纳米流体技术的特点范文

时间:2023-12-06 17:53:49

导语:如何才能写好一篇纳米流体技术的特点,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

纳米流体技术的特点

篇1

关键词 多孔金属材料;热处理;工艺

中图分类号TG 文献标识码A 文章编号 1674-6708(2010)23-0092-02

0 引言

金属材料由于具有出色的理化性能以及综合力学性能,因而在工业领域被广泛应用。对于充分发挥金属材料所具备的性能潜力,提高产品的内在质量,延长产品的使用寿命,节省材料,降低能耗,加快经济的发展等方面,热处理技术的意义十分重大。目前为止,我国在热处理基础理论上的研究、热处理设备方面以及热处理新工艺、新技术研究方面都取得了巨大进步。

1 金属材料的广泛应用

金属材料强度高,有很好的韧性、塑性、铁磁性、导电性和导热性,在现代工业中的重要性是不言而喻的。近些年,国内的纳米金属材料和多孔金属材料的发展速度迅猛,两者的应用已经延伸到了各个领域,市场需求也因此开始高速的增长。

1.1纳米金属材料

纳米金属材料指的的是采用纳米技术制造的金属材料,它的组织结构拥有纳米级的尺寸,然而它的组织里面也存在着纳米颗粒的杂质。纳米技术可以将金属材料的组织及材料成分控制地极其细小和精密,这样金属的力学性能、功能特性就都得到了巨大的提高。目前,纳米金属材料主要得到以下的一些应用。

1)铝基纳米复合材料。铝基纳米复合材料因其超高强度(可达到116 GPa)备受关注。其结构特点是纳米尺度的α-A1粒子弥散分布在非晶基体上,合金元素包括过渡族金属(如镍、铁)和稀土(如铈、钇)。部分非晶态合金在略低于非晶态合金的晶化温度下温挤,加工过程中会结晶,就转变成了纳米-非晶态复合型的材料。不仅如此,铝基纳米复合型材料具有高强度,较好的抗疲劳性等特点,而雾化的粉末也可以固结成棒材,进一步加工可以制成小尺寸的高强硬度部件。

2)电沉积型的纳米晶体镍。电沉积薄膜所表现出来的比较典型的柱状的晶结构可利用脉冲电流的方法将其破碎。如果能够精确的把pH值、温度和镀液的成分控制好,电沉积之后的镍晶粒的尺寸就能够达到10nm。在101.85℃的时候它会发生比较反常的晶粒增长,添加溶质并使其晶界上偏析也就实现了结构的稳定。这给很多的现实应用带来了方便,比如管材内涂覆和核电站蒸汽发电机说我叶轮的修复。

3)高强度且耐磨损的WC-Co纳米复合型的材料。纳米型结构的WC-Co在硬度、耐磨性和韧性等方面都比普通的材料要更胜一筹,其也已经用作切削工具和保护涂层。化学合成WC-Co纳米合金或高能球磨也经工业化。

1.2多孔金属材料的应用

多孔金属材料因具有渗透性好、孔径可调、耐高温、耐腐蚀、强度高等优点,是当前发展较快的一种功能性材料。多孔金属材料可以制成分离膜、过滤装置等,在原子能、冶金、环境保护、等行业得到了广泛应用。

1)能量的吸收。能量的吸收是多孔金属材料的比较重要的用途之一,比较常见的吸收装置包括吸震器和缓冲器,这些应用从汽车内的防冲挡板到宇宙飞船中的起落架等等。

2)电磁的屏蔽。多孔金属可以吸收电磁波,利用这一性能多孔金属一般可用于电磁屏蔽、电磁兼容器件。主要应用在孔洞相互之间全都连通的三维网状镍或铜中,这种结构比金属网的屏蔽性能高得多,且比重轻、透气散热性好,其屏蔽效果相当于波导窗,但体积比之更小、更轻便,更加适合于移动的仪器设备。

3)热交换。多孔金属表面积很大,可以有效应用于热交换和加热。通孔体能够被制成加热装置、散热装置和热交换装置,闭孔体能够用来制作绝热或者是隔热的材料。不仅如此,多孔金属耐火性能出色,且具有与阻火能力协调的高渗透性,在防止火焰沿管道蔓延的选材上可作为首选,可制成灭火器。

4)过滤和分离。多孔金属的渗透性能出色,往往被用来制造过滤的装置,孔金属的空隙能够阻留或者捕集液态介质中的固体粒子,而且能够把气体或液体进行分离和过滤,最终分离介质起到净化的作用。

5)流体分布和控制。多孔金属可用在流体分布装置中。例如利用多孔不锈钢控制火箭鼻锥体偏航指示仪外壳冷却液体或气体,在磁带处理设备中的漂浮塑性膜的气浮辊筒中大量应用多孔粉末冶金材料。另外一些布气元件用于向液体中布入气体,如多医用氧合装置中孔钛板将氧气均匀的充入血液之中,利用多孔钛管给啤酒充气等。多孔金属材料能用于对流体的控制,如用于液体或气体的计量装置、自动化系统中的信号控制延时装置等。

2 热处理技术的发展

热处理技术是金属材料能够得到很好的改进的重要手段。热处理过后,金属材料的性能会得到很大的提高。热处理技术的快速发展使得其应用越发的广泛。现在,热处理方法出现了很多新兴的工艺,如强烈淬火技术、环己烯渗碳、磨削加热淬火,另外还有离子束表面改性、微波渗碳等。

2.1热处理的新工艺

热处理的新工艺层出不穷。例如,微波渗碳可使热处理工艺实现更精准地控制加热并达到更高温度,从而减少耗能并缩短工艺周期;离子束表面改性,优点包括不改变金属表面的化学成分,尺寸变化很小,不需要使用化学用剂,也不会产生有毒有害气体;铝合金铸件孔隙和工艺周期的缩短可通过铝合金的热等静压固溶时效复合处理消除,这样就降低了生产成本,同时铸件的力学性能也得到提高;另外,还有乙炔低压渗碳、混合气低压渗碳等。

2.2热处理技术中所使用的的新型的设备

热处理技术中的所使用的新设备也在不停的更新换代。例如:真空加热的高压气淬设备。由于低压的渗碳双室高压气淬炉的开发使得冷速的效果得到了很大的提高,气淬冷却均匀且工件形变小;密封渗碳高压气淬炉又是除真空加热双室高压气淬炉外的一种新设备;低压渗碳高压气淬链接式生产线,可以在不移动小车上很多笨重的软管及电缆的情况下工作,简化了结构,设备运作也更加的可靠等。工具钢的高浓度渗碳、马氏体不锈钢的高浓度渗碳和所有在真空条件下在500~1300℃的各类热处理也包括在内。

2.3热处理的新型材料

热处理的新型材料主要是指的就是生态淬火剂。生态淬火剂指的是加入添加剂后的植物油制成的天然淬火油。常用的淬火剂有水、熔盐、盐水、聚合物溶液,还包括Ni3Al金属间化合物、冷热矿物油、APM和APMT合金。

2.4新型的传感技术

当前最新的传感技术包括氧探头Oxymess;氮势传感装置HydroNit,跟踪渗氮过程的传感装置KiNit;用于氮碳共渗氮势测控和渗氮的TiO2氧探头;测控淬火槽工作状况的Fluid Quench传感装置;用于气冷淬火的Heat Flux传感装置;真空渗碳碳势传感装置等。

3 结论

在科技发展日新月异的今天,全球在发展经济的同时也大力注重控制降低成本、计划节约能源以及生态环境的保护。在金属材料和热处理技术方面各国取得的成果显着。而与此同时,在我国科学家的共同不懈的努力下,我国的金属材料和热处理技术也取得了骄人的成绩。随着控制手段、设备器械的功能、工艺技术的进一步发展和丰富,我国在这一领域的研究水准讲会有更加快速的发展。

参考文献

[1]刘培生,李铁藩.多孔金属材料的应用[J].功能材料, 2001,32(1):12-15.

[2]王燕.纳米金属材料[J].金属功能材料,2004(2): 10.

[3]石力航.纳米金属材料[J].湖南冶金,2000(6):43-46.

篇2

关键词:循环肿瘤细胞;微流控芯片;细胞检测

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2014)09-2093-02

近年来,恶性肿瘤导致的死亡率在所有疾病的死亡率中位居前列,而肿瘤细胞具有的侵袭和转移能力正是恶性肿瘤的高致死率的诱因 [1]。循环肿瘤细胞(Circulating tumor cells,CTCs)是自肿瘤原发灶或转移灶脱落进入外周血液循环的肿瘤细胞,是肿瘤远处转移的一种标志。因此,基于循环肿瘤细胞的肿瘤转移的检测就显得至关重要。

微流控芯片以其低成本、易操作、便携式、低损伤、高准确性成为当前各类CTCs检测方式中最热门的一种方式。基于微流控芯片的相应方法的成功实现及运用,不仅将对肿瘤早期检测和预后的判断有重大意义,而且对临床治疗的指导也有很大价值。

1 CTCs概念

根据目前的研究,CTCs被定义为因诊疗操作或自发由实体肿瘤或转移灶释放而进入外周血循环的肿瘤细胞。进入循环而未被清除的肿瘤细胞通过微迁移、黏附以及相互聚集形成一定体积的微小癌栓,并在相应条件下发展为转移灶[2]。

CTCs在外周血中的数量极少,通常在每106~107个白细胞中才能寻找出仅有的数个肿瘤细胞,因而要进行CTCs检测通常必须先进行细胞富集,以提高检测灵敏度。细胞富集可通过肿瘤细胞的特异性标志物或者细胞形态特征如细胞密度和体积等来实现。其中免疫磁性分选法是目前最常用的CTCs富集方法。当前较为常用的CTCs分离检测手段则有CTCs微流控芯片技术、流式荧光检测仪、CellSearch检测、膜过滤法、密度梯度离心法。

2 微流控芯片的制备工艺和研究

目前,微流控芯片主要以PDMS为芯片材料,以玻璃为基底材料。其中PDMS具有非常理想的材料特性,尤其表现在作为构建微流控芯片的主要材料时。

近年来,由于PDMS易于加工成型,图形效果好,光学透性好且兼容荧光检测等,低毒性、加工容易,且容易和自身以及其他多种材料封接,对温度等环境的要求也不多等诸多优点,因此受到了各方广泛关注。首先,PDMS因为弹性好,在脱模过程中,加工出来的PDMS微通道在保持模具完整无损的情况下,能够轻松剥离出来,从而实现模具的重复利用[3]。另外,PDMS柔性好,易于吸附在其他材质的衬底之上,而且PDMS与相对粗糙的表面接触非常紧密,经过处理后,与基底封接效果好,键合工艺简单,浇铸法制备PDMS结构具有较高的成型质量。PDMS的电绝缘性也很好,因而被运用于各种主流毛细管电泳芯片的制作;PDMS对温度等也很不敏感且具有化学惰性,与大部分待检测液体都不会发生反应,因而具有很高的生物兼容性,满足大量不同生物实验的要求。迄今为止,以PDMS为主要加工制备材料的微流控芯片已被广泛应用到医学和生命科学等领域。

