高层建筑的类型范文

时间:2023-12-07 17:46:40

导语:如何才能写好一篇高层建筑的类型,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

高层建筑的类型

篇1

关键词:高层建筑;转换层;施工技术

随着我国建筑行业的不断发展,人们也将许多新型的施工技术、材料和设备应用到其中,这就使得我国现代化高层建筑的功能在逐渐的增大,从而使其向着综合性的方向发展,为人们提高一个安逸舒适的生活和办公环境。不过,在高层建筑工程施工的过程中,不同的楼层其建筑结构形式也存在着一定的差异,因此为了保障其工程施工的质量,施工人员就要采用转换层结构来对其进行连接处理,进而将上部结构作为其顶板,将下部作为连接的基础,这样就使得高层建筑结构的稳定性和整体性得到进一步的提高。下面我们就对高层建筑结构转换层施工技术的相关内容进行介绍。

1 转换层结构形式的分类

目前,人们在高层建筑工程施工的过程中,不同的建筑结构形式所采用的转换层结构也就不一样,因此在不同的高层建筑工程中,所采用的转换层也就不一样。其中常见的结构形式主要有:粮食转换层结构、桁架式转换层结构、板式转换层结构以及箱式转换层结构等,而这些不同的转换层结构由于在实际应用的过程中,其应用效果存在着一定的差异,因此为了保障转换层结构的施工质量,我们就要根据工程施工的实际情况,来对转换层结构形式的选择。

1.1 梁式转换层

近年来,在我国高层建筑工程施工的过程中,由于梁式转换层结构具有设计简便、传力明确等方面的特点,而且还有利于对建筑工程施工成本的控制,因此得到了人们的广泛的应用,它主要是通过垂直转换的方法,将上部墙体结构的符合通过梁式转换层传递给你下部的柱体结构,从而保障高层建筑结构的稳定性。根据相关的数据统计,我们发现当前在我国高层建筑工程施工的过程中,其梁式转换层结构的形式的应用数量已经达到了整个转换层应用数量的70%以上,由此可见它在当前我国现代化建筑工程施工的过程中,有着十分重要的意义。

1.2 箱式转换层

而箱式转换层结构的应用,主要是针对一些单向或者双向托梁楼板结构比较厚的建筑结构进行处理,从而使得整个建筑结构的整体性、刚度以及稳定性等各个方面的工作性能得到进一步的增强。

1.3 板式转换层

在建筑工程施工的过程中,如果建筑转换层结构之间的梁柱结构出现大量错开的情况,那么我们就不能直接采用梁式转换层来对其进行施工处理。因此我们就利用板式转换层结构来对其进行处理,从而将所有的柱网结构连接成一个整体,从而使得建筑结构的稳定性和可靠性得到进一步的增强。不过这种转换层结构在实际应用的过程中,其自身重量较大,成本消耗较高,而且存在着许多的施工难点,为此在现代化高层建筑工程施工中,人们就很少采用转换层结构形式。

2 转换层施工技术

2.1 转换结构支撑系统

由于转换层结构在实际应用的过程中,其自身也存在着比较大的重量和荷载,因此我们在对其进行施工前,设计人员应该对其转换层结构的支持系统进行合理有效的设计,从而使得支持结构系统的强度和稳定性得到进一步的提高。

2.1.1钢管支撑架

适用于转换梁布置较密,结构自重及施工荷载相对不太大,或板式转换层结构的施工。这类支撑系统通常采用钢管脚手架,转换梁下立杆间距在600mm ×600mm以内,立杆下垫200mm ×50mm 木垫板。

2.1.2 沿转换大梁方向设置钢管支撑架

适用于转换梁自重及施工荷载较大的结构,且转换梁位置不太高的情况。须计算确定立杆的间距、步距,合理设置水平及竖向剪刀撑。

2.1.3 型钢构架支撑

适用于转换梁自重及施工荷载较大的结构,且转换层位置较高的情况。方法如下:在下层柱中埋置钢牛腿,型钢构架作为转换梁模板支撑系统,搁置在钢牛腿上利用柱子传递竖向荷载。

如某工程三期(总34 层,地下2层),转换层梁截面高4.2m,跨度7.6~12.9m,位于8、9 层,自重与施工荷载较大,相对标高较高,因此采用该方法。由2 榀平面构架组成1 榀整体钢桁架,平面构架在预制厂制作,运到工地用塔吊吊至安装部位现场焊接拼装成整体,并与钢牛腿焊牢。

2.2 模板工程

梁侧模可采用组合钢模板或17mm 厚覆膜胶合板,为防止混凝土浇筑时产生的侧压力将模板挤压变形而出现胀模现象,可在梁内设置对拉螺杆(≥ф14mm),钢模板也可以设扁钢拉片(厚度≥3mm),螺杆纵横向间距为400~600mm。侧模用钢管作背杠进行锁固,背杠间距纵横500mm,梁底起拱要求1 ‰~3 ‰。要求转换层构件的混凝土强度达到100 %后方可拆除底模。

2.3钢筋工程

钢筋工程含钢量大,主筋长,布置密,在梁柱节点区钢筋异常密集,绑扎难度大,在实践中,可采取以下措施:

1)为保证梁内钢筋骨架的稳定和便于操作,可在转换梁两侧搭设双排脚手架作为钢筋临时支撑,利用钢管架支撑上部钢筋,待钢筋位置固定并焊接后,撤去钢管脚手架。

2)主筋接头全部采用闪光对焊或锥螺纹接头连接,并注意接头位置,焊接人员均持证上岗,焊接和机械连接均按照规范要求做力学试验,确保焊接及机械连接质量。

3)在征得设计方同意后,可将箍筋做成开口箍,待梁的纵向钢筋绑扎完成后,再将箍筋焊接成封闭箍。

2.4混凝土工程

转换层大梁是结构的关键部位,为大体积混凝土施工,混凝土温度应力是由水化热、浇筑温度和外界气温变化等产生的各种温度应力。为防止大体积混凝土出现裂缝,主要应从降低内外温差(也就是减小温度应力)方面采取积极措施。具体包括以下几个方面的内容:

2.4.1 原材料①选用水化热较低的水泥,如矿渣硅酸盐水泥或火山灰硅酸盐水泥;②加入适量的粉煤灰以减少水泥用量;③加入适量外加剂(减水剂、缓凝剂)使混凝土缓凝,使升温过程延长,降低水化热峰值。

2.4.2合理设置施工缝及确定浇筑顺序有些是分层浇捣,有些是整体浇筑,视情况而定,确定浇筑顺序,保证混凝土施工不出现冷缝;同时为防止可能停电,造成混凝土施工中断,可在现场设置1 台备用发电机。

2.4.3 因转换层结构钢筋密集,混凝土浇筑时振捣难度较大,可与试验室协调,选择粒径较小的骨料,在施工中,采用30 型混凝土插入式振捣器进行振捣。振捣时做到快插、慢拔。每点振捣时间约需20~30s,振捣间距≤500mm,振捣棒插入下一层50mm 深,对梁、柱、墙相交部位振捣时注意振捣密实。振捣以表面水平不再显著下降,不再出现气泡,表面泛出灰浆为准。

3 结语

总而言之,在当前高层建筑工程施工的过程中,其转换层结构作为其重要的组成部分,对其进行施工技术和质量进行相应的控制管理是很有必要,这样不仅可以使得建筑结构的安全性、可靠性、整体性以及稳定性等各方面性能得到进一步的提高,还很好的满足了人们日常生活和办公的相关要求,从而推动我国建筑行业发展。

参考文献:

篇2

关键词:高层建筑;施工技术;发展情况及特点

1 我国高层建筑施工技术的发展情况

随着我国建筑行业的快速发展,同时由于我国土地资源的限制,我国建筑行业已经逐渐的再向高层建筑的方向发展了,在对相关数据的统计中我们发现,楼层数在11层以上的高层建筑的总面积已经远远的超过了一千万平方米,在我国接近50个大型城市中,高层建筑的覆盖率也已经接近了50%。在高层建筑不断增加的情况下,而随着而来的建筑要求、建筑施工、建筑体系以及建筑设备等问题也都对高层建筑的发展情况有着决定性的影响,因此,我们应建立一套完善的高层建筑的施工技术体系。

1.1 高层建筑的建筑体系

要想真正的建立一套完善的高层建筑的技术体系,那么其所涉及到的三大核心问题就是结构材料、结构类型以及施工工艺,不同类型的建筑就会有不同的施工方法,并且高层建筑的施工条件和物质技术基础对解决这三大问题也是有着重要的影响。

