数学的逻辑推理范文

时间:2023-12-07 17:47:30

导语:如何才能写好一篇数学的逻辑推理,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学的逻辑推理

篇1

1、合情推理与逻辑推理之间的关系

合情推理是一项找到新结论的重要手段,有益于提升学生的创新意识和思维,对学生的成长和学习成绩的提升有着重要的帮助意义[1]。在合情推理当中发现的新结论,可能是错误的,也可能是错误的,需要使用逻辑推理进行验证。因为合情推理为或然性推理,逻辑推理为必然性推理。

数学知识的慢慢累积,依靠的是逻辑推理,是学习数学的不二法则。在学习数学学科当中,应用到的全部知识结论都必须使用逻辑推理进行证明,就算是对角相等这种非常直观和简单的命题,也需要进行证明[2]。正是因为推理当中有着非常强的严谨性,得出的数学结论采更加有效,被重视。但是,在进行逻辑推理之前,经常会使用根据条件预测结果或者结合成果分析成因,这便是合情推理,可为逻辑推理提供证明的有效途径和方向。

因此,逻辑推理与合情推理是紧密联系的,当前在初中数学的授课中所应用的探究式教学,前半段便是合情推理,后面便是逻辑推理。此外,在教学中,还要考虑初中学生的心理、年龄和特征,起初会多应用一些合情推理,并逐步向逻辑推理迈进。

2、合情推理与逻辑推理的教学要点

(1)在初中数学的日常授课中,要注重推理在数学当中的地位,强调其对学生学习产生的作用,合理应用逻辑推理和合情推理,但要使学生理解,?笛У难?习,最后应用的为逻辑推理。

(2)在教学中,如果应用的是合情推理,教师需要为预留出一些时间,并给学生足够的空间进行探究。所谓的空间便是,教师在授课的过程中,不能将知识全部灌输给学生,要留出一部分知识和问题让学生探究,引起其发现和分析等。此外,还要给学生一定的时间进行探究,让学生感受探索、分析、领悟、总结的过程等。当学生将这些探索的过程进行转化,成为学生自己的知识时,学生才真正或得了数学活动经验。

(3)在因果关系的授课中,是引导学生提升逻辑推理能力的初级阶段,其中需要使学生明白因果关系为普遍存在的,并训练学生对因果关系之间的表述能力,之后在强调学生思维当中存在的完整性和条理性、规范性和严谨性等,最后学生会慢慢形成逻辑思维。

(4)逻辑推理教学。在教学中,要注重对学生推理思维的提升,不能只训练学生的书写形式。要在表述上要求学生有完整的步骤和充足的理由,并且使用非常简单的三段论形式。这些全部都是授课的过程,需要学生反复进行体会和感悟[3]。

(5)如果学生在学习的过程中产生了逻辑错误,教师要及时给予引导并进行纠正,强调推理当中的严谨性。这样,学生可以慢慢养成严谨的推理习惯和能力,为之后的数学学习打下良好的基础。

(6)为了使学生能够经一步明确两项推理之间的关系,要使学生明确合情推理可对新的结论进行发现,还可以为逻辑推理提供重要的思考方向,但是逻辑推理可对合情推理的结论进行证明或者证否,要求学生在学习的过程中,对于两项推理能力的掌握要同样重视。

3、实例分析

在初中数学《与三角形有关的角》学习中,需要学生学习三角形内角和定理:三角形三个内角的和等于180°并学会其中的证明方法,延伸知识如:因为三角形内角和为180°,所以延伸出三角形中很多的角的特定关系如:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°等。在之前阶段的学习中,学生使用的方法为量角器度量等,之后概括总结出三角形的内角和等于180°。为了防止学生产生这些合情推理已经足够证明命题的思想,在初中数学的日常授课中,在给出命题之前和给出命题之后,要先引导学生回忆之前学习的过程。因为这一定理对学生的学习非常重要,并且小学阶段到初中阶段,学生学习这一命题的时间比较长,在初中课程中出现的又比较早,教师可应用合情推理和逻辑推理相互结合的教学方式。如:在对命题进行证明之后,可提示学生,测量是会产生误差的,拼剪的过程也会产生误差,所以没有逻辑推理具有严谨性,并不能让所有人都信服;即使测量非常准确,但是三角形有无穷个,而在初中阶段研究的三角形只有几个,所以不能就此下结论。为了证明全部的三角形内角和都是180°,一定要利用逻辑推理证明,这是由于逻辑推理是包括所有的三角形来进行推理的;命题是不是正确的,并不是通过量就能得出结论的,更不能通过看得出结论,要利用完整的推理步骤,并且有充足的理由得出结论。

4、结束语

篇2

关键词:逻辑推理演绎归纳类比教学策略

逻辑推理是由一个或多个判断推出一个新判断的思维过程,作为人的一种重要认知方式,一直受到心理学和教育学的关注。逻辑推理的心理机制、发展时期、影响因素等是心理学研究的热点课题,而培养学生的逻辑推理能力是教育的重要目标。本文对逻辑推理的相关心理学研究做一些简介,并由此得出对中学数学教学的几点启示。

一、心理学对逻辑推理的一些研究

逻辑推理包括三种形式:演绎推理、归纳推理和类比推理。对逻辑推理的研究主要围绕这三种形式展开。

(一)学生逻辑推理的发展研究

有研究表明,学生的逻辑推理能力随年龄增长而持续发展,在小学阶段有初步表现,在初中和高中阶段达到成熟。

李丹等人对儿童假言推理(一般有两种形式:一是充分条件的假言推理,它是一个充分条件的假言判断,即“如果……则……”;二是必要条件的假言推理,它是一个必要条件的假言判断,即“只有……才……”)能力的发展特点进行了研究。研究显示,儿童假言推理能力从小学三年级到初中三年级随年级的升高而增长,小学三年级开始已有初步表现,在小学六年级到初中一年级期间有一个加速阶段。其增长速度和水平,一方面受年龄阶段和推理格式的影响,另一方面也因对不同命题具体内容的熟悉程度而有所差异。这是由于假言推理中事物的因果关系具有复杂性,而儿童的辩证思维尚未成熟所致。总体上看,假言推理能力的发展时间要比直言三段论推理能力推迟一年左右。

李国榕和胡竹菁对中学生直言三段论推理能力的现状进行了调查。结果发现,学生的直言三段论推理能力在初中阶段发展较快,且每升高一个年级,其推理能力都有明显的提高;高中各年级之间,学生的推理能力虽有差异,但不显著;而由初中升入高中,学生的推理能力会有一个飞跃。而且,男、女学生之间的推理能力无显著差异,但理科学生的推理能力高于文科学生。此外,中学生在进行直言三段论推理时,对不同格式推理能力的发展水平并不完全一致。

全国青少年心理研究协作组于1985年对全国23个省、市初一、初三和高二学生的逻辑推理能力做了测试,内容包括归纳推理和演绎推理(又分为直言推理、假言推理、选言推理、复合推理和连锁推理)两类,同时还测试了辩证推理能力。结果表明,初一学生就已具备各种推理能力;三个年级之间,推理能力发展水平和运用水平都存在显著差异。此外,凡是需要调动感性知识的试题,学生解答起来就容易;反之,则感到困难;其中,归纳推理依赖学生感性知识的程度比演绎推理更高。

黄煜烽等人在全国19个省、市不同类型的学校随机抽取初一、初三、高二学生17098名,开展归纳推理和演绎推理的测试。结果显示,进入中学以后,学生基本上掌握了逻辑推理的常用规律,其思维水平开始进入抽象逻辑思维占主导的阶段;在整个中学阶段,学生的推理能力随着年级的升高都在持续地发展,在初二阶段尤其迅速;在整个中学阶段,归纳推理能力的发展水平要高于演绎推理能力;在演绎推理能力中,学生的直言推理能力发展较好,而连锁推理能力发展较差。

方富熹等人采用口头测试的方式,考查9—15岁儿童充分条件的假言推理能力的发展。结果表明,大部分9岁(小学三年级)儿童的有关推理能力已经开始发展,但水平较低;大部分12岁(小学六年级)儿童的假言推理能力处于过渡阶段;大部分15歲(初中三年级)儿童的假言推理能力达到成熟水平。在之后的进一步研究中,他们又发现,12岁儿童对充分条件假言推理有关规则的掌握,取决于他们形式运演思维的发展水平。

林崇德教授将中学生的论证推理能力分为四级水平(也可以看作四个发展阶段):直接推理、间接推理、迂回推理、综合性推理。研究发现,在正常的教育教学情况下,中学生的数学推理能力随年级升高而提升;初二和高二是推理能力发展的转折点,初二学生普遍能按照公式进行推理,高二学生的抽象综合推理能力则得到显著的发展。