3 不同微流控芯片技术的原理及方式

3.1 基于循环肿瘤细胞大小的微流控芯片技术

利用肿瘤细胞与其它血细胞的大小以及刚度不同的物理性质可以对循环肿瘤细胞进行分离。根据肿瘤细胞与血细胞直径的不同,设计一定直径的滤孔,可以实现循环肿瘤细胞的分离。ISET联合激光扫描细胞计量仪(lasereanningeytometry,LSC)的原理即是利用肿瘤细胞通常比外周血液中其它细胞大的特性,采用孔径为8μm的滤膜,将肿瘤细胞从血液中分离出来,通过不同荧光标记细胞来进行进一步鉴定,应用LSC对已经过荧光抗体标记的细胞进行扫描并识别,进而可以准确计算出血液中含有的微量肿瘤细胞。常用的荧光抗体有抗CK抗体。经过研究表明,此方法已成功被运用于从乳腺癌、前列腺癌以及肺癌患者的血液中检测出CTCs。此方法较之CellSearch系统而言,其细胞富集过程相对容易,它不依赖抗原抗体反应而是直接过滤外周血进行肿瘤细胞富集,不但不破坏肿瘤细胞的形态学特征而且减小了肿瘤细胞的丢失,同时它能将丢失了上皮细胞特征的肿瘤细胞分离出来,并且应用激光扫描细胞计量仪对所检测到的阳性细胞进行进一步目测确认,确保了CTCs检测的准确性。然而,采用CellSearch技术与采用此方法检测的CTCs数目之间存在一定的不一致性,可能原因是有假阳性结果出现所致。而且此种方法选择的膜孔径为8μm意味着此方法只能分离直径大于8μm的肿瘤细胞,但目前没有研究能证实所有的肿瘤细胞都大于8μm,这导致该方法分离的准确性会受到质疑。

3.2 基于循环肿瘤细胞介电性的微流控芯片技术

由于肿瘤细胞是正常细胞变异了的细胞,因而它的电学性质方面较之正常细胞也会有所差异。DEPArray技术即是一种基于肿瘤细胞独特的介电性质的新型分离方法。相关针对淋巴肿瘤细胞的阻抗进行测量的研究,根据实验数据来评估细胞的介电性,发现恶性肿瘤的一个显著特点即是具有较低的特异性膜电容,鉴于这种特性,以上两种细胞的分离在控制介电泳的频率在1MHz以上时即可实现,并可保持这两种细胞的活性。DEPArray方法将嵌入了控制电路的硅衬底应用于已富集的样本中,通过改变电场来激发微电极,细胞从而被吸引或排斥,而不同大小和形态的细胞在分离过程中会受到介电力作用,而电场的变化相应改变细胞整体受力情况。在整个分离过程中,在一定的流速下,由于细胞在入口处低频电信号的作用下受到排斥的介电泳作用力,细胞的流动导致电极激发频率增加从而浮力减小,因而细胞在对应其介电特性的位置下沉停止。有研究表明已成功从血液中分离出乳腺癌细胞。介电泳方法简单易操作,他对单个细胞的分子鉴定以及评估肿瘤特异性和实现个性化疗法的监测具有广泛前景。但是该方法具有一定的局限性,因为不同种类的肿瘤细胞的介电性质存在差异,对应的电信号频率也不同。而且此种方法不能进行肿瘤细胞的计数,只能进行肿瘤细胞的分离,因此要确保细胞为肿瘤细胞则需要与其他细胞计数方法联合使用。比如曾有研究人员利用单克隆抗体将循环肿瘤细胞富集在微流控芯片上,通过改变电导率的方法对捕获到的循环肿瘤细胞进行计数等。

3.3 基于亲和配体功能化的微流控芯片技术

2007年,美国强生公司与麻省医院癌症中心合作研发了一种可以检测出外周血中微量肿瘤细胞的微流体硅芯片,称为CTC-Chip。该微流体硅芯片的表面布满了上万个被抗体包被的位点,当血液流过该芯片时,上面的抗体与肿瘤细胞进行特异性结合,肿瘤细胞就会因抗原抗体反应而被粘附在芯片上。此种方法能从血液中近10亿血细胞中检测出单个肿瘤细胞[4]。其原理主要是将肿瘤细胞与连接上皮细胞粘附因子EpCAM抗体的磁珠进行特异性结合,结合后再应用强力磁体将这些循环肿瘤细胞从血液中提取出来并进行生化染色,进而可以准确辨别循环肿瘤细胞。2010年,该机构成功研发第二代CTC-Chip,称为HB-Chip。虽然利用微流控芯片虽然可以成功地将活的循环肿瘤细胞成功分离出来,但因为细胞在操作中被固定在装置上,所以难以再次利用。总之,CTCs芯片技术为对肿瘤转移进行更为精细的分析提供了一个平台。

3.4基于纳米颗粒的微流控芯片技术

纳米技术在近年来得到飞速发展,并已大量运用到包括医学、药学及机械制造业等领域。其中由于纳米颗粒具有独特的光学、电学及机械等性质,在解决检测方面的问题发挥了重要作用。结合纳米技术的循环肿瘤检测分离方法利用某些纳米颗粒独特的生物以及光学特性,在检测过程中,与循环肿瘤细胞相连,作为具有特异性的光学标记物,用以实现信号的放大,因此避免了肿瘤细胞的检测信号不强的问题。另外,利用纳米孔内部连接相应肿瘤标记物的抗体,当纳米孔内有肿瘤标记物通过时,抗体与抗原特异性结合,引起阻抗相应的改变,肿瘤标记物的浓度则可通过检测阻抗的变化确定。借助纳米材料的上述优点,未来针对检测中应用纳米技术的研究里,会有很多方面可以提高。

4 基于微流控芯片的循环肿瘤细胞检测面临的问题以及未来发展

综合上述各种方法,相关循环肿瘤细胞的新检测方式不断出现,虽然它们各自具有检测优势,但仍存在一系列问题,影响循环CTCs的敏感性、特异性以及检测准确度等。例如依赖抗原抗体的免疫学检测法有高度的特异性而缺乏足够的敏感性,非免疫学检测法则有敏感性高而特异性不足的问题。目前,还有没有一种100%特异性的肿瘤生物标记。这些都增加了对CTCs的检测难度,需要在未来的研究中得到进一步的解决。

虽然CTCs检测存在很多问题,但是大量临床试验表明,CTCs检测在实体肿瘤早期诊断检测、转移判断、疗效判定和预后评估等方面具有重要临床意义。装置微型化是目前CTCs检测装置的研发趋势,而这其中微流控芯片就是典型成果。综上所述,在现有技术的基础上,充分结合不同领域领域的优势,实现多方面的综合检测,提高检测技术的复杂度并确保检测结果的准确性,完成高效率、高精准度以及低成本的检测过程是未来基于微流控芯片的CTCs检测领域的研究重点。

5 结论

微流控芯片检测循环肿瘤细胞(CTCs)作为一种具有高度可重复性和可行性的新型诊断工具,在肿瘤转移的早期诊断、检测以及预后鉴定等方面的作用是显著的。该文深入探讨了该领域的最新进展,分析了当前各种检测方式的优劣势。可以看出,大部分的检测过程都不是采用单一方式。单一方式有缺陷,需要结合多种方式才能准确分离CTCs。为了使循环肿瘤细胞分离的方法更便捷,在研究过程中可以结合多种检测方式,实现多功能多模式的检测。各种检测方式的组合,必定可以起到事半功倍的效果。随着各种研究方式和检测技术的改进,包括敏感性和特异性的不断提高,微流控芯片检测分离循环肿瘤细胞(CTCs)必定会在临床肿瘤诊治中得到广泛推广及应用。

参考文献:

[1] Cristofanilli M, Medndelsohn J. Circulating tumor cells in breast cancer:Advanced tools for “tailored”therapy [J]. Proc Natl Acad Sci,2006(46):17073-17074.

[2] Paterlini-Brechot P, Benali NL. Circulating tumor cells(CTC)detection:clinical impact and future directions[J]. Cancer Lett, 2007:180-204.

篇3

论文摘要:介绍了纳米磁性材料的用途,阐述了纳米颗粒型、纳米微晶型和磁微电子结构材料三大类纳米磁性材料的研究和应用现状。

1引言

磁性材料一直是国民经济、国防工业的重要支柱与基础,广泛地应用于电信、自动控制、通讯、家用电器等领域,在微机、大型计算机中的应用具有重要地位。信息化发展的总趋势是向小、轻、薄以及多功能方向进展,因而要求磁性材料向高性能、新功能方向发展。纳米磁性材料是指材料尺寸限度在纳米级,通常在1~100nm的准零维超细微粉,一维超薄膜或二维超细纤维(丝)或由它们组成的固态或液态磁性材料。当传统固体材料经过科技手段被细化到纳米级时,其表面和量子隧道等效应引发的结构和能态的变化,产生了许多独特的光、电、磁、力学等物理化学特能,有着极高的活性,潜在极大的原能能量,这就是“量变到质变”。纳米磁性材料的特殊磁性能主要有:量子尺寸效应、超顺磁性、宏观量子隧道效应、磁有序颗粒的小尺寸效应、特异的表观磁性等。

2纳米磁性材料的研究概况

纳米磁性材料根据其结构特征可以分为纳米颗粒型、纳米微晶型和磁微电子结构材料三大类。

2.1纳米颗粒型

磁存储介质材料:近年来随着信息量飞速增加,要求记录介质材料高性能化,特别是记录高密度化。高记录密度的记录介质材料与超微粒有密切的关系。若以超微粒作记录单元,可使记录密度大大提高。纳米磁性微粒由于尺寸小,具有单磁畴结构,矫顽力很高的特性,用它制作磁记录材料可以提高信噪比,改善图像质量。

纳米磁记录介质:如合金磁粉的尺寸在80nm,钡铁氧体磁粉的尺寸在40nm,今后进一步提高密度向“量子磁盘”化发展,利用磁纳米线的存储特性,记录密度达400Gbit/in2,相当于每平方英寸可存储20万部红楼梦小说。