1.2 高层建筑的深基础施工

高层建筑的基础类型多样,常见的有独立基础、筏板基础以及孔桩基础等类型,而对于不同类型的建筑基础,就要选择有针对性的施工方法,其中,最关键的内容就是要严格的依据施工图纸文件规范化、合理化的进行施工。另外,地下水的排放、基坑土方的开挖以及边坡的支护等工作也是要引起施工单位重视的。在具体的高层建筑深基础进行施工过程中,我们既要考虑建筑面积以及楼层数等内容,同时更要考虑到具体的基础形式,如果基础的行为柱下独立基础,那么施工的工期就会短一些,而如果基础的类型为筏板基础、箱式基础或是桩基础,那么施工的工期肯定就要长一些。同时高层建筑基础施工的质量好坏也是要受到很多因素的影响的,如施工工艺的选择、政策的支持以及投资规模大小等,并且混凝土类型的建筑和钢结构类型的建筑施工工艺也是有一定的差异,在众多的因素中,限制高层建筑工期进度的最主要因素就是投资的规模这一因素。因此,在对高层建筑基础进行施工作业时,应视现场的调度情况、楼型的设计以及基础的深度等不同的问题进行具体的分析和选择。

1.3 高层建筑的施工机具

在选择高层建筑的施工机具时,必须以能够满足建筑的施工工期作为大前提条件,合理的组合施工中的运输机具和起重机具,因机具而产生的费用越低,那么肯定施工企业所获得的综合经济效益就会越高。在高层建筑的施工过程中,应重点解决吊装的施工以及垂直运输两大问题,高层建筑的施工中建议重点使用塔式起重机,因为此设备的工作范围更广,同时既能够水平运输,也能够垂直运输。

1.4 高层建筑的施工设备

在高层建筑的施工过程中,主要分为两大阶段,即主体结构阶段和基础阶段,这两个阶段对于设备的选择也有着自己的特点。主体结构阶段常用的设备包括:混凝土固定输送泵、混凝土车载输送泵、高层建筑吊车、汽车吊、砂浆搅拌机、强制混凝土搅拌机、钢筋对焊机以及人货两用施工电梯等;而基础阶段常用的设备则包括:压桩机、井点抽水设备、打桩机、强制混凝土搅拌机、混凝土泵送机、推土机、强制排水设备、挖土机以及运土的车辆等。

2 我国高层建筑施工技术的特点

2.1 基础施工技术

高层建筑的基础施工工作主要分为基坑支护、土石方的开挖以及混凝土的浇筑三部分,由于高层建筑上面十几层甚至是几十层的重量都是由基础承担着的,因此,基础施工的质量对于整栋高层建筑的施工质量是有着决定性的影响,在高层建筑施工的总成本和计划的工期中,基础施工

的工期和成本也占着较大的比例。在《钢筋混凝土高层建筑结构设计与施工规程》等文件中对基础埋置的深度也是有着明确的说明的,如果是桩基基础,那么其埋置的深度就应为整个建筑高度的1/15左右;而如果是天然的地基,那么其埋置的深度就应为整个建筑高度的1/12左右。深基础在满足了这样的埋置深度的要求,整个建筑才具备成为高层建筑的条件。在高层建筑施工过程中,常见的基础类型有桩基础、箱式基础、复合基础、筏板基础以及十字交叉条形基础等,施工时要特别注意混凝土的浇筑、支护工程的施工以及地下水位的防护等工作,避免基础出现滑移的情况,真正的保证基础的强度和稳定性。

2.2 钢结构施工技术

钢结构这类施工技术有着自身的明显优势,如工业化强度高、施工速度快等,因此,也得到了更为广泛的应用。在高层建筑施工体系中,有很多种类型的钢结构,如钢筋混凝土组合结构、大跨度空间钢结构以及高层重型钢结构等。而钢结构的主要缺点就是其热传导性太好,这样一旦发生火灾时,钢结构就会给整个高层建筑带来毁灭性的破坏。因此,如果高层建筑选择了钢结构这种型式,那么在设计的过程中就应重视放火工作,做好防火设施的设计和施工工作,一旦真正的发生火灾时,从而最大限度的降低火灾对整个建筑的损坏程度。在高层建筑钢结构的施工过程中,大型塔吊是起着重要作用的设备,所以钢结构的安装效果就会受到塔吊的幅度要求和塔吊的起重能力等因素的影响,塔吊一般有两类,即内爬式塔吊和附着塔吊,这两种塔吊的起吊能力并没有太大差异,但它们的造价却相差很多,因此,从经济的角度考虑在高层建筑钢结构的施工过程中建议选择内爬式塔吊。

2.3 混凝土工程施工技术

长久以来,混凝土工程施工技术一直是困扰着高层建筑施工的重要问题,在高层建筑混凝土工程的施工过程中,主要暴露出了两大问题,分别为商品混凝土的强度问题和混凝土施工泵送过程的问题,这两个问题都是较为复杂的,因此在这里我们重点强调混凝土工程的施工工艺流程,无论是多层建筑还是高层建筑,其施工工艺流程都差不多,而高层建筑对于混凝土工程的施工规范要求更加严格,具体的施工工艺流程均为混凝土搅拌-混凝土运送-柱、梁、板、剪力墙、楼梯混凝土的浇筑和振捣-养护,高层建筑的要求标准与多层建筑的规范要求还是有一定的区别,也就是说规范的不同也就导致了技术等级的差异。

3 结束语

随着我国建筑行业的快速发展,而这也给建筑施工工作展现了更大的舞台,在我国土地资源较为紧张并且房价节节攀升的大背景下,高层建筑也就成为了我国建筑行业的重要发展趋势,高层建筑的体型复杂,并且高度高、层数多,而其施工技术的好坏也就成为了决定其施工质量的重要因素,建议一套完善的高层建筑的施工技术体系,保证高层建筑的施工质量,继续促进我国高层建筑行业的快速发展。

参考文献

[1]刘艳青.高层建筑施工主要技术标准与施工关键技术[j].建筑建材装饰,2011.

篇3

关键词:高层建筑施工;厚板转换层;厚板结构;施工技术

前言:自上世纪90年代以后,国内外的高层建筑行业有了很大发展。随着高层建筑行业的飞速发展,各种新型的结构体系也相继出现,高层建筑行业不断遇到新的挑战。现代的高层建筑大多像综合性和功能性用途发展,为了使高层建筑符合这些需求,很多的高层建筑在建设时都设计的结构转换层。但由于高层建筑的结构转化层自身的结构问题,使得钢筋混凝土的建筑复杂并密集,导致整体建筑的难度有所增加,因此高层建筑行业要加强对厚板转换层的施工技术的研究,从而使高层建筑行业整体有较大的进步。

一、高层建筑厚板转换层的发展概述

我国对高层建筑厚板转换层的研究开始于70年代早期。在1975年,我国上海的天目路首先建成了一栋13层高的建筑住宅,并且对建筑进行了光弹实验、钢筋混凝土模型实验、框支剪力墙有限元分析等一系列的研究与分析。这开启了我国对高层建筑厚板转换层研究的序幕。

高层建筑厚板转换层的概念之所以被提出是因为人们希望从高层建筑的底部获得更大的空间。为了获取更大的空间,人们根据建筑上部的结构特点,对高层建筑厚板转换层进行了一系列的有效施工,从而从高层建筑的底部获取了更多的建筑空间。

随着人们对高层建筑厚板转换层的分析和研究的不断深入,全国各研究院、高校对各类高层建筑厚板转换层结构的静力和动力性做了很多理论分析和实验研究,从而对高层建筑厚板转换层的整体结构有了更加全面的理解。同时,还对高层建筑厚板转换层的设计提出了很多建议,使得高层建筑行业有了更大的进步和发展空间。

二、高层建筑厚板转换层的布置结构形式、分类和结构形式

(一)高层建筑厚板转换层的布置形式和分类

高层建筑厚板转换层的布置形式大致可分为两类:

1.底部结构形式为大空间的高层建筑厚板转换层

底部的空间设计较大的结构形式的高层建筑是施工中最为常见的一种结构形式。这种结构形式有两种方法:首先,高层建筑厚板转换层的中部全部支撑在一个有力的筒体上,四周向外界延伸,由此可以使高层建筑的底部空间更大,从而使其成为大卖场、停车场或室内展室。其次,高层建筑厚板转换层的结构在建筑设计平面的两端,从而把负荷的重量分散到底层结构中的几个支点上,这被人们通俗地称为桥式结构。

2.外部形成大柱网的高层建筑厚板转换层

外部形成大柱网的高层建筑厚板转换层把高层建筑厚板转换层大致可分为三类:

首先是高层建筑厚板转换层上层和下层的结构类型转换。这类的结构类型多用在剪力墙的结构之中,这种类型的特点是将剪力墙的上下部位的性质发生转化,将上部的墙面转化为墙面下部的框架,从而可以创造更多、更大的空间以方便利用。其次是高层建筑厚板转换层的上、下两层的柱网和轴线发生变化。这类的结构方式可以使得高层建筑的结构方式不发生具体、根本的变化,但可以通过转换层的作用,使转换层的下层柱之间的距离扩大,并以此来获得更大的空间。最后是高层建筑厚板转换层结构形式和轴线都发生转换。这种类型的结构方式是建筑上部的剪力墙的结构发生转换变成框架,建筑上部的轴线与柱网的轴线发生错开,从而使高层建筑的底部空间加大,从而提高建筑的空间利用率。