(二)影响逻辑推理的因素研究

1.关于演绎推理。

张庆林等人的研究表明,在条件推理(利用条件性命题——通常为假言判断——进行的推理)中,推理的内容会影推理形式规则的运用,进而影响推理的过程和结果。这主要是由于日常生活经验会影响人们对具有实际生活意义的大前提的语义加工或心理表征,具体表现为对问题空间的影响;人们在不同的问题空间中进行分析和判断,就会得到不同的推理结论。这是一种直觉的推理形式。因此,人们在进行涉及日常生活的推理时往往会受到经验的影响。

胡竹菁和胡笑羽认为,推理行为是推理者在现有推理知识结构的基础上解决具有一定结构的推理题的心理加工结果。而演绎推理问题和推理者所掌握的有关推理的知识结构都由推理形式、推理内容两方面构成,进而基于形式和内容两种判定标准,提出了“推理题与推理知识双重结构模型”:推理行为会受到四个方面的影响,用公式表示为BR=f[IS(form),IS(content),KS(form),KS(content)],其中BR代表推理行为,IS(form)代表试题形式结构,IS(content)代表试题内容结构,KS(form)代表推理者所掌握的形式知识结构,KS(content)代表推理者所掌握的内容知识结构。

Senk研究了中学生在几何证明中的演绎推理表现,发现如果学生证明过程的书写能力比较薄弱,会影响学生的推理能力。

Jansson通过访谈,研究了初中生在假言命题、选言命题、联言命题、否命题等不同逻辑形式任务上的发展及先后层次结构。研究显示,学生缺乏处理那些正式、真实、有趣的“暗示”的能力,且同一逻辑运算的不同语言形式会对逻辑推理产生影响。

Hoyles和Kuchemann考察了学生假言推理能力的发展,指出在特定的数学情境中,对“暗示”的理解是否到位和演绎推理能否成功之间存在某种联系。

根据演绎推理相关的认知与脑机制研究,左、右脑在演绎推理中的功能差异主要表现为言语系统和视空系统在演绎推理中的不同作用,而且这两种系统对几种演绎推理类型的影响可能是不同的。不同性质的内容在影响被试推理过程时,所激活的脑区域是有差异的,如推理内容具体或抽象、推理材料包含更多具有显著情绪特征或社会规则的内容、形式逻辑规则是否与个体信念冲突等。因此,个体的知识经验、信念偏向等对演绎推理也有一定的影响。

2.关于归纳推理。

多数研究证明,归纳推理受到前提项目多样性的强烈影响,材料类别与概念范畴、属性特征及其呈现方式、推理形式、知识经验等因素都会对归纳推理产生不同程度的影响。而近年来,许多研究开始关注归纳推理的心理效应。根据归纳论断中不同因素对个体做出归纳结论时把握性大小的影响,归纳推理的心理效应主要分为三种:类别效应、属性效应、交互效应。当前,关于类别效应中多样性效应的研究较为集中,即人们意识到前提更加多样的论断具有更大的归纳推理力度,从而在归纳推理过程中倾向于寻找差异更大的证据来支持将要得出的结论。有研究结果表明,在适合的条件下,儿童在归纳推理中能够表现出多样性效应。

根据一些前提类别具有某一特征而推测结论类别也具有这一特征时,要推测的特征叫作归纳特征,结论类别具有这一特征的可能性程度叫作归纳强度。目前,对基于类别的特征归纳的解释主要有相似性解释和知识解释两类。相似性解释认为,人们的归纳推理能力基于前提类别与结论类别的相似性,并随着这种相似性的增加而增强。

王墨耘和莫雷提出关联相似性模型,即描述人们根据归纳特征关联项的相似性来做归纳推理的抽象模型。这一模型将特征关联知识与相似性整合到一起,认为基于关联相似性的归纳推理包含三个环节:首先寻找与归纳特征相关联的特征(即关联特征),然后比较评估结论类别与前提类别在关联特征上的相似性(即关联相似性),最后根据这种关联相似性程度得出结论类别是否具有归纳特征和在多大程度上具有归纳特征。这一模型还认为归纳强度的大小可用公式来预测:归纳强度=关联特征与归纳特征的关联强度×关联特征的相似性程度(即关联相似性程度)。

王墨耘和高坡通过实验验证了,归纳强度与关联相似性、关联相似性变化的影响效果与关联强度、归纳信心与关联强度之间均为正相关。

3.关于类比推理。

类比推理与类比迁移有关。已有研究表明,12岁以下儿童的类比推理能力不足,是由于他们所掌握的概念知识有限(特别是相对于类比推理任务的难度),缺乏类比迁移的动机。

除了自身年龄特征、知识经验、信念之外,工作记忆也是类比推理的重要影响因素。工作记忆是一种对信息进行暂时性加工和储存的能量有限的记忆系统,由语音回路、视空间模板和中央执行器三个部分组成。其中,语音回路负责以语音为基础的信息的储存和控制,它分为语音储存系统和发音复述系统两个部分;视空间模板主要负责处理视觉空间信息,它包含视觉元素(与颜色、形状有关)和空间元素(与位置有关);中央执行器负责各个子系统之间以及它们与长时记忆之间的联系,也负责主要资源的协调和策略的选择与计划。

唐慧琳和刘昌采用双因素实验设计,发现工作记忆是影响类比推理的重要因素:在图形类比推理中,主要有视空间模板中的空间成分、语音回路中的发音成分以及中央执行器的参与;而在言语类比推理中,则是视空间模板中的空间成分起主要作用。

此外,王亚南和刘昌通过数字推理测验,探讨了数字推理能力发展的心理机制,发现加工速度和工作记忆在数字推理能力的发展过程中都发挥着重要的作用,且工作记忆的作用大于加工速度;推测加工速度可能是年龄与工作记忆的中介,仅对工作记忆的发展起一种直接调节作用,而工作记忆可能对数字推理能力的发展起直接调节作用。

问题之间的相似性能够影响类比检索的过程,因而对类比推理也有重要影响:相似度越高,越能促进类比迁移。问题之间的相似性包括抽象原则、问题内容、实验环境三个方面。其中,抽象原則在正规问题中指公式,在无法定义的问题中指图式和深层结构;问题内容主要包括语义领域和表面元素两个方面;实验环境则包括实验过程中的背景、实验者和实验程序等。

二、对中学数学教学的启示

(一)关注发展关键时期,加强逻辑推理训练

逻辑推理的相关研究表明,中学生的数学推理能力随年级升高而提升;初二和高二是推理能力发展的转折点(关键期);假言推理能力在小学三年级到初中三年级之间随年级的增长而增长,在小学三年级已有初步表现,在小学六年级到初中一年级之间有一个加速阶段,在初中二年级普遍接近成熟水平;总体归纳推理能力的迅速发展在初一到初三阶段,演绎推理能力的迅速发展在初三到高二阶段。这些研究结论对数学教学的直接启示是,要关注学生逻辑推理能力发展的关键期,在关键期内加强对学生的逻辑推理训练。因为,如果错过了关键期,再要培养学生的逻辑推理能力,可能会事倍功半。

在小学阶段,数学学习的主要内容是理解运算法则,依据法则进行运算。这是典型的演绎推理,但是,依据的法则往往是单一的,而且推理的步骤很少。这符合小学生的认知规律。到了初中阶段,平面几何的证明成为数学学习的重要内容。虽然也是演绎推理,但与小学阶段有了明显的不同:依据的法则、定理较多,选用难度较大,同时,推理的步骤明显增多。如果初中生不能适应这种变化,也就是逻辑推理能力的增长没有与学习内容复杂程度的增加同步,就会造成学习困难——实践表明,初中往往是学生数学成绩分化的起始时期。因此,在这一逻辑推理能力发展的关键期开展有针对性的训练十分必要。

第一,保证一定量的推理练习。量变引起质变,这是一个简单的哲学原理。没有量的积累,何来质的改变?学习数学必须做一定量的题,这是一个硬道理。当然,一定量的推理练习并不意味着“题海训练”,可以理解为“题海训练”量的下限。也就是说,如果一个学生的推理训练达到了一定的量,那么他的逻辑推理能力就能实现质的提升。对“一定量的推理练习”的理解,还要注意这样两个问题。其一,量(的下限)不是一个统一的标准。不同学习能力的学生需要的训练量是有差异的:学习能力强的学生训练量可能小一些,学习能力弱的学生训练量可能大一些。其二,量与质是相关的。一个基本的观点是,一道高质量题目的训练功能强于几道低质量题目的训练功能。例如,让学生做一道有理数的四则混合运算题目,其逻辑推理训练功能明显强于让学生反复做几道同一类型的有理数加法运算题目。这两个问题正是教师在教学实践中需要研究的:如何针对不同学生的实际水平确定训练量的标准?如何编制高质量的逻辑推理训练题?