磁性液体:它是由超顺磁性的纳米微粒包覆了表面活性剂,然后弥漫在基液中而构成。利用磁性液体可以被磁场控制的特性,用环状永磁体在旋转轴密封部件产生一环状的磁场分布,从而可将磁性液体约束在磁场之中而形成磁性液体的“O”形环,且没有磨损,可以做到长寿命的动态密封。这也是磁性液体较早、较广泛的应用之一。此外,在电子计算机中为防止尘埃进入硬盘中损坏磁头与磁盘,在转轴处也已普遍采用磁性液体的防尘密封。磁性液体还有其他许多用途,如仪器仪表中的阻尼器、无声快速的磁印刷、磁性液体发电机、医疗中的造影剂等等。

纳米磁性药物:磁性治疗技术在国内外的研究领域在拓宽,如治疗癌症,用纳米的金属性磁粉液体注射进人体病变的部位,并用磁体固定在病灶的细胞附近,再用微波辐射金属加热法升到一定的温度,能有效地杀死癌细胞。另外,还可以用磁粉包裹药物,用磁体固定在病灶附近,这样能加强药物治疗作用。

电波吸收(隐身)材料:纳米粒子对红外和电磁波有吸收隐身作用。由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大减少波的反射率,使得红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标,起到了隐身作用。

2.2纳米微晶型

纳米微晶稀土永磁材料:稀土钕铁硼磁体的发展突飞猛进,磁体磁性能也在不断提高,目前烧结钕铁硼磁体的磁能积达到50MGOe,接近理论值64MGOe,并已进入规模生产。为进一步改善磁性能,目前已经用速凝薄片合金的生产工艺,一般的快淬磁粉晶粒尺寸为20-50nm,如作为粘结钕铁硼永磁原材料的快淬磁粉。为克服钕铁硼磁体低的居里温度,易氧化和比铁氧体高的成本价格等缺点,目前正在探索新型的稀土永磁材料,如钐铁氮、钕铁氮等化合物。另一方面,开发研制复合稀土永磁材料,将软磁相与永磁相在纳米尺寸内进行复合,就可获得高饱和磁化强度和高矫顽力的新型永磁材料。转

纳米微晶稀土软磁材料:在1988年,首先发现在铁基非晶的基体中加入少量的铜和稀土,经适当温度晶化退火后,获得一种性能优异的具有超细晶粒(直径约10nm)软磁合金,后被称为纳米晶软磁合金。纳米晶磁性材料可开发成各种各样的磁性器,应用于电力电子技术领域,用作电流互感器、开关电源变压器、滤波器、漏电保护器、互感器及传感器等,可取得令人满意的经济效益。

2.3磁微电子结构材料

巨磁电阻材料:将纳米晶的金属软磁颗粒弥散镶嵌在高电阻非磁性材料中,构成两相组织的纳米颗粒薄膜,这种薄膜最大特点是电阻率高,称为巨磁电阻效应材料,在100MHz以上的超高频段显示出优良的软磁特性。由于巨磁电阻效应大,可便器件小型化、廉价,可作成各种传感器件,例如,测量位移、角度,数控机床、汽车测速,旋转编码器,微弱磁场探测器(SQUIDS)等

磁性薄膜变压器:个人电脑和手机的小型化,必须采用高频开关电源,并且工作频率越来越高,逐步提高到1~2MHz或更高。要想使高频开关电源进一步向轻薄小方向发展,立体的三维结构铁芯已经不能满足要求,只有向低维的平面结构发展,才能使高度更薄、长度更短、体积更小。对于10~25W小功率开关电源,将采用印刷铁芯和磁性薄膜铁芯。几个微米厚的磁性薄膜,基本上不成形三维立体结构,而是二维平面结构,其物理特性也与原来的立体结构不同,可以获得前所未有的高性能和综合性能。

磁光存储器:当前只读和一次刻录式的光盘已经广泛应用,但是可重复写、擦的光盘还没有产业化生产。最具有发展前途的是磁性材料介质的磁光存储器,其可以像磁盘一样反复多次地重复记录。目前大量使用的软磁盘,由于材料介质和记录磁头的局限性,其存储密度已经达到极限;另外其已经不能满足信息技术的发展要求,无法在一张盘上存储更多的图象和数据。采用磁光盘存储,就能在一张盘上记录数千兆字节到数十千兆字节的容量,并且能反复地擦写使用。

3展望

纳米技术是本世纪前20年的主导技术,纳米材料是纳米技术的核心,是21世纪最有前途的材料,也是纳米技术的应用基础之一。纳米科技的发展给传统磁性产业带来了跨越式发展的重大机遇和挑战,纳米级磁性材料的开发和研究是磁性材料发展的一个必然方向,但同时也应重视用纳米技术改造传统产业和对现有材料进行纳米改性方面的研究,以全面提高企业的技术水平和竞争能力,在世界民族之林树立中华民族的大旗。

参考文献

[1]王瑞金.磁流体技术的应用与发展[J].新技术新工艺,2001,(10):15-18.

[2]许改霞,王平,李蓉等.纳米传感技术及其在生物医学中的应用[J].国外医学生物工程分册,2002,25(2):49-54.

篇4

关键词:静电纺丝;纳米纤维;技术进展

中图分类号:TQ340.65 文献标识码:A

Latest Progress on Electrospinning at Home and Abroad

Abstract: Electrospinning is the one of the simplest and effective methods for producing nanofibers at present. However, low production capacity has been the bottleneck for its large-scale application. Over the past few years, there have been lots of relevant researches on electrospinning, and many researchers designed multi-needle device and single-needle device to improve its productivity, but there are still many problems to be resolved. This article discussed the research progress and esisting problems of electrospinning technology in detail.

Key words: electrospinning; nanofiber; technological development

纳米纤维严格意义上是指纤维直径小于100 nm的超微细纤维。它具有比表面积大、孔隙率高等特点,因而可广泛应用于高效过滤材料、生物材料、高精密仪器、防护材料、纳米复合材料等领域。20世纪90年代纳米技术研究的升温,使纳米纤维的制备迅速成为研究热点。静电纺制备聚合物纳米纤维具有设备简单、操作容易等特点,是目前为止制备聚合物连续纳米纤维最重要的方法之一。

1 国内外静电纺丝技术的理论研究现状

静电纺丝过程中的带电聚合物,在电场力、表面张力和黏弹力的共同作用下,会发生形变,由圆形变为椭圆形,进而变为锥形。当电场力增大到一定程度时,聚合物就会在锥尖被加速,从而形成射流。Taylorzai于1964年对这个锥形进行了深入的研究。他指出,当电场力的强度增加时,液滴变得越来越扁长,当超过临界电压时,液滴形状将不再稳定,先伸长,然后就趋于锥形。Taylor计算了一个无限流体形成的锥的半角角度α=49.3°,这就是泰勒锥。

S.V.Fridrikh等提出了一个简单的公式,以分析静电纺丝过程中决定射流直径的力,其为射流表面张力、流动速率和电压的函数。公式预测了射流直径极限的存在。不同的电纺丝纤维的实验数据证明了这一公式的正确性。

H.Fong、I.Chun和D.H.Reneker提出,使用静电纺丝技术纺出的纤维经常出现规则排列的珠丝。同时指出,射流粘液的粘弹性、电荷分布以及溶液的表面张力是影响珠丝形成的关键因素。

J.M.Detizel等在工艺参数对纤维尺寸的影响的研究中发现,纺丝电压和溶液浓度是最重要的工艺参数。纺丝电压与纤维成形过程中珠串缺陷有紧密的联系;而溶液的浓度则强烈影响着纤维的尺寸。另外他们还指出,静电场的作用可能会影响静电纺丝形成的纤维织物的宏观尺寸形态。

杨恩龙等在《静电纺丝技术及其研究进展》一文中指出,静电纺丝中会出现 3 种不稳定状况,即粘性不稳定性、曲张不稳定性和弯曲不稳定性。后两种不稳定性完全是因为射流的表面电荷经电场的作用引起的,而且会随着纺丝射流的伸展而放大。他们还指出,高压静电场下高聚物溶液喷射流不稳定的主要原因是:①表面电荷的相互排斥;②分裂液滴间或更细射流间的相互排斥;③射流与环境流体的混合流动。

H.Fong等对静电纺丝过程中带有珠节的纳米纤维进行了研究,并得出溶液的黏弹力、射流所带电荷的密度以及溶液的表面张力是产生珠节的关键因素。

2 静电纺丝设备的研究现状

传统的静电纺丝装置为单针头装置。基本的静电纺丝装置主要由 3 部分组成 —— 高压静电发生器、喷头或者金属针头和接收装置,如图 1 所示。

近年来,随着纳米纤维的应用领域不断拓展,其对静电纺丝技术也提出了更多的要求。但是静电纺丝生产效率较低,单针头静电纺丝机生产率只能达到0.1 ~ 1 g/h,导致生产成本过高,对其产业化、规模化以及纳米纤维材料的广泛应用造成了巨大的障碍。因此,各国专家和研究人员一直致力于此问题的解决,先后提出了多针头、无喷头的静电纺丝装置,虽然生产率有一定程度的提高,但仍存在很大的不足。

2.1 多针头静电纺丝装置

多针头静电纺丝技术是人们为提高产量首先想到的方法,也是目前提高产量和推进工业化应用最普遍也是最主要的方法之一。

Theron 等利用 9 个针头排列成 3 × 3 和 9 × 1 阵列进行实验。研究发现,阵列式多针头射流间由于相邻针头间的静电影响会产生相互排斥的现象,这就容易造成针头的堵塞,影响纺丝质量。

为了减弱针头间射流的相互排斥,研究人员做了相关研究。Kim 等采用在 5 个针头周围加上金属圈的方法,还可避免外界环境对射流稳定性的干扰。Tomaszewksi 等利用椭圆形和圆形分布的多针头与线性排布对比,发现圆形分布改善了工艺稳定性,并在一定程度上提高了加工效率。贾志东等通过在每个针头上加上密闭圈,改善了射流排斥现象,提高了纺丝效率。但是辅助电极的安装只能改善射流间的排斥作用,并不能消除。此外,由于装置的复杂性增加,针头数量受到了限制,不利于大规模生产,对产业化产生了不小的障碍。

2.2 无针头多射流静电纺技术

多喷头静电纺装置虽然能有效提高纺丝效率,但针头的清洁工作依然是其进一步发展的最大障碍,而且针头间必要的空隙导致装置占地面积的增大,与工业化生产的需求产生矛盾,因此人们逐渐由多针头向无针头静电纺丝技术转移。