(二)高层建筑厚板转换层的主要结构形式

在具体的实际施工中比较常见的高层建筑厚板转换层的主要结构形式分为:空腹桁架式、梁式(墙梁式)、箱形和板式、斜杆桁架式等高层建筑厚板转换层结构。

在这些高层建筑厚板转换层的结构形式中,其中梁式(墙梁式)的结构转换层最为常见、应用也最为广泛,这种类型的结构转换层相比于其他类型的转换层的设计更加简单,同时在施工过程中转换层的受力也比较清晰。其大致应用在底部的空间较大的高层建筑剪力墙的结构中。桁架转换则一般适用于底部是娱乐设施、商场等而上部用于住宅的建筑。而高层建筑厚板转换层是箱式的结构的适应范围与梁式结构的范围大致一样。在具体的施工过程中应用哪种结构要根据建筑的性质灵活选择。

三、高层建筑厚板转换层施工中应注意的地方

依照我国的工程设计要求和具体施工情况,高层建筑厚板转换层在具体施工过程中要注意以下几个问题:

(一)高层建筑厚板转换层的模板负荷超重以及荷载下部的传递问题

由于高层建筑的结构尺寸相对较大,因而在施工过程中如何确保荷载支撑的安全成为了高层建筑施工的关键环节。

(二)高层建筑厚板转换层的钢筋绑扎问题

在进行此部位的施工过程中转换层中间的暗梁钢筋绑扎和固定是施工的重点部分。

(三)高层建筑厚板转换层大体积混凝土的施工控制和转换层浇筑的混凝土的捣实问题。

这一部分的施工是整体施工过程中的重要环节,因此在施工过程中要更加认真以确保其施工质量。

(四)高层建筑厚板转换层超重荷载模架支撑架的材料选择、进行施工时的工程质量控制及在施工过程中的各项管理问题均是及其重要的问题,在具体施工中要认真完成。

四、高层建筑厚板转换层的具体施工技术

(一)高层建筑厚板转换层的模板支设技术

在高层建筑厚板转换层的具体施工中模板支设技术在整体施工过程中是非常重要的。

在高层建筑厚板转换层的施工中建筑的外缘模架要使用组合钢模板,相对的内侧模和地膜则要使用木胶模板来进行。脚手架是模板支架扣件和钢管的共同作用产生的。从而利用规定尺寸的钢管来做排架的支撑作用,使设计形成一个立杆,在中间不做接头的设计。高层建筑厚板转换层中的立杆都要走上下两部分加上可供调节的底座和顶托,这样对水平方向上的拉杆再做多遍设计,然后再加上剪力支撑的作用就可以了。高层建筑厚板转换层模板的次楞要使用符合规格的木方,再进行立放。此外,立放方式也要符合有关标准。高层建筑厚板转换层主楞的使用和间距设定也要符合国家标准。高层建筑厚板转换层的主楞一定要安置在顶托的上面,不能放错位置。高层建筑厚板转换层中的层向模板所使用的钢筋要在设计的规定位置上,从而和暗梁更好地进行拉结,从而与模板之中的钢筋来进行水平方向的焊接工作。在进行高层建筑厚板转换层的施工时,下部3层的梁板支撑一定要保留。

(二)高层建筑厚板转换层的钢筋施工技术问题

高层建筑厚板转换层的钢筋施工技术可分为以下几个要点:

1.在整个施工过程中用到的所有钢筋的接头都要用直螺纹的机械形式进行连接, 在一个截面里的钢筋接头不可以超过总数的百分之五十。跨梁之中的同一根钢筋和柱、墙同层之中的钢筋不能同时都在接头的厚板内深入。这样的设计可以使建筑的主筋符合整体高层建筑的要求。

2.高层建筑厚板转换层的箍筋先要把开口套在柱节点的位置,然后再使用电焊来进行封闭处理。

3.转换层的轴线拉线的绑扎处理可以固定高层建筑厚板转换才的铁插。之后施工人员再用引铁来进行焊接工作。

4. 高层建筑厚板转换层的施工中对厚板中的暗梁钢筋到内板上、下皮的钢筋,在剪力墙和框支柱的边缘处向下来进行延伸的弯头钢筋进行连接,在具体使用时要使用剥肋滚压直螺纹钢筋的连接方法。这样施工可以使连接的稳固性更好,而且整体施工更为方便。

五、高层建筑厚板转换层的混凝土施工技术

(一)高层建筑厚板转换层施工中混凝土的浇筑问题

在高层建筑的具体施工过程中,在混凝土的浇筑施工之前要保证已经浇筑施工完的混凝土要符合施工要求,混凝土的浇筑速度要控制在5m/h,并且在进行前后两层浇筑时,间隔的时间要相对延长。施工具体过程中,工作人员一定要对模板进行反复检查,并且用锤子对旁边的模板进行多次的敲击处理,以确保其质量符合要求。

(二)高层建筑厚板转换层施工中混凝土的养护问题

工作人员在进行完混凝土的浇筑工作之后,必须要对混凝土进行保温和保湿的双重处理。这样在养护的具体过程中要在厚板层上铺设1到2层塑料薄膜,然后再铺设两层麻袋。与此同时,还要尽量延长混凝土侧模的拆模时间,以确保混凝土的表面不因缺水而导致裂缝。

结论:本文对高层建筑厚板转换层的施工技术进行了具体论述。并且论述了在高层建筑过程中厚板转换层的重要作用。在具体施工中高层建筑厚板转换层因需要荷载建筑上部的所有重量,因此在实际操作中在按时完成工程进度的前提下,也一定要保证施工的质量。由于高层建筑结构转换层的柱、墙、梁的数量较多,需要浇筑的混凝土数量较大,施工跨度大等问题,都需要在实际施工时要对建筑中的钢筋密集地区的振捣问题做好处理,做好湿度和温度的控制,并确保养护的及时性,以确保整体施工的质量符合国家有关规定。

参考文献:

[1]彭斌,李溪喧.《高层建筑厚板转换层整体分析方法研究》[J] .武汉大学学报(工学版),2003,2(36).

[2]王平山,孙炳楠,唐锦春.《高层建筑厚板转换层计算中支撑条件对内力分布的影响》[J],工程力学.1997(增刊):623-627.

篇4

关键词: 高层建筑; 转换层;结构设计

中图分类号:TU97文献标识码: A

前言

目前,城市建筑类型大部分为高层建筑设计,高层建筑使用功能逐渐走向综合化、多样化、全面化等方向发展;如:小开间的民用式建筑、下部为大开间的公共场所以及商场。从高层建筑功能来看,上部需要很多的墙体以分隔空间,进而不断满足住户需求;下部则需要宽广的使用空间,少墙体、大柱网,从而更好的满足建筑物使用要求。根据这种建筑形式, 在建筑布置中,就会出现和常规竖向布置相反的“下小上大”的现象,即:下部柱网稀少, 上部墙体稠密的现象。针对这种情况,为了保障建筑要求,必须在上下结构体系,进行转换层设置,转换层作为当代高层建筑结构设计的重要方式,转换层设计是整个工程设计的难点。着高层建筑平面逐渐多样化,在设计中,必须结合实际情况,选择合适的方法进行设计,进而达到经济、安全的综合成果。

1、 转换层结构布置以及设计要求

1.1 转换层结构布置。

在转换层结构布置中,由于底部转换层结构、上部竖向构件不能直接连通落地,从而就需要可靠安全的转换层构件。根据目前的究结果以及工程经验,在高层建筑转换层设计中, 可以使用的转换构件有:析架、斜撑、空腹性析架、转换式大梁、厚板以及箱形结构等形式。由于地震区转换厚板使用检验不足,经常被6度以及非地震区使用;对于空间较大的范围或者地下室,受约束作用影响,地面上部的框支结构大于地震反应,所以7度或者8度的地震设计时也可以采用厚板进行转换层设计。

由于框支柱和落地式剪力墙对防止转换层下部结构在地震中倒塌具有重要作用, 故在筒体结构设计中,筒体上下必须根据刚度要求适当增加墙厚。同时,框支剪力墙必须拥有足够的剪力墙,进行上下贯通,在长矩形框支剪力墙非结构中,落地剪力墙必须根据施工要求, 按照原有规程进行设计,或者采用落地柱周边不能有错层的规定。这不仅是对转换层下部结构的保障,也是对抗震结构的严格要求,在尽量减小内力突变的同时,控制好刚度突变,缩短转换层架构传递。

