1:2.5万比例尺图件的更新。需要5~8 m分辨率,分辨率15m的资料可满足1:5万土地调查要求。近年来,遥感数据源已基本形成高中低分辨率全覆盖系列,IKAN0S全色波段影像分辨率为1m,多光谱波段影像分辨率达到4 m,SPOT5全色波段影像分辨率为2.5m,为不同比例尺的土地利用基础图件和1:1万土地利用数据库更新提供了充分的选择空间。弥补了其精度上的不足。

二、遥感土地利用变更调查技术方法

1、技术路线

以遥感技术为主要手段,利用多时相的卫星遥感资料,根据地类的可解译程度,确定遥感解译地类,建立遥感解译标志,结合计算机技术,对工作区的土地利用变化情况进行解译调查,圈定土地利用变化范围,并统计变更地类面积。工作程序见图l。

2、土地利用现状变更调查技术问题

变更调查需解决的问题:一是找出变化的区域,即监测:二是对变化的区域按一定精度量测上图。

土地利用遥感监测是基于同一区域不同年份的同一时相影像问存在着光谱特征差异的原理,来识别土地利用状态变化的工作。常用的土地利用遥感监测方法基本上可以分两种:即逐个像元比较法和分类后比较法。结合工作的具体情况,利用 envi3.5 软件的融合和分类功能,绘制了某地区土地利用空间分类图及土地利用动态监测图。

1) 变化图斑、地物的判读。采用逐个像元比较法, 即对不同时相的影像作相应的处理后,采用光谱特征变异法。当两个不同源数据存在较大的时相差时。受实际土地利用变化的影响.不同时相的影像在相同位置处将对应不同的地面目标.导致光谱特征不一致.从而检测出变化信息。

2) 变化图斑界、地物的提取。利用多光谱遥感影像对土地利用进行分类,对波谱曲线进行统计学分析,将光谱曲线相似的像元归为一类,而我们下面要进行的动态监测也要用到这些曲线。对于不同地物的监测,要用到不同的波段进行彩色合成。影像不清楚的做标记,以便外业调绘重点修测。下图为典型地物波谱曲线图。

3) 外业调绘和精度检验。由于内业对于很多地类都无法区分(如菜地和旱地等不容易区分。所以需外业进行补充性的调绘。外业调绘利用GPS(RTK)和全站仪相结合,对变化区域的地物和地类进行实地核实和测量.将测量结果与利用影像提取的线划成果进行比较,检测出利用遥感影像提取线划的各点误差及变更地类图斑面积误差。

三、应用实例

以美国LANDSAT一7卫星的ETM数据处理为例作说明。工作区为南方某镇,主要调查土地利用类型分类面积统计的变化情况,通过实地定点调查,利用两期的 TM、ETM影像和已知训练区的土地类型、光谱特征数据对计算机进行训练,计算出对应于各种土地类型的多元统计特征,并以此建立分类判定规则,对未知地区进行计算机自动分类。采用 Maximum Likelihood 方法,得到分类图像如图3、图4:

从以上实例可以得出,运用遥感影像进行土地更新调查,方便、快捷,对变化的地类图斑,可以很好的提取图斑的边界线以及图斑的面积,数据也能很好的反映10年来土地利用的变化情况。旱地和鱼塘面积在减少,建设用地面积在增加。

四、结论

篇10

关键词:水文地质,勘测方法,核磁共振技术

所谓水文地质,就是指大自然当中地下水的变化以及具体的运动现象,水文地质学就是以自然界中的地下水为主要研究对象的学科,主要内容就是探究并分析地下水化学成分、物理性质、分布状况、形成规律以及有效利用方式。贵州省地处我国西部地区,地质条件较为复杂,各种自然地质灾害频频发生,本文将对核磁共振技术进行较为深入的分析。