图 2 展示的是世界上首台纳米纤维静电纺丝装备—— Nanospider,其问世在静电纺丝领域是一座里程碑,标志着无针头静电纺技术跨出了重要一步。该纺丝机利用滚筒转动的离心力供液,取代了传统静电纺装置中的针头。

在纺丝过程中,部分滚筒浸入到纺丝液中,滚筒转动,在离心力的作用下滚筒表面附着的溶液形成无数小液滴,液滴在电场力作用下形成泰勒锥,再在电场力作用下抽拉固化成丝。该装置能生产幅宽超过 1 m 的纳米纤维网,大幅提高了纺丝效率,为静电纺技术的工业化发展奠定了基础。

目前无针头静电纺技术出现了很多成丝方法,其原理大同小异,都是通过外加作用力在溶液表面形成扰动峰,再在电场作用下抽拉成丝。产生扰动峰的方法有很多种,最典型的莫过于利用圆筒的离心力,此外还有磁场的磁扰动、超声波技术等。但是目前所有的无针头静电纺技术由于所形成的液滴及泰勒锥的大小而随机性较大。例如,气体扰动法就是利用气体向溶液中充气,使溶液表面形成气泡,在电场的作用下使气泡表面带电,带电气泡在电场作用下凸起变形,最终形成向上喷射的射流,该方法得到的纤维直径受气泡大小的影响较大(图 3)。

最近,相关研究人员使用圆盘和螺旋的长丝代替Nanospider的滚筒作为喷头,设计了如图 4 和图 5 所示的两种静电纺丝装置。实验表明,一个薄壁圆盘式的静电纺丝装置的产量和长丝长度相当于滚筒静电纺丝的100倍;而螺旋式静电纺丝装置可以纺出比传统静电纺丝更细的纤维,且其产量比滚筒式静电纺丝装置还要高。

3 结语

静电纺丝技术自发明以来,特别是近10年,无论在生产工艺还是装置研发方面,都取得了很大的进步,但目前依然存在许多尚未解决的问题。

第一,传统的静电纺丝设备产量低。现阶段,大部分静电纺丝设备仍然使用单针头装置,其产量只能达到0.1 ~ 1 g/h,导致生产成本过高,对其产业化、规模化以及纳米纤维的广泛应用造成了极大的障碍。近几年,各国专家和研究人员都对此问题进行了大量的研究,先后提出多针头、无针头的静电纺准装置,虽然使静电纺产量有了一定程度的提高,但是技术不够成熟,仍存在很大的不足。

第二,静电纺制备的纳米纤维取向性差。由于静电纺技术成丝过程复杂,纤维取向不易控制,一般只能制成纤维网。

第三,静电纺丝所制的纳米纤维强力偏低。

一旦以上问题得到解决,静电纺技术将有可能因其设备简单、操作方便而成为制备纳米纤维最有效和最重要的方法。

参考文献

[1] G I Taylor. Electrically driven jets[J]. Proc.R.Soc.Lond.A,1969,313:453-475.

[2] S V Fridrikh,J H Yu,M P Brenner,et al. Controlling the fiber diameter during electrospinning[J]. Physical Review Letters,2003,90(14):114502.

[3] H Fong,I Chun,D H Reneker. Beaded nanofibers formed during electrospinning[J]. Polymer,2006,47(13):4789-4797.

[4] J M Deitzel,J Kleinmeyer,D Harris,et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42(1):261-272.

[5] 杨恩龙,王善元,李妮,等. 静电纺技术及其研究进展[J]. 产业用纺织品,2007(8):7-10.

[6] THERON S A,YARIN A L,ZUSSMAN E.Multiple jets in electrospinning:experiment and modeling[J].Polymer,2005,46(9):2889-2899.

[7] KIM G H,CHO Y S,KIM W D.Stability analysis for multi jets electrospinning process modified with a cylindrical electrode[J]. European Polymer Journal,2006,42(9):2031-2038.

[8] TOMASZEWKSI W,SZADKOWSKI M.Polymeric nanofibers via flat spinneret electrospinning[J].Fibers Textiles Eastern Eur,2005(13):22.

[9] 贾志东,杨颖,关志成,等.高效多针静电纺丝喷丝装置:中国,1962966A[P]. 2007-5-16.

[10] 杨恩龙,史晶晶.多喷头静电纺丝研究进展[J].产业用纺织品,2009,27(9):1-4.

[11] JIRSAK O,SANETRNIK F,LUKAS D,et al.A method of nanofibers production from polymer solution using electrostatic spinning and a device for carrying out the method:CZ,WO2005024101-A1[P].2005-03-17.

[12] YARIN A L,ZUSSMAN E.Upward needless electrospinning of multiple nanofibers[J].Polymer,2004,45(9):2977-2980.

[13] HE J,LIU Y,XU L,et al.BioMimic fabrication of electrospun nanofibers with high-throughput[J].Chaos,Solitons & Fractala,2008,37:643-651.

篇5

【关键词】膜分离技术发展新模过程

膜分离过程是一门新兴的多种学科交叉的高技术,近二十多年来膜技术有了迅速的发展。膜过程在生产生活中已经占据了重要的地位,是需要物质分离的必不可少的技术。随着科技的进步,膜分离过程技术已经占据了多个生产领域的半边天,如,气体和液体燃烧的生产、工业废水处理、空气隔离等等,都是贴近生活,造福于人类的技术。

1 纳米膜过滤技术

20世纪90年代出现了纳米膜分离过程。由于这类膜孔径是在纳米范围, 所以称为纳滤膜及纳滤过程。纳滤是介于反渗透与超滤之间的一种以压力为驱动力的新型膜分离过程,它拓宽了液相膜分离过程。纳滤特别适用于分离相对分子质量为几百的有机化合物,它的操作压力一般小于1 MPa,能截断相对分子质量为300 ~ 1000的分子(近来也有报导大于200或100的),这与制膜的技术有关。

纳米过滤膜截断相对分子质量范围比反渗透膜大而比超滤膜小,因此可以截留能通过超滤膜的溶质而让不能通过反渗透膜的溶质通过,根据这一原理,可用纳米过滤来填补由超滤和反渗透所留下的空白部分。

20世纪80年代初期,美国Film Tec的科学家研究了一种薄层复合膜,它能使90%的NaCl透析,而99%的蔗糖被截留。显然,这种膜既不能称之为反渗透膜(因为不能截留无机盐),也不属于超滤膜的范畴(因为不能透析低相对分子质量的有机物)。由于这种膜在渗透过程中对约为1nm的小分子截留率大于95%,因而它被命名为“纳米过滤”。

纳米过滤的特点是:

(1)在过滤分离过程中,它能截留小分子的有机物并可同时透析出盐,即集浓缩与透析为一体;

(2)操作压力低,因为无机盐能通过纳米滤膜而透析,使得纳米过滤的渗透压远比反渗透低,这样,在保证一定的膜通量的前提下,纳米过滤过程所需的外加压力就能比反渗透低得多,具有节约动力的优点。

鉴于上述特点,这种膜分离过程在工业流体的分离纯化方面将大有作为,比超滤和反渗透的应用面要广得多,因此,各个国家都会有巨资投入在反渗透膜的应用生产上,对纳米滤膜的大力支持开放,使其不断迅速发展并壮大,也为经济的发展做出巨大贡献。

2 膜蒸馏

膜蒸馏是膜技术与蒸发过程结合的新型膜分离过程。20世纪60年代kndly首先介绍了这种分离技术。1982年Gore报导了采用一种称为GoreTex膜的聚四氟乙烯辗膜进行膜蒸馏和潜热回收的情况,并论述了采用这种技术进行大规模海水淡化的可能性,引起了人们的重视。

膜蒸馏所用的聚合物必须是疏水性的微孔膜,普遍认为聚四氟乙烯最好。膜的孔径一般在0.2~0.4之间为宜。膜蒸馏是在常压和低于溶液沸点的温度下进行的。热侧溶液通常在较低的温度(例如40 ~ 50 ℃)下操作,因而常常可以使用低温热源或废热。与反渗透比较,它在常压下操作,设备要求低,过程中溶液浓度变化的影响小;与常规蒸熘比较,它具有较高的蒸馏效率,蒸馏液更为纯净。膜蒸馏是一个有相变的膜过程,它主要用于盐水淡化和水溶液的浓缩,目前已有10~100td)的膜蒸馏海水淡化的商品装置。提高热利用是目前改进膜蒸馏的主攻方向。

3 膜萃取

20世纪80年代,一个将膜过程和液液萃取过程结合的膜萃取过程开始出现。膜萃取的传递过程是在把料液相和萃取相分开的微孔膜表面上进行的。因此,它不存在通常萃取过程中液滴的分散与聚合问题。膜萃取的优点如下:

(1)没有液体的分散与聚集过程,可减少萃取剂的夹带损失;

(2)不形成直接接触的液液两相流动,可使选择萃取剂的范围大大拓宽;

(3)两相在膜两侧分别流动,使过程免受“反混”的影响和“液泛”条件的限制;

(4)与支撑液膜相比,萃取相的存在,可避免膜内溶液的流失。

膜萃取目前还处在实验室研究阶段,常用的是中空纤维装置。膜萃取中相之间可能存在相互渗透、膜的溶胀,以及由此引起的膜器的寿命等是其实际应用时所须解决的问题。

4 液膜电渗析

如果电渗析器中的固态离子交换膜用具有相同功能的液态膜代替,就构成液膜电渗析工艺。利用萃取剂作液膜与电渗析过程结合在一起有很大的前途,对于浓和提取贵金属、重金属和稀有金属等问题有可能找到高效的分离方法。

液膜电渗析目前尚处在实验室阶段,其实验模型是利用半透性玻璃将液膜溶液包封制成薄层状隔板,然后装入小型电渗析器中进行运转。液膜电渗析把化学反应、扩散过程和电迁移三者结合起来,今后会有广阔的应用前景。

5 亲和膜分离

1951年Hedda等提出的亲和膜分离方法最近得到迅速发展。亲和膜分离是基于在膜分离介质上(一般为超滤或微滤膜)利用其表面及孔内所具有的官能团,将其活化,接上具有一定大小的间隔臂,再选用一个合适的亲和配基,在合适条件下使其与间隔臂分子产生共价结合, 生成带有亲和配基的膜。将样品混合物缓慢地通过膜,使样品中能与亲和配基产生特异性相互作用的分子。产生偶联,生成相应的络合物。然后,改变条件,如洗脱液组成、pH值、离子强度、温度等,使已和配基产生亲和作用的配合物产生解离,将其收集,从而使样品得以分离。