1.2 高层建筑转换层构件设计要求

(1)框支柱。为了保障高层建筑转换层框支柱拥有良好的延性,必须对轴压进行严格的控制。当框支柱抗震级别为特一级时,轴压比必须小于 0.6;对于截面尺寸较大形成的短柱, 必须低于 0.55。由于配箍率和截面尺寸具有紧密的联系,从而导致框支柱配箍率比普通框架柱大很多。在工程建设中,由于个别框支柱必须作为剪力墙进行使用,所以约束性边缘构件特征值必须在0.2 以上,也就是 2.64%的配箍率。在整个工程建设中,框支柱作为重要的构件,为了保障安全系数,柱端弯矩和剪力必须乘以对应的增大系数,让每层框支柱剪力之和始终为基底的30%。在程序计算中,由于楼板假定刚度较大,所以水平剪力一般根据构件刚度进行分配。

(2)框支梁。在高层建筑转换层结构设计中, 框支梁尺寸只受剪压比控制, 宽度通常在 400 毫米之上,高度大于跨度计算的 1/6。由于框支梁受力情况复杂,不仅是保障抗震系数的关键因素, 同时也是上下层荷载重要的传输通道,它是整个高层建筑工程复杂重要的受力结构;所以在设计中必须预留充足的安全储备,对于抗震等级为特一级的框支梁,配筋率必须在 0.6 以上。在满足计算要求的前提下,一般用偏心受拉的方式,配置足够的腰筋,并且配筋率始终在 0.8%以上。

2、 高层建筑转换层结构抗震设计以及上下刚度比

2.1 高层建筑转换层结构抗震设计

在高层建筑抗震设计中,由于高位转换具体情况,从而对整个结构受力极为不利。根据相关计算结果表明:在水平性地震作用中,由于倾覆性力矩以转折形式在转换层呈现,下部以剪力墙结构呈现,落地剪力墙在倾覆力矩下递较快的同时,让倾覆力矩以转折的形式呈现。当整个高层建筑位置较高时,传力途径和剪力分配就会产生极大的变化,由于落地式剪力墙极容易出现裂缝,在上部墙体内力较大的过程中,下部支撑极容易屈服,进而出现薄弱层。为了保障整个工程设计的合理性、安全性,框支转换层设置必须在 3 层之上,剪力墙、框支柱抗震等级必须增强一级,除了特一级、密柱框架、核心筒结构不需提高。

目前,我国底部转换层在高层建筑转换层结构设计中已经广泛应用,但是仍然没有大地震考验;由于转换层上部结构不能贯通下部楼层,所以转换层通常为薄弱楼层,当框架剪力乘以 1.15 时,就可以增大系数。但是在这过程中,需要注意的是:楼层设计刚度满足设计要求时,该楼层仍然是薄弱层。对于转换层构件设计中,必须调整水平地震内力;对于8度的抗震设计,必须考虑地震作用影响,使用“动力时程”或者“反应谱”方法对其进行计算,或者将转换构件在重力荷载的标准下,让内力和增大系数的 1.1 相乘。另外,由于内力增大系数较高,对于处在第三层或者三层以上的转换层极为不利,同时内力幅度增大。针对这类特殊现象,高层建筑转换层作为受力极为复杂的,但是对抗震不利的结构,当防烈抗震度达到 0.4g 时,必须停止使用。在实际抗震设计中,根据高层建筑结构类型、防烈度、 房屋高度以及构件类型,使用对应的抗震等级对其进行精细的计算,或者采用构造措施进行设计、处理。

2.2 高层建筑转换层结构上下层刚度比

高层建筑结构转换层刚度比设计作为整个建筑结构设计的重要内容,为了避免安全隐患, 必须认真对待。在转换层上下结构等效侧向刚度比计算中,必须综合各个构件弯曲、 剪切以及轴向变形对整个结构侧移的影响。当高层建筑转换层设置在三层或者三层以上时, 侧向刚度不能低于楼层侧向刚度的60%。为了避免转换层下部刚度过大、侧向刚度过小造成的不良影响,对于三层或者三层以上的转换层,必须将 60%规定为工程下限值。在柱距框筒结构以及内部框架结构中,必须保持上下剪切刚度始终不变。对于普通情况,由于下部截面较小,下层比上层高,所以很难满足施工要求。针对这种情况,必须使用钢管混凝土柱或者钢骨混凝土柱,有效调整延性、刚度以及截面面积,进而达到建筑工程要求。在这过程中,需要特别注意的是:转换层上下结构连接,当上部为混凝土时,必须钢骨混凝土柱及时锚入下部转换层。

3、 结束语

着现代高层建筑综合化、多功能化发展,在同一竖直直线上,不同的楼层开始有不同的用途。高层建筑转换层结构设计作为当代建筑设计的重要内容,必须根据高层建筑转换层结构布置、要求,再结合抗震设计以及配合比原则,从根本上保障转换层结构设计的合理性、 科学性。

参考文献:

[1]施晓.高层建筑转换层结构设计[J].铁道标准设计, 2008, (4 ) : 108-110.

[2]白东明.浅析高层建筑转换层结构设计[J].城市建设理论究 (电子版) ,2012, (24 ) .

[3]王春伟.高层建筑转换层结构设计中的问题分析[J]. 黑龙江科技信息,2011, (23 ) : 246-246.

[4] 曾凡柏. 探讨高层建筑转换层结构设计中存在的问题 [J]. 中华民居,2011, (11 ) : 554-555.

篇5

关键词:城市 高层建筑 结构 设计 要点

中图分类号:TU97文献标识码: A

前言:由于城市土地面积的有限性,建设高层建筑已经成为提高土地综合利用率的重要手段。随着技术手段的不断进步,建筑的高度纪录被不断刷新。但随着建筑高度的提升,人们对高层建筑防震防风等安全性的要求也相应提高.本文将针对这些问题,对高层建筑的结构设计入手进行一些浅谈。

一、高层建筑结构设计的要点

与多层建筑相比,高层建筑的技术难度更大。一个成功的结构设计,应该是在保证安全的前提下,最大限度的降低工程造价和提高建筑内部的空间利用率。较之多层建筑,高层建筑对于防震、防风、设备安装等方面的技术要求很高,如果结构形式不当,一方面可能抬高建筑的造价成本,损害建筑内部的空间利用率,另一方面更严重的甚至会影响整个建筑的安全。目前,我国的很多高层建筑存在体形不规则、抗震防风措施不完善、结构布局不合理等问题,因此,探讨高层建筑的结构设计改良显得更为重要。

1.结构形式。

现在的高层建筑设计,通常采用钢结构和钢筋混凝土结构两种形式。钢筋混凝土结构造价较低,材料来源丰富,能浇注成各种复杂断面形状,可组成多种结构体系,耐久性好,防火性高。如果通过合理设计,其负载型也很高,抗震性能较好。但它也有构件断面大、自重大等缺点。钢结构具有强度高,韧性大,结构断面小,自重轻,抗震性能好的优点。而且钢结构构件可在工厂加工,从而有效的缩短现场施工工期。但它也有缺点,如构件用钢量大,造价很高,而且钢结构防火性能差,需要用大量防火涂料,增加了成本和施工周期。相比较而言,在西方国家,钢结构在高层建筑上的应用率更高。而在我国,钢筋混凝土结构及混合结构占了主导。

2.荷载和高度。

建筑高度越高,其相应的防震、防风等安全性要求就越高。建筑设计的首要前提就是要保证建筑的安全性。相对于多层建筑,在高层建筑中的设计中,水平荷载力发挥的作用更大。高层建筑自身所产生的重量产生的内力只与其高度的一次方成正比,而由其水平荷载力对结构产生的力量,与建筑高度的两次方成正比。其中水平荷载力主要包含地震及风荷载作用,荷载力的大小与结构的动力性质有关,是高层设计中必须注意的事情。尤其是在地震中,水平荷载力对建筑产生的力量远远大于垂直荷载力产生的力量,因此,越高的建筑,对荷载力的计算就越要精确,从而保证安全。高层建筑的抗震规范对建筑结构的总体高度有严格规定,尤其在新规范中对超高问题较为重视,除了将原有对高度的限制设为A级高度的建筑外,还增加了对B级高度建筑的规定,所以在具体的结构设计中必须对建筑超高问题加以注意,一旦建筑高度超过了规定的等级,必须对相应的设计进行调整。如果忽略这个问题,一方面可能导致图纸的审核不过,另外也会给建筑施工带来不安全的隐患。

二、高层建筑的结构体系

1.框架-剪力墙体系。

当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架-剪力墙体系。在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架-剪力墙体系的能建高度要大于框架体系。

2.剪力墙体系。

当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。剪力墙体系属刚性结构,其位移曲线呈弯曲型。剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架-剪力墙体系。

3.筒体体系。

凡采用筒体为抗侧力构件的结构体系统称为筒体体系,包括单筒体、筒体-框架、筒中筒、多束筒等多种型式。筒体是一种空间受力构件,分实腹筒和空腹筒两种类型,实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。