1、水文地质勘测技术分析

1.1光谱微分析技术

此技术主要包括对反射光谱进行相关的数学模拟以及对于不同阶段微分值的相关计算。通过这一技术可以提高对于光谱弯曲率及其最大、最小的反射率波长位置测定的准确率。通常情况下,可以通过使用一阶微分法来将一部分线性的或者一些接近线性的背景、也或者噪声光谱对于非线性的目标光谱等产生的影响。

1.2混合光谱分解技术

混合光谱分解技术主要用于分析光谱数据以及对其同一个像元内的不同成分所占比例的确定,或者是识别在已知的端元组分中分析其他的组分。在使用混合光谱分解技术时,由于在一定程度上受到图像分辨率的限制,在图像之中往往会存在很多的混合性像元。对于混合像元的分解技术则主要是提取像元之中不同地物类别丰度的一种方法。除此之外,光谱吸收指数还可以实现高光谱遥感图像处理以及对于光谱吸收特征的有效识别,也能够对混合光谱进行分解。

2贵州水文地质勘测核磁共振技术的运用

2.1核磁共振技术

核磁共振技术应用范围相当广泛,在化学、物力、生物学以及医学等领域都有所涉足,同时也是当前世界水文地质勘查先进方法之一,在水文地质勘查领域应用核磁共振技术的一大表现就是运用地面核磁共振对滑坡水文地质条件加以勘测。所谓核磁共振,属于原子核物理现象,也即是拥有核磁顺磁性的物质对电磁能量进行选择性的吸收,在地层中,具有最高丰度以及最大磁旋比的核磁顺磁性核子就是氢核,而地层中大部分的氢核都存在于水中。核磁共振找水仪就是借助地面核磁共振对地层水氢核进行测量进而达到找水目的。如果地层中有地下水存在,那么将一个不同于地磁场方向的外磁场赋予其中,后果就是氢核磁矩与地磁场相偏离,如果外磁场消失,氢核将会保持与地磁场一致的方向以地磁场为中心旋转。需要注意的是,自由水具有不同于结合水的信号频率,借助核磁共振技术进行测试,只能适用于岩土层中的自由水,而无法测试结合水,所以,借助核磁共振技术进行测试所获取的数据只是岩石层中地下水反应。其中还利用到高光谱技术不仅能实现对地球表面的地质信息进行探测,而且还能够实现对行星以及月球表面的信息探测。高光谱遥感技术所具备的这一特点是其他类似技术所不能代替的。Mars Odyssey计划卫星搭载的热辐射成像仪(THEMIS),它属于多光谱的热辐射成像仪。这种成像仪虽然比TES的光谱分辨率要低一些,但是它的空间分辨率却比较高,从而能够有效地弥补TES数据中的不足之处。

虽然在核磁技术领域应用最成功的属于水文填图,但是如何有效的利用其所能够识别的并且还可以填绘的水文进行地质环境的分析则属于高光谱地质应用中的一个关键性问题。通过使用热红外成像仪,可以将其对水文的识别并且进行扩大。通过这种水文的共生组合有助于深入并客观的分析相关研究区的地质环境。以水文识别以及水文的精细识别为基础,还可以根据水文共生组合的相关规律以及水文本身对于地质的意义所产生的作用,来对各种地质因素间存在的内在性联系进行直观的反演,从而还有助于提高高光谱地质应用中具体分析并解决相关地质问题的能力。

按照核磁共振找水仪工作原理,如果地层中存在地下水,就可以获取核磁共振信号,根据信号可以对地层中地下水存在性以及时空性做出判断,如果未获取到核磁共振信号,就意味着此地层中不存在地下水。所以,以所获取的核磁共振信号为依据,可以对含水层以及隔水层进行划分,在此技术上,在进行相应的解释及处理,就可以确定含水层具体的深度。由于核磁共振信号振幅的最初值与岩体层含水量之间具有正相关的关系,因此,可以对含水层的具体含水量做出判断。

2.2地面核磁感应系统在贵州水文地质勘测中的应用

地面核磁感应系统在贵州水文地质勘测中可以应用于如下几个领域:

(1)查找岩溶水

贵州省的岩溶石山区缺水严重,尤其是在近两年,云贵高原大旱。找水成为了一个水文地质勘察的难点。借助地面核磁感应系统,可以在贵州的喀斯特地貌环境下寻找岩溶水,该系统的探测深度在喀斯特地貌环境下可以高达200m,并且对该范围内各个含水层的情况以及特征包括岩石的结构和特征进行探查。然后系统还能够对含水层的渗透参数、厚度、埋深、含水量以及预计的开采指标进行分析。该系统已经成功的在湖北永安地区的喀斯特地貌环境下,找到了岩溶水。因此,我们可以推断该系统也能在贵州地区有较大的运用空间。

(2)解决生态问题

贵州省的水污染问题也是目前越来越严峻的一个问题,运用地面核磁感应系统能够对地表水、地面水的污染进行调查和研究,从而为妥善的解决生态问题提供数据支撑。

(3)为工程建筑解决水文地质勘测问题

贵州省的地质条件非常的特殊,不少地方由于存在大量的石灰岩等,如果勘探工作不到位,在工程建筑的施工过程中,或者建筑建成之后,都很容易出现较大的问题。而运用地面核磁感应系统能够探查路基、建筑物地基等得水文地质条件,从而为工程建筑施工或者后期的维护提供参考。

2.3核磁共振技术在实际应用中的工程案例

随着经济的发展,为了解决西南地区交通的不便,近年来大力开展了机场的建设。而由于机场建设工程量较大,场地分布较广,因此所遇到的工程问题也较多。其中,岩溶的发育对机场建设的影响尤为突出。当时贵阳龙洞堡机场航站区进行工程建设时,对岩溶洞隙的勘察及地基处治是至关重要的,轻则影响设计方案、投资预算,重则影响业主的整个投资取向以及整个区域的发展。但是就是采用了核磁共振技术对于机场航站区岩溶洞隙发育问题进行调查,通过调查和研究分析国内外岩溶勘察方法、岩溶施工处治新技术、新方法,对岩溶探测及处治技术进行了研究,根据场区的地形地貌、地层岩性、地质构造、岩溶发育程度、水文地质情况、人类工程活动对岩溶发育的影响等条件,对场区的岩溶以及基岩破碎带发育情况进行详细了解,介绍了上述方法的工作原理、技术参数及具体应用。对复杂岩溶形态的地基处治方法各有其适用范围:爆破回填是对溶沟、石芽直接出露或埋深不超过3m时所使用的处治方法;跨越是对洞径小于6m的落水洞采用的方法,在本文中分别使用了拱形盖板跨越和平板跨越;桩基是由于基岩面起伏剧烈,地基均匀性极差,为减小和避免地基不均匀性的影响所采用的处治方法;灌浆是当溶沟、石芽埋深3-8m,沟(槽)内充填土为软弱松散土时,以及对溶洞进行了桩基处理后仍然不稳定时采取的处治方法。

3结语

单纯借助传统的水文地质勘测方式已经难以满足当前水文地质勘测的实践需要,一方面,无法充分揭示复杂的水文地质条件,另一方面,无法获得准确实用的相关参数,并且相关的花费较高,用时较长。在水文地质勘测实践中,根据实际状况选择利用核磁共振技术,根据其自身的特性,在某些方面不但可以获取准确可靠的相关参数信息,还可以极大的节省人力、物力和财力,将贵州省水文地质条件充分的揭示出来。但是,地面核磁感应系统目前也存在一定的局限性,它的抗电磁干扰能力还不够强,在电磁干扰严重的时候,会极大的影响勘探的结果精确性。因此,我们一方面要注意应用地面核磁感应系统的环境选择,同时也要不断的提高其抗电磁干扰能力,扩展器应用领域。

参考文献:

[1] 项婷岚.浅谈水文勘测方式的改革与发展.治淮,2004年 第10期

[2] 赵岩.论水文勘测管理工作.科技传播,2011年 第06期