第二,协调发展多种推理形式。演绎推理、归纳推理、类比推理之间有一定的相关性,但更具有相对独立的特质。也就是说,不能指望通过一种推理能力的训练来带动其他推理能力的发展,专门的训练是必要的。

例1老师在黑板上写出了三个算式:52-32=8×2、92-72=8×4、152-32=8×27。王华接着写出了两个具有同样规律的算式:112-52=8×12、152-72=8×22。

(1)请你再写出两个(不同于上面算式)具有上述规律的算式;

(2)用文字写出上述算式反映的规律;

(3)证明这个规律的正确性。

本题题干分两次给出5个算式,启发学生在观察、认识的基础上,初步猜想。第(1)问引导学生举出一些例子(如112-92=8×5、132-112=8×6等),从而验证猜想。第(2)问引导学生将发现的规律做一般化描述:任意两个奇数的平方差等于8的倍数。第(3)问则要求学生给出形式化的数学证明。前两问都属于合情推理,最后一问则属于演绎推理。本题的解答过程中,既包含了对已知条件的观察、分析和类比,又包含了对规律的探索、归纳及证明,为学生进行合情推理和演绎推理提供了可能,能较为全面地培养学生的逻辑推理能力。

此外,本题条件还可以进一步简化,即不给出算式的结果,而让学生先自行计算52-32、92-72、152-32,再尝试寻找规律,从而给学生更大的探索空间。

第三,协调运用演绎推理方法。在演绎推理中,综合法和分析法是两种常用的证明方法。分析以综合为目的,综合又以分析为基础,二者互相渗透、互相依存。训练中,应当注意兼顾两种方法。

例2已知ABC中,∠ACB=90°,∠BAC=30°,求证:BC=1/2AB。

本题需要证明的结论是,一条线段的长度等于另一条线段长度的一半。教师可适当提示学生有两种证明思路:第一种是延长BC至原来长度的两倍,再证明其等于AB;第二种是缩短AB至原来长度的一半,再证明其等于BC。

针对第一种证明思路,可延长BC到点D,使得CD=BC(见图1),此时只需要证明BD=AB。教师可进一步提问学生如何证明,启发学生寻找BD与AB之间的关系,作出辅助线AD,使得问题进一步转化为证明ABD为等腰三角形。针对这一命题,学生很容易判断出可利用三角形全等来证明。至此,教师带领学生通过分析法得到了证明思路,学生也能较为顺利地写出证明过程。

针对第二种证明思路,可取AB的中点D(见图2),此时只需要证明AD=BC或BD=BC。教师可让学生自己尝试采用综合法证明:连接CD,根据直角三角形斜边上的中线等于斜边的一半,得出CD=AD=BD,再由∠B=60°,得到BDC是等邊三角形,进而得出结论。

(二)适当揭示逻辑规则,固化演绎推理思维

形式逻辑有专门的知识。在中学数学教学中,这些知识通常不是系统地讲授给学生的,而是学生通过数学知识的学习潜移默化地掌握的。但是,对有些逻辑知识,有必要做适当的介绍,以帮助学生形成清晰的思路,固化“言必有据”的演绎推理思维。

例如,判断的四种形式是全称肯定、全称否定、特称肯定、特称否定。学生必须理解它们之间的关系,否则,在推理时容易出现错误。

再如,直言三段论由大前提、小前提和结论组成,有四“格”,其中,第一格如下页图3所示(大前提必须是全称的,小前提必须是肯定的),第二、三、四格稍微复杂一些。中学数学中的演绎推理几乎都采用直言三段论的第一格。因此,学生必须理解清楚这个规则,方能正确进行演绎推理。

在学习演绎推理的初级阶段,有必要对学生进行推理过程的补充理由训练。一种方式是写出全部推理过程,让学生填写每一步推理的依据;另一种方式是给出有一些空缺步骤的推理过程,让学生补全推理过程,并写明理由。许多研究表明,这是行之有效的推理训练方式。

例3如图4,点E在四边形ABCD内部,AF∥BE,DF∥CE,求证:BCE≌ADF。

本题是一道常见的初中几何证明题,涉及平行线、平行四边形及全等三角形的有关知识,难度适中。教师可以让学生独立思考并给出证明,同时在每个步骤之后写清理由,如使用的定理、性质等,从而帮助学生理解其中的逻辑关系。在这一过程中,教师还要关注数学语言表述的准确性、严谨性、规范性,及时纠正学生出现的错误。

(三)设置合情推理情境,培养归纳类比能力

合情推理的实质是“发现—猜想—证明”。教学中,教师应根据学生的特点,充分挖掘教学资源,灵活创设合情推理情境,充分展现推理思维过程,培养学生的归纳和类比能力。

第一,情境要具有探究性。归纳和类比是探究中常用的推理;反过来说,只有通过探究活动,才能培养学生的归纳和类比能力。探究活动中,要完成的目标(要证明的结论)应该是不明确的,需要通过合情推理来发现。教师可以通过提问,启发学生思考,引导学生探究;通过设计问题链,引导学生逐步深入,完成目标。

例如,“余弦定理”的教学大多采用演绎推理的方式,利用向量法或几何法推导出余弦定理,但这种做法容易造成合情推理能力培养的缺失。对此,可采用“先猜后证”的方式,让学生先利用合情推理进行探究,再利用演绎推理加以证明,从而体现合情推理能力和演绎推理能力的共同发展。

具体地,可以从类比推理的角度设计。通过勾股定理的复习引入,然后提出下列问题:(1)勾股定理揭示了直角三角形三边的数量关系,那么一般三角形的三边是否有类似的关系呢?(2)勾股定理中的三边关系有何特点?直角三角形和任意三角形有何关系?(3)请同学们观察等式中的“abcosC”,我们以前似乎研究过这个量,它还可以怎样表示?(4)如果把这个式子中的量都用向量表示,应该是什么形式?(5)你能证明这个式子吗?(6)还有其他证明方法吗?从而引导学生类比、分析勾股定理的形式,猜想、证明余弦定理的形式。

也可以从归纳推理的角度设计。引导学生先研究几种特殊三角形的情形,再利用归纳推理的方法探究余弦定理。在这一过程中,将∠C为0°和180°的情况看作特例,更容易发现边长c与∠C的余弦函数之间存在一定的联系。

第二,情境要具有实验性。利用数学实验作为教学情境,能激发学生的学习兴趣,引导学生从中归纳出抽象的数学原理,培养归纳和类比能力。教师可以设计与教学内容有关的富有趣味性、启发性的数学实验,让学生在实验情境中探索规律,通过观察和操作提出猜想,再通过逻辑论证得到结论。

篇3

关键词:常用逻辑用语;逻辑推理;数学思维

逻辑在数学领域扮演着重要的角色.它是在形象思维和直觉顿悟思维基础上对客观世界的进一步的抽象.五十年代的数学教学大纲中逻辑思维能力涵盖了概念、原理、性质等逻辑知识,并要求学生必须具备逻辑思维能力,指出了其重要性.随着逻辑涉及的知识内容不断丰富,使用范畴逐渐扩大,其在数学大纲中的地位及重要性日益凸显.到2003年国家颁布的《普通高中数学课程标准(实验稿)》,逻辑的基础知识、常用逻辑用语及推理与证明就已作为独立章节被选入高中数学必修及选修教材中.

逻辑用语融入日常生活的方方面面,《数学课程标准》中提出正确地使用逻辑用语是现代社会公民应该具备的基本素质,因此,如何正确地使用逻辑用语表达我们的思考显得非常重要.高中阶段逻辑教学课时少,不足十课时,但是所涉及的逻辑思维、逻辑推理、逻辑知识却贯穿于高中教学的全过程.可以看到高中所学的逻辑知识不但在数学领域而且在其他诸多领域都有极其重要的价值.下面根据个人教学经验, 谈谈有关逻辑教学的看法.

数学学科的一个重要目标就是培养学生抽象的逻辑思维能力.逻辑是一个基本的工具,因而逻辑在教学上的定位及落脚点应是着重于阐述数学思维的方法.心理学家认为,高中阶段学生的思维方式是从形象思维向抽象思维过渡的阶段,在整个高中时期学生的思维应是以逻辑思维为主导,如果此时抓住契机加强逻辑知识的学习,训练学生的抽象思维,就能最大限度促进学生逻辑思维能力的培养.

我们知道数学思想方法蕴含在数学知识之中,它是数学的精髓和灵魂.数学教学的核心是在教会学生掌握数学知识的同时,更重要的是让学生学会运用数学思想方法解决数学问题.逻辑推理便好比是适当地连接那些数学知识的螺丝钉,将知识融为一体.比如几何学中的公理化方法,就是指从公理、公设出发根据一定的演绎规则得到其他命题,从而建立一套逻辑体系的方法.而且在逻辑推理过程中不断地研究还会不断地发现新的性质, 假如我们不设法加以整理,只是把空间的无数性质杂乱地收集着, 最后无法成为体系,所以我们必须要把几何的种种性质加以整理,而逻辑推理就是我们的工具, 我们的不二法门.可见逻辑这种素材在数学上是绝对必要的.具体地说,常用逻辑用语和逻辑推理是高中数学逻辑学的主体,其中常用逻辑用语包括量词、四种命题、充要条件等,逻辑推理包括三段论、合情推理等.对于逻辑的最简易部分弄清楚之后,在今后的教与学进程中如何不断地适时适地渗透它们,才能使学生逐渐熟悉它的用法,也就是说逻辑在教学中不能把它当成只是一个独立的知识教过就算,因为它是普遍出现在数学的各个领域及问题之中,因此我们在教学上务必掌握它的这个特性,适时适地的突出它的作用,逻辑的教学才可能落实.