三、高层建筑设计中应注意的问题

1.基础类型的选择。

高层建筑在进行结构设计时,需要第一位考虑的应该是安全因素。而安全最起点的因素就是基础类型的选择。地基基础是高层建筑的根基,也是建筑中最重要的组成部分,是建筑安全的保障。如果建筑没有坚实的地基,即使再好再美的上部结构,再先进的建筑方法,也只能打造一个空架,影响建筑安全。合理选择结构设计方案在高层建筑工程结构设计中显得尤为重要。一般高层建筑基础类型的选择较复杂,甚至比上部结构的选型更难,由于高层建筑地基的影响因素诸多,因此要慎重选择。高层建筑的基础类型应根据地基的性质、载荷特性、结构类型及施工条件等综合因素加以考虑。有些高层建筑由于埋置深度的要求,还需要设置地下室,而地基的合理选型,也会对地下室设计的实用性、经济性等产生影响。因此在高层建筑的基础选型过程中,应制定多个方案以便选择最经济、安全的类型。

2.结构形式的选取。

目前,我国高层建筑的结构优化设计大幅落后于理论的发展。虽然现在计算机技术能够帮助结构设计人员进行一些常规的计算,大大增加了结构设计的效率和精确度,但是,由于建筑工程结构面临的约束条件很多,高层建筑的结构设计优化依然很难。很多结构设计人员认为设计只要符合建筑规范,计算精确即可,但在现实中,设计方案却经常因工程施工的具体情况而做出调整和改动。目前,现有的两种结构形式各有利弊,在选用中必须考虑建筑所处的具体地理环境,同时也要兼顾建筑的用途。目前来看,我国的钢结构制造能力处于提升过程中,虽然钢结构技术在西方已经比较成熟,但是也不能迷信,尤其是在防火上,采用钢结构的高层建筑必须充分考虑到火灾的影响。应该妥善的对钢筋混凝土结构、钢结构等形式加以有机结合,确定最优的解决方案。

结束语:

近些年来,我国的高层建筑的建设可谓突飞猛进,规模不可谓不大,很多地方的高层建筑已经成为当地的地标性建筑。高层建筑的发展提高了城市的土地利用率,增加了人们的活动空间,促进了城市更好地发展。但是,我们也必须深刻的认识到,无论技术多成熟,对建筑设计质量的要求不能放松。现在有些设计片面追赶时尚,单纯注重外表的独特性而忽略了建筑结构的稳定性和安全性,必须引起我们的注意。我国现今的建筑理论研究方面还有不足,因此结构设计不应该仅凭脑子想和书中学,而是应该结合实际,在实践中不断的学习和进步。只有这样,才能保证人们的居住安全,促进建筑行业的持续良好发展。

参考文献:

[1]王月红、关杰:高层建筑工程结构设计综合分析,《山西建筑》,2012年11月.

篇6

关键词:高层建筑;基础设计;质量;对策

Abstract: China along with accelerating urbanization, increasing the number of high-rise building, the quality problem of the high-rise building is attracting the attention of people. For high-rise buildings for, the foundation design is to guarantee the safety of high-level building key, this paper will improve the design quality of high-rise buildings foundation put forward its own views, as a reference for engineering design.

Keywords: high building; The foundation design; Quality; countermeasures

中图分类号:[TU208.3]文献标识码:A文章编号:

随着中国国民经济的发展,建筑行业作为国家的支柱性产业越来越重要,但是目前国内很多高层建筑物在建造和使用过程中出现了一些质量问题,直接危及到人们的生命财产安全,导致国家资产的浪费,其中部分原因即是因为基础设计不当所致。根据《高层建筑混凝土结构技术规程》JGJ3-2002的规定,凡10层及10层以上或房屋高度在28m的建筑物都称为高层建筑。基础设计是高层建筑设计的关键,相关人员必须加强对基础设计质量的重视和管理,才能不断提高高层建筑的设计质量。

一、高层建筑基础设计概述

1、高层建筑基础设计的重要性

由于高层建筑物的荷载较大、质心高,基础底面一般会有偏心,在沉降的过程中,高层建筑物的总重量对基础底面形心会产生新的倾覆力矩增量,这种倾覆力矩增量会产生新的倾斜增量,倾斜会随之不断增长,直到地基变形稳定为止,为此,设计人员一定要加强高层建筑的基础设计。为了避免基础产生倾斜,应该依据《高层规程》中的相关规定,采取措施对偏心距进行限制,如果地基比较均匀,筏形基础和箱型基础的平面形心最好与建筑物的上部结构竖向永久荷载重心相重合。对于高层建筑物中的端承桩基和低压缩地基的基础,可以适当放宽偏心距的限制。

高层建筑基础类型的选择没有固定的模式,设计单位要从建筑物自身的特点出发,实事求是,综合考虑建筑物的上部结构要求、抗震设防要求、工程地质情况、施工场地以及周围的建筑物等环境条件,对各种基础设计方案进行比选,优先选择可以满足建筑物地基承载力、整体性较好并且可以调节不均匀沉降的基础形式。

2、高层建筑基础设计要点

高层建筑与一般的多层建筑相比较,在建筑的基础设计方面有共性的一面,也有个性的一面。对高层建筑而言,建筑物的层数较多、建筑物的上部结构荷载较大、对地基承载能力、压缩性、稳定性等要求较高等因素,使得高层建筑物的基础施工具有周期长、用材多、难度大以及工程造价较高、对周围环境的影响大,受地质条件和周围环境约束大等特点,因此高层建筑的基础设计应该要注意以下几方面的问题,首先,严格依据法律法规和规范、规程要求进行设计,要保证满足复合地基承载力以及桩基承载力的要求;其次,控制高层建筑物的基础总沉降量与差异沉降量在规范允许的范围之内,确保建筑物的施工和使用安全;另外,设计人员要综合考虑经济效益,包括基础的造价、用料,以及降水、工地条件和建设工期等因素。

3、高层建筑的基础设计类型

3.1基础的选型

高层建筑常见的基础形式主要有桩基础、筏形基础、箱形基础和交叉梁基础等,其中又以桩基础和筏形基础使用最为广泛。采用哪种基础形式应该是基础设计考虑的首要问题,在具体的设计工作中可按以下步骤进行。

首先,应仔细阅读和分析该工程建设场地的岩土工程勘察报告,根据各地层地基承载力特征值确定持力层;其次,根据持力层的特征及上部结构类型、层数、地下室层高等初步选定基础形式,并核查是否满足该种基础形式的基本要求:如最小桩长的要求、基础埋深的要求等;最后根据上部结构的荷载及地基承载力特征值进行基础估算和计算, 基础的计算应仔细阅读规范及计算程序技术手册的要求,采用多种计算模型比较,方能得出合理的计算结果。同时要充分考虑持力层下是否有软弱下卧层、基础施工的工艺方法、邻近建筑物基础的影响等,以保证基础形式的选择是合理适宜的,避免给以后设计、施工带来不必要的返工和影响。

3.2桩基础设计

桩基础主要用于建筑物的上部结构荷载较大、地基在较深范围内为软弱土并且采用人工地基不合理的情况。桩基础主要由两部分组成,即桩身与承台;承台主要用于承受上部结构的荷载,然后将其分布到各个桩上。桩基的主要作用在于,在承受竖向荷载时,将上部结构的荷载通过各个桩尖传到地基中,或者是通过桩身将荷载传到桩身周围的地基土之中;在承受水平荷载时,则通过承台的侧面以及桩身的周围土体的挤压力来提供水平荷载承载力。

按照桩身的材料不同可以把桩基分为钢桩、混凝土桩以及组合材料桩三种;选择何种桩型则要根据建筑物的上部结构、施工条件等因素加以确定,经过科学的方案比选,保证高层建筑工程的设计质量。

3.3筏形基础设计

筏形基础又称为筏式基础或者片阀基础,是高层建筑物基础设计中常用的一种基础形式。筏形基础一般都具有很好的防渗功能,整体刚度较大,可以有效地调节基底压力和不均匀沉降。它一般又被分成平板式和梁板式两类,包括等厚度或变厚度底板和纵横向肋梁。平板式筏形基础由于采用平板结构,混凝土用量较大,但施工比较方便,而且建造速度较快;而梁板式筏形基础为达到改善底板的受力、加强底板刚度的目的,需在两个方向沿着柱列布置有肋梁,因而底板厚度相对较小,混凝土用量较小,但施工比较不便。

二、高层建筑基础设计注意的问题

1、桩基础

篇7

【关键词】高层建筑;抗震设计;方法

【中图分类号】TU 【文献标识码】A

【文章编号】1007-4309(2012)06-0133-1.5

近年来高层建筑不但高度增加,而且不规则结构越来越多,体型特别复杂而不规则结构也时有出现,包括:平面不规则,竖向不规则,一个大底盘上有多塔楼,两个或两个以上的塔楼在顶部或中部用连廊连接,楼板不在同一标高的错层结构,高位转换结构等。其中绝大部分体型特别复杂而且不规则的。为保证高层结构的抗震安全,达到安全和经济的统一,发展了一些抗震设计方法。