亲和膜分离技术将是解决生物技术下游产品的回收和纯化的高效方法。随着生命科学和生物技术的迅速发展,对生物大分子纯化分离的要求越来越高。一些相对分子质量差别很小的大分子,可用亲和介质所具有的高选择性和特性性能,将一二种所需组分从数十甚至数百种物质的混合物中分离出来。

6 促进传递

促进传递是在膜中进行的一种抽提(萃取)。促进传递有以下特点:

(1)它具有极高的选择性;

(2)通量大;

(3)极易中毒。

参考文献

[1] 刘旭红,赖新生. 膜技术在色氨酸提取工艺的应用[J]. 发酵科技通讯,2010(01)

篇6

[关键词] 特点;机械设计;制造工艺

中图分类号:TH122 文献标识码:A 文章编号:

现代制造技术是20世纪80年代提出的,但它的工业基础已有办个多世纪。最初的制造是靠手工,以后出现机械代替手工,从而达到提高产品质量和生产效率的目标,同时也为了解放劳动力和克服繁重体力劳动,因此出现了机械制造技术。它有两方面的含义:一时指用机械、机器来加工零件的技术,也就是通常所说的用机床来加工;另一方面是指制造某种机械的技术,例如汽车、电机产品等。其后,经过发展,制造加工方法有了更大的提高,突破传统意义上加工外出现电加工、化学加工、光学加工等等非机械加工方法。因此,原本被叫做机械制造技术则被改叫为制造技术。但是,不可否认的是,机械制造仍为其主体和重要部分。

1、现代制造技术的重要性

1.1 制造技术和社会发展休戚相关

现代制造技术是当今世界各国研究和发展的统一命题,在全球市场经济的竞争大潮中,它更是显得格外重要。

人类的发展史也就是生产制造史。人类初期,为了生存和自然界抗争,制造处石器,而后有出现陶器、青铜器、铁器并出现了简单机械,如:战争防卫用的刀、剑、弓箭,农作使用的犁、水车、碾磨等。这些都是简单的制造过程,随着社会进一步发展,制造技术也在不停提高。它的发展体现在广度和宽度的拓展,特别是蒸汽机的发明带来了工业革命和大工业生产,内燃机制造技术的出现和发展形成现在汽车、火车等制造技术并进一步促进了喷气式飞机和超音速飞机的发展,集成电路制造技术的进步左右了现代计算机的水平,纳米技术的出现更开创了微型机械的先河。因此,制造技术和人类社会发展密切相关,人类活动的水平也受到制造水平的极大约束。

1.2制造技术是所有工业基础

制造技术是国民经济的基石,在国民经济中具有十分重要的地位和作用。无论是传统产业还是新兴产业都离不开制造技术的强有力支持,因此,制造业是个支柱产业,不同的历史时期有不同的发展重点,但需要制造技术的支持是永恒的。制造技术的规模和水平更是反应国民经济实力和科学技术水平的重要标志。因而,世界各国都把提高制造技术水平当做振兴和发展国民经济的战略重点来抓,可见制造技术是如何的重要了。

1.3制造技术是科学技术转化的基础

从设想到现实,从精神到物质,都是靠制造来转化实现的,制造是科学技术向现实转化的基础,科学技术的发展反过来又促进制造水平的提高。因此,它们体现为相互作用,相互促进。信息技术的发展和引入是制造技术产生了革命性的变化,出现了制造系统和制造科学,从此制造就以系统的新概念重新定义,并以物质流、能量流和信息流组成,物质流是本质,能量流是动力,信息流则是控制,制造技术和系统论、方法论、信息论、控制论和协同论相结合造就了新的制造学科---制造系统工程学。

1.4制造技术是增强国防和国力的保障

一个国家的国力主要体现为政治势力、经济实力、军事实力。经济和军事实力依托于制造技术的基础上,只有制造技术上是强国才能是军事上的强国,一个国家不能总是靠购买别国军事装备来保卫自己,必须有自己的军事工业。国力的强盛才能凸显政治实力,才能立足于世界强国之林。二战以后,日本、德国正是高度重视制造技术,大力恢复发展制造业,因为,国力也很快得以恢复,经济实力也一直处于世界前列。而原先一直处于制造技术领先的美国则由于未能重视它则每况愈下。克林顿执政后,迅速把制造技术提到重要日程上,决心重新夺回霸主地位,期间推行很多先进制造技术和理念,促进先进制造技术的发展,并对美国经济的复苏产生巨大影响。

2、加工制造工艺

加工制造工艺是指产品实现过程中,人、机、料、法、环各相关要素的总称。它是在深入了解和实践的基础上,利用各类基础理论知识,经过实事求是的对比分析,找出客观规律解决面临的制造加工问题的学科。

加工制造工艺涉及行业众多,产品品种也成千上万,但是做好工艺工作通常可归纳为:质量、效率和经济性三类。

2.1保证提高产品质量。产品质量包括整机的装配精度、使用性能、使用寿命和可靠性,深入探究更加表现为零件的加工精度和加工表面质量。近代,由于航天、精密机械、电子工业和军工的需要,对零件的精度和表面质量的要求也越来越高,各种新工艺新材料层出不穷,加工精度更有精密加工、超精密加工和微细加工。

2.2提高制造生产效率。中国是人口大国,有较多的劳动力资源,但随着人口老年化加剧,同是也面临着社会发展人力成本的不断提高这两方面的压力,加工制造过程中也越来越看重生产效率的提高。提高生产效率的办法:一是提高切削用量,采用高速切削,高速磨削和重磨削。今年来出现得聚晶金刚石和聚晶氮化硼等新型刀具材料,其切削速度可达900m/min,高速磨削速度可达200 m/min。重磨削也是高效磨削的方向,包括大切深缓进给、大进给等磨削。二是改进工艺方法、创新工艺。例如,利用锻压设备实现快速成型和少切削加工,创新使用高效设备,如无心磨床、双端面磨床,使用粉末冶金技术直接获得零件成品等。三是提高自动化程度,实现高度自动化。如采用数控机床、柔性制造单元(FMC)、柔性制造系统(FMS)、计算机集成制造系统(CIMS)和用机器人组建实现无人化车间或工厂等。

2.3合理经济性分析。对整个加工制造过程不断的进行经济性分析,把降低成本作为持续改进的目标,节省和合理的选择原材料并不断研制新材料,合理使用和改进现有设备,不断研制新型高效设备。

先进制造工艺可大大节省原材料消耗,降低能源的消耗,提高了对日益枯竭的自然资源的利用率。应用先进制造工艺可做到零排放或少排放,生产过程不污染环境,符合广大人民群众日益增长的环境保护要求,更加是担负起社会责任的具体表现。

3、精密加工技术

先进制造技术是当前世界各国国民经济的主攻方向和战略决策,同时又是一个国家独立自主、繁荣昌盛、经济上持续稳定发展、科学上保持先进的长远大计。精密加工技术是先进制造技术中最具有实质性的重要组成部分,它是先进制造技术的基础和关键,是一个国家制造工业水平的重要标志之一。

3.1 精密切削技术。用直接切削来得到高精度仍是常用的方法,然而,要想得到高水平和高精度的产品,必须尽可能的减少材料、刀具、机床和工件等因素的影响。如要求材料的切削加工性能要好,材料的硬度不能太高,鉴于服务过程中要长久保持高的精度,材料的耐磨性、耐腐蚀性要好。机床具有高刚度、小热变形和抗震性能,就必须有更先进的技术,如机床床身采用花岗岩、使用精密控制技术、空气静压轴承、全闭环技术等,此外,提高刀具的切削速度增加机床转速进行高速切削也是有效的办法,当前的超精密加工机床早已提高到每分钟几万转。

3.2特种加工技术。特种加工是相对于常规加工而言的,它是指利用力、热、声、光、电、磁、院子、化学等能源的物理的、化学的非传统加工方法。从材料加工成型原理来分析,特种加工又可分为去除加工、结合加工和变形加工。

特种加工中,工具的硬度和强度可以低于工件的,因为它不是靠机械力来切削,适于加工高硬度材料、脆性材料等难加工材料,也适于加工精密微细零件、波比零件、弹性零件等易变形零件。又由于工具损耗小,甚至不损耗,可加工复杂成形表面、型腔等。当前特种加工已向精密加工方向发展,出现了精密特种加工,许多特种加工方法同时又是精密加工方法、微细加工方法,如电子束加工、离子束加工、激光束加工等。精密电火花加工的精度可达微米级(0.5~1μm),表面粗糙度可达镜面(Ra0.02~0.012)。

3.3 光整加工。光整加工是指精加工后,从工件上不切除或只切除极薄材料层,泳衣降低工件表面粗糙度或强化其表面的加工方法。光整加工可以获得比一般机械加工更高的加工精度和表面质量。

按照工具类型进行分类,光整加工课分为以下两种:

(1)固结磨料加工,加工时,磨粒和微粉与结合剂粘结在一起,具有一定的形状和强度。固结磨料加工时对提高形位精度和尺寸精度有较高效率,常见的有研磨、珩磨加工等。

(2)游离磨料加工,加工时,磨粒和为分成游离状态,如研磨时的研磨剂、抛光时的抛光液。游离磨料加工的典型方法有研磨和抛光等。近年来,这些传统工艺的基础上出现许多新的工艺方法,如喷射磨料加工、弹性发射加工、磁流体抛光等。

3.4 纳米技术。纳米科学是涉及到多个学科的科学,是先进工程技术与现代物理学相结合的产品。几年来,纳米机械技术取得了快速的发展,能够在硅片上刻画纳米宽的线,这充分表明信息存储的密度提高了若干个数量级。同时,纳米技术在传动、材料、密封等方面更取得了颠覆传统的辉煌成绩,随着深入的研究,纳米技术必将会越来越更好的为机械制造服务。

3.5 微细加工技术。随着科技的不断发展,电子元件的体积也越来越小而使用频率则越来越高,能量消耗也应越来越低。超微细粒子技术的问世使得半导体加工精度达到了几百个埃的程度。随着微机械需求的不断增加,微细加工技术发展空间也越来越大,未来必将会在各行业中起到更重要的作用。

篇7

1 SELEX技术简介

1. 1筛选过程

SELEX技术依据分子生物学的原理,首先人工构建一个随机寡核苷酸文库,随机核苷酸序列的长度为20-40bp左右,所包含的不同种立体构象,几乎可以涵盖自然界存在的所有种类的靶分子。将靶标物质与随机文库在一定条件下进行混合,形成文库洋巴标复合物,把未结合的核酸洗脱掉,富集与靶物质结合的核酸分子,以后者为模板进行PC R扩增,得到的产物经分离纯化后,作为进行下一轮筛选的模板。如此反复,通过多轮(8-15轮)筛选,与靶标不结合或亲和性弱的核酸分子被充分去除,而与靶分子亲和性强的核酸分子被分离出来,同时其纯度随着筛选轮数的增加而增加。最后筛选到的文库要经过克隆测序和特异性修饰,经过这些步骤后,所获得的特异识别靶分子的核酸才是适配体。