下面举一些例子来说明上述的观点.

例1. 设椭圆的两焦点是F1(-c,0),F2(c,0),而椭圆上的点到这两焦点的距离和是 2a(a > c > 0), 则椭圆方程是+=1(a>b>0).(注: 本问题及下面的证明出自人教A版选修2-1中2.2.1椭圆及其标准方程)

证明: 点M(x,y)在椭圆上的充分必要条件是MF1 +MF2=2a,因为MF1=,MF2=,所以+=2a.〔1〕

为化简这个方程,将左边的一个根式移到右边,得=2a-,〔2〕将这个方程两边平方,得(x+c)2+y2=4a2-4a+(x-c)2+y2,〔3〕整理的a2-cx=a,〔4〕上式两边再平方,得a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2,整理得(x2-c2)x2+a2y2= a2(a2-c2),〔5〕两边同除以a2(a2-c2),得+=1.

由椭圆的定义可知,2a>2c,即a>c,所以a2-c2>0,令b2=a2-c2得椭圆方程为+=1.

评注:我们在讲授这个证明的同时,就应该引导学生思考并回答下面问题:由〔2〕推 〔3〕及由〔4〕推〔5〕,因为使用平方操作, 会不会因此产生增根? 也就是〔2〕与 〔3〕,及〔4〕与〔5〕,它们是彼此互为充要吗? 或者说它们在逻辑上是等值吗?

例2. 已知f(x)=为R上的奇函数,求实数a的值.

解: f(x)是R上的奇函数, f(0)=0,解得a=1.

评注:上述解题过程只能说明结果a=1是题设的必要条件,结论虽正确,但目标是不是题设的充分条件呢?如果将 f(x)改为 f(x)=x3+ax2+a2-a,按上述逻辑推理应解答为: f(x)是R上的奇函数 f(0)=0 a=1或a=0.可是当a=1时 f(x)并不是奇函数,故a=1是增解应舍去.有些学生利用原问题的一个较弱的必要条件或者充分条件,即利用非等价转化来进行解题.但是最后缺乏进行等价性检验或证明,从而丧失了纠错的机会.

例3. (2012年高考全国大纲卷2O题第2问)设函数f(x)=ax+cosx,x∈[0,π], f(x)≤1+sinx,求a的取值范围.

解:由 f(x)≤1+sinx在[0,π]上恒成立,则其必要条件为 即a≤.

g(x)在x=0或x=π处取得最小值.又g(0)=0,g(π)=2-πa≥0,所以a≤.

综上可知:a的取值范围为(-∞,].

篇4

关键词:能力;逻辑推理能力;定量思维;提炼数学模型;数学解的分析

数学是一门重要的基础课,在大学理、工、文经的许多课程内容都直接或间接地涉及到数学知识。提到数学教学,人们往往把眼光盯在数学概念、公式等数学知识和计算能力方面,其实这是不够的或者是片面的。实际上,数学能力的培养是数学教学的一项重要任务,这也正是现代化社会发展所迫切需要的。正确迅速的运算能力,逻辑思维能力,空间想象能力是学生必须具备的数学能力。本文主要谈谈学生逻辑思维能力的培养。

逻辑思维能力是学生数学能力的一个重要内容,这是由数学的极度抽象性决定的。逻辑思维能力的培养,主要通过学习数学知识本身得到,而且这是最重要的途径,在数学教学中,学生的逻辑思维能力主要表现为:判断能力;逻辑推理能力;定量思维、提炼数学模型的能力和对数学解的分析能力。

一、判断能力

判断是对客观事物情况有所断定的思维。数学判断则主要是对事物的空间形状及数量关系有所肯定或否定的思维,具体说是对命题的判断。恰当的判断能力即指能正确地、恰如其分地反映事物的真实情况。提高判断能力主要是提高分析能力和理解能力。客观世界中事物总是相互联系、相互制约的,这些联系与制约,有的是必然的,有的是或然的,这些不同的情况反映了它们之间的联系程度,因而就产生了不同的判断和利用不同的抽象形式去研究和表述这些关系的数学方法,所以对于某一个具体的问题,要用数学方法去解决它,首先必须能够判断事物与其属性的联系情况,哪些是必然属性,哪些是在某些条件之下可能出现的属性,从而进一步研究这些条件与可能,以便提炼合适的数学模型。对于复杂的命题,必须运用分析与综合相结合的方法,一面分析一面综合,分析与综合互相结合推导,就能比较迅速地找出证题与解题的途径。要保证证题或解题的正确性,还必须遵守逻辑思维规律,即同一律、无矛盾律、排中律和充足理由律。这四条规律反映了人们思维的根本特点:确定性、无矛盾性、一贯性和充分根据性。如果违背了其中任何一条规则,都可能导出证明或解题的错误。所以掌握逻辑思维的规则是具有判断能力的一个重要因素。辩证思维是具有判断能力的又一个重要因素。特别在高等数学中,对一些数学概念的辩证关系的掌握尤为重要。如无限与有限、连续与间断等。掌握了这种辩证思维的方法,就能提高判断一个命题是否正确的能力。判断是贯穿于科学理论数学化的全过程之中的,判断力是解决数学问题的基础能力。判断和推理又是紧密联系在一起的。

二、逻辑推理能力

数学中严谨的推理和一丝不苟的计算,使得每一数学结论不可动摇。这种思想方法不仅培养了数学家,也有助于提高全民族的科学文化素质,它是人类巨大的精神财富。逻辑推理主要有演绎和归纳法。数学按其本性是一门演绎科学。因为在它由现实世界的空间形式和数量关系提炼出概念之后,在一定阶段上就要发展成为有相对独立性的体系,即要用独特的符合语言从初始概念和公理出发进行逻辑推理,以此来建立和证明自己的定理、结论,这实际就是用演绎法建立的体系。演绎法中最有代表性的是公理法,以此法建立起来的数学体系就是公理化体系,象欧氏几何、群论、概率论、数理逻辑等都属此类。实践证明,公理化体系对于培养人们逻辑推理能力是非常有力的。公理方法是在公元前三世纪由希腊数学家欧几里得首创的。他的巨著《几何原本》就是从少数的几个定义和公理出发,推导出整个几何的一个严密的几何学体系。爱因斯坦关于欧氏几何曾说:“世界第一次目睹了一个逻辑体系的奇迹,这个逻辑体系如此精密地一步一步推进,以致它每一个命题都是绝对不容置疑的--我这里说的是欧几里得几何”。推理的这种可赞叹的胜利,使人类的理智获得了为取得以后成就所必需的信心。1899年德国数学家希尔伯特又出版了《几何基础》,在这本书中他设计的几何公理法获得成功。欧氏及希氏公理化体系采用的逻辑推理方法,可以揭示出数学知识的内部联系以及数学的概念与概念之间,命题与命题之间,同一个命题的前提与结论之间的本质的联系,从而能使人们更加深入地认识事物的联系和规律。而且这种逻辑推理条理清楚,简明扼要,可以保证数学中结论的充分确定性,也是判定数学命题真伪的有效方法。所以公理方法不但对于建立科学理论体系,系统传授科学知识以及推广科学理论的应用等方面有至关重要的作用,而且对于培养人们的逻辑推理能力也是一个极有效的方法,在数学的教学中应给以极大的重视。归纳推理是逻辑推理中又一种非常主要的推理方法。归纳法通常就是从观察和实验开始的,例如数学中的猜想:费尔玛猜想、哥德巴赫猜想等等,都是通过具体的数先引出“猜想”,然后通过更多的具体的数增强这个“猜想”,从而归纳出猜想,这里用了不完全归纳法,但是猜想还不是定理,还需经过数学理论的严格说明。就连公理化体系的建立,也是先收集了相当丰富的资料之后,人们需要对这些材料加以概括和整理,只有在这时,人们才能在许许多多的命题中经过分析和综合,经过比较和选择来确定一些命题作为公理,其余命题就作为以公理为依据的逻辑推理的结果。猜想和公理都是对感性材料进行比较、分析、综合、抽象概括等一系列逻辑加工之后归纳出来的,然后再用演绎法去证明。归纳推理能力的培养是一种综合的逻辑思维能力的培养。类比推理也是数学中常用的一种逻辑推理方法。