随着我国城市人口的不断增多及建设用地趋紧张和城市规划的需要,促使高层建筑得以快速发展。另一方面由于轻质高强材料的开发及新的设计计算理论的发展,抗风和抗震理论的不断完善,加之新的施工技术和设备的不断涌现,特别是计算机的普及和应用以及结构分析手段的不断提高,为迅速发展高层建筑提供了必要的技术条件。对高层建筑结构概念设计中值得重视的几个问题进行探讨。

一、高层建筑结构抗震设计的基本方法

减少地震能量输入。积极采用基于位移的结构抗震设计,要求进行定量分析,使结构的变形能力满足在预期的地震作用下的变形要求。除了验算构件的承载力外,要控制结构在大震作用下的层间位移角限值或位移延性比;根据构件变形与结构位移关系,确定构件的变形值;并根据截面达到的应变大小及应变分布,确定构件的构造要求。对于高层建筑,选择坚硬的场地土建造高层建筑,可以明显减少地震能量输入减轻破坏程度。错开地震动卓越周期,可防止共振破坏。

推广使用隔震和消能减震设计目前我国和世界各国普遍采用的传统抗震结构体系是“延性结构体系”,即适当控制结构物的刚度,但容许结构构件在地震时进入非弹性状态,并具有较大的延性,以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。采取软垫隔震、滑移隔震、摆动隔震、悬吊隔震等措施,改变结构的动力特性,减少地震能量输入,减轻结构地震反应,是一种很有前途的防震措施。提高结构阻尼,采用高延性构件,能够提高结构的耗能能力,减轻地震作用,减小楼层地震剪力。随着社会的不断发展,对各种建筑物和构筑物的抗震减震要求越来越高,地震控制体系具有传统抗震体系所难以比拟的优越性,在未来的建筑结构中将得到越来越广泛的应用。

在高层建筑的方案设计阶段,结构材料选用也很重要。可以对材料参数随机性的抗震模糊可靠度进行分析,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性及烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。从抗震角度来说,结构体系的抗震等级,其实质就是在宏观上控制不同结构的延性要求。这要求我们应根据建设工程的各方面条件,选用符合抗震要求又经济实用的结构类别。

二、正确认识高层建筑的受力特点,选择合理的结构类型

高层建筑从本质上讲是一个竖向悬臂结构,垂直荷载主要使结构产生轴向力与建可筑以看出,在高层结构中,水平荷载的影响要远远大于垂直荷载的影响,水平荷载是结构设计的控制因素,结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高度增加所引起的侧向变形限制在结构允许范围内。

高层建筑有上述的受力特点,因此设计中在满足建筑功能要求和抗震性能的前提下,选择切实可行的结构类型,使之在特定的物资和技术条件下,具有良好的结构性能、经济效果和建筑速度是非常必要的。高层建筑上常用的结构类型主要有钢结构和钢筋硅结构。钢结构具有性体自重轻,强度高、抗震性能好、施工工期知等优点,并且钢结构构件截面相对较小,具有很好的延性,适合采用柔性方案的结构。其缺点是造价相对较高,当场地土特征周期较长时,易发生共振。与钢结构相比,现浇钢筋硅结构具有结构刚度大,空间性体性好,造价低及材料来源丰富等优点,可以组成多种结构体系,以适应各类建筑的要求,在高层建筑中得到广泛应用,比较适用于提供承载力,控制塑性变形的刚性方案结构。其突出缺点是结构自重大,抵抗塑性变形能力差,施工工期长,当场地土特征周期较短时,易发生共振。因此,高层建筑采用何种结构形式,应取决于所有结构体系和材料特性,同时取决于场地土的类型,避免场地土和建筑物发生共振,而使震害更加严重。

三、提高结构的抗震性能

由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能。通过合理的抗震设计,使建筑物达到小震不坏,中震可修,大震不倒。为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。

框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁、柱端的塑性铰出现得尽可能分散,充分发挥性体结构的抗震能力。为了保证钢筋硅结构在地震作用下具有足够的延性和承载力,应按照“强柱弱梁”、“强剪弱弯”、“强节点弱构件”的原则进行设计,合理地选择柱截面尺寸,控制柱的轴压比,注意构造配筋要求,特别是要加强节点的构造措施。

对于框架一剪力墙结构和剪力墙结构中各段剪力墙高宽比不宜小于2,使其在地震作用下呈弯剪破坏,且塑性屈服尽量产生在墙的底部。连梁宜在梁端塑性屈服,且有足够的变形能力,在墙段充分发挥抗震作用前不失效,按照“强墙弱梁”的原则加强墙肢的承载力,避免墙肢的剪切破坏,提高其抗震能力。

四、结束语

篇8

关键词:建筑;转换层;结构设计

中图分类号:TU984 文献标识码:A 文章编号:

1 结构转换层概念及布置原则

1.1 定义:建筑物某层的上部与下部因平面使用功能不同,该楼层上部与下部采用不同结构类型,并通过该楼层进得结构转换,则该楼层即称转换层。

1.2 布置原则:由于高层建筑结构下部楼层受力很大,上部楼层受力较小,正常的结构布置应是下部刚度大,墙体多、柱网密,到上部渐渐减少墙、柱的数量,以扩大柱网。这样,结构的正常布置与建筑功能对空间的要求正好相反。因此,为满足建筑功能的要求,结构必须进行“反常规设计”,即将上部布置小空间,下部布置大空间;上部布置刚度大的剪力墙,下部布置刚度小的框架柱。为了实现这种结构布置,就必须在结构转换的楼层设计水平转换构件,即转换层结构。结构特性高层建筑转换层按照结构来分类主要有以下几个形式:梁—柱体系、桁架体系、墙梁体系、厚板转换体系等,其中以梁—柱体系最为常用。按照转换层结构功能的不同,一般可分为以下三类:建筑上、下部分之间结构类型的转换,此类建筑上部和下部采用的结构形式不同。建筑上、下部分之间的柱网尺寸不同,这种建筑虽然上下部分的结构类型相同,但通常需要通过转换层,扩大其下部结构的柱距,以形成大柱网。同时具备转换结构和扩大轴线尺寸的混合形式。

设计原则转换层的设置造成建筑物竖向刚度的突变,对结构抗震不利,故采用转换层结构设计时应遵循以下原则:尽可能减少需结构转换的竖向构件,直接落地的竖向构件越多,转换结构越少,转换层造成的刚度突变就越小,对结构抗震更有利,转换层结构在高层建筑竖向的位置宜低不宜高。优化转换层结构,选择具有明确传力路径的换层结构型式,以便于结构分析设计和保证施工量,在满足建筑物安全和经济要求的前提下,转换刚度宜小不宜大。

2 不同类型转换层的结构介绍与设计方法

高层建筑转换结构一般可分为4种基本结构形式,即:桁架(包括空腹桁架)、箱型结构、梁式(包括托梁和双向梁格)、厚梁厚板。以下主要介绍了梁式转换层结构及桁架式转换结构的设计方法。对以上4种基本结构形式设计应注意的问题简要介绍如下

2.1 梁式转换层结构

该结构形式是目前高层建筑中实现垂直转换最常用的结构形式,由于其传力途径采用墙(柱)转换梁柱(墙)的形式,具有传力直接、明确和清桁架转换层箱型结构转换层空腹桁架转换层。该转换层结构的优点,便于工程计算、分析和设计,且造价较节省。所以梁式转换层结构在实际工程中应用较广。实际工程中转换梁的结构形式有多种多样,从转换梁功能上,可分为托墙和托柱;从转换梁形式上,可分为加腋和不加腋;从转换梁结构采用材料上,又可分为钢筋混凝土、预应力混凝土、钢骨混凝土和钢结构等。转换梁设计方法的选择与其受力性能和转换层的形式有关,现简述如下:

2.1.1 托柱形式转换梁截面设计

当转换梁承托上部普通框架时,在转换梁常用截面尺寸范围内,转换梁的受力基本和普通梁相同,可按普通梁截面设计方法进行配筋计算;当转换梁承托上部斜杆框架时,转换梁将承受轴向拉力,此时应按偏心受拉构件进行截面设计。

2.1.2 托墙形式转换梁截面设计

当转换梁承托上部墙体满跨不开洞时,转换梁与上部墙体共同工作,其受力特征与破坏形态表现为深梁,此时转换梁截面设计方法宜采用深梁截面设计方法或应力截面设计方法,且计算出的纵向钢筋应沿全梁高适当分布配置。由于此时转换梁跨中较大范围内的内力比较大,故底部纵向钢筋不宜截断和弯起,应全部伸人支座。当转换梁承托上部墙体满跨且开较多门窗洞或不满跨但剪力墙的长度较大时,转换梁截面设计方法也宜采用深梁截面设计方法或应力截面设计方法,纵向钢筋的布置则沿梁下部适当分布配置,且底部纵向钢筋不宜截断和弯起,应全部伸入支座。当转换梁承托上部墙体为小墙肢时,转换梁基本上可按普通梁的截面设计方法进行配筋计算,纵向钢筋可按普通梁集中布置在转换梁的底部。