1.2优势和特点

1)亲和力高、特异性强。适配体与靶标之间,凭借彼此互补的三维结构,相互作用后形成牢固稳定的复合物,其解离常数通常能达到pmol/L-nmol/L的水平,并且能分辨出靶标结构上细微的差别。

2)库容量大,识别范围广泛。SELEX技术的靶标远远多于经典的抗原抗体结合反应,除了有蛋白质、核苷酸分子外,还可以是糖类、氨基酸、维生素、抗生素、金属离子、有机染料,甚至可以是细菌、病毒、寄生虫等完整的细胞或组织,几乎囊括了自然界中的全部物质。

3)合成容易,获得方便,易于修饰。适配体的体积比传统抗体小,筛选过程简便、周期短,对实验室的要求不高,并具备自动化控制的巨大潜力。经过化学合成和修饰以后可保持原生物活性不变,还可以增强其稳定性并增加其他新的化学性质,参加多类反应。标记了荧光、生物素和纳米金颗粒之后,发展出了诸如分子成像技术等疾病诊断新方法。

4)重复性好,纯度高。整个筛选和制备的过程在人为控制之下,所得到的适配体几乎没有生产批次之间的差异,便于日后的大规模生产和应用。

5)分子量小、稳定性高。相对于抗体或酶,适配体的化学性质更稳定,不易降解,对温度不敏感,保存时间长,即使变形也能在很短的时间内复性,利于室温下运输。

6)应用便捷。SELEX技术所获得的适配体又被称作是核酸型抗体,其优于传统抗体的性质是没有免疫原性,因此便能获得一些低免疫原性甚至无免疫原性靶分子的适配体。并且还省去了传统抗体制备过程中的动物实验,而直接从体外文库中获取。而且适配体更容易通过细胞膜,并且没有毒性,利于检测细胞内的靶分子和实现多层次的调控,并能较快地被机体清除代谢掉,经过特定的化学修饰后,还可使半衰期延长,稳定性提高,便于科学研究和疾病诊治。

2 SELEX技术的发展

目前SELEX技术出现了一些新的筛选方法,越来越多的与各种标靶相对应的适配体被筛选出来。如毛细管电泳法、硝酸纤维素膜过滤法、磁珠分离法、亲和色谱法、Non SELEX技术、无引物PCR SELEX技术、微流体SELEX技术、生物芯片SELEX技术、原子力显微镜等各种新的模式也被应用到适配体的筛选中。同时还出现了SELEX技术与定量PCRSEL-EX技术与流式细胞仪、SELEX技术与ELISA的联合应用,更是极大的提升了筛选的效率和准确性。

2. 1消减SELEX技术

消减SELEX技术是一种经过改良的SELEX技术。以完整细胞为靶标的消减SELEX技术,是在筛选过程中以完整的细胞作为靶标,并消减掉能与已知或未知的共有靶标结合的配体,经过消减后的次级随机文库再投入到特异靶标的筛选中。它的意义在于可以实现从两组高度同源的完整细胞中,筛选出针对其中一种细胞的特异性适配体。这项技术可应用于发现新的肿瘤细胞识别结构,还可进一步作为生物导弹,独立完成靶向治疗或携带药物,未来将会在肿瘤的治疗中发挥巨大的功效。

2. 2自动化SELEX技术

传统的SELEX技术过程需要完成一套重复繁琐的操作,使得筛选相对耗时耗力。自动化SELEX技术的建立可以简化筛选过程,节约时间和物品的消耗,实现高通量和限定范围,达到同时筛选多个靶分子的效果。自动化SELEX技术离不开现代分离仪器的配合,后者的发展推动了前者的进步。2001年等使用Biome 2000自动化工作站成功筛选到了溶菌酶的特异性适配体,通过这种自动化筛选平台,不到2d就完成了12轮的筛选。

2. 3导向SELEX技术

适配体的特异性是整个SELEX技术的核心所在,为了提高适配体的特异性和稳定性,可将已知的能与靶标非特异结合的分子掺入到文库中或预先与靶标进行混合后再筛选,这样可获得只与靶标特异结合的适配体。2002年Hamm等将此技术与抗个体基因型的方法联合运用,成功获得了特定激酶抑制剂的特异性RNA适配体。Martell运用特殊的导向SELEX技术,从随机表达盒杂交文库中筛选到了能与E2F蛋白具有高亲和性的RNA适配体。

3 SELEX技术在医学中的应用

3. 1 SELEX技术在基础医学研究中的应用

依据核酸适配体具有与靶物质高特异性结合的能力,可以帮助我们寻找到疾病的发病机制。Roulette等提出把SELEX技术同基因表达串行分析手段联合应用,并通过自动化的序列提取工艺,建立转录因子结合位点的定位模型。通过对转录因子适配体文库中的某一序列进行测序,可了解该蛋白结合位点的特异性,探寻一些以前在基因组中从未研究过的结合位点,掌握在不同的核苷酸位点上非独立碱基出现的先后顺序,为阐明其结合机制提供一些线索等采取SELEX技术发现,TRF1二聚体在端粒上有两个相同的识别半位点,它们的距离可以变化,且两个半位点的顺序方向没有区别。这为探索端粒长度的调节机制提供了新依据。

3. 2 SELEX技术在疾病诊断中的应用

肿瘤细胞及其标志物的早期检测对于肿瘤的诊断及预后极为重要,目前已经筛选出多种肿瘤的特异性适配体,例如急性髓系白血病的适配体,急性淋巴细胞白血病的适配体、、恶性胶质瘤的适配体淋巴瘤的适配体TDOS、非小细胞肺癌的适配体、小细胞肺癌的适配体、乳腺癌的适配体、结肠癌的适配体、小鼠肝癌的适配体、卵巢癌的适配体。它们可以特异地识别肿瘤细胞,仅需少量肿瘤细胞即可实现准确的鉴别和分型。将适配体与纳米颗粒结合后通过比色检测,观察颜色的变化即可判断有无靶标细胞。这个实验非常敏感,样本中的靶细胞数超过百个即可检测出来,还不需要昂贵的检测设备和待检靶标的标记与修饰。因此,有可能成为常规筛查活体标本中新生肿瘤细胞的一种新方案。与此同时肿瘤细胞的分子成像技术也已经问世,它能够从细胞水平对生物过程进行可视化描述及测量,不仅能定位病灶,观察某些影响肿瘤细胞行为的生物过程,还能观察肿瘤细胞对药物的反应。Kim等研究将前列腺特异性膜抗原(PSMA)的特异性适配体与金纳米材料结合后,带有PSMA的前列腺癌细胞便能够被特异性地标记出来,将其作为造影剂应用在前列腺肿瘤的影像学诊断中,比传统的造影剂显像时间更持久,毒副作用更小,应用价值更显著。

SELEX技术还在血液的生化检查方面,显示出一定的应用前景。用其检测血液中的某些靶分子,将比传统方法更特异和高效。脑尿钠肤(BNP)常被临床上用来评价急性心力衰竭或急性呼吸窘迫症患者的病情和预后。Lin等采用SELEX技术的原理,筛选到了能与BNP特异结合的适配体。在微流体试验模式下,被荧光标记的适配体可以快速测出血液中BNP的浓度,比放射免疫分析法或是免疫分析技术更精确、更经济。反应蛋白(CRP)是机体在应激状态下生成的一种非特异性的急性时相反应蛋白,CRP与冠状动脉粥样硬化、心肌梗死等心血管疾病具相关性。Bin等开发出了一种带有光化学性质的CRP特异性适配体,当血液中的CRP浓度超0.005mg/L时就能被检测出来,敏感度非常高。这一成果为新型CRP诊断试剂的研制奠定了基础。

SELEX技术还被应用在病原微生物的检测,其能克服传统检测方法在特异性和敏感性上的缺陷,为新型检测试剂盒的开发提供有力支持。例如结合分支杆菌的特异性适配体CSRI 2. 11检测过程比传统的培养鉴定法更省时更敏感;丙型肝炎病毒的适配体ZE2可结合酶联免疫吸附试验实现丙型肝炎的早期筛查,不受抗体检测时窗口期的制约;疟原虫乳酸脱氢酶的适配体PL1在临床实践中,可以很好的区分患者是否感染了出间日疟原虫或恶性疟原虫。

3. 3 SELEX技术在疾病治疗中的应用

SELEX技术在疾病治疗中的功效越来越来受到人们的重视。适配体在体内与靶分子结合,理论上可以对靶分子的生理功能和代谢过程产生影响,靶分子也会因此发生信号传导的改变甚至丧失原本的功能,直接或间接阻断疾病发生进程。以此开发的靶蛋白功能阻断剂,日益显示出其巨大的潜力。全球首个适配体药物是2004年由美国食品和药物管理局批准上市的呱加他尼钠,可用来治疗老年性黄斑变性。

SELEX技术在凝血系统疾病的治疗上具有一定的意义,已找到了可用作抗凝血和抗血栓药物的适配体,其结合的位点是凝血酶的肝素结合位点以及纤维蛋白原结合位点。在治疗免疫系统疾病方面,也已获得了具有药物开发潜力的特异性适配体,如可用来拮抗自身抗体已达到治疗系统性红斑狼疮的适配体,还有能刺激T细胞释放的适配体。对于肿瘤的治疗,基于SELEX技术研制的适配体药物更是走在前列,进入到了临床试验阶段。如对实体瘤和复发性急性髓样白血病有良好疗效的AS1411,更出现了连接金纳米棒的适配体,用作肿瘤靶向光热治疗回。适配体药物作为抗病毒药,也展现出良好的前景,比如用来抑制狂犬病病毒的复制和干扰艾滋病病毒的体内合成。除此以外,核酸适配体还可作为运输工具,特异性地把药物运送至靶标细胞或组织达到定点清除的治疗效果,研究比较成熟的有装载着阿霉素,用来杀伤前列腺癌细胞的复合适配体药物。

篇8

关键词:凝聚态物理;关联区;量子态;理论方法

中图分类号:O469 文献标识码:A

凝聚态物理学是当今物理学中最大也是最重要的分支学科之一,它是从微观角度出发,研究凝聚态物质的物理性质、微观结构以及它们之间的关系,因此建立起既深刻又普遍的理论体系,是当前物理学中最重要、最丰富和最活跃的学科,在许多学科领域中的重大成就已在当今高新科学技术领域中起了关键性作用,为发展新材料、新器件和新工艺提供了科学基础。凝聚态物理一方面与粒子物理学在概念上的发展相互渗透,对一些最基本的问题给出启示;另一方面为新型材料的研发和制备提供理论上和实验上的支持,与工科的技术学科衔接构成科学上最有实用性的拓新领域。那么,当今凝聚态物理主要研究哪些分支内容?使用什么样的理论方法?这些研究在哪些方面有所成就?