类比推理是根据两个对象有一部分属性相类似,推出这两个对象的其他属性相类似的一种推理方法。在初等数学、高等教学、集合论中都要用到类比推理。

三、定量思维、提炼数学模型的能力

定量思维是指人们从实际中提炼数学问题,抽象化为数学模型,用数学计算求出此模型的解或近似解,然后回到现实中进行检验,必要时修改模型使之更切合实际,最后编制解题的软件,以便得到更广泛的方便应用。数学模型就是用数学式子表示假定。它是用来揭示客观自然界的本质、规律及解决现实世界中各种问题的最重要的方式。应用数学理论和方法来解决实际问题,本质上就是把这个问题概念化和公式化,即提出数学模型。模型提炼得正确,就等于这个问题解决一大半。提炼数学模型的能力,是数学水平高低的重要标志之一。任何的现象都是复杂的,所以一般说来一个数学模型的建立不可能一次完成。对于一个现象,首先应该进行分析,努力抓住事物现象的特征,然后选择与现象的本质有关的、对于结果有重要影响的因素,建立起一个简单的数学模型,并将这个模型的解与现象进行比较,并考虑进其他的因素,进行多次反复的修正,以逐步逼近现象,达到提炼出该现象的完整的、正确的数学模型。同一个现象,由于研究的角度和见解的不同可表示为不同的数学模型。提炼数学模型的能力是在大量地研究、解决问题的过程中不断培养的。

四、对数学解的分析能力

篇5

【中图分类号】G 【文献标识码】A

【文章编号】0450-9889(2013)07B-0076-02

学生刚从小学升入中学时,心理和生理都发生着巨大的变化,而数学教学也发生着重大的转变,初中数学在小学数学的基础上增加了复杂的平面几何、代数、有理数、实数、一次函数与二次函数等,内容多,难度大,学生感到吃不消,因此对数学产生畏惧感。以下针对七年级学生学习初中数学时出现的问题,谈谈具体的解决方法。

一、提升学生的数学学习能力

初中数学较之小学数学更为复杂、抽象,特别是数字到字母的转变、具象到抽象的转变等,一些逻辑推理能力稍差的学生学习起来感到十分吃力,学生在七年级阶段学不好,会影响到今后对数学的深入学习。因此,提升学生的数学学习能力尤为重要。逻辑推理能力是学生学习初中数学的首要必备能力,在具体教学中,教师要注重对学生逻辑推理能力的培养。

例如,在几何教学中,培养学生将文字语言转化为数学语言的逻辑思维。

师:已知:HC是∠ACB的角平分线,同学们从已知条件可以知道什么?

生:因为HC是角平分线,所以∠HCA和∠HCB两个角相等。

师:没错,不仅∠HCA=∠HCB,而且别忘记∠HCA=∠HCB=∠ACB。

师:已知AB//CD,直线EF分别与直线AB和CD交于点G和H,请同学把图画出来。

学生根据对条件的理解画出图形,如图1。

师:∠AGH和∠GHD是内错角,所以∠AGH=∠GHD,同学们根据老师的思路,还能推理出什么?

生:因为AB//CD,所以∠FHD=∠FGB,并且∠AGH+∠CHG=180°。

教师先举例说明,再让学生自己进行观察推理,使学生不至于因为知识点理解有困难而走偏路。通过步步引导,逐渐提高学生的理解能力和逻辑推理能力。

二、把握教学内容的衔接

与小学数学相比,初中数学的内容更加系统丰富,如果教师处理不好中小学数学教学内容衔接的问题,会直接导致学生在初中数学的学习中脱轨。因此,在教学过程中,教师必须注意初中数学和小学数学的衔接,在接触一个新的知识点时,先分析小学数学与初中数学的差异,让学生意识到数学在初中阶段的系统化,同时,又要给予学生充分的信心,使学生不会因为初中数学与小学数学的巨大差异而产生恐惧心理。

例如,在“有理数”的教学中,我的教学过程如下:

师:小学数学是在算术数中研究问题的,我们现在开始学习一个新的知识――有理数。

学生从书上找到有理数的概念,师引入负数,并举例说明其用法。

师:同学们,我们怎样区别山峰的海拔高度与盆地的海拔高度这两个具有相反意义的量呢?

生:用负数,就像零上几度和零下几度一样。

师:没错。事实上,有理数与算术数的根本区别在于有理数由两部分组成:符号部分和数字部分,数字部分也就是算术数。

生:也就是说,有理数相比小学的算术数只是多了符号的变化。

师:对,例如:(-5)+(-3),同学们可以先确定符号是“-”,再把数字的部分相加。

生:答案是(-5)+(-3)=-(5+3)=-8。

在算术数到有理数这一重大转变中,教师明确了切入的方向和步骤,使教学内容与小学数学的内容很好地衔接,同时,又能帮助学生在小学的基础上理解有理数,使学生感受到初中数学与小学数学内容上的一脉相承,从而适应初中数学的学习。教师在教学中要注意由小学数学内容或生活中的实例引入教学,拉近学生与新知识的距离,加深对知识的理解,再实战练习,让学生不再对初中数学望而生畏。

三、培养学生良好的学习习惯

良好的学习习惯对于初中阶段的数学学习极其重要,在小学阶段,学生大多没有形成特定的学习习惯,往往以完成教师布置的作业为主要目标,临近考试才看书“临时抱佛脚”。大多数学生在进入初中后,面对快节奏的学习显得十分不适应。因此,教师要致力于培养学生良好的学习习惯,让学生面对高强度的学习任务也能游刃有余。在初中数学的学习习惯中,预习和复习尤显重要。

1.重视预习

进入初中阶段,数学教学进度陡然加快,学习难度也逐步加深,学生一时难以适应,在听课过程中,学生由于没有预览新知识,对教师所讲内容十分茫然,从而产生焦虑急躁的情绪,影响继续听讲。久而久之,不仅听课效率下降,更打击了学生学习初中数学的信心和兴趣。因此,教师应在布置当天学习内容的作业时,将预习次日学习内容作为一项作业布置给学生,并提出预习的具体要求,指导学生预习的方法,让学生逐渐养成预习的习惯。

2.正确把握复习的节奏和掌握复习的方法

复习也是一个极其重要的学习习惯。根据艾宾浩斯遗忘规律曲线,在识记的最初阶段遗忘速度很快,以后逐步减缓。因此,在学习新知后若不及时加以巩固复习,学习效果将大打折扣。教师应向学生强调复习的重要性,明确要求学生在做作业之前先复习当天所学内容,并阶段性回顾单元章节知识,以强化学习效果。

复习主要包括两部分,一部分是新授课后对已学知识点的回顾和巩固,另一部分是考试前对知识的回忆和温习。首先是新授课后对已学知识点的回顾和巩固,在这一环节,学生总感觉学习时间不够,光是完成教师布置的作业就已经很吃力了,更别说复习,这就要求学生学会把握复习的节奏。教师应该适时在课堂上复习已学知识或点评新旧知识点的联系,用课堂讲习题的方式间接提醒学生复习的重要性,使学生在潜移默化中适应教师的复习节奏和方法,最终化为自己的习惯和方法。其次是考试前对知识的回忆和温习。教师应提醒学生,复习要以教材为本,深入理解知识点,把握重点内容。另外,考过的测试卷也是复习的好资料,考试中暴露的问题正是学生应该重视的复习内容,尤其是七年级新生,不知复习从哪儿下手时,更应该珍惜每一份试卷,认真分析,找出自身知识点的薄弱环节,总结失败的教训,从中得到成长与进步。

篇6

随着知识经济时代的到来及科技的发展,离散数学的思想逐渐对计算机学科中的影响越来越突出,并且离散数学作为计算机学科研究应用的有效工具,对于计算机学科的持续发展产生了重要影响,本文就离散数学在计算机学科中的应用现状进行分析,针对离散数学应用中存在的问题提出相应的解决措施,为相关研究人员和工作人员提供一定的借鉴意义。

【关键词】离散数学 计算机学科 应用探究

在离散数学的应用中,离散对象是离散数学中常见的内容,离散是指元素不能有效连接的元素,由于计算机学科的发展以及离散数学的独特性,离散学科的可行性研究是一个重要的研究领域,在离散数学的的研究中,需要进一步找出离散变量的存在性,并根据该变量的存在特点,找出该问题有规则的计算步骤,由于计算机属于一个离散结构,其研究对象均为离散式,因此,需要离散数学知识的支持,以便促进计算机学科的发展。

1 离散数学应用于计算机学科中的必要性

离散数学作为计算机学科应用数学的一种有效工具,对于整个计算机学科的发展研究起着重要的推动作用,在计算机学科的形式语言中,可以通过离散数学的自动机理论来研究整个形式语言的发展,并且可以对计算机学科中的程序进行适当的探索产生灵感,在离散数学中的谓词演算、代数结构等理论,都可以为计算机学科的进一步发展提供相关的理论依据,促进计算机学科的研究进程,但是,如果对离散数学的内容没有清楚的理解,在计算机的学科研究中,可能会失去这一灵感来源。因此要重视离散数学对于计算机学科应用的重大意义。