2.2 桁架式转换结构

该结构形式是由梁式结构转换层变化而来的,整个转换层由多榀钢筋混凝土桁架组成承重结构,桁架的上下弦杆分别设在转换层的上下楼面的结构层内,层间设有腹杆。由于桁架高度较高,所以下弦杆的截面尺寸相对较小。桁架分为空腹桁架和实腹桁架2种,它可以是钢桁架,也可以是钢筋混凝土桁架,在钢筋混凝土高层结构中常用钢筋混凝土桁架。与梁式转换层相比,它的整体性好,受力性更加明确,自重较小而抗震性能好,而且便于管道的安装与维护等,但在施工上比较复杂,在设计上表现为节点的设计难度较大。桁架式转换结构设计方法简述如下:桁架式转换结构可以采用ANSYS和TAT来进行整体结构的内力分析,除应满足结构整体的位移、变形、抗倾覆、周期等要求外,还应满足(JGJ3—2002)《高层建筑混凝土结构技术规程》中附录E中规定的转换层上下结构侧向刚度比的要求。

相对其他结构形式转换层而言,桁架转换层比梁式转换层和厚转换层在受力上更加合理,在转换层位置受到的剪力和弯矩就比较小,有利于构件截面尺寸的控制,不会造成很大的刚度集中。在地震作用下,不会造成应力的集中,有利于结构抗震。其次在桁架转换层上部的结构所受到的剪力和弯矩相对其他的转换层结构来说也较小,其受力受下部转换层的影响较小,比较合理。由于桁架转换层的重量相对其他转换层的重量要小,从而减小了下部框架柱的抗压负荷。

3 高层建筑转换层的结构设计应注意的问题

3.1 宜低位转换,尽量避免高位转换,设置结构转换层的高层建筑属复杂的高层建筑,其结构竖向刚度存在一定程度的突变,且转换层上下附近的刚度、变从头再来和内力都会发生突变,易形成薄弱层,对抗震不利。所以,设置转换层应竖持转换层位置宜低不宜高的观点。尽量降低转换层的层位,尤其抗震结构设计,宜避免高位转换,三层以下为宜,一般不超过六层。

3.2 上下轴网力求部分对齐不错位,如查结构上部、下部的轴网全部错位,则转换层结构可能只得采用厚板式,厚板式转换层结构是所有转换层结构中缺点最多的一种形式。不仅受力不好,设计难度高,施工困难,而且极不经济。

3.3 框支柱、剪力墙的合理布置,设置结构转换层的高层建筑,不论采用何种结构体系,都必须保证部分剪力墙直接落地;转换层下面的框支柱的柱距疏密均匀,框支柱怀剪力墙(通常是核心筒)的距离位不宜太大(控制在12m以下)。转换层以上的剪力墙应采用大开间布置。强化下部,保证下部大空间结构有足免的刚度、强度、延性和抗震能力。转换层的平面须比轴规则,保证转换大梁的刚度和出平面外的稳定性。

4 结束语

在高层建筑转换层设计中,须根据工程本身特点和验处中受力状态的不明确定等因素,选择科学全理的设计方案,确保方案设计的全面性、科学性,减少施工的风险和难度。

参考文献:

[1] 茅於平,尤亚平.高层建筑形柱式结构转换[J].建筑科学,2011,17(1).

[2] 中华人民共和国建设部.高层建筑混凝土结构技术规程[M].北京:中国建筑工业出版社.2006.

篇9

关键词:高层建筑;基础工程;特点;抗震设计

高层建筑基础工程的特点高层建筑层数多、建筑造型复杂、主楼与裙楼高低悬殊;竖向重力荷载、水平风荷载以及地震荷载大;结构上要求一定的埋置深度以及使用上要求设置多层地下室,还要考虑场地地基土质和水文的不同情况。同时由于高层建筑在地震灾害时遭受到破坏,将会导致严重后果,因此高层建筑基础抗震设计也特别关键。

一、高层建筑基础工程的特点与重要性

高层建筑基础的设计与施工应有更高、更严的要求。在多数情况下,多层房屋常用的基础形式、设计理论和施工方法不能简单地在高层建筑中套用,必须研究与上述要求相适应的基础形式、设计理论和施工方法。

高层建筑基础工程具有下列一些特点:(1)高层建筑属安全等级为一级的建筑物,除对地基进行承载力计算,使基底附加压力不超过地基承载力或桩的承载力外,还应进行变形计算,使基础总沉降量和差异沉降量控制在允许限值范围内,以确保高层建筑安全可靠。(2)在高层建筑总造价中,基础工程占有相当大的比重,为确定安全稳定经济合理的基础方案,应根据高层建筑上部结构类型和荷载(有无抗震设防)以及工程地质勘察报告和现场施工条件,对不同类型的基础方案进行技术经济比较。(3)高层建筑由于结构上和使用功能上的要求,基础往往埋置很深,而城市房屋密集,道路纵横,一般不可能放坡施工,需对基坑坑壁进行围护,要预先估计到在基坑开挖过程中对毗邻房屋的影响。工程实践表明,基坑的围护工程对基础工程的工期和造价都有相当大的影响。(4)高层建筑的基础,大多属于大体积混凝土结构;在施工过程中要求控制好温度及温度应力,防止有害裂缝产生。大体积混凝土工程的裂缝控制是高层建筑基础工程施工的一项重要技术关键。

高层建筑基础的设计中如果任何一方面考虑不周或处理不当,都将导致不良的、甚至严重的后果。轻则产生过大的沉降、倾斜(不均匀沉降),造成结构局部损坏,影响功能和美观;重则导致建筑整体倾覆或破坏。高层建筑基础工程的造价和施工工期在建筑总造价和总工期中占的比例,与上部结构的形式和层数、基础结构类型以及地质复杂程度和环境条件等因素有关。基础工程的设计与施工对高层建筑本身及其周围环境的安全十分重要,其造价和工期对高层建筑的总造价和总工期也有举足轻重的影响。

二、高层建筑基础抗震设计

地震对高层建筑的破坏作用是十分复杂的。首先,地震时的地面运动是多维的,地震动的各方向分量对建筑物都起破坏作用。世界各地强震仪已经多次记录到地面运动的三个正交平动分量,即一个竖向分量和两个水平分量。地面运动的转动分量虽然尚未取得仪器记录,但已为地震工作者观察到,且已有了人工合成转动分量的方法,同样也对建筑物起破坏作用。再者,地面运动的各个分量又都包含着多种破坏因素,而这些因素又都与震源特性、传播介质、场地条件(地形、土质条件)等有关。按照现有认识,表征地震动特性及其破坏作用的要素有三:①最大加速度;②频谱成份;③持续时间。

据已往地震经验表明,砂土液化引起地基不均匀沉陷,导致上部结构破坏或整体倾斜。在具有深厚较弱冲积土层的场地上,高层建筑的破坏率显著增高。当高层建筑的基本周期与场地自振周期相近时,破坏程度将因共振效应而加重。

相对于多层建筑而言,高层建筑破坏和倒塌的后果更为严重。当今,地震工程的科学研究尚处于较低水平,试验手段和技术还不能确切模拟地震对建筑的破坏作用,因而地震区建筑物的破坏状况便成为探索地震破坏作用和结构震害机理最直接和最全面的大型结构试验。因此,有必要在充分吸取历史地震经验和教训的基础上,研究改进高层建筑的抗震设计技术,以提高高层建筑的抗震可靠度。在地震作用下,土既是结构物的地基,支承上部结构传来的各种荷载;又是波传播的介质,土层条件将影响地表地震动的大小和特征,即具有放大和滤波效应。在很多情况下,这种作用将成为地震作用的主要部分,它在抗震设计中是通过场地分类和设计反应谱加以考虑的。

所谓“地基土”是指建筑物基础之下持力层的土而言,它在地震期间及震后的表现,直接影响上部结构的破坏程度。对它的要求是地震作用下承载力不显著降低,地基不失效,保证上部结构在地震作用后能正常使用。与土的双重作用有联系的是两种性质不同的结构物震害。结构物的震害可以分成两类:一类是由振动破坏引起的,另一类结构物的震害是由地基失效引起的。为了减轻这类震害,有效的措施是通过各种方法加固地基,或避免采用容易失效的地基,而不是采用措施加强上部结构。

高层建筑的破坏状况和破坏程度,一方面取决于地震动特性,另一方面还取决于结构自身的力学特性。每一次地震,高层建筑的破坏状况各有特点。地基破坏的原因较集中和明确。虽然由地基失效导致上部结构产生的损坏,从外表上看存在各种各样的破损现象。只要作比较深入具体的调研即可发现,上述这些破坏现象的产生原因不外乎砂性土的震动液化、软粘土震动软化和不均匀地基引起的差异沉降。