一、凝聚态物理当今主要研究的一些分支内容

凝聚态指的是由大量粒子组成且粒子间有很强相互作用的系统。固态和液态是最常见的凝聚态,低温下的超流态、超导态、玻色-爱因斯坦凝聚态、磁介质中的铁磁态、反铁磁态等,也都是凝聚态。凝聚态物理是属于偏应用的交叉学科,研究方向和分支很多,基本任务是阐明微观结构与物理性质的关系。传统的凝聚态物理主要研究半导体、磁学、超导体等,现今凝聚态物理学研究的理论内容十分广泛,以下是其中较活跃的几个分支:

1.固体电子论中的关联区

研究固体中的电子行为,是凝聚态物理的前身固体物理学的核心问题。按电子间相互作用的大小,固体中电子的行为分成3个区域,它们分别是弱关联区、中等关联区和强关联区。弱关联区的研究基于电子受晶格上离子散射的能带理论,应用于半导体和简单金属,构成了半导体物理学的理论基础;中等关联区的研究包括一般金属和强磁性物质,是构成铁磁学的物理基础;强关联区则涉及电子浓度很低的不良金属,诸如莫脱绝缘体、近藤效应、巨磁电阻效应等,它们的物理性质问题尚未得到很好地解决。

现今对固体电子论的研究比较注重的是强关联系统。

2.宏观量子态

用量子力学描述宏观体系的状态称为宏观量子态,如超导中电子的库珀对。超导现象是电阻在临界转变温度Tc以下突然降为零,磁通全部被斥,成为完全抗磁体,超流现象是当液氦(4He)的温度降到2.17K时,由正常流体突然转变为具有一系列极不寻常的性质的“超流体”。宏观量子态具有典型的量子力学性质,如势垒隧道穿越和位相相干等。当前量子力学研究的重要课题是退相干现象和耗散现象。

3.介观物理与纳米结构

介观是介于宏观与微观之间的一种体系,处于介观的物体的尺寸可以说是宏观的,因而具有宏观体系的特点;但是由于其中电子运动的相干性,会出现一系列新的与量子力学相位相联系的干涉现象,这又与微观体系相似,故称“介观”。介观物理学所研究的物质尺度和纳米科技的研究尺度有很大重合,所以这一领域的研究常被称为“介观物理和纳米科技”。

为获取更优异的物理性能,凝聚态物理界从20世纪中期开始注重将材料按特定的结构尺度组织成复合体,若结构尺度在1nm~100nm范围内,即为纳米结构,它在基础研究中发挥的重要的作用是:在两维电子气中发现了整数量子霍尔效应、分数量子霍耳效应和维格纳晶格,在一维导体中验证了卢廷格液体的理论,在一些人工的纳米结构中发现了介观量子输运现象。在未来的一段时期内,纳米电子学和自旋电子学将成为固体电子学和光子学的发展主流。

4.软物质物理学

1991年被提出的软物质也被称为复杂液体,它是介于固体与液体之间的物相,一般由大分子或基团组成,诸如液晶、聚合物、胶体、膜、泡沫、颗粒物质、生命体系物质诸如DNA、细胞、体液、蛋白质等都属于这类物质,它们中大多数都是有机物质,在原子的尺度上是无序的,在介观的尺度上则可能出现某种规则而有序的结构。软物质在变化过程中内能的变化很微小,熵的变化却很大,因而其组织结构的变化主要是由熵来驱动,和内能驱动的硬物质不同。有机物质中的小分子和聚合物的电子结构与电子性质现在正受到重视,因此有机发光器件和电子器件正在研制开发中。

二、当今凝聚态物理研究的一些现象及其理论方法

固体物理学的一个重要的理论基石为能带理论,它是建立在单电子近似的基础上的。而凝聚态物理学的概念体系则渊源于相变与临界现象的理论,植根于相互作用的多粒子理论。凝聚态物理学的理论基础是量子力学,基本上已经完备且成熟。

当前常用的一些理论方法:第一性原理(特指密度泛函理论计算),蒙特-卡洛方法,玻尔兹曼模型,分子动力学模拟,伊辛模型,有效场,平均场等等。

当前被研究的一些现象:光谱,超导,霍尔效应,弱相互作用,电阻(巨磁电阻,庞磁电阻),磁性研究(磁阻,微磁学,铁磁性,巨磁阻抗效应,相图),多向异性,子晶格,态密度,能隙,强关联、激发态,量子通信,冷原子、物理进展等等。

第一性原理方法是根据原子核与电子相互作用及其基本运动的规律,运用量子力学原理从哈密顿量出发,近似处理后进行求解薛定谔方程的方法,它能给出体系的电子结构性质等相关信息,能描述化学键的断裂、重组,以及电子的重排而被很多人多热衷。

蒙特-卡罗方法也被称统计模拟方法,是以概率统计理论为基础的使用随机数来进行数值计算的方法一类数值计算方法,它是以事件出现的频率估算随机事件的概率,并将这个结果作为问题的解。

伊辛模型是描述分子之间有较强相互作用的系统发生相变情况的模型。通常使用有效场理论、平均场理论和蒙特・卡罗方法来研究它。

三、当今凝聚态物理研究的一些成就

凝聚态物理当今在器件方面取得的两方面主要成就是太阳能电池和纳米器件。在材料方面取得的一些成就有:纳米材料,电子陶瓷材料,拓扑绝缘材料,碳材料(石墨烯,石墨炔,碳化锗薄膜等),复合热电材料,自旋液体、超导体,超材料,薄膜材料。

上边所列的这些成就中,拓扑绝缘体的边界或表面总是存在导电的边缘态,这有望于制造未来新型电脑芯片等元器件。自旋液体描述物质中的一种特殊自旋排布状态,材料的作用能支持某些奇异的超导性或将一些像粒子一样拥有电荷的实体组织起来。石墨烯是目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,而且它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。当今对石墨炔衍生物的研究逐渐成为研究热点,研究者们积极地设计可能的石墨炔衍生物并预测其物理性质。如研究BN掺杂的石墨炔系列结构的稳定性与电子结构,发现它的性质与硼氮元素掺杂的浓度和位置紧密相关;N掺杂石墨炔可充当氧还原反应的无金属电催化剂;氟化作用可调节石墨炔带隙宽度,这使得石墨炔在纳米电子设备的使用上使其有灵活性;分别在石墨二炔和α-石墨炔中掺入硅和锗的结果是碳硅元素以及碳锗元素之间可以形成稳定的炔键结构,并且其带隙值明显加宽。总之,设计实现这些新的碳锗材料,不仅可以丰富碳相关材料的数据库,而且可以为电子设备、气体分离薄膜、储能材料、锂离子电池电极材料等方面提供可选的对象。

还有,利用粒子的隧道效应可制备隧道结这类夹层结构,诸如半导体隧道二极管、单电子超导隧道结、库珀对超导隧道结。利用与自旋相关的隧道效应,则已制出具有隧道磁电阻的磁存储器。半导体量子阱已用来制备快速晶体管和高效激光器。量子点可用以制备微腔激光器和单电子晶体管。利用铁磁金属与非磁金属可制成磁量子阱,呈现巨磁电阻效应,可用作存储器的读出磁头等等。

结论

有人说:“没有量子力学就没有手机和电脑,就没有现今互联网的普及。”从这句话中可以看出更确凿的事实:基础科学一直是科学技术发展的基础和推手,凝聚态物理在理论上的发展一方面诠释客观物质世界存在的现象,一方面又能预测人类将能解决的客观问题;而它在实验上的发展则是根据其理论上建立的模型给予验证并因此揭示客观事物的实质与规律,且据此来建立并整合理论结果和实验结果与实用技术之间的联系,使得这些客观事物及其规律最终为人类所利用。

参考文献

篇9

随着我国科学技术的不断发展,化学工程技术在化学生产中的应用越来越广泛。化学工程技术作为化学生产中重要的一项技术,不仅能够有效的节约在化学生产中所需要的时间,而且还能够提高化学工程的生产效率。因此,本文通过对化学工程技术的技术概念进行了阐述后,又详细的介绍了超临界流体技术、传热技术以及绿色化学反应技术在化学生产中的应用,并且分析了现如今的化学工程技术存在的问题,同时提出了相应的对策,从而使得化学工程技术在化学生产中能够有更好的发展。

关键词:

化学工程技术;化学生产;应用;分析

在我国,科学技术一直是我们的一项重要的生产技术,随着科技的快速发展,在化学生产过程中也开始广泛的采用化工技术。化学工程技术主要是一项研究化学生产过程中需要采用的相关技术,其主要目的是对化学工程产品进行开发、设计、制造和管理。由于化学工程技术能够有效的提高产品的质量,同时也能够提升化学生产中的工作效率,因此我们对化学工程技术有了更广泛的关注,并不断的将其拓展到化学生产中的各个领域,使得化学工程技术能够发展的更好,进而不断的推进我国的经济发展和科技发展,使我们的生活条件更加优越。

1化学工程技术的技术概念阐述

现如今,化学产品已经成为了人们生活中非常常见的物品,例如药物、食品和日用品,还有农业药物和工厂生产所需的原料等等。因此化学工程技术变成为了一项炙手可热的技术,不断的受到人们的关注。化学工程技术是根据化学理论基础与相关的技术相结合的一项应用于化学生产中的技术,利用化学设备,通过一系列的化学反应进行产品的大量生产。在化学生产的过程中,化学的反应物和设备对于工程的技术要求是非常高的,而化学工程技术的优势就在于能够满足化学反应的要求,进而提高了化学产品的质量。除此之外,化学工程技术还有一项更大的优势就是对废物的处理,这项技术能够尽可能不对环境造成很大的影响,正符合我国当前对生产的要求。

2化学工程技术在化学生产中的应用

2.1超临界流体技术在化学生产中的应用

超临界流体技术主要的内容是,控制一定的温度和压力,使得需要的流体处于液体与气体中间的状态。这种流体的特点集合了气液的优点,它的粘度低与气体相似,它的密度很高与液体相似,这就导致它的扩散能力很强,介于气体和液体之间。同时它还拥有很强的溶解能力和压缩能力。将这种技术应用于化学生产中,通过控制温度与压力,得到超临界流体,利用其拥有的优势来达到节省能耗的目的。现如今,我们将这种技术应用于更过多领域,比如,高分子材料、复合材料、有机物材料和无机物材料。