2 离散数学在计算机学科的内部具体应用

2.1 在数据结构中的应用

在计算机的数据结构中,计算机内部操作对象之间的关系可以分为集合、树形结构、线性结构、图状结构、网状结构等,由于计算机学科中,需要利用这些计算机数据结构进行问题研究和决策,以解决数据结构中出现的具体问题,在离散数学具体问题中逐渐归纳演绎出一个合适的计算机数据操作模型,然后根据这个操作模型运行的规则,设计、编出相应的程序,并对先行程序进行测试和调整,形成完善的数据结构模型,然后,对数学模型实质进行分析,并提取出操作的对象,了解之间的关系,使用数学的语言对其进行描述。数据结构操作模型根据逻辑结构、基本运算规则、物理存储等内容,建立比较完善的数据结构运行规则。而离散数学中的离散结构深刻影响了这一系列的逻辑结构和运行操作规则,因此可以说,离散数学中的集合论、关系、树以及图论等知识内容充分反映出数据结构的结构知识。

2.2 在数据库中的应用

计算机学科中的数据库是应用离散数学最明显的地方,在计算机学科的数据库建立中,关系数据库是最流行的关系模式,比如,离散数学中的笛卡尔数学理论,对计算机学科中的关系数据库形成具有关键作用,并且在相关离散数学理论的应用中,不仅促进了关系数据库的不断完善和发展,同时也有利于促进计算机学科理论的完善。再比如,集合代数可以为关系数据模型的建立提供基础条件,其数据的逻辑结构需要以行与列组成的二维方式来描述。并且通过相关的二元关系理论帮助计算机学科中建立查询、维护功能。

2.3 在编译原理中的应用

计算机学科中的计算机的编译程序是比较复杂的操作之一,这些编译程序包括词法、语句、语义、代码优化、错误信息检查与处理等各个部分,而在离散数学的计算模型内容中,有关的有效状态、文法、图灵机等内容为这些程序的编译提供了可靠的研究来源,这些内容的具体内涵包括语言与文法、有限状态机、图灵机与有限状态等知识结构内容,采用这些离散数学知识可以有效的形成罗塑形术,运用此种方法,可以让逻辑语文的内容更加详实,从而架构起图款存库与语言演绎的关联,最后,对所有具有关联性的内容进行逻辑推理测试,核实编译程序的正确性和操作的便利性。因此,在离散数学的框架内,逐渐形成了对问题进行自动分析、解决的计算机编译程序。

3 离散数学在计算机学科的外延具体应用

3.1 在人工智能中的应用

在计算机学科的离散数学研究应用中,计算机外延的结构系统人工智能就是很好利用离散数学的例子,其逻辑推理同样是人工智能利用的重点,首先是可以改善人工智能的实际作用。通过将微词逻辑语言进行逻辑推理式的演绎过程,为接下来的程序构造做好的流程疏通的作用,而这些逻辑的规则赋予了数学语句更加精确的定义。其次是离散数学图例对人工智能的影响,这些离散数学的图例为早期的人工智能发展起了很大作用,促进整个早期人工智能研究方法和理论的成熟。最后是离散数学的布尔代数章节为人工智能的提供了方法管理的依据,同时也很好的奠定了护理基础的研究。因此,可以说大多数离散数学的内容,可以很好的促进人工智能技术的改善和发展。这都要求有着更深刻的推理机制起着重要作用,起到了降低专家思维机制的错误率,提高分析问题的准确度,从而实现机器的智能化。

3.2 在计算机体系结构中的应用。

指令系统的设计与改进是计算机学科体系的重要内容,良好的指令系统设计与改进可以明显提高整个计算机体系的性能,而指令系统的优化和改进几乎都是通过对离散数学某些概念、理论的应用才能实现的。比如,对指令格式的优化,如果系统的指令在指令的操作码和地址码不能有效的运转时,根据离散数学中哈弗曼压缩的概念,将指令的平均字长进行无损压缩,从而减少该问题出现的概率,因此,适当的使用优化技术对发生概率最高的事件使用最短的时间来处理,达到了优化指令格式的目的。此外,当对位数缩短时,同样可以利用离散数学中的哈弗曼算法,将指令系统中的指令操作频率进行结构优化,构建出哈夫曼树叉图形,将这些分叉上的频率分析归类,应用到计算机体系结构中。

4 结束语

在计算机学科迅速发展的今天,对于离散数学的进一步研究分具有很深远的意义,因为离散数学可以为计算机学科发展,提供有效的逻辑推理依据,帮助计算机学科学生发展逻辑推理能力,并将这些离散数学概念逐渐应用到计算机学科的方方面面,在提高学生逻辑思维能力的同时,强化了学生的创新思维,同时更好的掌握现代化计算机学科知识,需要对离散数学进行有效的掌握,以便促进计算机学科更好的发展。

参考文献

[1]许蔓苓,陈建军,黄建玲,等.离散数学的方法和挑战[J].计算机研究与发展,2014,25(14):573-574.

[2]陈敏,李泽军.离散数学在计算机学科中的应用[J].信息技术与课程整合,2013,28(12):893-894.

[3]杜林钰.离散数学在计算机学科中的应用[J].科技教育,2015,(11):464.

篇7

[关键词] 数学方法 经济研究

1975年瑞典皇家科学院把诺贝尔经济学奖授予两位学者,前苏联数学家康托罗维奇和美籍经济学家库普曼,以表彰他们为建立和发展线性规划并把它应用到经济分析中所做出的贡献。这一事实诱导人们不断探求数学与经济学的共生现象,数学做为工具研究和分析经济活动中的各种宏观、微观的数量关系,现代数学方法引入到经济学领域,大大地推动了经济学的研究和发展。

一、数学方法在经济学研究中的作用和重要性,可以从经济学的最高奖项―――诺贝尔经济学奖的获奖名单中得到证实

诺贝尔经济学奖从1969年开始颁奖,上世纪末共颁奖32届,获奖者达46人。从32届颁奖的学者以及颁奖的内容来看,贯穿着一条很明显的事实,那就是数学方法与经济学研究的巧妙结合。几乎所有的(除了获1974年诺贝尔奖的哈耶克)获奖成果都用到了数学工具,有一半以上获奖者都是有深厚数学功底的经济学家,还有少数获奖者本身就是著名的数学家,特别像获1975年诺贝尔奖的苏联数学家康托洛维奇,获1983年诺贝尔奖的法籍美国数学家德布洛,获1994年诺贝尔奖的美国数学家纳什。

二、在经济学中应用数学方法是经济科学发展的内在要求和必然趋势

萨缪尔森在其《经济分析基础》中文版序言曾经说,不使用数理经济学方法,是“不能使人超越经济科学的幼儿园的。”现代经济理论工作者们也越来越清晰地意识到,在经济理论研究中仅靠过去普遍采用的文字描述方法进行思辨式推理分析,很难保证所讨论问题的规范性及推理逻辑的一致性和严密性,也就难以保证研究结论的准确性、易证实性和理论体系的精密性,这就极不利于经济学科知识准确地、低成本地积累、交流和传播。而数学方法则能使经济学研究对象明确具体、经济变量之间的关系数量化以及保证逻辑推理过程的严密性,最终将保证在理论上得出的结论具体明确,使相应的经济理论建立在坚实的科学基础上,从而减少或消除经济关系中的不确定因素,促进经济科学不断发展。自从威廉・配第在《政治算术》中“用数字、重量和尺度的词汇”来分析经济现象、并确定经济发展存在着客观规律性以后的三百多年来,数学方法在经济学研究中得到了广泛的应用和发展,而且对经济学的发展产生了深刻的影响,做出了巨大的贡献。例如现正在使用的边际分析、弹性分析、均衡分析、回归分析、主成分分析、聚类分析、投入产出模型、经济增长模型、经济控制模型、博奕论模型等都是利用数学工具来解释或解决实际经济问题的,它们对经济科学的发展也做出了巨大的贡献。

三、数学使经济学研究方法更加清晰、精确,逻辑推理更加严密

回顾经济学的发展历程,会清楚地发现,经济学的每一次重大突破,都与数学有着重大的关系。无论是从古典经济学到新古典经济学的转变,还是从“边际革命”到“凯恩斯革命”都得益于数学方法的应用。在经济学发展史上,最伟大的发现是亚当・斯密的“看不见的手”的经济思想。它揭示了市场经济最基本的内在规律:价格调节会自发地实现均衡。但这一经济思想最终是由迪布鲁运用拓扑论、集合论等现代数学工具给出了最完备的证明。在由常量数学向变量数学的转折中,微积分被应用于经济学引发了经济学的“边际革命”,这就奠定了当代西方经济学的理论框架。而必然数学向随机数学的转折,促使人们以概率论的观念取代了传统的定数论的观念,于是经济计量学就应运而生,从而沟通了经济理论与实践的联系,使经济学进一步实用化,随着数学的不断发展,人类经济行为中最难以把握的问题之一是不确定性与风险性,在运用了博弈论之后对不确定行为的分析也有了突破性的进展。这使得数学在不断应用于经济学的过程中不断强化着经济学与数学的关系,同时也在不断改变着人们在经济研究中的思维方式和思维习惯,使人的思维和行为更具有了定量特性。这就是说大部分经济现象即使不用数学也能讲清楚它的因果关系,但是数学有它的好处,因为数学是最严谨的一种形式逻辑,尤其有不少人在运用语言时逻辑容易不严谨。这就要求在经济学的论述和交流中,从使用文字语言转变为使用数学语言。因为使用数学语言比较简练,表述概念比较精确。而且数学语言是最严格的逻辑形式,尤其是数学表达的逻辑严谨、无歧义,并容易被证实或证伪。可以说科学史上的许多争论,都源于未明确给定讨论的前提条件或者潜在假设模糊,用文字语言表述却难以发觉,造成了“公说公有理,婆说婆有理”的争论局面。解决这些争论的最好方法就是使用数学语言。这样就可以避免一些无意义的争吵,这无疑将提高学术交流的效率,提高经济学的科学性。