建筑物的地震破坏应区分为振动破坏和地基失效影响。振动破坏不外乎三种原因:或因建筑物未作抗震设计;或因建筑物虽作了抗震设计,但遭遇的地震作用比预期的地震作用大得多;或地震作用虽不太大,但由于建筑物周期与地震动卓越周期相近、结构变形因共振而一再放大,从而使建筑物因丧失整体性或强度不足,或变形过大而破坏。地基失效的原因不外乎发震断裂引起的地表位错、构造性地裂、大面积砂性土震动液化和软粘土震动软化引起的震陷和滑移、不均匀地基的差异沉降和滑移、采空区和洞穴塌陷等。地震是一种随机事件,地震发生的时间、地点和强度尚难以可靠预报;由于震源机制、地震波的传播途径、场地条件的复杂性和不确定性,设计地震动的大小(强度)、频谱特性和持续时间也难以可靠确定;以目前的地震科学认识水平,要准确预测建筑物和地基在未来地震作用下的抗震能力,尚难以做到。因此,应着眼于建筑物和地基整体抗震能力的概念设计,再辅以必要的计算分析和构造措施,从根本上消除建筑物和地基中的抗震薄弱环节,才有可能使设计出的高层建筑及地基基础具有良好的抗震性能和足够的抗震可靠度。

参考文献

[1]李勇,孙丽杰.高层建筑结构特点、现状及发展趋势[J].黑龙江科技信息.2010(09)

[2]周黎.对高层建筑的理性思考[J].科协论坛(下半月).2010(02)

篇10

[关键词]高层建筑 承重柱设计 探讨

中图分类号:TU972 文献标识码:A 文章编号:1009-914X(2015)11-0158-01

高层建筑结构承重柱种类比较多,其中比较常见的有钢纤维混凝土柱、箍筋约束混凝土柱等,这些承重柱各具优势,具体选择哪种类型,则需要根据高层建筑要求来定,有些类型的承重柱延性比较差,而有些承重柱轴压比不符合要求,设计人员要依据来选择承重柱。

一、高层建筑结构承重柱的种类

1.1 箍筋约束混凝土柱。根据配筋构造形式的不同,可分为普通箍、井字箍、井字复合箍、复合螺旋箍、连续复合矩形箍柱。箍筋约束混凝土柱的受力机理是利用复合钢箍或螺旋钢箍约束核心混凝土受压时的横向应变,使核心混凝土处于三向受压状态,从而提高混凝土强度,增加延性。这种类型柱在设计使用时,柱截面需做成圆形,适用性和灵活性差;采用焊接钢箍时,焊接麻烦,用钢量大,同时,钢箍约束核心混凝土横向应变有限,柱承载力提高和延性能的改进也是有限的。

1.2 钢纤维混凝土柱。钢纤维混凝土是一种由水泥、粗细集料和随机分布的短纤维组合而成的复合材料。由于钢纤维阻滞基体混凝土裂缝的扩展,使其各项物理力学性能都比普通混凝土有明显的提高和改善。试验研究表明,随着钢纤维含量提高,混凝土极限压应变明显增大。在其他各项条件基本相同的情况下,掺入适量钢纤维能够明显提高构件的延性。

1.3 钢管混凝土柱。根据截面形式不同,可分为方钢管混凝土柱、圆钢管混凝土柱和多边形钢管混凝土柱。钢管混凝土是将混凝土注入封闭的薄壁钢管内形成的一种组合结构材料,它利用钢管和混凝土两种材料在受力过程中的相互制约,使其具备了优异的工作性能:承载力高、塑性和韧性好、经济效果好。采用钢管混凝土结构替代钢结构柱,可节约钢材50%左右;若替代钢筋混凝土柱,则在用钢量大体相同的情况下可减小柱截面面积50%左右。相应节约大量混凝土。

二、高层建筑结构承重柱设计重点

高层建筑结构承重柱设计的重要性不言而喻,在设计时需要抓住设计重点,能够起到事半功倍的作用,其设计重点主要有两点,一点是轴压比限值;另一点是抗震性能。具体阐述如下:

1、轴压比限

1.1 柱中轴压比是影响延性的主要因素之一,而影响混凝土柱延性的主要原因在于混凝土部分所分担的轴压力。确定一个合适的轴压比限值,以使混凝土柱的抗震延性得到满足,十分重要。同时轴压比是影响承重柱的破坏形态和变形能力的重要因素。《建筑抗震设计规范》(GB50011-2001)为了保证钢筋混凝土柱具有足够的延性,对柱的轴压比限值做出了规定,希望框架发生大偏心受压破坏,保证框架柱在地震作用下发生大变形时具有较好的延性,从而保证框架结构有足够的变形能力。实现框架大震不倒的抗震设计目标。对于箍筋约束混凝土柱,采用井字复合箍、复合螺旋箍、连续复合矩形箍钢筋混凝土柱,轴压比限值可增加0.10,但应保证最低配箍率的要求。

1.2 高强混凝土柱材料的性能

1.2.1 在材料的性能上,高强混凝土延性比普通混凝土延性差,在外荷作用下容易发生脆性破坏,但通过适当的配筋构造措施,用高强混凝土制作的构件延性同样可以满足设计要求,因此,其轴压比限值可不降低。

1.2.2 钢纤维混凝土柱的性能。与普通混凝土类似,存在大偏心受压破坏和小偏心受压破坏两种破坏形态。当钢纤维掺入量在1%-2%范围内,钢纤维混凝土抗压强度提高幅度较小。参照钢筋混凝土框架柱轴压比限值理论分析,钢纤维混凝土柱轴压比限值可略有提高。

1.2.3 钢管混凝土柱的性能。基于钢管混凝土压弯构件的水平力和位移恢复力特性的理论分析结果,钢管混凝土构件用于高层建筑中时,可采取限制长细比的办法,不必限定轴压比。

1.2.4 钢骨混凝土柱的性能,相关研究根据钢骨混凝土柱正截面承载力和低周期反复水平力作用下的静力试验结果,从钢骨混凝土柱界限破坏时内力的平衡条件出发,推导出轴压比的理论计算公式,经简化后提出了实用计算公式。2、改善短柱抗震性能

改进配筋构造型式,加强核心混凝土有效约束,如配置螺旋箍筋、复式箍筋、斜向交叉配筋等。提高构件承载力,减小轴压比,如钢骨混凝土柱、钢管混凝土柱和高强混凝土柱等;改进材料性能,提高混凝土变形能力,如钢纤维混凝土柱等;采用分体柱,变短柱为长柱。

三、高层建筑结构承重柱设计建议

承重柱设计对高层建筑而言,尤为重要,因为高层建筑的荷载比较大,而且对抗震性能要求比较高,如果承重柱设计没有符合这两点要求,对高层建筑来说消极影响非常大,因此在设计承重柱时,需要满足工程要求,结合个人多年高层建筑结构承重柱设计经验,提出以下建议:

首先,正确选择承重柱材料类型与性能直接影响到承重柱使用效果,尤其是荷载能力、强度方面影响特别大,通常情况下,承重柱制作材料都会选择钢管、高强混凝土材料,因为钢管具有一定的韧性,而混凝土性能也比较突出,因此使用这两种类型的材料完全符合工程要求,最为常见的承重柱为型钢高强混凝土柱;其次,注重承重柱的选型,其选型需要考虑比较多的问题是,其中最重要的有两项,一个是施工技术,另一个是经济指标,这两点要综合考虑,与此同时,还需要考虑承重柱轴力大小,轴力大小不同,其型号必然也不相同。之所以要重视承重柱的选型除了上述的原因外,还主要是因为抗震性能的要求,通常钢纤维混凝土柱能够满足高层建筑对抗震性能的要求;有些设计人员在承重柱选型时,没有考虑到截面尺寸的问题,所以选择的承重柱截面不适宜,出现截面尺寸过大的情况比较多,为了有效的缩减截面尺寸,可以选择高强混凝土柱等,这种类型对缩减承重柱尺寸效果比较好;最后,承重柱种类不同,其轴压比限值有所不同,因此在选定轴压比时,要视具体情况而定,尽量将误差降到最低。过高的轴压比,承重柱塑性会受到严重的影响,因为轴压比高,承重柱的预压应变比较大,预压应变对承重柱的塑性影响非常大,尤其是转动能力的影响,这样会降低承重柱的延性。但是如果轴压比比较低,承重柱的截面尺寸会出现过大的现象,则会影响承重柱的高度,这会影响承重的延性。基于以上叙述,在选择承重柱时,首先要考虑有限延性,其次注意选择轴压比,进而才能使承重柱最大程度的获得水平抗力。

四、结语

综上所述,可知对高层建筑结构承重柱设计进行探讨非常重要,因为作为建筑结构中普遍使用的承重柱构件,对设计人员的水平要求比较高,在此对其设计的相关问题进行探讨,能够为相关设计人员提供参考,使其在设计时能够注意到相关问题,而避免出现不必要的问题。

参考文献