2.2传热技术在化学生产中的应用

化学工程之中的传热技术主要是分为两方面,一方面是微细尺度传热技术,另一方面是强化传热过程。首先微细尺度传热,是以热对流、热传导、热辐射为主要的内容,从空间尺度和时间尺度微细进行讨论和研究的一项传热技术。这项技术在微米、纳米科学中得到了广泛的应用,并取得了不错的成绩,因此人们更加关注它在化学生产中的应用。强化传热过程,主要的重点是通过调试换热器设备,不断改进生产过程中的传热系数,使其能够有能力不断的对外放热。为了强化传热过程,就要增加冷热流体间的温差,这就必须通过改变换热的面积来提高传热系数,从而来提高传热的效率,使得在化学生产的过程节能减耗。

2.3绿色化学反应技术在化学生产中的应用

通常化学生产的产品一般对我们生活有一些影响的,因此我们就需要采用绿色化学反应来防止化学生产的过程中对环境造成污染,这是从源头来解决污染问题的技术方法。绿色化学只得就是通过使用化学的技术与方法,结合相关的知识来解决化学对人们和环境造成的危害。主要要求就是,化学生产过程中用到的试剂、催化剂、反应原料,和反应完成后的产物与副产物都必须对人类和环境无危害,同时也要保证绿色环保。例如,采用绿色无毒的原料方面,可以将石油原料装换成生物原料。像是在化学产品尼龙的生产过程中,原先采用的是含苯的石油化工原料,我们将可以其原料改换成生物原料,一样也可以制成尼龙,不仅保护了环境,而且也保护了人体收到伤害。除此之外,这项技术在绿色食品生产中也起到了很大的作用,绿色食物是对人体很有益的,在其生产过程中一般禁止使用化学药剂,这样不仅减少了对人体的伤害,同时也减少了对环境的影响。然而生产绿色食品的代价就是成本高,为了可以降低成本又能够有质量,我们可以将化学技术与生物技术相结合,开发基因技术,提高并促进农作物的产量和质量。

3现今化学工程技术存在的问题

3.1化学工程技术需要进一步的提高

现如今,我国的化学工程技术应用的领域非常更广泛,但是仍存在一些不足。滴状冷凝在工业上的应用仍然不能有很好的表现,因为在获得滴状冷凝后,冷凝的液滴不能够被长久的保存,所以,我们应该在这问题上有进一步的研究,从而来解决这个问题。使得我国的化学工程技术能够有更好的发展,人们能够有更好的生活条件。

3.2化学工程技术的人才匮乏

在化学工程中存在的另一个严重的问题就是技术人才问题,只有用化学专业技术强的人才,才能够更好的提高化学生产的质量。而我国现在就存在这样的问题,化学领域的工作人员的普遍的技术能力和专业能力不强,主要是由于我国的教育体制问题,当代的大学生理论要点掌握很好,但实际操作方面却严重的匮乏,这就导致技术型人才的缺乏,从而影响了化学工程技术的进步。

4对化学工程技术的发展提出对策

4.1不断提升化学工程技术

随着我国的科技不断的发展,化学工程技术也会越来越进步,我们应该不断的更新技术,以此来适应社会科技的发展。应该在巩固传统的化学技术的同时不断的添加新型技术,并抛弃不利的部分,从而实现化学工程技术有更好的发展。

4.2培养化学技术人才

人才的重要性是我们有目共睹的,化学技术人才对于化学工程的发展有着至关重要的作用。因此为了化学工程技术能够有更好的发展,我们重点培养化学技术人才,化学生产企业可以通过与相关专业的院校进行合作,让专业对口的大学生能够有机会到生产工厂进行相关的实习操作,从而来培养理论知识牢固并且有一定的操作能力的技术人才来工作。

5结语

化学工程技术在化学生产过程中的应用广泛,它不仅促进了社会经济的发展,更是提高了人们的生活水平,通过技术和人才的不断涌进,我国的化学工程技术会有更好的发展。

作者:桂腾刚 单位:云南巨星安全技术有限公司

参考文献:

[1]王一竹,王一龙,麻超等.关于化学工程技术在工业生产中的应用探讨[J].大科技,2015,(27):283~283.

[2]侯海霞,柯杨,王胜壁等.解析化学工程技术在化学生产中的应用[J].山东工业技术,2015,(14):91.

[3]裘炎,王杲.探析化学工程技术在化学生产中的应用[J].化工管理,2015,(20):90.

篇10

关键词:天然气 吸附 储运技术

前言:与我国丰富的煤炭资源与石油资源相比,我国天然气资源的储量相对较少,但是,但煤炭资源与石油资源的燃烧率较低,且燃烧之后会产生大量的氮化物互为硫化物,对生态环境造成严重污染,所以,天然气以其燃烧率高、低碳、环保密度高等优势成为实现可持续发展战略的有效途径之一。然而,正是因为天然气资源密度高的特点,不易对其进行储运,因此,储运技术便成为对天然气推广应用的关键。

一、主要的天然气存储形式

天然气的主要存储形式有以下几种:其一,液化天然气储存,英文全称Liquefied Natural Gas,简称LNG,是一种在正常大气压下,使天然气以沸腾液体状态保存的储存形式,通常于112K低温储罐中储存,其优点是储存量较大大,但是液化条件苛刻,储存成本相对较高;其二,压缩天然气储存,英文全称Compressed Natural Gas,简称CNG,是一种在常温条件下,以20-25兆帕压力使天然气变成压缩超临界流体状态的储存方式,这种方式虽然储运率较高,但技术难度大,设备要求高,且安全性较低;其三,天然气水合物储存,英文全称Natural Gas Hydrate,简称NGH,是一种利用一定温度和压力将天然气中的小分子气体固化,从而方便储运的储存形式,但该方法速度较慢,实用性差;其四,吸附式天然气储存,英文全称Absorbed Natural Gas,简称ANG,是一种利用吸附剂,将天然气在常温状态下,以3.5兆帕压力使天然气集中吸附在吸附剂周围的储存形式,其储存量可达到通常状态下的180倍,是一种比较好的天然气存储方式,其优点有:对存储条件及存储设备的要求较低;存储容器材料选择范围广;在储运过程中相对安全,易于操作,是现阶段比较合适的天然气存储方式,以下本文将对其详细论述。

二、天然气吸附储运技术工艺的原理

吸附主要指的是固体物将液体或气体中的分子或离子吸在固体物表面的现象,一般情况下,我们将固体物成为吸附剂,而将被吸附的液体或气体成为吸附质。天然气吸附储运技术中所运用的是物理吸附,主要是将高比储气罐表面积的吸附剂装入储气罐中,加大储气罐内部的压力,再利用吸附剂的微孔结构,将气体天然气吸附在固体吸附剂中,当使用时,将储气罐内部的多余气压发出,天然气便可从吸附剂表面脱离,供外界使用。这种吸附式的存储技术可以有效增加天然气的存储密度,增大储运量,节约运输成本与劳动力支出,也是天然气吸附储运技术工艺最大的优势。

三、影响吸附效果的具体因素

1.天然气成分

天然气的主要组成成分是甲烷,除甲烷以外,还有少量烃类、CO2以及含硫物质,吸附剂的吸附效果与天然气组成成分的比例有密切关系,如果所要吸附的天然气中杂质较多,很多烃类或含硫物质就会一直吸附在吸附剂上,长时间的积累会使吸附剂的吸附能力逐渐下降,从而影响存储效果,缩短吸附剂的使用周期。

对吸附剂吸附效果影响最大的物质是硫化烃,硫化烃具有比较强的还原性,遇氧容易转化成单元素的硫物质粘在吸附剂上,严重对吸附剂的吸附孔道造成堵塞,从而影响吸附剂的使用寿命。其次对吸附剂的吸附效果产生较大影响的是天然气中的丙烷和丁烷,被丙烷和丁烷污染过的吸附剂吸附能力明显变差,且不能恢复,从而造成天然气的存储量降低。因此,在对天然气进行吸附式存储时,要对所要吸附的天然气进行预先处理,使用膜分离法去除天然气中的硫物质,再在吸附之前先使用活性炭吸附或硅胶吸附,将天然气中的杂质去除,以便延长吸附剂的使用周期

2.吸附剂结构

吸附效果好的吸附剂是天然气吸附储运技术的的核心,现阶段,多孔炭质吸附剂是相对效果较好的吸附材料。天然气吸附剂不仅要有相对较大的表面积,还要有较多的内部微孔孔道,以便于更大体积天然气的吸附和脱附。学术界有一种假设认为,活性炭可以作为较好的吸附剂运用到天然气吸附式储运技术中,原因是活性炭有单分子碳元素平行构成,每层分子间的空间较大,可以对天然气中的甲烷进行充分吸收,通过科学家的反复计算,最适合的层间距为1.14纳米,在3.5兆帕气压的情况下,最大存储量为209v/v,释放量为195v/v。而另一种声音认为,吸附孔径的直径在1.5纳米时的吸附效果最好,可以使天然气的存储量达到最大值,而脱附时,孔径直径为2.5纳米的脱附效果最佳。

3.吸附与脱附热效应

吸附剂在对天然气进行吸附和脱附的过程中,会伴有一些吸热和放热现象,吸附时,在等量守恒条件下,产生放热现象,使整个吸附过程温度升高,不利于吸附剂对天然气的吸附,使吸附效果不理想,同样,在脱附时,会产生吸热现象,使整个吸附过程温度降低,同样不利于天然气的脱附,是天然气的运储率和使用率降低。

结论:天然气吸附储运技术工艺是一种储运效果好、技术要求低、储运过程相对较安全的储运方式,在储运过程中要注意天然气成分、吸附剂结构以及吸附与脱附热效应对其存储效果的影响,使其存储率增加,从而更好的完成国家对天然气的推广与应用。

参考文献:

[1]孙今朝.管道公司油气储运技术服务项目中的组织机构设置及人员配置研究[D].北京:中国科学院大学(工程管理与信息技术学院),2012.

[2]张友波,郭越岭,王连敏,武玺,陈子香.天然气储存方式技术经济比较分析[J].天然气技术.2013,09(15):167-168.

[3]王国栋,邓先伦,刘晓敏,朱光真.天然气吸附存储用高比表面积活性炭研究进展[J].生物质化学工程.2012,04(24):218-219.