四、结束语

我们看到,经济管理数学化已经成为一种趋势,经济管理已离不开数学这个支柱,而且随着数学的进一步发展和计算机技术的普及,数学的作用显然会向更多方面拓展。依据数学对现代社会发展的作用来进行数学教育改革,是时展的需要,一般说来,数学并不能直接处理经济领域的客观情况。现代化进程所需要的数学起源于实践,数学与实践的联系是通过数学建模来实现的,为了能用数学解决经济领域中的问题,就必须进行数学建模。因此在高校的数学课程中加开和重视数学建模课。

参考文献:

篇8

【关键词】数学 学生 意识 培养

我们要做好数学应用教育的研究,提高数学教育水平和效率,开创数学教育新局面。教师是课堂教学双边活动的“引导者”、“组织者”,哪些问题可以合作完成、哪些问题不需要合作完成,以及如何更好地处理学习过程中生成与预设的关系都对学生合作学习的过程起到决定性的作用。在学生合作学习的过程中,我始终参与其中,关注他们合作的进程和出现的问题,平等地和他们交流,给他们建议,给他们启示,积极加以引导。教师作为一名特殊的学习伙伴,他应当是更优秀的“学习性他者”,学生合作过程中,教师只有最大限度的收集信息、提供适时帮助和指导,才能更有效地关注学生合作学习后对问题的解决。

引起中学生数学应用意识和能力差的原因

1、对数学的价值认识不足。

“科学技术是第一生产力”,“科学技术的基础是应用科学,而应用科学的基础是数学”。这一论述揭示了数学在生产力中的巨大作用。数学作为从量的方面处理现实世界中各种关系的科学,当然也要处理有关生产关系的问题。这就是数学的价值。但由于历史的影响,教师们在过去的教学中过份强调数学的逻辑性、严谨性、系统性和理论性,宁可一遍遍地去重复那些严谨的数学概念、讲授那些主要为解题服务的技巧,却很少去讲数学的精神、数学的价值、数学结论的形成与发现过程、数学对科学进步所起的作用等等内容。这使学生对数学的认识片面化、狭隘化,比如许多学生就认为“数学不过是一些逻辑证明和计算,”甚至认为“数学只是一个考试科目。”

2、用数学的意识差

用数学的意识,简言之就是用数学的眼光,从数学的角度观察事物、阐释现象、分析问题, 意识是一个思想认识问题,也是一种心理倾向,其重在自觉性、自主选择性,它需要在较长时间中通过一定量的实践才能形成。我国旧的数学教育内容的选择,由于受苏联模式的影响,以在体系结构上追求严格的理论推导和论述为主的“理论型教材”占多数。课程内容的选择在极大程度上反映了数学应用的程度和水平,理论型教材对实施数学应用教育是极其不利的,这是造成学生缺乏、甚至是逐渐丧失应用意识的主要原因。显而易见,学生在学习与社会实践中缺乏用数学的自觉自愿,又何从谈起用数学解决问题。

篇9

随着历史的发展与进步,人们不断探索、不断进取,数学随着时代的步伐,在人类的实践中不断进步,在进步中日趋完善。今天,在这个科技高度发展和非常需要人才的时代,数学教育越来越重视观察和创造能力的培养,在数学思维中被视为最可贵、层次最高的品质便是创造能力和发散性思维的开发。于是在经过一个长期的发展过程中,人们逐渐的犯下了一个错误:认为学习数学不需要记忆,忽视了数学也要记忆的重要性。

数学要不要记忆,记忆对学习数学到底重不重要,我们暂且不说。众所周知,数学是一门十分古老的科学,源远流长;数学又是一门充满青春活力的科学,正深入到生活和科学的各个领域。数学在历史舞台上的丰功伟绩永远也抹不掉。我们固然不能说培养数学的观察和创造能力不重要,历史在发展,时代在前进,开拓创新是历史与时代的共同呼唤与心声。如果说语文是各科的得力助手,那么数学便是各科的最佳工具,如何才能使这把工具为我所用,怎样能为我服务。关键在于学好数学,懂得开启这把工具。

这是一个让人欣慰的共识,因为数学的魅力已深入人心。大家都在为学好数学而奋力攀登数学高峰,这样一座雄奇险峻的高峰,有山有水,有草有木,有雪拥冰封之际,有花红柳绿之时,怎能不让人流连忘返!倘若不去记忆她,不去追忆她,岂不悲哉!数学是美,在数学的王国里,又何尝只有这些美景呢?所以数学也需要记忆,因为记忆是保存回忆的最佳方式,甚至是唯一的。

数学是一门逻辑性颇强的学科。它要求我们对问题或资料进行观察、比较、分析、融合、抽象与概括;会用演算、归纳与类比进行判断与推理;能准确、清晰、有条理地进行表达和书写。这样一个过程,也就是数学的基本逻辑思维过程,换言之,就是运用数学思维和方法的能力。在这个过程中,能否提笔破题而不悖于常理,并最终达到目的,准确表述,让人信服,关键在于你的逻辑推理是否严密,而这又反映你运用知识的能力。知识能力的运用必然要求你有知识可用,这就进一步要求你开启大脑这个储存库,储存库是满的还是空的,又反作用于你的运用能力。因此,记忆也就在无意中充当了主导。离开了记忆这辆运输车,大脑储存必然空虚,而空虚意味着知识量的缺乏,知识量的缺乏必然导致应用能力的降低和范围的缩小,致使逻辑推理不严密,从而影响解题速度,有时甚至不知从何入手,所以,记忆对逻辑推理有着重要的意义。

不仅如此,运算能力的提高也需要记忆的帮助。运算能力作为一项基本能力,在高考中半数以上的题目都需要运算。运算能力的考查是多方面的,涉及实数、复数、分式、集合等内容,它要求学生会根据概念、公式和法则对数式、方程进行正确的运算和变形。能否分析条件,寻求与设计合理,简捷的运算途径;能否在做题时运算灵活自如,速度倍增,直接关系到你能否在高考中金榜题名。

或许因为你没有记牢某个特殊技巧而使运算繁琐,耗时甚多;或许因为你未能熟记某个公式而一步算错,整题失分;更有甚者,因为你没有记住某个法则而解题无策,影响心情。

这绝不是危言耸听,万事皆有可能。可见,运算能力至关重要,而适量的记住一些方法技巧、法则、公式则是提高运算能力的有效途径之一。在学习数学时,若能熟记一些我们平时常用的数据。对我们分析问题,提高运算能力十分有利。

比如:以中学数学常用的数据为例,要熟记1~20的平方数;1~10的立方数;2n(n=1、2、3、……10);3n(n=1、2、3、……10)的值;、、以及lg2、lg3、lg 5的精确值;勾股数值:3、4、5,5、12、13,7、24、25,8、15、17等,还有特殊三角函数值等。

总之,你记得越多,解题时你思路就越多、越广、越巧,速度也就越快。这样不但可以节约时间和精力,还可以避免繁琐的运算,使运算合理化;不但下笔如有神,且准而快,甚至达到“直呼”的境界,一看便知其解。反之,则方法少,思路窄、速度慢、效率低,甚至不知所措而望题兴叹。

从上述看来,我们不难发现,记忆对学好数学非常重要。不但逻辑思维能力、运算能力与记忆不分家,空间想象能力、逆向思维能力以及猜想、创造、探索能力也与其息息相关。它们互相渗透、互相影响、互相联系、互相协作,是通向数学王国不可缺少的最佳合作团体。既然记忆对学习数学如此重要,那么我们应该怎样去记忆呢?

数学是一门理科,其概念、定理、公式、公理等,要记的甚多,我们自然要寻找一种合适的方法去记忆它。何为合适?我反对死记硬背,死记硬背只是让知识在大脑中短暂逗留,但并不是不要记忆。数学知识的锁链是环环相扣的,没有对旧知识的记忆,就谈不上对新知识的理解,没有对已学过的若干概念、定理、公式的理解和记忆,对他们的运用也将化为泡影。当然,我也不赞同机械记忆,机械记忆的知识也不过是大脑中的匆匆过客。

顾名思义,数学记忆就是要用数学的方法去记忆数学的知识,培养有数学特色的记忆方法。

有人说:“记住了的东西不一定理解它,理解了的东西就能更好地记住它。”这说明理解是记忆的前提。只理解不记忆不行,只记忆不理解也不行,不理解不记忆更不行。所以我们得明白“理”与“记”之间的相互联系,这样,记忆起数学知识就容易多了。如:三垂线定理、对数换底公式、和差化积公式等,理解公式的推导过程,就不易忘记了。再如,记忆定理,我们要从定理的叙述中分清什么是它的条件、结论、是否与图有关,分析条件和结论之间的内在联系,理解其证明思路和过程,逐步实现数学知识的“懂”、“记”、“用”的三步走战略。

篇10

[关键词] 小学数学;数学因子;发现;体验

回顾我们自己小学阶段的数学学习过程,看看现在的孩子学习数学的过程,我们有必要思考一个问题,那就是除了数学知识之外,我们还应该在数学课堂上让孩子们学到什么. 这里我们固然可以通过《义务教育数学课程标准》(2011版)中新提出的“四基”(基础知识、基本技能、基本思想和基本活动经验)作为标准答案,但也可以通过我们自己与学生互动过程中生成的、更为直接的认识作为回答. 在笔者看来,让学生在数学学习的过程中发现具有数学味的“数学因子”,是师生可以在数学旅途上共享的风景.

我们所理解的“数学因子”,就是在与生活关系密切的现象中,能够提取出来用数学知识解释的内容,包括数学学习中所创设的学习情境,所用到的各种思想方法,所涉及的数学学习过程中的各种思维等. 由于学生甚至是教师可以在数学知识生成的过程中感受到这些方法的魅力,因此将其称为数学道路的“数学因子”是合适的. 从这个角度来看,我们的小学数学学习就可以看做是“数学因子”的发现与体验之旅.

数学的基本因子:简洁性

数学是公认的最简洁的语言,如何将这种简洁的认识种植到学生的心田里,对于小学数学教学而言是一个挑战. 因为根据我们的学习和教学经验,这样的简洁性给学生带来的并不总是愉悦的享受,因为数学知识的学习往往会因为这样的简洁甚至是抽象,而生成理解上的困难. 因此我们要想让学生领略这种“数学因子”的味道,就必须让学生能够走一条从复杂到简洁的旅途,这样才能亲身体验到数学的简洁美.

以苏教版数学教材三年级上册的“平移与旋转”的教学为例,要想让学生掌握平移的规律(规律是数学中的简洁语言),我们必须让学生经历由形象到抽象、由复杂到简单的过程. 笔者设计的过程是这样的:首先,让学生到生活中寻找平移与旋转的例子;其次,让学生在方格纸上体验平移与旋转,并且寻找其中的规律;最后,总结平移与旋转的规律.

在具体的教学过程中,学生能够想到的平移和旋转的例子相当丰富,除了教材上的平移例子之外,学生还想到路上匀速行驶的汽车、超市门前的自动移门、天上飞行的飞机等;旋转的例子学生想到的一般是汽车的车轮、电风扇等. 有了这些例子,我们可以让学生总结平移物体和旋转物体的特点. 这个总结可以是显性的,即让学生通过语言去描述两种运动的特点,这对于表达能力强的学生比较适用;也可以采用隐性的方法,即学生虽然说不出来,但可让他用手或者手边的物品去比划平移和旋转,这对于表达能力不强的学生而言比较适用. 值得强调的是,隐性的描述方法往往更适用于小学三年级的大部分学生,因为从本知识学习的目的来看,当学生虽然不能用语言来描述,但能够用手表示出平移的运动(如用手平着从一边运动到另一边),用手表示出旋转的运动(如用手作扇状运动)时,我们认为他们已经比较好地理解了平移和旋转.

有了这样的体验之后,再将具体的事物进行抽象,让它们变成一个三角形或者长方形、正方形,再在方格纸上进行平移. 这个过程我们认为必须丰富,也就是说在将具体的实物变成简单的图形的过程中,不仅要向学生讲清楚起点(实物)和终点(图形),也要向学生讲清楚这样做的目的――通过抽象的方法使研究的问题变得更加简单,也为了使规律更容易出现在我们面前. 在找出规律之后再与学生一同反思这一过程,就可以让学生领略到数学的简洁性,从而他们在后面数学素材的处理中,就能让今天种下的简洁意识开出美丽的简洁之花.

数学的方法因子:逻辑性

数学有一个特点,叫严谨性!数学为什么会严谨呢?因为数学有着其内在的逻辑性. 这种逻辑性在小学阶段的数学学习中往往隐含在数学知识背后. 在日常的教学中,为了帮学生打好基础,我们所做的往往是知识的传授,而不是强调数学存在的内在逻辑关系. 从现实情况来看,这样的教学策略有其必然性,因为作为一门基础学科,知识的积淀是不能忽略的,离开了知识的积累就谈不上方法. 但我们也要看到,随着今天小学生思维能力的日益发展,跟学生讲清其中的逻辑性也是小学数学教学的一个发展方向. 因此,我们可以尝试在教学过程中让学生去领略数学的逻辑之美――逻辑性是数学的另一种价值因子. 那么,如何让学生领略小学数学的逻辑性呢?笔者以另一个数学知识――“长方形和正方形的面积”为例,谈谈自己的思考与做法.

“长方形和正方形的面积”是帮助学生认识生活中的平面及其面积计算规律的重要组成部分,从生活经验到面积计算,都存在逻辑关系. 通过研究教材我们可以发现,这一知识点是从比较黑板的表面与课本封面大小关系引入的,根据生活经验,学生可以顺利地说出谁大谁小――这其实是为后面利用生活经验以及逻辑关系进行判断打下基础;在得出“表面的大小是面的面积”这一认识之后,通过逻辑推理,研究的问题就由比较“面”的大小转换成比较“面积”的大小;当学生熟悉了通过生活经验进行比较之后,教师提出了新的问题,即“如何比较两个面的大小”(教材上的例子). 面对这一新问题,学生通过目测、重叠,借助于第三张纸即可比较……当教学过渡到类似于“想想做做”中的第三题,即“比较四个图形的面积大小”时,学生就需要借助逻辑关系去计算四个图形所占正方形的个数进行判断;而当学生在用课本和文具盒比较桌面大小时,其中蕴涵的自然也是数的逻辑关系――也就是说这里比较面积的大小实际上已经通过逻辑转换为书的本数与文具盒的个数.

此外,本知识中还有一个更为重要的逻辑推理,那就是在得出长方形的面积公式“S=a×b”之后,可以让学生自主推理正方形的面积公式,在学生的思维中有了长方形的面积公式,有了“正方形的长和宽相等”,就可以推理出正方形的面积公式为“S=a×a”. 当然,教材中也是如此安排的,问题在于当我们看到教材上空着的那根横线时,我们想到的是答案,还是学生的逻辑推理过程呢?如果是后者,并且引导学生在反思的过程中体验方法,那数学的逻辑因子便可以为学生所深深体会了.

数学的优雅因子:广泛性

数学既具有基础性,又具有应用性,这是其他学科难以企及的. 我们说数学在生活中的每个领域均有应用,是因为我们看到了生活中的数据无处不在,而这些数据正是来自于数学思维,这种无处不在的性质我们可以称之为广泛性. 当我们透过学科教学的数学,看到经济领域的数据乃至诺贝尔经济学奖背后的数学时,当我们看到文化领域背后的数学支撑时,我们不得不感叹数学的这一魅力,对于小学数学教学而言,我们的一个重要任务显然是带领学生感受数学的这种广泛性――数学在生活中是如此优雅地存在!

以“统计”知识的教学为例,笔者常常思考,在小学阶段进行统计知识的启蒙,其目的是什么?作为一个数学知识,显然没有必要在小学阶段就实施教学,也就是说这有着超越知识层面的另一种目的. 除却课程标准或其他参考资料上的介绍之外,我们认为还必须向学生传递数学的广泛性,因为这是数学的一种优雅因子――它在生活中如此广泛地存在,但有时却不以数学的面目出现,这难道不是一种优雅吗?

据此,在介绍教材中的“套圈”游戏时,产生了一定量的人套中的圈的个数,产生了表示套圈成绩的统计图. 于是过渡到生活中的每一种统计,如考试之后全班同学的数学成绩,以及每个学生的平均成绩;又如体检之后全班学生的身高,以及班上同学的平均身高……进而过渡到教材上“卖出苹果数量统计图”――这是一个星期内每天卖出苹果数量的统计图,由其不仅能看出哪两天卖的苹果一样多,还能知道平均每天卖了多少苹果(如果呈现多个星期的统计图,还可以看出不同星期卖出苹果的数量),因而可以通过统计判断、比较,以给卖苹果的人提供影响因素的分析.